1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/cpu.h>
46 #include <linux/smp.h>
47 #include <linux/pm_qos_params.h>
48 #include <linux/aer.h>
52 #define DRV_VERSION "1.0.2-k2"
53 char e1000e_driver_name
[] = "e1000e";
54 const char e1000e_driver_version
[] = DRV_VERSION
;
56 static const struct e1000_info
*e1000_info_tbl
[] = {
57 [board_82571
] = &e1000_82571_info
,
58 [board_82572
] = &e1000_82572_info
,
59 [board_82573
] = &e1000_82573_info
,
60 [board_82574
] = &e1000_82574_info
,
61 [board_82583
] = &e1000_82583_info
,
62 [board_80003es2lan
] = &e1000_es2_info
,
63 [board_ich8lan
] = &e1000_ich8_info
,
64 [board_ich9lan
] = &e1000_ich9_info
,
65 [board_ich10lan
] = &e1000_ich10_info
,
66 [board_pchlan
] = &e1000_pch_info
,
70 * e1000_desc_unused - calculate if we have unused descriptors
72 static int e1000_desc_unused(struct e1000_ring
*ring
)
74 if (ring
->next_to_clean
> ring
->next_to_use
)
75 return ring
->next_to_clean
- ring
->next_to_use
- 1;
77 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
81 * e1000_receive_skb - helper function to handle Rx indications
82 * @adapter: board private structure
83 * @status: descriptor status field as written by hardware
84 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
85 * @skb: pointer to sk_buff to be indicated to stack
87 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
88 struct net_device
*netdev
,
90 u8 status
, __le16 vlan
)
92 skb
->protocol
= eth_type_trans(skb
, netdev
);
94 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
95 vlan_gro_receive(&adapter
->napi
, adapter
->vlgrp
,
96 le16_to_cpu(vlan
), skb
);
98 napi_gro_receive(&adapter
->napi
, skb
);
102 * e1000_rx_checksum - Receive Checksum Offload for 82543
103 * @adapter: board private structure
104 * @status_err: receive descriptor status and error fields
105 * @csum: receive descriptor csum field
106 * @sk_buff: socket buffer with received data
108 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
109 u32 csum
, struct sk_buff
*skb
)
111 u16 status
= (u16
)status_err
;
112 u8 errors
= (u8
)(status_err
>> 24);
113 skb
->ip_summed
= CHECKSUM_NONE
;
115 /* Ignore Checksum bit is set */
116 if (status
& E1000_RXD_STAT_IXSM
)
118 /* TCP/UDP checksum error bit is set */
119 if (errors
& E1000_RXD_ERR_TCPE
) {
120 /* let the stack verify checksum errors */
121 adapter
->hw_csum_err
++;
125 /* TCP/UDP Checksum has not been calculated */
126 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
129 /* It must be a TCP or UDP packet with a valid checksum */
130 if (status
& E1000_RXD_STAT_TCPCS
) {
131 /* TCP checksum is good */
132 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
135 * IP fragment with UDP payload
136 * Hardware complements the payload checksum, so we undo it
137 * and then put the value in host order for further stack use.
139 __sum16 sum
= (__force __sum16
)htons(csum
);
140 skb
->csum
= csum_unfold(~sum
);
141 skb
->ip_summed
= CHECKSUM_COMPLETE
;
143 adapter
->hw_csum_good
++;
147 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
148 * @adapter: address of board private structure
150 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
153 struct net_device
*netdev
= adapter
->netdev
;
154 struct pci_dev
*pdev
= adapter
->pdev
;
155 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
156 struct e1000_rx_desc
*rx_desc
;
157 struct e1000_buffer
*buffer_info
;
160 unsigned int bufsz
= adapter
->rx_buffer_len
;
162 i
= rx_ring
->next_to_use
;
163 buffer_info
= &rx_ring
->buffer_info
[i
];
165 while (cleaned_count
--) {
166 skb
= buffer_info
->skb
;
172 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
174 /* Better luck next round */
175 adapter
->alloc_rx_buff_failed
++;
179 buffer_info
->skb
= skb
;
181 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
182 adapter
->rx_buffer_len
,
184 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
185 dev_err(&pdev
->dev
, "RX DMA map failed\n");
186 adapter
->rx_dma_failed
++;
190 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
191 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
194 if (i
== rx_ring
->count
)
196 buffer_info
= &rx_ring
->buffer_info
[i
];
199 if (rx_ring
->next_to_use
!= i
) {
200 rx_ring
->next_to_use
= i
;
202 i
= (rx_ring
->count
- 1);
205 * Force memory writes to complete before letting h/w
206 * know there are new descriptors to fetch. (Only
207 * applicable for weak-ordered memory model archs,
211 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
216 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
217 * @adapter: address of board private structure
219 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
222 struct net_device
*netdev
= adapter
->netdev
;
223 struct pci_dev
*pdev
= adapter
->pdev
;
224 union e1000_rx_desc_packet_split
*rx_desc
;
225 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
226 struct e1000_buffer
*buffer_info
;
227 struct e1000_ps_page
*ps_page
;
231 i
= rx_ring
->next_to_use
;
232 buffer_info
= &rx_ring
->buffer_info
[i
];
234 while (cleaned_count
--) {
235 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
237 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
238 ps_page
= &buffer_info
->ps_pages
[j
];
239 if (j
>= adapter
->rx_ps_pages
) {
240 /* all unused desc entries get hw null ptr */
241 rx_desc
->read
.buffer_addr
[j
+1] = ~cpu_to_le64(0);
244 if (!ps_page
->page
) {
245 ps_page
->page
= alloc_page(GFP_ATOMIC
);
246 if (!ps_page
->page
) {
247 adapter
->alloc_rx_buff_failed
++;
250 ps_page
->dma
= pci_map_page(pdev
,
254 if (pci_dma_mapping_error(pdev
, ps_page
->dma
)) {
255 dev_err(&adapter
->pdev
->dev
,
256 "RX DMA page map failed\n");
257 adapter
->rx_dma_failed
++;
262 * Refresh the desc even if buffer_addrs
263 * didn't change because each write-back
266 rx_desc
->read
.buffer_addr
[j
+1] =
267 cpu_to_le64(ps_page
->dma
);
270 skb
= netdev_alloc_skb_ip_align(netdev
,
271 adapter
->rx_ps_bsize0
);
274 adapter
->alloc_rx_buff_failed
++;
278 buffer_info
->skb
= skb
;
279 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
280 adapter
->rx_ps_bsize0
,
282 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
283 dev_err(&pdev
->dev
, "RX DMA map failed\n");
284 adapter
->rx_dma_failed
++;
286 dev_kfree_skb_any(skb
);
287 buffer_info
->skb
= NULL
;
291 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
294 if (i
== rx_ring
->count
)
296 buffer_info
= &rx_ring
->buffer_info
[i
];
300 if (rx_ring
->next_to_use
!= i
) {
301 rx_ring
->next_to_use
= i
;
304 i
= (rx_ring
->count
- 1);
307 * Force memory writes to complete before letting h/w
308 * know there are new descriptors to fetch. (Only
309 * applicable for weak-ordered memory model archs,
314 * Hardware increments by 16 bytes, but packet split
315 * descriptors are 32 bytes...so we increment tail
318 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
323 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
324 * @adapter: address of board private structure
325 * @cleaned_count: number of buffers to allocate this pass
328 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
331 struct net_device
*netdev
= adapter
->netdev
;
332 struct pci_dev
*pdev
= adapter
->pdev
;
333 struct e1000_rx_desc
*rx_desc
;
334 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
335 struct e1000_buffer
*buffer_info
;
338 unsigned int bufsz
= 256 - 16 /* for skb_reserve */;
340 i
= rx_ring
->next_to_use
;
341 buffer_info
= &rx_ring
->buffer_info
[i
];
343 while (cleaned_count
--) {
344 skb
= buffer_info
->skb
;
350 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
351 if (unlikely(!skb
)) {
352 /* Better luck next round */
353 adapter
->alloc_rx_buff_failed
++;
357 buffer_info
->skb
= skb
;
359 /* allocate a new page if necessary */
360 if (!buffer_info
->page
) {
361 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
362 if (unlikely(!buffer_info
->page
)) {
363 adapter
->alloc_rx_buff_failed
++;
368 if (!buffer_info
->dma
)
369 buffer_info
->dma
= pci_map_page(pdev
,
370 buffer_info
->page
, 0,
374 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
375 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
377 if (unlikely(++i
== rx_ring
->count
))
379 buffer_info
= &rx_ring
->buffer_info
[i
];
382 if (likely(rx_ring
->next_to_use
!= i
)) {
383 rx_ring
->next_to_use
= i
;
384 if (unlikely(i
-- == 0))
385 i
= (rx_ring
->count
- 1);
387 /* Force memory writes to complete before letting h/w
388 * know there are new descriptors to fetch. (Only
389 * applicable for weak-ordered memory model archs,
392 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
397 * e1000_clean_rx_irq - Send received data up the network stack; legacy
398 * @adapter: board private structure
400 * the return value indicates whether actual cleaning was done, there
401 * is no guarantee that everything was cleaned
403 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
404 int *work_done
, int work_to_do
)
406 struct net_device
*netdev
= adapter
->netdev
;
407 struct pci_dev
*pdev
= adapter
->pdev
;
408 struct e1000_hw
*hw
= &adapter
->hw
;
409 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
410 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
411 struct e1000_buffer
*buffer_info
, *next_buffer
;
414 int cleaned_count
= 0;
416 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
418 i
= rx_ring
->next_to_clean
;
419 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
420 buffer_info
= &rx_ring
->buffer_info
[i
];
422 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
426 if (*work_done
>= work_to_do
)
430 status
= rx_desc
->status
;
431 skb
= buffer_info
->skb
;
432 buffer_info
->skb
= NULL
;
434 prefetch(skb
->data
- NET_IP_ALIGN
);
437 if (i
== rx_ring
->count
)
439 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
442 next_buffer
= &rx_ring
->buffer_info
[i
];
446 pci_unmap_single(pdev
,
448 adapter
->rx_buffer_len
,
450 buffer_info
->dma
= 0;
452 length
= le16_to_cpu(rx_desc
->length
);
455 * !EOP means multiple descriptors were used to store a single
456 * packet, if that's the case we need to toss it. In fact, we
457 * need to toss every packet with the EOP bit clear and the
458 * next frame that _does_ have the EOP bit set, as it is by
459 * definition only a frame fragment
461 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
462 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
464 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
465 /* All receives must fit into a single buffer */
466 e_dbg("Receive packet consumed multiple buffers\n");
468 buffer_info
->skb
= skb
;
469 if (status
& E1000_RXD_STAT_EOP
)
470 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
474 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
476 buffer_info
->skb
= skb
;
480 /* adjust length to remove Ethernet CRC */
481 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
484 total_rx_bytes
+= length
;
488 * code added for copybreak, this should improve
489 * performance for small packets with large amounts
490 * of reassembly being done in the stack
492 if (length
< copybreak
) {
493 struct sk_buff
*new_skb
=
494 netdev_alloc_skb_ip_align(netdev
, length
);
496 skb_copy_to_linear_data_offset(new_skb
,
502 /* save the skb in buffer_info as good */
503 buffer_info
->skb
= skb
;
506 /* else just continue with the old one */
508 /* end copybreak code */
509 skb_put(skb
, length
);
511 /* Receive Checksum Offload */
512 e1000_rx_checksum(adapter
,
514 ((u32
)(rx_desc
->errors
) << 24),
515 le16_to_cpu(rx_desc
->csum
), skb
);
517 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
522 /* return some buffers to hardware, one at a time is too slow */
523 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
524 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
528 /* use prefetched values */
530 buffer_info
= next_buffer
;
532 rx_ring
->next_to_clean
= i
;
534 cleaned_count
= e1000_desc_unused(rx_ring
);
536 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
538 adapter
->total_rx_bytes
+= total_rx_bytes
;
539 adapter
->total_rx_packets
+= total_rx_packets
;
540 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
541 netdev
->stats
.rx_packets
+= total_rx_packets
;
545 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
546 struct e1000_buffer
*buffer_info
)
548 if (buffer_info
->dma
) {
549 if (buffer_info
->mapped_as_page
)
550 pci_unmap_page(adapter
->pdev
, buffer_info
->dma
,
551 buffer_info
->length
, PCI_DMA_TODEVICE
);
553 pci_unmap_single(adapter
->pdev
, buffer_info
->dma
,
556 buffer_info
->dma
= 0;
558 if (buffer_info
->skb
) {
559 dev_kfree_skb_any(buffer_info
->skb
);
560 buffer_info
->skb
= NULL
;
562 buffer_info
->time_stamp
= 0;
565 static void e1000_print_hw_hang(struct work_struct
*work
)
567 struct e1000_adapter
*adapter
= container_of(work
,
568 struct e1000_adapter
,
570 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
571 unsigned int i
= tx_ring
->next_to_clean
;
572 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
573 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
574 struct e1000_hw
*hw
= &adapter
->hw
;
575 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
578 e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
579 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_1000t_status
);
580 e1e_rphy(hw
, PHY_EXT_STATUS
, &phy_ext_status
);
582 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
584 /* detected Hardware unit hang */
585 e_err("Detected Hardware Unit Hang:\n"
588 " next_to_use <%x>\n"
589 " next_to_clean <%x>\n"
590 "buffer_info[next_to_clean]:\n"
591 " time_stamp <%lx>\n"
592 " next_to_watch <%x>\n"
594 " next_to_watch.status <%x>\n"
597 "PHY 1000BASE-T Status <%x>\n"
598 "PHY Extended Status <%x>\n"
600 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
601 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
602 tx_ring
->next_to_use
,
603 tx_ring
->next_to_clean
,
604 tx_ring
->buffer_info
[eop
].time_stamp
,
607 eop_desc
->upper
.fields
.status
,
616 * e1000_clean_tx_irq - Reclaim resources after transmit completes
617 * @adapter: board private structure
619 * the return value indicates whether actual cleaning was done, there
620 * is no guarantee that everything was cleaned
622 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
624 struct net_device
*netdev
= adapter
->netdev
;
625 struct e1000_hw
*hw
= &adapter
->hw
;
626 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
627 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
628 struct e1000_buffer
*buffer_info
;
630 unsigned int count
= 0;
631 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
633 i
= tx_ring
->next_to_clean
;
634 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
635 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
637 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
638 (count
< tx_ring
->count
)) {
639 bool cleaned
= false;
640 for (; !cleaned
; count
++) {
641 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
642 buffer_info
= &tx_ring
->buffer_info
[i
];
643 cleaned
= (i
== eop
);
646 struct sk_buff
*skb
= buffer_info
->skb
;
647 unsigned int segs
, bytecount
;
648 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
649 /* multiply data chunks by size of headers */
650 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
652 total_tx_packets
+= segs
;
653 total_tx_bytes
+= bytecount
;
656 e1000_put_txbuf(adapter
, buffer_info
);
657 tx_desc
->upper
.data
= 0;
660 if (i
== tx_ring
->count
)
664 if (i
== tx_ring
->next_to_use
)
666 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
667 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
670 tx_ring
->next_to_clean
= i
;
672 #define TX_WAKE_THRESHOLD 32
673 if (count
&& netif_carrier_ok(netdev
) &&
674 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
675 /* Make sure that anybody stopping the queue after this
676 * sees the new next_to_clean.
680 if (netif_queue_stopped(netdev
) &&
681 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
682 netif_wake_queue(netdev
);
683 ++adapter
->restart_queue
;
687 if (adapter
->detect_tx_hung
) {
689 * Detect a transmit hang in hardware, this serializes the
690 * check with the clearing of time_stamp and movement of i
692 adapter
->detect_tx_hung
= 0;
693 if (tx_ring
->buffer_info
[i
].time_stamp
&&
694 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
695 + (adapter
->tx_timeout_factor
* HZ
)) &&
696 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
697 schedule_work(&adapter
->print_hang_task
);
698 netif_stop_queue(netdev
);
701 adapter
->total_tx_bytes
+= total_tx_bytes
;
702 adapter
->total_tx_packets
+= total_tx_packets
;
703 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
704 netdev
->stats
.tx_packets
+= total_tx_packets
;
705 return (count
< tx_ring
->count
);
709 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
710 * @adapter: board private structure
712 * the return value indicates whether actual cleaning was done, there
713 * is no guarantee that everything was cleaned
715 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
716 int *work_done
, int work_to_do
)
718 struct e1000_hw
*hw
= &adapter
->hw
;
719 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
720 struct net_device
*netdev
= adapter
->netdev
;
721 struct pci_dev
*pdev
= adapter
->pdev
;
722 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
723 struct e1000_buffer
*buffer_info
, *next_buffer
;
724 struct e1000_ps_page
*ps_page
;
728 int cleaned_count
= 0;
730 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
732 i
= rx_ring
->next_to_clean
;
733 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
734 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
735 buffer_info
= &rx_ring
->buffer_info
[i
];
737 while (staterr
& E1000_RXD_STAT_DD
) {
738 if (*work_done
>= work_to_do
)
741 skb
= buffer_info
->skb
;
743 /* in the packet split case this is header only */
744 prefetch(skb
->data
- NET_IP_ALIGN
);
747 if (i
== rx_ring
->count
)
749 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
752 next_buffer
= &rx_ring
->buffer_info
[i
];
756 pci_unmap_single(pdev
, buffer_info
->dma
,
757 adapter
->rx_ps_bsize0
,
759 buffer_info
->dma
= 0;
761 /* see !EOP comment in other rx routine */
762 if (!(staterr
& E1000_RXD_STAT_EOP
))
763 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
765 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
766 e_dbg("Packet Split buffers didn't pick up the full "
768 dev_kfree_skb_irq(skb
);
769 if (staterr
& E1000_RXD_STAT_EOP
)
770 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
774 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
775 dev_kfree_skb_irq(skb
);
779 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
782 e_dbg("Last part of the packet spanning multiple "
784 dev_kfree_skb_irq(skb
);
789 skb_put(skb
, length
);
793 * this looks ugly, but it seems compiler issues make it
794 * more efficient than reusing j
796 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
799 * page alloc/put takes too long and effects small packet
800 * throughput, so unsplit small packets and save the alloc/put
801 * only valid in softirq (napi) context to call kmap_*
803 if (l1
&& (l1
<= copybreak
) &&
804 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
807 ps_page
= &buffer_info
->ps_pages
[0];
810 * there is no documentation about how to call
811 * kmap_atomic, so we can't hold the mapping
814 pci_dma_sync_single_for_cpu(pdev
, ps_page
->dma
,
815 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
816 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
817 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
818 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
819 pci_dma_sync_single_for_device(pdev
, ps_page
->dma
,
820 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
823 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
831 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
832 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
836 ps_page
= &buffer_info
->ps_pages
[j
];
837 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
840 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
841 ps_page
->page
= NULL
;
843 skb
->data_len
+= length
;
844 skb
->truesize
+= length
;
847 /* strip the ethernet crc, problem is we're using pages now so
848 * this whole operation can get a little cpu intensive
850 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
851 pskb_trim(skb
, skb
->len
- 4);
854 total_rx_bytes
+= skb
->len
;
857 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
858 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
860 if (rx_desc
->wb
.upper
.header_status
&
861 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
862 adapter
->rx_hdr_split
++;
864 e1000_receive_skb(adapter
, netdev
, skb
,
865 staterr
, rx_desc
->wb
.middle
.vlan
);
868 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
869 buffer_info
->skb
= NULL
;
871 /* return some buffers to hardware, one at a time is too slow */
872 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
873 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
877 /* use prefetched values */
879 buffer_info
= next_buffer
;
881 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
883 rx_ring
->next_to_clean
= i
;
885 cleaned_count
= e1000_desc_unused(rx_ring
);
887 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
889 adapter
->total_rx_bytes
+= total_rx_bytes
;
890 adapter
->total_rx_packets
+= total_rx_packets
;
891 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
892 netdev
->stats
.rx_packets
+= total_rx_packets
;
897 * e1000_consume_page - helper function
899 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
904 skb
->data_len
+= length
;
905 skb
->truesize
+= length
;
909 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
910 * @adapter: board private structure
912 * the return value indicates whether actual cleaning was done, there
913 * is no guarantee that everything was cleaned
916 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
917 int *work_done
, int work_to_do
)
919 struct net_device
*netdev
= adapter
->netdev
;
920 struct pci_dev
*pdev
= adapter
->pdev
;
921 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
922 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
923 struct e1000_buffer
*buffer_info
, *next_buffer
;
926 int cleaned_count
= 0;
927 bool cleaned
= false;
928 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
930 i
= rx_ring
->next_to_clean
;
931 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
932 buffer_info
= &rx_ring
->buffer_info
[i
];
934 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
938 if (*work_done
>= work_to_do
)
942 status
= rx_desc
->status
;
943 skb
= buffer_info
->skb
;
944 buffer_info
->skb
= NULL
;
947 if (i
== rx_ring
->count
)
949 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
952 next_buffer
= &rx_ring
->buffer_info
[i
];
956 pci_unmap_page(pdev
, buffer_info
->dma
, PAGE_SIZE
,
958 buffer_info
->dma
= 0;
960 length
= le16_to_cpu(rx_desc
->length
);
962 /* errors is only valid for DD + EOP descriptors */
963 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
964 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
965 /* recycle both page and skb */
966 buffer_info
->skb
= skb
;
967 /* an error means any chain goes out the window
969 if (rx_ring
->rx_skb_top
)
970 dev_kfree_skb(rx_ring
->rx_skb_top
);
971 rx_ring
->rx_skb_top
= NULL
;
975 #define rxtop rx_ring->rx_skb_top
976 if (!(status
& E1000_RXD_STAT_EOP
)) {
977 /* this descriptor is only the beginning (or middle) */
979 /* this is the beginning of a chain */
981 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
984 /* this is the middle of a chain */
985 skb_fill_page_desc(rxtop
,
986 skb_shinfo(rxtop
)->nr_frags
,
987 buffer_info
->page
, 0, length
);
988 /* re-use the skb, only consumed the page */
989 buffer_info
->skb
= skb
;
991 e1000_consume_page(buffer_info
, rxtop
, length
);
995 /* end of the chain */
996 skb_fill_page_desc(rxtop
,
997 skb_shinfo(rxtop
)->nr_frags
,
998 buffer_info
->page
, 0, length
);
999 /* re-use the current skb, we only consumed the
1001 buffer_info
->skb
= skb
;
1004 e1000_consume_page(buffer_info
, skb
, length
);
1006 /* no chain, got EOP, this buf is the packet
1007 * copybreak to save the put_page/alloc_page */
1008 if (length
<= copybreak
&&
1009 skb_tailroom(skb
) >= length
) {
1011 vaddr
= kmap_atomic(buffer_info
->page
,
1012 KM_SKB_DATA_SOFTIRQ
);
1013 memcpy(skb_tail_pointer(skb
), vaddr
,
1015 kunmap_atomic(vaddr
,
1016 KM_SKB_DATA_SOFTIRQ
);
1017 /* re-use the page, so don't erase
1018 * buffer_info->page */
1019 skb_put(skb
, length
);
1021 skb_fill_page_desc(skb
, 0,
1022 buffer_info
->page
, 0,
1024 e1000_consume_page(buffer_info
, skb
,
1030 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1031 e1000_rx_checksum(adapter
,
1033 ((u32
)(rx_desc
->errors
) << 24),
1034 le16_to_cpu(rx_desc
->csum
), skb
);
1036 /* probably a little skewed due to removing CRC */
1037 total_rx_bytes
+= skb
->len
;
1040 /* eth type trans needs skb->data to point to something */
1041 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1042 e_err("pskb_may_pull failed.\n");
1047 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1051 rx_desc
->status
= 0;
1053 /* return some buffers to hardware, one at a time is too slow */
1054 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1055 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1059 /* use prefetched values */
1061 buffer_info
= next_buffer
;
1063 rx_ring
->next_to_clean
= i
;
1065 cleaned_count
= e1000_desc_unused(rx_ring
);
1067 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1069 adapter
->total_rx_bytes
+= total_rx_bytes
;
1070 adapter
->total_rx_packets
+= total_rx_packets
;
1071 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
1072 netdev
->stats
.rx_packets
+= total_rx_packets
;
1077 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1078 * @adapter: board private structure
1080 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1082 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1083 struct e1000_buffer
*buffer_info
;
1084 struct e1000_ps_page
*ps_page
;
1085 struct pci_dev
*pdev
= adapter
->pdev
;
1088 /* Free all the Rx ring sk_buffs */
1089 for (i
= 0; i
< rx_ring
->count
; i
++) {
1090 buffer_info
= &rx_ring
->buffer_info
[i
];
1091 if (buffer_info
->dma
) {
1092 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1093 pci_unmap_single(pdev
, buffer_info
->dma
,
1094 adapter
->rx_buffer_len
,
1095 PCI_DMA_FROMDEVICE
);
1096 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1097 pci_unmap_page(pdev
, buffer_info
->dma
,
1099 PCI_DMA_FROMDEVICE
);
1100 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1101 pci_unmap_single(pdev
, buffer_info
->dma
,
1102 adapter
->rx_ps_bsize0
,
1103 PCI_DMA_FROMDEVICE
);
1104 buffer_info
->dma
= 0;
1107 if (buffer_info
->page
) {
1108 put_page(buffer_info
->page
);
1109 buffer_info
->page
= NULL
;
1112 if (buffer_info
->skb
) {
1113 dev_kfree_skb(buffer_info
->skb
);
1114 buffer_info
->skb
= NULL
;
1117 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1118 ps_page
= &buffer_info
->ps_pages
[j
];
1121 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
1122 PCI_DMA_FROMDEVICE
);
1124 put_page(ps_page
->page
);
1125 ps_page
->page
= NULL
;
1129 /* there also may be some cached data from a chained receive */
1130 if (rx_ring
->rx_skb_top
) {
1131 dev_kfree_skb(rx_ring
->rx_skb_top
);
1132 rx_ring
->rx_skb_top
= NULL
;
1135 /* Zero out the descriptor ring */
1136 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1138 rx_ring
->next_to_clean
= 0;
1139 rx_ring
->next_to_use
= 0;
1140 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1142 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1143 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1146 static void e1000e_downshift_workaround(struct work_struct
*work
)
1148 struct e1000_adapter
*adapter
= container_of(work
,
1149 struct e1000_adapter
, downshift_task
);
1151 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1155 * e1000_intr_msi - Interrupt Handler
1156 * @irq: interrupt number
1157 * @data: pointer to a network interface device structure
1159 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1161 struct net_device
*netdev
= data
;
1162 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1163 struct e1000_hw
*hw
= &adapter
->hw
;
1164 u32 icr
= er32(ICR
);
1167 * read ICR disables interrupts using IAM
1170 if (icr
& E1000_ICR_LSC
) {
1171 hw
->mac
.get_link_status
= 1;
1173 * ICH8 workaround-- Call gig speed drop workaround on cable
1174 * disconnect (LSC) before accessing any PHY registers
1176 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1177 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1178 schedule_work(&adapter
->downshift_task
);
1181 * 80003ES2LAN workaround-- For packet buffer work-around on
1182 * link down event; disable receives here in the ISR and reset
1183 * adapter in watchdog
1185 if (netif_carrier_ok(netdev
) &&
1186 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1187 /* disable receives */
1188 u32 rctl
= er32(RCTL
);
1189 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1190 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1192 /* guard against interrupt when we're going down */
1193 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1194 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1197 if (napi_schedule_prep(&adapter
->napi
)) {
1198 adapter
->total_tx_bytes
= 0;
1199 adapter
->total_tx_packets
= 0;
1200 adapter
->total_rx_bytes
= 0;
1201 adapter
->total_rx_packets
= 0;
1202 __napi_schedule(&adapter
->napi
);
1209 * e1000_intr - Interrupt Handler
1210 * @irq: interrupt number
1211 * @data: pointer to a network interface device structure
1213 static irqreturn_t
e1000_intr(int irq
, void *data
)
1215 struct net_device
*netdev
= data
;
1216 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1217 struct e1000_hw
*hw
= &adapter
->hw
;
1218 u32 rctl
, icr
= er32(ICR
);
1220 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1221 return IRQ_NONE
; /* Not our interrupt */
1224 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1225 * not set, then the adapter didn't send an interrupt
1227 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1231 * Interrupt Auto-Mask...upon reading ICR,
1232 * interrupts are masked. No need for the
1236 if (icr
& E1000_ICR_LSC
) {
1237 hw
->mac
.get_link_status
= 1;
1239 * ICH8 workaround-- Call gig speed drop workaround on cable
1240 * disconnect (LSC) before accessing any PHY registers
1242 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1243 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1244 schedule_work(&adapter
->downshift_task
);
1247 * 80003ES2LAN workaround--
1248 * For packet buffer work-around on link down event;
1249 * disable receives here in the ISR and
1250 * reset adapter in watchdog
1252 if (netif_carrier_ok(netdev
) &&
1253 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1254 /* disable receives */
1256 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1257 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1259 /* guard against interrupt when we're going down */
1260 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1261 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1264 if (napi_schedule_prep(&adapter
->napi
)) {
1265 adapter
->total_tx_bytes
= 0;
1266 adapter
->total_tx_packets
= 0;
1267 adapter
->total_rx_bytes
= 0;
1268 adapter
->total_rx_packets
= 0;
1269 __napi_schedule(&adapter
->napi
);
1275 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1277 struct net_device
*netdev
= data
;
1278 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1279 struct e1000_hw
*hw
= &adapter
->hw
;
1280 u32 icr
= er32(ICR
);
1282 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1283 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1284 ew32(IMS
, E1000_IMS_OTHER
);
1288 if (icr
& adapter
->eiac_mask
)
1289 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1291 if (icr
& E1000_ICR_OTHER
) {
1292 if (!(icr
& E1000_ICR_LSC
))
1293 goto no_link_interrupt
;
1294 hw
->mac
.get_link_status
= 1;
1295 /* guard against interrupt when we're going down */
1296 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1297 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1301 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1302 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1308 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1310 struct net_device
*netdev
= data
;
1311 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1312 struct e1000_hw
*hw
= &adapter
->hw
;
1313 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1316 adapter
->total_tx_bytes
= 0;
1317 adapter
->total_tx_packets
= 0;
1319 if (!e1000_clean_tx_irq(adapter
))
1320 /* Ring was not completely cleaned, so fire another interrupt */
1321 ew32(ICS
, tx_ring
->ims_val
);
1326 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1328 struct net_device
*netdev
= data
;
1329 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1331 /* Write the ITR value calculated at the end of the
1332 * previous interrupt.
1334 if (adapter
->rx_ring
->set_itr
) {
1335 writel(1000000000 / (adapter
->rx_ring
->itr_val
* 256),
1336 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
1337 adapter
->rx_ring
->set_itr
= 0;
1340 if (napi_schedule_prep(&adapter
->napi
)) {
1341 adapter
->total_rx_bytes
= 0;
1342 adapter
->total_rx_packets
= 0;
1343 __napi_schedule(&adapter
->napi
);
1349 * e1000_configure_msix - Configure MSI-X hardware
1351 * e1000_configure_msix sets up the hardware to properly
1352 * generate MSI-X interrupts.
1354 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1356 struct e1000_hw
*hw
= &adapter
->hw
;
1357 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1358 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1360 u32 ctrl_ext
, ivar
= 0;
1362 adapter
->eiac_mask
= 0;
1364 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1365 if (hw
->mac
.type
== e1000_82574
) {
1366 u32 rfctl
= er32(RFCTL
);
1367 rfctl
|= E1000_RFCTL_ACK_DIS
;
1371 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1372 /* Configure Rx vector */
1373 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1374 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1375 if (rx_ring
->itr_val
)
1376 writel(1000000000 / (rx_ring
->itr_val
* 256),
1377 hw
->hw_addr
+ rx_ring
->itr_register
);
1379 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
1380 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1382 /* Configure Tx vector */
1383 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1385 if (tx_ring
->itr_val
)
1386 writel(1000000000 / (tx_ring
->itr_val
* 256),
1387 hw
->hw_addr
+ tx_ring
->itr_register
);
1389 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
1390 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1391 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1393 /* set vector for Other Causes, e.g. link changes */
1395 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1396 if (rx_ring
->itr_val
)
1397 writel(1000000000 / (rx_ring
->itr_val
* 256),
1398 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1400 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1402 /* Cause Tx interrupts on every write back */
1407 /* enable MSI-X PBA support */
1408 ctrl_ext
= er32(CTRL_EXT
);
1409 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1411 /* Auto-Mask Other interrupts upon ICR read */
1412 #define E1000_EIAC_MASK_82574 0x01F00000
1413 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1414 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1415 ew32(CTRL_EXT
, ctrl_ext
);
1419 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1421 if (adapter
->msix_entries
) {
1422 pci_disable_msix(adapter
->pdev
);
1423 kfree(adapter
->msix_entries
);
1424 adapter
->msix_entries
= NULL
;
1425 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1426 pci_disable_msi(adapter
->pdev
);
1427 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1434 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1436 * Attempt to configure interrupts using the best available
1437 * capabilities of the hardware and kernel.
1439 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1445 switch (adapter
->int_mode
) {
1446 case E1000E_INT_MODE_MSIX
:
1447 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1448 numvecs
= 3; /* RxQ0, TxQ0 and other */
1449 adapter
->msix_entries
= kcalloc(numvecs
,
1450 sizeof(struct msix_entry
),
1452 if (adapter
->msix_entries
) {
1453 for (i
= 0; i
< numvecs
; i
++)
1454 adapter
->msix_entries
[i
].entry
= i
;
1456 err
= pci_enable_msix(adapter
->pdev
,
1457 adapter
->msix_entries
,
1462 /* MSI-X failed, so fall through and try MSI */
1463 e_err("Failed to initialize MSI-X interrupts. "
1464 "Falling back to MSI interrupts.\n");
1465 e1000e_reset_interrupt_capability(adapter
);
1467 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1469 case E1000E_INT_MODE_MSI
:
1470 if (!pci_enable_msi(adapter
->pdev
)) {
1471 adapter
->flags
|= FLAG_MSI_ENABLED
;
1473 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1474 e_err("Failed to initialize MSI interrupts. Falling "
1475 "back to legacy interrupts.\n");
1478 case E1000E_INT_MODE_LEGACY
:
1479 /* Don't do anything; this is the system default */
1487 * e1000_request_msix - Initialize MSI-X interrupts
1489 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1492 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1494 struct net_device
*netdev
= adapter
->netdev
;
1495 int err
= 0, vector
= 0;
1497 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1498 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1500 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1501 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1502 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1506 adapter
->rx_ring
->itr_register
= E1000_EITR_82574(vector
);
1507 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1510 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1511 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1513 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1514 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1515 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1519 adapter
->tx_ring
->itr_register
= E1000_EITR_82574(vector
);
1520 adapter
->tx_ring
->itr_val
= adapter
->itr
;
1523 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1524 e1000_msix_other
, 0, netdev
->name
, netdev
);
1528 e1000_configure_msix(adapter
);
1535 * e1000_request_irq - initialize interrupts
1537 * Attempts to configure interrupts using the best available
1538 * capabilities of the hardware and kernel.
1540 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1542 struct net_device
*netdev
= adapter
->netdev
;
1545 if (adapter
->msix_entries
) {
1546 err
= e1000_request_msix(adapter
);
1549 /* fall back to MSI */
1550 e1000e_reset_interrupt_capability(adapter
);
1551 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1552 e1000e_set_interrupt_capability(adapter
);
1554 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1555 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
1556 netdev
->name
, netdev
);
1560 /* fall back to legacy interrupt */
1561 e1000e_reset_interrupt_capability(adapter
);
1562 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1565 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
1566 netdev
->name
, netdev
);
1568 e_err("Unable to allocate interrupt, Error: %d\n", err
);
1573 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1575 struct net_device
*netdev
= adapter
->netdev
;
1577 if (adapter
->msix_entries
) {
1580 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1583 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1586 /* Other Causes interrupt vector */
1587 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1591 free_irq(adapter
->pdev
->irq
, netdev
);
1595 * e1000_irq_disable - Mask off interrupt generation on the NIC
1597 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1599 struct e1000_hw
*hw
= &adapter
->hw
;
1602 if (adapter
->msix_entries
)
1603 ew32(EIAC_82574
, 0);
1605 synchronize_irq(adapter
->pdev
->irq
);
1609 * e1000_irq_enable - Enable default interrupt generation settings
1611 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1613 struct e1000_hw
*hw
= &adapter
->hw
;
1615 if (adapter
->msix_entries
) {
1616 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
1617 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
1619 ew32(IMS
, IMS_ENABLE_MASK
);
1625 * e1000_get_hw_control - get control of the h/w from f/w
1626 * @adapter: address of board private structure
1628 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1629 * For ASF and Pass Through versions of f/w this means that
1630 * the driver is loaded. For AMT version (only with 82573)
1631 * of the f/w this means that the network i/f is open.
1633 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
1635 struct e1000_hw
*hw
= &adapter
->hw
;
1639 /* Let firmware know the driver has taken over */
1640 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1642 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
1643 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1644 ctrl_ext
= er32(CTRL_EXT
);
1645 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1650 * e1000_release_hw_control - release control of the h/w to f/w
1651 * @adapter: address of board private structure
1653 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1654 * For ASF and Pass Through versions of f/w this means that the
1655 * driver is no longer loaded. For AMT version (only with 82573) i
1656 * of the f/w this means that the network i/f is closed.
1659 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
1661 struct e1000_hw
*hw
= &adapter
->hw
;
1665 /* Let firmware taken over control of h/w */
1666 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1668 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
1669 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1670 ctrl_ext
= er32(CTRL_EXT
);
1671 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1676 * @e1000_alloc_ring - allocate memory for a ring structure
1678 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
1679 struct e1000_ring
*ring
)
1681 struct pci_dev
*pdev
= adapter
->pdev
;
1683 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
1692 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1693 * @adapter: board private structure
1695 * Return 0 on success, negative on failure
1697 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
1699 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1700 int err
= -ENOMEM
, size
;
1702 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1703 tx_ring
->buffer_info
= vmalloc(size
);
1704 if (!tx_ring
->buffer_info
)
1706 memset(tx_ring
->buffer_info
, 0, size
);
1708 /* round up to nearest 4K */
1709 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1710 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1712 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
1716 tx_ring
->next_to_use
= 0;
1717 tx_ring
->next_to_clean
= 0;
1721 vfree(tx_ring
->buffer_info
);
1722 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1727 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1728 * @adapter: board private structure
1730 * Returns 0 on success, negative on failure
1732 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
1734 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1735 struct e1000_buffer
*buffer_info
;
1736 int i
, size
, desc_len
, err
= -ENOMEM
;
1738 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1739 rx_ring
->buffer_info
= vmalloc(size
);
1740 if (!rx_ring
->buffer_info
)
1742 memset(rx_ring
->buffer_info
, 0, size
);
1744 for (i
= 0; i
< rx_ring
->count
; i
++) {
1745 buffer_info
= &rx_ring
->buffer_info
[i
];
1746 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
1747 sizeof(struct e1000_ps_page
),
1749 if (!buffer_info
->ps_pages
)
1753 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1755 /* Round up to nearest 4K */
1756 rx_ring
->size
= rx_ring
->count
* desc_len
;
1757 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1759 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
1763 rx_ring
->next_to_clean
= 0;
1764 rx_ring
->next_to_use
= 0;
1765 rx_ring
->rx_skb_top
= NULL
;
1770 for (i
= 0; i
< rx_ring
->count
; i
++) {
1771 buffer_info
= &rx_ring
->buffer_info
[i
];
1772 kfree(buffer_info
->ps_pages
);
1775 vfree(rx_ring
->buffer_info
);
1776 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1781 * e1000_clean_tx_ring - Free Tx Buffers
1782 * @adapter: board private structure
1784 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
1786 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1787 struct e1000_buffer
*buffer_info
;
1791 for (i
= 0; i
< tx_ring
->count
; i
++) {
1792 buffer_info
= &tx_ring
->buffer_info
[i
];
1793 e1000_put_txbuf(adapter
, buffer_info
);
1796 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1797 memset(tx_ring
->buffer_info
, 0, size
);
1799 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1801 tx_ring
->next_to_use
= 0;
1802 tx_ring
->next_to_clean
= 0;
1804 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1805 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1809 * e1000e_free_tx_resources - Free Tx Resources per Queue
1810 * @adapter: board private structure
1812 * Free all transmit software resources
1814 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
1816 struct pci_dev
*pdev
= adapter
->pdev
;
1817 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1819 e1000_clean_tx_ring(adapter
);
1821 vfree(tx_ring
->buffer_info
);
1822 tx_ring
->buffer_info
= NULL
;
1824 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1826 tx_ring
->desc
= NULL
;
1830 * e1000e_free_rx_resources - Free Rx Resources
1831 * @adapter: board private structure
1833 * Free all receive software resources
1836 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
1838 struct pci_dev
*pdev
= adapter
->pdev
;
1839 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1842 e1000_clean_rx_ring(adapter
);
1844 for (i
= 0; i
< rx_ring
->count
; i
++) {
1845 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
1848 vfree(rx_ring
->buffer_info
);
1849 rx_ring
->buffer_info
= NULL
;
1851 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1853 rx_ring
->desc
= NULL
;
1857 * e1000_update_itr - update the dynamic ITR value based on statistics
1858 * @adapter: pointer to adapter
1859 * @itr_setting: current adapter->itr
1860 * @packets: the number of packets during this measurement interval
1861 * @bytes: the number of bytes during this measurement interval
1863 * Stores a new ITR value based on packets and byte
1864 * counts during the last interrupt. The advantage of per interrupt
1865 * computation is faster updates and more accurate ITR for the current
1866 * traffic pattern. Constants in this function were computed
1867 * based on theoretical maximum wire speed and thresholds were set based
1868 * on testing data as well as attempting to minimize response time
1869 * while increasing bulk throughput. This functionality is controlled
1870 * by the InterruptThrottleRate module parameter.
1872 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
1873 u16 itr_setting
, int packets
,
1876 unsigned int retval
= itr_setting
;
1879 goto update_itr_done
;
1881 switch (itr_setting
) {
1882 case lowest_latency
:
1883 /* handle TSO and jumbo frames */
1884 if (bytes
/packets
> 8000)
1885 retval
= bulk_latency
;
1886 else if ((packets
< 5) && (bytes
> 512)) {
1887 retval
= low_latency
;
1890 case low_latency
: /* 50 usec aka 20000 ints/s */
1891 if (bytes
> 10000) {
1892 /* this if handles the TSO accounting */
1893 if (bytes
/packets
> 8000) {
1894 retval
= bulk_latency
;
1895 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
1896 retval
= bulk_latency
;
1897 } else if ((packets
> 35)) {
1898 retval
= lowest_latency
;
1900 } else if (bytes
/packets
> 2000) {
1901 retval
= bulk_latency
;
1902 } else if (packets
<= 2 && bytes
< 512) {
1903 retval
= lowest_latency
;
1906 case bulk_latency
: /* 250 usec aka 4000 ints/s */
1907 if (bytes
> 25000) {
1909 retval
= low_latency
;
1911 } else if (bytes
< 6000) {
1912 retval
= low_latency
;
1921 static void e1000_set_itr(struct e1000_adapter
*adapter
)
1923 struct e1000_hw
*hw
= &adapter
->hw
;
1925 u32 new_itr
= adapter
->itr
;
1927 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1928 if (adapter
->link_speed
!= SPEED_1000
) {
1934 adapter
->tx_itr
= e1000_update_itr(adapter
,
1936 adapter
->total_tx_packets
,
1937 adapter
->total_tx_bytes
);
1938 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1939 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
1940 adapter
->tx_itr
= low_latency
;
1942 adapter
->rx_itr
= e1000_update_itr(adapter
,
1944 adapter
->total_rx_packets
,
1945 adapter
->total_rx_bytes
);
1946 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1947 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
1948 adapter
->rx_itr
= low_latency
;
1950 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
1952 switch (current_itr
) {
1953 /* counts and packets in update_itr are dependent on these numbers */
1954 case lowest_latency
:
1958 new_itr
= 20000; /* aka hwitr = ~200 */
1968 if (new_itr
!= adapter
->itr
) {
1970 * this attempts to bias the interrupt rate towards Bulk
1971 * by adding intermediate steps when interrupt rate is
1974 new_itr
= new_itr
> adapter
->itr
?
1975 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
1977 adapter
->itr
= new_itr
;
1978 adapter
->rx_ring
->itr_val
= new_itr
;
1979 if (adapter
->msix_entries
)
1980 adapter
->rx_ring
->set_itr
= 1;
1982 ew32(ITR
, 1000000000 / (new_itr
* 256));
1987 * e1000_alloc_queues - Allocate memory for all rings
1988 * @adapter: board private structure to initialize
1990 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1992 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
1993 if (!adapter
->tx_ring
)
1996 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
1997 if (!adapter
->rx_ring
)
2002 e_err("Unable to allocate memory for queues\n");
2003 kfree(adapter
->rx_ring
);
2004 kfree(adapter
->tx_ring
);
2009 * e1000_clean - NAPI Rx polling callback
2010 * @napi: struct associated with this polling callback
2011 * @budget: amount of packets driver is allowed to process this poll
2013 static int e1000_clean(struct napi_struct
*napi
, int budget
)
2015 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
2016 struct e1000_hw
*hw
= &adapter
->hw
;
2017 struct net_device
*poll_dev
= adapter
->netdev
;
2018 int tx_cleaned
= 1, work_done
= 0;
2020 adapter
= netdev_priv(poll_dev
);
2022 if (adapter
->msix_entries
&&
2023 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2026 tx_cleaned
= e1000_clean_tx_irq(adapter
);
2029 adapter
->clean_rx(adapter
, &work_done
, budget
);
2034 /* If budget not fully consumed, exit the polling mode */
2035 if (work_done
< budget
) {
2036 if (adapter
->itr_setting
& 3)
2037 e1000_set_itr(adapter
);
2038 napi_complete(napi
);
2039 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2040 if (adapter
->msix_entries
)
2041 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2043 e1000_irq_enable(adapter
);
2050 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2052 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2053 struct e1000_hw
*hw
= &adapter
->hw
;
2056 /* don't update vlan cookie if already programmed */
2057 if ((adapter
->hw
.mng_cookie
.status
&
2058 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2059 (vid
== adapter
->mng_vlan_id
))
2062 /* add VID to filter table */
2063 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2064 index
= (vid
>> 5) & 0x7F;
2065 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2066 vfta
|= (1 << (vid
& 0x1F));
2067 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2071 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2073 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2074 struct e1000_hw
*hw
= &adapter
->hw
;
2077 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2078 e1000_irq_disable(adapter
);
2079 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
2081 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2082 e1000_irq_enable(adapter
);
2084 if ((adapter
->hw
.mng_cookie
.status
&
2085 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2086 (vid
== adapter
->mng_vlan_id
)) {
2087 /* release control to f/w */
2088 e1000_release_hw_control(adapter
);
2092 /* remove VID from filter table */
2093 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2094 index
= (vid
>> 5) & 0x7F;
2095 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2096 vfta
&= ~(1 << (vid
& 0x1F));
2097 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2101 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2103 struct net_device
*netdev
= adapter
->netdev
;
2104 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2105 u16 old_vid
= adapter
->mng_vlan_id
;
2107 if (!adapter
->vlgrp
)
2110 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
2111 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2112 if (adapter
->hw
.mng_cookie
.status
&
2113 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2114 e1000_vlan_rx_add_vid(netdev
, vid
);
2115 adapter
->mng_vlan_id
= vid
;
2118 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
2120 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
2121 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2123 adapter
->mng_vlan_id
= vid
;
2128 static void e1000_vlan_rx_register(struct net_device
*netdev
,
2129 struct vlan_group
*grp
)
2131 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2132 struct e1000_hw
*hw
= &adapter
->hw
;
2135 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2136 e1000_irq_disable(adapter
);
2137 adapter
->vlgrp
= grp
;
2140 /* enable VLAN tag insert/strip */
2142 ctrl
|= E1000_CTRL_VME
;
2145 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2146 /* enable VLAN receive filtering */
2148 rctl
&= ~E1000_RCTL_CFIEN
;
2150 e1000_update_mng_vlan(adapter
);
2153 /* disable VLAN tag insert/strip */
2155 ctrl
&= ~E1000_CTRL_VME
;
2158 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2159 if (adapter
->mng_vlan_id
!=
2160 (u16
)E1000_MNG_VLAN_NONE
) {
2161 e1000_vlan_rx_kill_vid(netdev
,
2162 adapter
->mng_vlan_id
);
2163 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2168 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2169 e1000_irq_enable(adapter
);
2172 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2176 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
2178 if (!adapter
->vlgrp
)
2181 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
2182 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
2184 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2188 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
2190 struct e1000_hw
*hw
= &adapter
->hw
;
2193 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2199 * enable receiving management packets to the host. this will probably
2200 * generate destination unreachable messages from the host OS, but
2201 * the packets will be handled on SMBUS
2203 manc
|= E1000_MANC_EN_MNG2HOST
;
2204 manc2h
= er32(MANC2H
);
2205 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2206 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2207 manc2h
|= E1000_MNG2HOST_PORT_623
;
2208 manc2h
|= E1000_MNG2HOST_PORT_664
;
2209 ew32(MANC2H
, manc2h
);
2214 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2215 * @adapter: board private structure
2217 * Configure the Tx unit of the MAC after a reset.
2219 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2221 struct e1000_hw
*hw
= &adapter
->hw
;
2222 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2224 u32 tdlen
, tctl
, tipg
, tarc
;
2227 /* Setup the HW Tx Head and Tail descriptor pointers */
2228 tdba
= tx_ring
->dma
;
2229 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2230 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2231 ew32(TDBAH
, (tdba
>> 32));
2235 tx_ring
->head
= E1000_TDH
;
2236 tx_ring
->tail
= E1000_TDT
;
2238 /* Set the default values for the Tx Inter Packet Gap timer */
2239 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
2240 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
2241 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
2243 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
2244 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
2246 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
2247 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
2250 /* Set the Tx Interrupt Delay register */
2251 ew32(TIDV
, adapter
->tx_int_delay
);
2252 /* Tx irq moderation */
2253 ew32(TADV
, adapter
->tx_abs_int_delay
);
2255 /* Program the Transmit Control Register */
2257 tctl
&= ~E1000_TCTL_CT
;
2258 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2259 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2261 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2262 tarc
= er32(TARC(0));
2264 * set the speed mode bit, we'll clear it if we're not at
2265 * gigabit link later
2267 #define SPEED_MODE_BIT (1 << 21)
2268 tarc
|= SPEED_MODE_BIT
;
2269 ew32(TARC(0), tarc
);
2272 /* errata: program both queues to unweighted RR */
2273 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2274 tarc
= er32(TARC(0));
2276 ew32(TARC(0), tarc
);
2277 tarc
= er32(TARC(1));
2279 ew32(TARC(1), tarc
);
2282 /* Setup Transmit Descriptor Settings for eop descriptor */
2283 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2285 /* only set IDE if we are delaying interrupts using the timers */
2286 if (adapter
->tx_int_delay
)
2287 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2289 /* enable Report Status bit */
2290 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2294 e1000e_config_collision_dist(hw
);
2298 * e1000_setup_rctl - configure the receive control registers
2299 * @adapter: Board private structure
2301 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2302 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2303 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2305 struct e1000_hw
*hw
= &adapter
->hw
;
2310 /* Program MC offset vector base */
2312 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2313 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2314 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2315 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2317 /* Do not Store bad packets */
2318 rctl
&= ~E1000_RCTL_SBP
;
2320 /* Enable Long Packet receive */
2321 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2322 rctl
&= ~E1000_RCTL_LPE
;
2324 rctl
|= E1000_RCTL_LPE
;
2326 /* Some systems expect that the CRC is included in SMBUS traffic. The
2327 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2328 * host memory when this is enabled
2330 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2331 rctl
|= E1000_RCTL_SECRC
;
2333 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2334 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2337 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2339 phy_data
|= (1 << 2);
2340 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2342 e1e_rphy(hw
, 22, &phy_data
);
2344 phy_data
|= (1 << 14);
2345 e1e_wphy(hw
, 0x10, 0x2823);
2346 e1e_wphy(hw
, 0x11, 0x0003);
2347 e1e_wphy(hw
, 22, phy_data
);
2350 /* Setup buffer sizes */
2351 rctl
&= ~E1000_RCTL_SZ_4096
;
2352 rctl
|= E1000_RCTL_BSEX
;
2353 switch (adapter
->rx_buffer_len
) {
2356 rctl
|= E1000_RCTL_SZ_2048
;
2357 rctl
&= ~E1000_RCTL_BSEX
;
2360 rctl
|= E1000_RCTL_SZ_4096
;
2363 rctl
|= E1000_RCTL_SZ_8192
;
2366 rctl
|= E1000_RCTL_SZ_16384
;
2371 * 82571 and greater support packet-split where the protocol
2372 * header is placed in skb->data and the packet data is
2373 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2374 * In the case of a non-split, skb->data is linearly filled,
2375 * followed by the page buffers. Therefore, skb->data is
2376 * sized to hold the largest protocol header.
2378 * allocations using alloc_page take too long for regular MTU
2379 * so only enable packet split for jumbo frames
2381 * Using pages when the page size is greater than 16k wastes
2382 * a lot of memory, since we allocate 3 pages at all times
2385 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2386 if (!(adapter
->flags
& FLAG_IS_ICH
) && (pages
<= 3) &&
2387 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2388 adapter
->rx_ps_pages
= pages
;
2390 adapter
->rx_ps_pages
= 0;
2392 if (adapter
->rx_ps_pages
) {
2393 /* Configure extra packet-split registers */
2394 rfctl
= er32(RFCTL
);
2395 rfctl
|= E1000_RFCTL_EXTEN
;
2397 * disable packet split support for IPv6 extension headers,
2398 * because some malformed IPv6 headers can hang the Rx
2400 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2401 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2405 /* Enable Packet split descriptors */
2406 rctl
|= E1000_RCTL_DTYP_PS
;
2408 psrctl
|= adapter
->rx_ps_bsize0
>>
2409 E1000_PSRCTL_BSIZE0_SHIFT
;
2411 switch (adapter
->rx_ps_pages
) {
2413 psrctl
|= PAGE_SIZE
<<
2414 E1000_PSRCTL_BSIZE3_SHIFT
;
2416 psrctl
|= PAGE_SIZE
<<
2417 E1000_PSRCTL_BSIZE2_SHIFT
;
2419 psrctl
|= PAGE_SIZE
>>
2420 E1000_PSRCTL_BSIZE1_SHIFT
;
2424 ew32(PSRCTL
, psrctl
);
2428 /* just started the receive unit, no need to restart */
2429 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2433 * e1000_configure_rx - Configure Receive Unit after Reset
2434 * @adapter: board private structure
2436 * Configure the Rx unit of the MAC after a reset.
2438 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2440 struct e1000_hw
*hw
= &adapter
->hw
;
2441 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2443 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2445 if (adapter
->rx_ps_pages
) {
2446 /* this is a 32 byte descriptor */
2447 rdlen
= rx_ring
->count
*
2448 sizeof(union e1000_rx_desc_packet_split
);
2449 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2450 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2451 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2452 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2453 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2454 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2456 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2457 adapter
->clean_rx
= e1000_clean_rx_irq
;
2458 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2461 /* disable receives while setting up the descriptors */
2463 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2467 /* set the Receive Delay Timer Register */
2468 ew32(RDTR
, adapter
->rx_int_delay
);
2470 /* irq moderation */
2471 ew32(RADV
, adapter
->rx_abs_int_delay
);
2472 if (adapter
->itr_setting
!= 0)
2473 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2475 ctrl_ext
= er32(CTRL_EXT
);
2476 /* Auto-Mask interrupts upon ICR access */
2477 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2478 ew32(IAM
, 0xffffffff);
2479 ew32(CTRL_EXT
, ctrl_ext
);
2483 * Setup the HW Rx Head and Tail Descriptor Pointers and
2484 * the Base and Length of the Rx Descriptor Ring
2486 rdba
= rx_ring
->dma
;
2487 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
2488 ew32(RDBAH
, (rdba
>> 32));
2492 rx_ring
->head
= E1000_RDH
;
2493 rx_ring
->tail
= E1000_RDT
;
2495 /* Enable Receive Checksum Offload for TCP and UDP */
2496 rxcsum
= er32(RXCSUM
);
2497 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2498 rxcsum
|= E1000_RXCSUM_TUOFL
;
2501 * IPv4 payload checksum for UDP fragments must be
2502 * used in conjunction with packet-split.
2504 if (adapter
->rx_ps_pages
)
2505 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2507 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2508 /* no need to clear IPPCSE as it defaults to 0 */
2510 ew32(RXCSUM
, rxcsum
);
2513 * Enable early receives on supported devices, only takes effect when
2514 * packet size is equal or larger than the specified value (in 8 byte
2515 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2517 if (adapter
->flags
& FLAG_HAS_ERT
) {
2518 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2519 u32 rxdctl
= er32(RXDCTL(0));
2520 ew32(RXDCTL(0), rxdctl
| 0x3);
2521 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
2523 * With jumbo frames and early-receive enabled,
2524 * excessive C-state transition latencies result in
2525 * dropped transactions.
2527 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2528 adapter
->netdev
->name
, 55);
2530 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2531 adapter
->netdev
->name
,
2532 PM_QOS_DEFAULT_VALUE
);
2536 /* Enable Receives */
2541 * e1000_update_mc_addr_list - Update Multicast addresses
2542 * @hw: pointer to the HW structure
2543 * @mc_addr_list: array of multicast addresses to program
2544 * @mc_addr_count: number of multicast addresses to program
2546 * Updates the Multicast Table Array.
2547 * The caller must have a packed mc_addr_list of multicast addresses.
2549 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
2552 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
);
2556 * e1000_set_multi - Multicast and Promiscuous mode set
2557 * @netdev: network interface device structure
2559 * The set_multi entry point is called whenever the multicast address
2560 * list or the network interface flags are updated. This routine is
2561 * responsible for configuring the hardware for proper multicast,
2562 * promiscuous mode, and all-multi behavior.
2564 static void e1000_set_multi(struct net_device
*netdev
)
2566 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2567 struct e1000_hw
*hw
= &adapter
->hw
;
2568 struct dev_mc_list
*mc_ptr
;
2573 /* Check for Promiscuous and All Multicast modes */
2577 if (netdev
->flags
& IFF_PROMISC
) {
2578 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2579 rctl
&= ~E1000_RCTL_VFE
;
2581 if (netdev
->flags
& IFF_ALLMULTI
) {
2582 rctl
|= E1000_RCTL_MPE
;
2583 rctl
&= ~E1000_RCTL_UPE
;
2585 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2587 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
2588 rctl
|= E1000_RCTL_VFE
;
2593 if (!netdev_mc_empty(netdev
)) {
2594 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
2598 /* prepare a packed array of only addresses. */
2600 netdev_for_each_mc_addr(mc_ptr
, netdev
)
2601 memcpy(mta_list
+ (i
++ * ETH_ALEN
),
2602 mc_ptr
->dmi_addr
, ETH_ALEN
);
2604 e1000_update_mc_addr_list(hw
, mta_list
, i
);
2608 * if we're called from probe, we might not have
2609 * anything to do here, so clear out the list
2611 e1000_update_mc_addr_list(hw
, NULL
, 0);
2616 * e1000_configure - configure the hardware for Rx and Tx
2617 * @adapter: private board structure
2619 static void e1000_configure(struct e1000_adapter
*adapter
)
2621 e1000_set_multi(adapter
->netdev
);
2623 e1000_restore_vlan(adapter
);
2624 e1000_init_manageability(adapter
);
2626 e1000_configure_tx(adapter
);
2627 e1000_setup_rctl(adapter
);
2628 e1000_configure_rx(adapter
);
2629 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
));
2633 * e1000e_power_up_phy - restore link in case the phy was powered down
2634 * @adapter: address of board private structure
2636 * The phy may be powered down to save power and turn off link when the
2637 * driver is unloaded and wake on lan is not enabled (among others)
2638 * *** this routine MUST be followed by a call to e1000e_reset ***
2640 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
2642 if (adapter
->hw
.phy
.ops
.power_up
)
2643 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
2645 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
2649 * e1000_power_down_phy - Power down the PHY
2651 * Power down the PHY so no link is implied when interface is down.
2652 * The PHY cannot be powered down if management or WoL is active.
2654 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
2656 /* WoL is enabled */
2660 if (adapter
->hw
.phy
.ops
.power_down
)
2661 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
2665 * e1000e_reset - bring the hardware into a known good state
2667 * This function boots the hardware and enables some settings that
2668 * require a configuration cycle of the hardware - those cannot be
2669 * set/changed during runtime. After reset the device needs to be
2670 * properly configured for Rx, Tx etc.
2672 void e1000e_reset(struct e1000_adapter
*adapter
)
2674 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2675 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
2676 struct e1000_hw
*hw
= &adapter
->hw
;
2677 u32 tx_space
, min_tx_space
, min_rx_space
;
2678 u32 pba
= adapter
->pba
;
2681 /* reset Packet Buffer Allocation to default */
2684 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2686 * To maintain wire speed transmits, the Tx FIFO should be
2687 * large enough to accommodate two full transmit packets,
2688 * rounded up to the next 1KB and expressed in KB. Likewise,
2689 * the Rx FIFO should be large enough to accommodate at least
2690 * one full receive packet and is similarly rounded up and
2694 /* upper 16 bits has Tx packet buffer allocation size in KB */
2695 tx_space
= pba
>> 16;
2696 /* lower 16 bits has Rx packet buffer allocation size in KB */
2699 * the Tx fifo also stores 16 bytes of information about the tx
2700 * but don't include ethernet FCS because hardware appends it
2702 min_tx_space
= (adapter
->max_frame_size
+
2703 sizeof(struct e1000_tx_desc
) -
2705 min_tx_space
= ALIGN(min_tx_space
, 1024);
2706 min_tx_space
>>= 10;
2707 /* software strips receive CRC, so leave room for it */
2708 min_rx_space
= adapter
->max_frame_size
;
2709 min_rx_space
= ALIGN(min_rx_space
, 1024);
2710 min_rx_space
>>= 10;
2713 * If current Tx allocation is less than the min Tx FIFO size,
2714 * and the min Tx FIFO size is less than the current Rx FIFO
2715 * allocation, take space away from current Rx allocation
2717 if ((tx_space
< min_tx_space
) &&
2718 ((min_tx_space
- tx_space
) < pba
)) {
2719 pba
-= min_tx_space
- tx_space
;
2722 * if short on Rx space, Rx wins and must trump tx
2723 * adjustment or use Early Receive if available
2725 if ((pba
< min_rx_space
) &&
2726 (!(adapter
->flags
& FLAG_HAS_ERT
)))
2727 /* ERT enabled in e1000_configure_rx */
2736 * flow control settings
2738 * The high water mark must be low enough to fit one full frame
2739 * (or the size used for early receive) above it in the Rx FIFO.
2740 * Set it to the lower of:
2741 * - 90% of the Rx FIFO size, and
2742 * - the full Rx FIFO size minus the early receive size (for parts
2743 * with ERT support assuming ERT set to E1000_ERT_2048), or
2744 * - the full Rx FIFO size minus one full frame
2746 if (hw
->mac
.type
== e1000_pchlan
) {
2748 * Workaround PCH LOM adapter hangs with certain network
2749 * loads. If hangs persist, try disabling Tx flow control.
2751 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2752 fc
->high_water
= 0x3500;
2753 fc
->low_water
= 0x1500;
2755 fc
->high_water
= 0x5000;
2756 fc
->low_water
= 0x3000;
2759 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
2760 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
2761 hwm
= min(((pba
<< 10) * 9 / 10),
2762 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
2764 hwm
= min(((pba
<< 10) * 9 / 10),
2765 ((pba
<< 10) - adapter
->max_frame_size
));
2767 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
2768 fc
->low_water
= fc
->high_water
- 8;
2771 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
2772 fc
->pause_time
= 0xFFFF;
2774 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
2776 fc
->current_mode
= fc
->requested_mode
;
2778 /* Allow time for pending master requests to run */
2779 mac
->ops
.reset_hw(hw
);
2782 * For parts with AMT enabled, let the firmware know
2783 * that the network interface is in control
2785 if (adapter
->flags
& FLAG_HAS_AMT
)
2786 e1000_get_hw_control(adapter
);
2789 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
)
2790 e1e_wphy(&adapter
->hw
, BM_WUC
, 0);
2792 if (mac
->ops
.init_hw(hw
))
2793 e_err("Hardware Error\n");
2795 /* additional part of the flow-control workaround above */
2796 if (hw
->mac
.type
== e1000_pchlan
)
2797 ew32(FCRTV_PCH
, 0x1000);
2799 e1000_update_mng_vlan(adapter
);
2801 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2802 ew32(VET
, ETH_P_8021Q
);
2804 e1000e_reset_adaptive(hw
);
2805 e1000_get_phy_info(hw
);
2807 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
2808 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
2811 * speed up time to link by disabling smart power down, ignore
2812 * the return value of this function because there is nothing
2813 * different we would do if it failed
2815 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
2816 phy_data
&= ~IGP02E1000_PM_SPD
;
2817 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
2821 int e1000e_up(struct e1000_adapter
*adapter
)
2823 struct e1000_hw
*hw
= &adapter
->hw
;
2825 /* DMA latency requirement to workaround early-receive/jumbo issue */
2826 if (adapter
->flags
& FLAG_HAS_ERT
)
2827 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY
,
2828 adapter
->netdev
->name
,
2829 PM_QOS_DEFAULT_VALUE
);
2831 /* hardware has been reset, we need to reload some things */
2832 e1000_configure(adapter
);
2834 clear_bit(__E1000_DOWN
, &adapter
->state
);
2836 napi_enable(&adapter
->napi
);
2837 if (adapter
->msix_entries
)
2838 e1000_configure_msix(adapter
);
2839 e1000_irq_enable(adapter
);
2841 netif_wake_queue(adapter
->netdev
);
2843 /* fire a link change interrupt to start the watchdog */
2844 ew32(ICS
, E1000_ICS_LSC
);
2848 void e1000e_down(struct e1000_adapter
*adapter
)
2850 struct net_device
*netdev
= adapter
->netdev
;
2851 struct e1000_hw
*hw
= &adapter
->hw
;
2855 * signal that we're down so the interrupt handler does not
2856 * reschedule our watchdog timer
2858 set_bit(__E1000_DOWN
, &adapter
->state
);
2860 /* disable receives in the hardware */
2862 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2863 /* flush and sleep below */
2865 netif_stop_queue(netdev
);
2867 /* disable transmits in the hardware */
2869 tctl
&= ~E1000_TCTL_EN
;
2871 /* flush both disables and wait for them to finish */
2875 napi_disable(&adapter
->napi
);
2876 e1000_irq_disable(adapter
);
2878 del_timer_sync(&adapter
->watchdog_timer
);
2879 del_timer_sync(&adapter
->phy_info_timer
);
2881 netif_carrier_off(netdev
);
2882 adapter
->link_speed
= 0;
2883 adapter
->link_duplex
= 0;
2885 if (!pci_channel_offline(adapter
->pdev
))
2886 e1000e_reset(adapter
);
2887 e1000_clean_tx_ring(adapter
);
2888 e1000_clean_rx_ring(adapter
);
2890 if (adapter
->flags
& FLAG_HAS_ERT
)
2891 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY
,
2892 adapter
->netdev
->name
);
2895 * TODO: for power management, we could drop the link and
2896 * pci_disable_device here.
2900 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
2903 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
2905 e1000e_down(adapter
);
2907 clear_bit(__E1000_RESETTING
, &adapter
->state
);
2911 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2912 * @adapter: board private structure to initialize
2914 * e1000_sw_init initializes the Adapter private data structure.
2915 * Fields are initialized based on PCI device information and
2916 * OS network device settings (MTU size).
2918 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
2920 struct net_device
*netdev
= adapter
->netdev
;
2922 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
2923 adapter
->rx_ps_bsize0
= 128;
2924 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2925 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2927 e1000e_set_interrupt_capability(adapter
);
2929 if (e1000_alloc_queues(adapter
))
2932 /* Explicitly disable IRQ since the NIC can be in any state. */
2933 e1000_irq_disable(adapter
);
2935 set_bit(__E1000_DOWN
, &adapter
->state
);
2940 * e1000_intr_msi_test - Interrupt Handler
2941 * @irq: interrupt number
2942 * @data: pointer to a network interface device structure
2944 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
2946 struct net_device
*netdev
= data
;
2947 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2948 struct e1000_hw
*hw
= &adapter
->hw
;
2949 u32 icr
= er32(ICR
);
2951 e_dbg("icr is %08X\n", icr
);
2952 if (icr
& E1000_ICR_RXSEQ
) {
2953 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
2961 * e1000_test_msi_interrupt - Returns 0 for successful test
2962 * @adapter: board private struct
2964 * code flow taken from tg3.c
2966 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
2968 struct net_device
*netdev
= adapter
->netdev
;
2969 struct e1000_hw
*hw
= &adapter
->hw
;
2972 /* poll_enable hasn't been called yet, so don't need disable */
2973 /* clear any pending events */
2976 /* free the real vector and request a test handler */
2977 e1000_free_irq(adapter
);
2978 e1000e_reset_interrupt_capability(adapter
);
2980 /* Assume that the test fails, if it succeeds then the test
2981 * MSI irq handler will unset this flag */
2982 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
2984 err
= pci_enable_msi(adapter
->pdev
);
2986 goto msi_test_failed
;
2988 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
2989 netdev
->name
, netdev
);
2991 pci_disable_msi(adapter
->pdev
);
2992 goto msi_test_failed
;
2997 e1000_irq_enable(adapter
);
2999 /* fire an unusual interrupt on the test handler */
3000 ew32(ICS
, E1000_ICS_RXSEQ
);
3004 e1000_irq_disable(adapter
);
3008 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3009 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3011 e_info("MSI interrupt test failed!\n");
3014 free_irq(adapter
->pdev
->irq
, netdev
);
3015 pci_disable_msi(adapter
->pdev
);
3018 goto msi_test_failed
;
3020 /* okay so the test worked, restore settings */
3021 e_dbg("MSI interrupt test succeeded!\n");
3023 e1000e_set_interrupt_capability(adapter
);
3024 e1000_request_irq(adapter
);
3029 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3030 * @adapter: board private struct
3032 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3034 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3039 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3042 /* disable SERR in case the MSI write causes a master abort */
3043 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3044 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3045 pci_cmd
& ~PCI_COMMAND_SERR
);
3047 err
= e1000_test_msi_interrupt(adapter
);
3049 /* restore previous setting of command word */
3050 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3056 /* EIO means MSI test failed */
3060 /* back to INTx mode */
3061 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3063 e1000_free_irq(adapter
);
3065 err
= e1000_request_irq(adapter
);
3071 * e1000_open - Called when a network interface is made active
3072 * @netdev: network interface device structure
3074 * Returns 0 on success, negative value on failure
3076 * The open entry point is called when a network interface is made
3077 * active by the system (IFF_UP). At this point all resources needed
3078 * for transmit and receive operations are allocated, the interrupt
3079 * handler is registered with the OS, the watchdog timer is started,
3080 * and the stack is notified that the interface is ready.
3082 static int e1000_open(struct net_device
*netdev
)
3084 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3085 struct e1000_hw
*hw
= &adapter
->hw
;
3088 /* disallow open during test */
3089 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3092 netif_carrier_off(netdev
);
3094 /* allocate transmit descriptors */
3095 err
= e1000e_setup_tx_resources(adapter
);
3099 /* allocate receive descriptors */
3100 err
= e1000e_setup_rx_resources(adapter
);
3104 e1000e_power_up_phy(adapter
);
3106 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3107 if ((adapter
->hw
.mng_cookie
.status
&
3108 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3109 e1000_update_mng_vlan(adapter
);
3112 * If AMT is enabled, let the firmware know that the network
3113 * interface is now open
3115 if (adapter
->flags
& FLAG_HAS_AMT
)
3116 e1000_get_hw_control(adapter
);
3119 * before we allocate an interrupt, we must be ready to handle it.
3120 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3121 * as soon as we call pci_request_irq, so we have to setup our
3122 * clean_rx handler before we do so.
3124 e1000_configure(adapter
);
3126 err
= e1000_request_irq(adapter
);
3131 * Work around PCIe errata with MSI interrupts causing some chipsets to
3132 * ignore e1000e MSI messages, which means we need to test our MSI
3135 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3136 err
= e1000_test_msi(adapter
);
3138 e_err("Interrupt allocation failed\n");
3143 /* From here on the code is the same as e1000e_up() */
3144 clear_bit(__E1000_DOWN
, &adapter
->state
);
3146 napi_enable(&adapter
->napi
);
3148 e1000_irq_enable(adapter
);
3150 netif_start_queue(netdev
);
3152 /* fire a link status change interrupt to start the watchdog */
3153 ew32(ICS
, E1000_ICS_LSC
);
3158 e1000_release_hw_control(adapter
);
3159 e1000_power_down_phy(adapter
);
3160 e1000e_free_rx_resources(adapter
);
3162 e1000e_free_tx_resources(adapter
);
3164 e1000e_reset(adapter
);
3170 * e1000_close - Disables a network interface
3171 * @netdev: network interface device structure
3173 * Returns 0, this is not allowed to fail
3175 * The close entry point is called when an interface is de-activated
3176 * by the OS. The hardware is still under the drivers control, but
3177 * needs to be disabled. A global MAC reset is issued to stop the
3178 * hardware, and all transmit and receive resources are freed.
3180 static int e1000_close(struct net_device
*netdev
)
3182 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3184 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3185 e1000e_down(adapter
);
3186 e1000_power_down_phy(adapter
);
3187 e1000_free_irq(adapter
);
3189 e1000e_free_tx_resources(adapter
);
3190 e1000e_free_rx_resources(adapter
);
3193 * kill manageability vlan ID if supported, but not if a vlan with
3194 * the same ID is registered on the host OS (let 8021q kill it)
3196 if ((adapter
->hw
.mng_cookie
.status
&
3197 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3199 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
3200 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3203 * If AMT is enabled, let the firmware know that the network
3204 * interface is now closed
3206 if (adapter
->flags
& FLAG_HAS_AMT
)
3207 e1000_release_hw_control(adapter
);
3212 * e1000_set_mac - Change the Ethernet Address of the NIC
3213 * @netdev: network interface device structure
3214 * @p: pointer to an address structure
3216 * Returns 0 on success, negative on failure
3218 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3220 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3221 struct sockaddr
*addr
= p
;
3223 if (!is_valid_ether_addr(addr
->sa_data
))
3224 return -EADDRNOTAVAIL
;
3226 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3227 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3229 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3231 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3232 /* activate the work around */
3233 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
3236 * Hold a copy of the LAA in RAR[14] This is done so that
3237 * between the time RAR[0] gets clobbered and the time it
3238 * gets fixed (in e1000_watchdog), the actual LAA is in one
3239 * of the RARs and no incoming packets directed to this port
3240 * are dropped. Eventually the LAA will be in RAR[0] and
3243 e1000e_rar_set(&adapter
->hw
,
3244 adapter
->hw
.mac
.addr
,
3245 adapter
->hw
.mac
.rar_entry_count
- 1);
3252 * e1000e_update_phy_task - work thread to update phy
3253 * @work: pointer to our work struct
3255 * this worker thread exists because we must acquire a
3256 * semaphore to read the phy, which we could msleep while
3257 * waiting for it, and we can't msleep in a timer.
3259 static void e1000e_update_phy_task(struct work_struct
*work
)
3261 struct e1000_adapter
*adapter
= container_of(work
,
3262 struct e1000_adapter
, update_phy_task
);
3263 e1000_get_phy_info(&adapter
->hw
);
3267 * Need to wait a few seconds after link up to get diagnostic information from
3270 static void e1000_update_phy_info(unsigned long data
)
3272 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3273 schedule_work(&adapter
->update_phy_task
);
3277 * e1000e_update_stats - Update the board statistics counters
3278 * @adapter: board private structure
3280 void e1000e_update_stats(struct e1000_adapter
*adapter
)
3282 struct net_device
*netdev
= adapter
->netdev
;
3283 struct e1000_hw
*hw
= &adapter
->hw
;
3284 struct pci_dev
*pdev
= adapter
->pdev
;
3288 * Prevent stats update while adapter is being reset, or if the pci
3289 * connection is down.
3291 if (adapter
->link_speed
== 0)
3293 if (pci_channel_offline(pdev
))
3296 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3297 adapter
->stats
.gprc
+= er32(GPRC
);
3298 adapter
->stats
.gorc
+= er32(GORCL
);
3299 er32(GORCH
); /* Clear gorc */
3300 adapter
->stats
.bprc
+= er32(BPRC
);
3301 adapter
->stats
.mprc
+= er32(MPRC
);
3302 adapter
->stats
.roc
+= er32(ROC
);
3304 adapter
->stats
.mpc
+= er32(MPC
);
3305 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3306 (hw
->phy
.type
== e1000_phy_82577
)) {
3307 e1e_rphy(hw
, HV_SCC_UPPER
, &phy_data
);
3308 if (!e1e_rphy(hw
, HV_SCC_LOWER
, &phy_data
))
3309 adapter
->stats
.scc
+= phy_data
;
3311 e1e_rphy(hw
, HV_ECOL_UPPER
, &phy_data
);
3312 if (!e1e_rphy(hw
, HV_ECOL_LOWER
, &phy_data
))
3313 adapter
->stats
.ecol
+= phy_data
;
3315 e1e_rphy(hw
, HV_MCC_UPPER
, &phy_data
);
3316 if (!e1e_rphy(hw
, HV_MCC_LOWER
, &phy_data
))
3317 adapter
->stats
.mcc
+= phy_data
;
3319 e1e_rphy(hw
, HV_LATECOL_UPPER
, &phy_data
);
3320 if (!e1e_rphy(hw
, HV_LATECOL_LOWER
, &phy_data
))
3321 adapter
->stats
.latecol
+= phy_data
;
3323 e1e_rphy(hw
, HV_DC_UPPER
, &phy_data
);
3324 if (!e1e_rphy(hw
, HV_DC_LOWER
, &phy_data
))
3325 adapter
->stats
.dc
+= phy_data
;
3327 adapter
->stats
.scc
+= er32(SCC
);
3328 adapter
->stats
.ecol
+= er32(ECOL
);
3329 adapter
->stats
.mcc
+= er32(MCC
);
3330 adapter
->stats
.latecol
+= er32(LATECOL
);
3331 adapter
->stats
.dc
+= er32(DC
);
3333 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3334 adapter
->stats
.xontxc
+= er32(XONTXC
);
3335 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3336 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3337 adapter
->stats
.gptc
+= er32(GPTC
);
3338 adapter
->stats
.gotc
+= er32(GOTCL
);
3339 er32(GOTCH
); /* Clear gotc */
3340 adapter
->stats
.rnbc
+= er32(RNBC
);
3341 adapter
->stats
.ruc
+= er32(RUC
);
3343 adapter
->stats
.mptc
+= er32(MPTC
);
3344 adapter
->stats
.bptc
+= er32(BPTC
);
3346 /* used for adaptive IFS */
3348 hw
->mac
.tx_packet_delta
= er32(TPT
);
3349 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3350 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3351 (hw
->phy
.type
== e1000_phy_82577
)) {
3352 e1e_rphy(hw
, HV_COLC_UPPER
, &phy_data
);
3353 if (!e1e_rphy(hw
, HV_COLC_LOWER
, &phy_data
))
3354 hw
->mac
.collision_delta
= phy_data
;
3356 hw
->mac
.collision_delta
= er32(COLC
);
3358 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3360 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3361 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3362 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3363 (hw
->phy
.type
== e1000_phy_82577
)) {
3364 e1e_rphy(hw
, HV_TNCRS_UPPER
, &phy_data
);
3365 if (!e1e_rphy(hw
, HV_TNCRS_LOWER
, &phy_data
))
3366 adapter
->stats
.tncrs
+= phy_data
;
3368 if ((hw
->mac
.type
!= e1000_82574
) &&
3369 (hw
->mac
.type
!= e1000_82583
))
3370 adapter
->stats
.tncrs
+= er32(TNCRS
);
3372 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3373 adapter
->stats
.tsctc
+= er32(TSCTC
);
3374 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3376 /* Fill out the OS statistics structure */
3377 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3378 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3383 * RLEC on some newer hardware can be incorrect so build
3384 * our own version based on RUC and ROC
3386 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3387 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3388 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3389 adapter
->stats
.cexterr
;
3390 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
3392 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3393 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3394 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3397 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
3398 adapter
->stats
.latecol
;
3399 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3400 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3401 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3403 /* Tx Dropped needs to be maintained elsewhere */
3405 /* Management Stats */
3406 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3407 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3408 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3412 * e1000_phy_read_status - Update the PHY register status snapshot
3413 * @adapter: board private structure
3415 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
3417 struct e1000_hw
*hw
= &adapter
->hw
;
3418 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
3421 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
3422 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
3423 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
3424 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
3425 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
3426 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
3427 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
3428 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
3429 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
3430 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
3432 e_warn("Error reading PHY register\n");
3435 * Do not read PHY registers if link is not up
3436 * Set values to typical power-on defaults
3438 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
3439 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
3440 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
3442 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
3443 ADVERTISE_ALL
| ADVERTISE_CSMA
);
3445 phy
->expansion
= EXPANSION_ENABLENPAGE
;
3446 phy
->ctrl1000
= ADVERTISE_1000FULL
;
3448 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
3452 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
3454 struct e1000_hw
*hw
= &adapter
->hw
;
3455 u32 ctrl
= er32(CTRL
);
3457 /* Link status message must follow this format for user tools */
3458 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s, "
3459 "Flow Control: %s\n",
3460 adapter
->netdev
->name
,
3461 adapter
->link_speed
,
3462 (adapter
->link_duplex
== FULL_DUPLEX
) ?
3463 "Full Duplex" : "Half Duplex",
3464 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
3466 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
3467 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
3470 bool e1000e_has_link(struct e1000_adapter
*adapter
)
3472 struct e1000_hw
*hw
= &adapter
->hw
;
3473 bool link_active
= 0;
3477 * get_link_status is set on LSC (link status) interrupt or
3478 * Rx sequence error interrupt. get_link_status will stay
3479 * false until the check_for_link establishes link
3480 * for copper adapters ONLY
3482 switch (hw
->phy
.media_type
) {
3483 case e1000_media_type_copper
:
3484 if (hw
->mac
.get_link_status
) {
3485 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3486 link_active
= !hw
->mac
.get_link_status
;
3491 case e1000_media_type_fiber
:
3492 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3493 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
3495 case e1000_media_type_internal_serdes
:
3496 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3497 link_active
= adapter
->hw
.mac
.serdes_has_link
;
3500 case e1000_media_type_unknown
:
3504 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
3505 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
3506 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3507 e_info("Gigabit has been disabled, downgrading speed\n");
3513 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
3515 /* make sure the receive unit is started */
3516 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
3517 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
3518 struct e1000_hw
*hw
= &adapter
->hw
;
3519 u32 rctl
= er32(RCTL
);
3520 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3521 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
3526 * e1000_watchdog - Timer Call-back
3527 * @data: pointer to adapter cast into an unsigned long
3529 static void e1000_watchdog(unsigned long data
)
3531 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3533 /* Do the rest outside of interrupt context */
3534 schedule_work(&adapter
->watchdog_task
);
3536 /* TODO: make this use queue_delayed_work() */
3539 static void e1000_watchdog_task(struct work_struct
*work
)
3541 struct e1000_adapter
*adapter
= container_of(work
,
3542 struct e1000_adapter
, watchdog_task
);
3543 struct net_device
*netdev
= adapter
->netdev
;
3544 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3545 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
3546 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3547 struct e1000_hw
*hw
= &adapter
->hw
;
3551 link
= e1000e_has_link(adapter
);
3552 if ((netif_carrier_ok(netdev
)) && link
) {
3553 e1000e_enable_receives(adapter
);
3557 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
3558 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
3559 e1000_update_mng_vlan(adapter
);
3562 if (!netif_carrier_ok(netdev
)) {
3564 /* update snapshot of PHY registers on LSC */
3565 e1000_phy_read_status(adapter
);
3566 mac
->ops
.get_link_up_info(&adapter
->hw
,
3567 &adapter
->link_speed
,
3568 &adapter
->link_duplex
);
3569 e1000_print_link_info(adapter
);
3571 * On supported PHYs, check for duplex mismatch only
3572 * if link has autonegotiated at 10/100 half
3574 if ((hw
->phy
.type
== e1000_phy_igp_3
||
3575 hw
->phy
.type
== e1000_phy_bm
) &&
3576 (hw
->mac
.autoneg
== true) &&
3577 (adapter
->link_speed
== SPEED_10
||
3578 adapter
->link_speed
== SPEED_100
) &&
3579 (adapter
->link_duplex
== HALF_DUPLEX
)) {
3582 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
3584 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
3585 e_info("Autonegotiated half duplex but"
3586 " link partner cannot autoneg. "
3587 " Try forcing full duplex if "
3588 "link gets many collisions.\n");
3591 /* adjust timeout factor according to speed/duplex */
3592 adapter
->tx_timeout_factor
= 1;
3593 switch (adapter
->link_speed
) {
3596 adapter
->tx_timeout_factor
= 16;
3600 adapter
->tx_timeout_factor
= 10;
3605 * workaround: re-program speed mode bit after
3608 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
3611 tarc0
= er32(TARC(0));
3612 tarc0
&= ~SPEED_MODE_BIT
;
3613 ew32(TARC(0), tarc0
);
3617 * disable TSO for pcie and 10/100 speeds, to avoid
3618 * some hardware issues
3620 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
3621 switch (adapter
->link_speed
) {
3624 e_info("10/100 speed: disabling TSO\n");
3625 netdev
->features
&= ~NETIF_F_TSO
;
3626 netdev
->features
&= ~NETIF_F_TSO6
;
3629 netdev
->features
|= NETIF_F_TSO
;
3630 netdev
->features
|= NETIF_F_TSO6
;
3639 * enable transmits in the hardware, need to do this
3640 * after setting TARC(0)
3643 tctl
|= E1000_TCTL_EN
;
3647 * Perform any post-link-up configuration before
3648 * reporting link up.
3650 if (phy
->ops
.cfg_on_link_up
)
3651 phy
->ops
.cfg_on_link_up(hw
);
3653 netif_carrier_on(netdev
);
3655 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3656 mod_timer(&adapter
->phy_info_timer
,
3657 round_jiffies(jiffies
+ 2 * HZ
));
3660 if (netif_carrier_ok(netdev
)) {
3661 adapter
->link_speed
= 0;
3662 adapter
->link_duplex
= 0;
3663 /* Link status message must follow this format */
3664 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
3665 adapter
->netdev
->name
);
3666 netif_carrier_off(netdev
);
3667 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3668 mod_timer(&adapter
->phy_info_timer
,
3669 round_jiffies(jiffies
+ 2 * HZ
));
3671 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
3672 schedule_work(&adapter
->reset_task
);
3677 e1000e_update_stats(adapter
);
3679 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
3680 adapter
->tpt_old
= adapter
->stats
.tpt
;
3681 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
3682 adapter
->colc_old
= adapter
->stats
.colc
;
3684 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
3685 adapter
->gorc_old
= adapter
->stats
.gorc
;
3686 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
3687 adapter
->gotc_old
= adapter
->stats
.gotc
;
3689 e1000e_update_adaptive(&adapter
->hw
);
3691 if (!netif_carrier_ok(netdev
)) {
3692 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
3696 * We've lost link, so the controller stops DMA,
3697 * but we've got queued Tx work that's never going
3698 * to get done, so reset controller to flush Tx.
3699 * (Do the reset outside of interrupt context).
3701 adapter
->tx_timeout_count
++;
3702 schedule_work(&adapter
->reset_task
);
3703 /* return immediately since reset is imminent */
3708 /* Cause software interrupt to ensure Rx ring is cleaned */
3709 if (adapter
->msix_entries
)
3710 ew32(ICS
, adapter
->rx_ring
->ims_val
);
3712 ew32(ICS
, E1000_ICS_RXDMT0
);
3714 /* Force detection of hung controller every watchdog period */
3715 adapter
->detect_tx_hung
= 1;
3718 * With 82571 controllers, LAA may be overwritten due to controller
3719 * reset from the other port. Set the appropriate LAA in RAR[0]
3721 if (e1000e_get_laa_state_82571(hw
))
3722 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
3724 /* Reset the timer */
3725 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3726 mod_timer(&adapter
->watchdog_timer
,
3727 round_jiffies(jiffies
+ 2 * HZ
));
3730 #define E1000_TX_FLAGS_CSUM 0x00000001
3731 #define E1000_TX_FLAGS_VLAN 0x00000002
3732 #define E1000_TX_FLAGS_TSO 0x00000004
3733 #define E1000_TX_FLAGS_IPV4 0x00000008
3734 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3735 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3737 static int e1000_tso(struct e1000_adapter
*adapter
,
3738 struct sk_buff
*skb
)
3740 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3741 struct e1000_context_desc
*context_desc
;
3742 struct e1000_buffer
*buffer_info
;
3745 u16 ipcse
= 0, tucse
, mss
;
3746 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
3749 if (!skb_is_gso(skb
))
3752 if (skb_header_cloned(skb
)) {
3753 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3758 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3759 mss
= skb_shinfo(skb
)->gso_size
;
3760 if (skb
->protocol
== htons(ETH_P_IP
)) {
3761 struct iphdr
*iph
= ip_hdr(skb
);
3764 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
3766 cmd_length
= E1000_TXD_CMD_IP
;
3767 ipcse
= skb_transport_offset(skb
) - 1;
3768 } else if (skb_is_gso_v6(skb
)) {
3769 ipv6_hdr(skb
)->payload_len
= 0;
3770 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3771 &ipv6_hdr(skb
)->daddr
,
3775 ipcss
= skb_network_offset(skb
);
3776 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
3777 tucss
= skb_transport_offset(skb
);
3778 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
3781 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
3782 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
3784 i
= tx_ring
->next_to_use
;
3785 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3786 buffer_info
= &tx_ring
->buffer_info
[i
];
3788 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
3789 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
3790 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
3791 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
3792 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
3793 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
3794 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
3795 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
3796 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
3798 buffer_info
->time_stamp
= jiffies
;
3799 buffer_info
->next_to_watch
= i
;
3802 if (i
== tx_ring
->count
)
3804 tx_ring
->next_to_use
= i
;
3809 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3811 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3812 struct e1000_context_desc
*context_desc
;
3813 struct e1000_buffer
*buffer_info
;
3816 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
3819 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3822 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
3823 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
3825 protocol
= skb
->protocol
;
3828 case cpu_to_be16(ETH_P_IP
):
3829 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3830 cmd_len
|= E1000_TXD_CMD_TCP
;
3832 case cpu_to_be16(ETH_P_IPV6
):
3833 /* XXX not handling all IPV6 headers */
3834 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3835 cmd_len
|= E1000_TXD_CMD_TCP
;
3838 if (unlikely(net_ratelimit()))
3839 e_warn("checksum_partial proto=%x!\n",
3840 be16_to_cpu(protocol
));
3844 css
= skb_transport_offset(skb
);
3846 i
= tx_ring
->next_to_use
;
3847 buffer_info
= &tx_ring
->buffer_info
[i
];
3848 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3850 context_desc
->lower_setup
.ip_config
= 0;
3851 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
3852 context_desc
->upper_setup
.tcp_fields
.tucso
=
3853 css
+ skb
->csum_offset
;
3854 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
3855 context_desc
->tcp_seg_setup
.data
= 0;
3856 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
3858 buffer_info
->time_stamp
= jiffies
;
3859 buffer_info
->next_to_watch
= i
;
3862 if (i
== tx_ring
->count
)
3864 tx_ring
->next_to_use
= i
;
3869 #define E1000_MAX_PER_TXD 8192
3870 #define E1000_MAX_TXD_PWR 12
3872 static int e1000_tx_map(struct e1000_adapter
*adapter
,
3873 struct sk_buff
*skb
, unsigned int first
,
3874 unsigned int max_per_txd
, unsigned int nr_frags
,
3877 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3878 struct pci_dev
*pdev
= adapter
->pdev
;
3879 struct e1000_buffer
*buffer_info
;
3880 unsigned int len
= skb_headlen(skb
);
3881 unsigned int offset
= 0, size
, count
= 0, i
;
3884 i
= tx_ring
->next_to_use
;
3887 buffer_info
= &tx_ring
->buffer_info
[i
];
3888 size
= min(len
, max_per_txd
);
3890 buffer_info
->length
= size
;
3891 buffer_info
->time_stamp
= jiffies
;
3892 buffer_info
->next_to_watch
= i
;
3893 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
+ offset
,
3894 size
, PCI_DMA_TODEVICE
);
3895 buffer_info
->mapped_as_page
= false;
3896 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
))
3905 if (i
== tx_ring
->count
)
3910 for (f
= 0; f
< nr_frags
; f
++) {
3911 struct skb_frag_struct
*frag
;
3913 frag
= &skb_shinfo(skb
)->frags
[f
];
3915 offset
= frag
->page_offset
;
3919 if (i
== tx_ring
->count
)
3922 buffer_info
= &tx_ring
->buffer_info
[i
];
3923 size
= min(len
, max_per_txd
);
3925 buffer_info
->length
= size
;
3926 buffer_info
->time_stamp
= jiffies
;
3927 buffer_info
->next_to_watch
= i
;
3928 buffer_info
->dma
= pci_map_page(pdev
, frag
->page
,
3931 buffer_info
->mapped_as_page
= true;
3932 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
))
3941 tx_ring
->buffer_info
[i
].skb
= skb
;
3942 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3947 dev_err(&pdev
->dev
, "TX DMA map failed\n");
3948 buffer_info
->dma
= 0;
3954 i
+= tx_ring
->count
;
3956 buffer_info
= &tx_ring
->buffer_info
[i
];
3957 e1000_put_txbuf(adapter
, buffer_info
);;
3963 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3964 int tx_flags
, int count
)
3966 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3967 struct e1000_tx_desc
*tx_desc
= NULL
;
3968 struct e1000_buffer
*buffer_info
;
3969 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
3972 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
3973 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
3975 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3977 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
3978 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
3981 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
3982 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
3983 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
3986 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
3987 txd_lower
|= E1000_TXD_CMD_VLE
;
3988 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
3991 i
= tx_ring
->next_to_use
;
3994 buffer_info
= &tx_ring
->buffer_info
[i
];
3995 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3996 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3997 tx_desc
->lower
.data
=
3998 cpu_to_le32(txd_lower
| buffer_info
->length
);
3999 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4002 if (i
== tx_ring
->count
)
4006 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4009 * Force memory writes to complete before letting h/w
4010 * know there are new descriptors to fetch. (Only
4011 * applicable for weak-ordered memory model archs,
4016 tx_ring
->next_to_use
= i
;
4017 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
4019 * we need this if more than one processor can write to our tail
4020 * at a time, it synchronizes IO on IA64/Altix systems
4025 #define MINIMUM_DHCP_PACKET_SIZE 282
4026 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4027 struct sk_buff
*skb
)
4029 struct e1000_hw
*hw
= &adapter
->hw
;
4032 if (vlan_tx_tag_present(skb
)) {
4033 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
4034 (adapter
->hw
.mng_cookie
.status
&
4035 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4039 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4042 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4046 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4049 if (ip
->protocol
!= IPPROTO_UDP
)
4052 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4053 if (ntohs(udp
->dest
) != 67)
4056 offset
= (u8
*)udp
+ 8 - skb
->data
;
4057 length
= skb
->len
- offset
;
4058 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4064 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4066 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4068 netif_stop_queue(netdev
);
4070 * Herbert's original patch had:
4071 * smp_mb__after_netif_stop_queue();
4072 * but since that doesn't exist yet, just open code it.
4077 * We need to check again in a case another CPU has just
4078 * made room available.
4080 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
4084 netif_start_queue(netdev
);
4085 ++adapter
->restart_queue
;
4089 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4091 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4093 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
4095 return __e1000_maybe_stop_tx(netdev
, size
);
4098 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4099 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4100 struct net_device
*netdev
)
4102 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4103 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4105 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4106 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4107 unsigned int tx_flags
= 0;
4108 unsigned int len
= skb
->len
- skb
->data_len
;
4109 unsigned int nr_frags
;
4115 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4116 dev_kfree_skb_any(skb
);
4117 return NETDEV_TX_OK
;
4120 if (skb
->len
<= 0) {
4121 dev_kfree_skb_any(skb
);
4122 return NETDEV_TX_OK
;
4125 mss
= skb_shinfo(skb
)->gso_size
;
4127 * The controller does a simple calculation to
4128 * make sure there is enough room in the FIFO before
4129 * initiating the DMA for each buffer. The calc is:
4130 * 4 = ceil(buffer len/mss). To make sure we don't
4131 * overrun the FIFO, adjust the max buffer len if mss
4136 max_per_txd
= min(mss
<< 2, max_per_txd
);
4137 max_txd_pwr
= fls(max_per_txd
) - 1;
4140 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4141 * points to just header, pull a few bytes of payload from
4142 * frags into skb->data
4144 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4146 * we do this workaround for ES2LAN, but it is un-necessary,
4147 * avoiding it could save a lot of cycles
4149 if (skb
->data_len
&& (hdr_len
== len
)) {
4150 unsigned int pull_size
;
4152 pull_size
= min((unsigned int)4, skb
->data_len
);
4153 if (!__pskb_pull_tail(skb
, pull_size
)) {
4154 e_err("__pskb_pull_tail failed.\n");
4155 dev_kfree_skb_any(skb
);
4156 return NETDEV_TX_OK
;
4158 len
= skb
->len
- skb
->data_len
;
4162 /* reserve a descriptor for the offload context */
4163 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4167 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
4169 nr_frags
= skb_shinfo(skb
)->nr_frags
;
4170 for (f
= 0; f
< nr_frags
; f
++)
4171 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
4174 if (adapter
->hw
.mac
.tx_pkt_filtering
)
4175 e1000_transfer_dhcp_info(adapter
, skb
);
4178 * need: count + 2 desc gap to keep tail from touching
4179 * head, otherwise try next time
4181 if (e1000_maybe_stop_tx(netdev
, count
+ 2))
4182 return NETDEV_TX_BUSY
;
4184 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4185 tx_flags
|= E1000_TX_FLAGS_VLAN
;
4186 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
4189 first
= tx_ring
->next_to_use
;
4191 tso
= e1000_tso(adapter
, skb
);
4193 dev_kfree_skb_any(skb
);
4194 return NETDEV_TX_OK
;
4198 tx_flags
|= E1000_TX_FLAGS_TSO
;
4199 else if (e1000_tx_csum(adapter
, skb
))
4200 tx_flags
|= E1000_TX_FLAGS_CSUM
;
4203 * Old method was to assume IPv4 packet by default if TSO was enabled.
4204 * 82571 hardware supports TSO capabilities for IPv6 as well...
4205 * no longer assume, we must.
4207 if (skb
->protocol
== htons(ETH_P_IP
))
4208 tx_flags
|= E1000_TX_FLAGS_IPV4
;
4210 /* if count is 0 then mapping error has occured */
4211 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
4213 e1000_tx_queue(adapter
, tx_flags
, count
);
4214 /* Make sure there is space in the ring for the next send. */
4215 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
4218 dev_kfree_skb_any(skb
);
4219 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4220 tx_ring
->next_to_use
= first
;
4223 return NETDEV_TX_OK
;
4227 * e1000_tx_timeout - Respond to a Tx Hang
4228 * @netdev: network interface device structure
4230 static void e1000_tx_timeout(struct net_device
*netdev
)
4232 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4234 /* Do the reset outside of interrupt context */
4235 adapter
->tx_timeout_count
++;
4236 schedule_work(&adapter
->reset_task
);
4239 static void e1000_reset_task(struct work_struct
*work
)
4241 struct e1000_adapter
*adapter
;
4242 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
4244 e1000e_reinit_locked(adapter
);
4248 * e1000_get_stats - Get System Network Statistics
4249 * @netdev: network interface device structure
4251 * Returns the address of the device statistics structure.
4252 * The statistics are actually updated from the timer callback.
4254 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
4256 /* only return the current stats */
4257 return &netdev
->stats
;
4261 * e1000_change_mtu - Change the Maximum Transfer Unit
4262 * @netdev: network interface device structure
4263 * @new_mtu: new value for maximum frame size
4265 * Returns 0 on success, negative on failure
4267 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
4269 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4270 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4272 /* Jumbo frame support */
4273 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
4274 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
4275 e_err("Jumbo Frames not supported.\n");
4279 /* Supported frame sizes */
4280 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
4281 (max_frame
> adapter
->max_hw_frame_size
)) {
4282 e_err("Unsupported MTU setting\n");
4286 /* 82573 Errata 17 */
4287 if (((adapter
->hw
.mac
.type
== e1000_82573
) ||
4288 (adapter
->hw
.mac
.type
== e1000_82574
)) &&
4289 (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
4290 adapter
->flags2
|= FLAG2_DISABLE_ASPM_L1
;
4291 e1000e_disable_aspm(adapter
->pdev
, PCIE_LINK_STATE_L1
);
4294 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4296 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4297 adapter
->max_frame_size
= max_frame
;
4298 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
4299 netdev
->mtu
= new_mtu
;
4300 if (netif_running(netdev
))
4301 e1000e_down(adapter
);
4304 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4305 * means we reserve 2 more, this pushes us to allocate from the next
4307 * i.e. RXBUFFER_2048 --> size-4096 slab
4308 * However with the new *_jumbo_rx* routines, jumbo receives will use
4312 if (max_frame
<= 2048)
4313 adapter
->rx_buffer_len
= 2048;
4315 adapter
->rx_buffer_len
= 4096;
4317 /* adjust allocation if LPE protects us, and we aren't using SBP */
4318 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
4319 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
4320 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
4323 if (netif_running(netdev
))
4326 e1000e_reset(adapter
);
4328 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4333 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4336 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4337 struct mii_ioctl_data
*data
= if_mii(ifr
);
4339 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4344 data
->phy_id
= adapter
->hw
.phy
.addr
;
4347 e1000_phy_read_status(adapter
);
4349 switch (data
->reg_num
& 0x1F) {
4351 data
->val_out
= adapter
->phy_regs
.bmcr
;
4354 data
->val_out
= adapter
->phy_regs
.bmsr
;
4357 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
4360 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
4363 data
->val_out
= adapter
->phy_regs
.advertise
;
4366 data
->val_out
= adapter
->phy_regs
.lpa
;
4369 data
->val_out
= adapter
->phy_regs
.expansion
;
4372 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
4375 data
->val_out
= adapter
->phy_regs
.stat1000
;
4378 data
->val_out
= adapter
->phy_regs
.estatus
;
4391 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4397 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4403 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
4405 struct e1000_hw
*hw
= &adapter
->hw
;
4410 /* copy MAC RARs to PHY RARs */
4411 for (i
= 0; i
< adapter
->hw
.mac
.rar_entry_count
; i
++) {
4412 mac_reg
= er32(RAL(i
));
4413 e1e_wphy(hw
, BM_RAR_L(i
), (u16
)(mac_reg
& 0xFFFF));
4414 e1e_wphy(hw
, BM_RAR_M(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
4415 mac_reg
= er32(RAH(i
));
4416 e1e_wphy(hw
, BM_RAR_H(i
), (u16
)(mac_reg
& 0xFFFF));
4417 e1e_wphy(hw
, BM_RAR_CTRL(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
4420 /* copy MAC MTA to PHY MTA */
4421 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
4422 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
4423 e1e_wphy(hw
, BM_MTA(i
), (u16
)(mac_reg
& 0xFFFF));
4424 e1e_wphy(hw
, BM_MTA(i
) + 1, (u16
)((mac_reg
>> 16) & 0xFFFF));
4427 /* configure PHY Rx Control register */
4428 e1e_rphy(&adapter
->hw
, BM_RCTL
, &phy_reg
);
4429 mac_reg
= er32(RCTL
);
4430 if (mac_reg
& E1000_RCTL_UPE
)
4431 phy_reg
|= BM_RCTL_UPE
;
4432 if (mac_reg
& E1000_RCTL_MPE
)
4433 phy_reg
|= BM_RCTL_MPE
;
4434 phy_reg
&= ~(BM_RCTL_MO_MASK
);
4435 if (mac_reg
& E1000_RCTL_MO_3
)
4436 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
4437 << BM_RCTL_MO_SHIFT
);
4438 if (mac_reg
& E1000_RCTL_BAM
)
4439 phy_reg
|= BM_RCTL_BAM
;
4440 if (mac_reg
& E1000_RCTL_PMCF
)
4441 phy_reg
|= BM_RCTL_PMCF
;
4442 mac_reg
= er32(CTRL
);
4443 if (mac_reg
& E1000_CTRL_RFCE
)
4444 phy_reg
|= BM_RCTL_RFCE
;
4445 e1e_wphy(&adapter
->hw
, BM_RCTL
, phy_reg
);
4447 /* enable PHY wakeup in MAC register */
4449 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
4451 /* configure and enable PHY wakeup in PHY registers */
4452 e1e_wphy(&adapter
->hw
, BM_WUFC
, wufc
);
4453 e1e_wphy(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
4455 /* activate PHY wakeup */
4456 retval
= hw
->phy
.ops
.acquire(hw
);
4458 e_err("Could not acquire PHY\n");
4461 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4462 (BM_WUC_ENABLE_PAGE
<< IGP_PAGE_SHIFT
));
4463 retval
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, &phy_reg
);
4465 e_err("Could not read PHY page 769\n");
4468 phy_reg
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
4469 retval
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
4471 e_err("Could not set PHY Host Wakeup bit\n");
4473 hw
->phy
.ops
.release(hw
);
4478 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4480 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4481 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4482 struct e1000_hw
*hw
= &adapter
->hw
;
4483 u32 ctrl
, ctrl_ext
, rctl
, status
;
4484 u32 wufc
= adapter
->wol
;
4487 netif_device_detach(netdev
);
4489 if (netif_running(netdev
)) {
4490 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4491 e1000e_down(adapter
);
4492 e1000_free_irq(adapter
);
4494 e1000e_reset_interrupt_capability(adapter
);
4496 retval
= pci_save_state(pdev
);
4500 status
= er32(STATUS
);
4501 if (status
& E1000_STATUS_LU
)
4502 wufc
&= ~E1000_WUFC_LNKC
;
4505 e1000_setup_rctl(adapter
);
4506 e1000_set_multi(netdev
);
4508 /* turn on all-multi mode if wake on multicast is enabled */
4509 if (wufc
& E1000_WUFC_MC
) {
4511 rctl
|= E1000_RCTL_MPE
;
4516 /* advertise wake from D3Cold */
4517 #define E1000_CTRL_ADVD3WUC 0x00100000
4518 /* phy power management enable */
4519 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4520 ctrl
|= E1000_CTRL_ADVD3WUC
;
4521 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
4522 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
4525 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
4526 adapter
->hw
.phy
.media_type
==
4527 e1000_media_type_internal_serdes
) {
4528 /* keep the laser running in D3 */
4529 ctrl_ext
= er32(CTRL_EXT
);
4530 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
4531 ew32(CTRL_EXT
, ctrl_ext
);
4534 if (adapter
->flags
& FLAG_IS_ICH
)
4535 e1000e_disable_gig_wol_ich8lan(&adapter
->hw
);
4537 /* Allow time for pending master requests to run */
4538 e1000e_disable_pcie_master(&adapter
->hw
);
4540 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
4541 /* enable wakeup by the PHY */
4542 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
4546 /* enable wakeup by the MAC */
4548 ew32(WUC
, E1000_WUC_PME_EN
);
4555 *enable_wake
= !!wufc
;
4557 /* make sure adapter isn't asleep if manageability is enabled */
4558 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
4559 (hw
->mac
.ops
.check_mng_mode(hw
)))
4560 *enable_wake
= true;
4562 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
4563 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
4566 * Release control of h/w to f/w. If f/w is AMT enabled, this
4567 * would have already happened in close and is redundant.
4569 e1000_release_hw_control(adapter
);
4571 pci_disable_device(pdev
);
4576 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
4578 if (sleep
&& wake
) {
4579 pci_prepare_to_sleep(pdev
);
4583 pci_wake_from_d3(pdev
, wake
);
4584 pci_set_power_state(pdev
, PCI_D3hot
);
4587 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
4590 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4591 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4594 * The pci-e switch on some quad port adapters will report a
4595 * correctable error when the MAC transitions from D0 to D3. To
4596 * prevent this we need to mask off the correctable errors on the
4597 * downstream port of the pci-e switch.
4599 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
4600 struct pci_dev
*us_dev
= pdev
->bus
->self
;
4601 int pos
= pci_find_capability(us_dev
, PCI_CAP_ID_EXP
);
4604 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
4605 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
4606 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
4608 e1000_power_off(pdev
, sleep
, wake
);
4610 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
4612 e1000_power_off(pdev
, sleep
, wake
);
4616 #ifdef CONFIG_PCIEASPM
4617 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
4619 pci_disable_link_state(pdev
, state
);
4622 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
4628 * Both device and parent should have the same ASPM setting.
4629 * Disable ASPM in downstream component first and then upstream.
4631 pos
= pci_pcie_cap(pdev
);
4632 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, ®16
);
4634 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, reg16
);
4636 pos
= pci_pcie_cap(pdev
->bus
->self
);
4637 pci_read_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, ®16
);
4639 pci_write_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, reg16
);
4642 void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
4644 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
4645 (state
& PCIE_LINK_STATE_L0S
) ? "L0s" : "",
4646 (state
& PCIE_LINK_STATE_L1
) ? "L1" : "");
4648 __e1000e_disable_aspm(pdev
, state
);
4652 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4657 retval
= __e1000_shutdown(pdev
, &wake
);
4659 e1000_complete_shutdown(pdev
, true, wake
);
4664 static int e1000_resume(struct pci_dev
*pdev
)
4666 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4667 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4668 struct e1000_hw
*hw
= &adapter
->hw
;
4671 pci_set_power_state(pdev
, PCI_D0
);
4672 pci_restore_state(pdev
);
4673 pci_save_state(pdev
);
4674 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
4675 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
4677 err
= pci_enable_device_mem(pdev
);
4680 "Cannot enable PCI device from suspend\n");
4684 pci_set_master(pdev
);
4686 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4687 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4689 e1000e_set_interrupt_capability(adapter
);
4690 if (netif_running(netdev
)) {
4691 err
= e1000_request_irq(adapter
);
4696 e1000e_power_up_phy(adapter
);
4698 /* report the system wakeup cause from S3/S4 */
4699 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
4702 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
4704 e_info("PHY Wakeup cause - %s\n",
4705 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
4706 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
4707 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
4708 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
4709 phy_data
& E1000_WUS_LNKC
? "Link Status "
4710 " Change" : "other");
4712 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
4714 u32 wus
= er32(WUS
);
4716 e_info("MAC Wakeup cause - %s\n",
4717 wus
& E1000_WUS_EX
? "Unicast Packet" :
4718 wus
& E1000_WUS_MC
? "Multicast Packet" :
4719 wus
& E1000_WUS_BC
? "Broadcast Packet" :
4720 wus
& E1000_WUS_MAG
? "Magic Packet" :
4721 wus
& E1000_WUS_LNKC
? "Link Status Change" :
4727 e1000e_reset(adapter
);
4729 e1000_init_manageability(adapter
);
4731 if (netif_running(netdev
))
4734 netif_device_attach(netdev
);
4737 * If the controller has AMT, do not set DRV_LOAD until the interface
4738 * is up. For all other cases, let the f/w know that the h/w is now
4739 * under the control of the driver.
4741 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4742 e1000_get_hw_control(adapter
);
4748 static void e1000_shutdown(struct pci_dev
*pdev
)
4752 __e1000_shutdown(pdev
, &wake
);
4754 if (system_state
== SYSTEM_POWER_OFF
)
4755 e1000_complete_shutdown(pdev
, false, wake
);
4758 #ifdef CONFIG_NET_POLL_CONTROLLER
4760 * Polling 'interrupt' - used by things like netconsole to send skbs
4761 * without having to re-enable interrupts. It's not called while
4762 * the interrupt routine is executing.
4764 static void e1000_netpoll(struct net_device
*netdev
)
4766 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4768 disable_irq(adapter
->pdev
->irq
);
4769 e1000_intr(adapter
->pdev
->irq
, netdev
);
4771 enable_irq(adapter
->pdev
->irq
);
4776 * e1000_io_error_detected - called when PCI error is detected
4777 * @pdev: Pointer to PCI device
4778 * @state: The current pci connection state
4780 * This function is called after a PCI bus error affecting
4781 * this device has been detected.
4783 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4784 pci_channel_state_t state
)
4786 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4787 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4789 netif_device_detach(netdev
);
4791 if (state
== pci_channel_io_perm_failure
)
4792 return PCI_ERS_RESULT_DISCONNECT
;
4794 if (netif_running(netdev
))
4795 e1000e_down(adapter
);
4796 pci_disable_device(pdev
);
4798 /* Request a slot slot reset. */
4799 return PCI_ERS_RESULT_NEED_RESET
;
4803 * e1000_io_slot_reset - called after the pci bus has been reset.
4804 * @pdev: Pointer to PCI device
4806 * Restart the card from scratch, as if from a cold-boot. Implementation
4807 * resembles the first-half of the e1000_resume routine.
4809 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4811 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4812 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4813 struct e1000_hw
*hw
= &adapter
->hw
;
4815 pci_ers_result_t result
;
4817 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
4818 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
4819 err
= pci_enable_device_mem(pdev
);
4822 "Cannot re-enable PCI device after reset.\n");
4823 result
= PCI_ERS_RESULT_DISCONNECT
;
4825 pci_set_master(pdev
);
4826 pci_restore_state(pdev
);
4827 pci_save_state(pdev
);
4829 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4830 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4832 e1000e_reset(adapter
);
4834 result
= PCI_ERS_RESULT_RECOVERED
;
4837 pci_cleanup_aer_uncorrect_error_status(pdev
);
4843 * e1000_io_resume - called when traffic can start flowing again.
4844 * @pdev: Pointer to PCI device
4846 * This callback is called when the error recovery driver tells us that
4847 * its OK to resume normal operation. Implementation resembles the
4848 * second-half of the e1000_resume routine.
4850 static void e1000_io_resume(struct pci_dev
*pdev
)
4852 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4853 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4855 e1000_init_manageability(adapter
);
4857 if (netif_running(netdev
)) {
4858 if (e1000e_up(adapter
)) {
4860 "can't bring device back up after reset\n");
4865 netif_device_attach(netdev
);
4868 * If the controller has AMT, do not set DRV_LOAD until the interface
4869 * is up. For all other cases, let the f/w know that the h/w is now
4870 * under the control of the driver.
4872 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4873 e1000_get_hw_control(adapter
);
4877 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
4879 struct e1000_hw
*hw
= &adapter
->hw
;
4880 struct net_device
*netdev
= adapter
->netdev
;
4883 /* print bus type/speed/width info */
4884 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4886 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
4890 e_info("Intel(R) PRO/%s Network Connection\n",
4891 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
4892 e1000e_read_pba_num(hw
, &pba_num
);
4893 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4894 hw
->mac
.type
, hw
->phy
.type
, (pba_num
>> 8), (pba_num
& 0xff));
4897 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
4899 struct e1000_hw
*hw
= &adapter
->hw
;
4903 if (hw
->mac
.type
!= e1000_82573
)
4906 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
4907 if (!ret_val
&& (!(le16_to_cpu(buf
) & (1 << 0)))) {
4908 /* Deep Smart Power Down (DSPD) */
4909 dev_warn(&adapter
->pdev
->dev
,
4910 "Warning: detected DSPD enabled in EEPROM\n");
4914 static const struct net_device_ops e1000e_netdev_ops
= {
4915 .ndo_open
= e1000_open
,
4916 .ndo_stop
= e1000_close
,
4917 .ndo_start_xmit
= e1000_xmit_frame
,
4918 .ndo_get_stats
= e1000_get_stats
,
4919 .ndo_set_multicast_list
= e1000_set_multi
,
4920 .ndo_set_mac_address
= e1000_set_mac
,
4921 .ndo_change_mtu
= e1000_change_mtu
,
4922 .ndo_do_ioctl
= e1000_ioctl
,
4923 .ndo_tx_timeout
= e1000_tx_timeout
,
4924 .ndo_validate_addr
= eth_validate_addr
,
4926 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
4927 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
4928 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
4929 #ifdef CONFIG_NET_POLL_CONTROLLER
4930 .ndo_poll_controller
= e1000_netpoll
,
4935 * e1000_probe - Device Initialization Routine
4936 * @pdev: PCI device information struct
4937 * @ent: entry in e1000_pci_tbl
4939 * Returns 0 on success, negative on failure
4941 * e1000_probe initializes an adapter identified by a pci_dev structure.
4942 * The OS initialization, configuring of the adapter private structure,
4943 * and a hardware reset occur.
4945 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
4946 const struct pci_device_id
*ent
)
4948 struct net_device
*netdev
;
4949 struct e1000_adapter
*adapter
;
4950 struct e1000_hw
*hw
;
4951 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
4952 resource_size_t mmio_start
, mmio_len
;
4953 resource_size_t flash_start
, flash_len
;
4955 static int cards_found
;
4956 int i
, err
, pci_using_dac
;
4957 u16 eeprom_data
= 0;
4958 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
4960 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
4961 e1000e_disable_aspm(pdev
, PCIE_LINK_STATE_L1
);
4963 err
= pci_enable_device_mem(pdev
);
4968 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
4970 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
4974 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4976 err
= pci_set_consistent_dma_mask(pdev
,
4979 dev_err(&pdev
->dev
, "No usable DMA "
4980 "configuration, aborting\n");
4986 err
= pci_request_selected_regions_exclusive(pdev
,
4987 pci_select_bars(pdev
, IORESOURCE_MEM
),
4988 e1000e_driver_name
);
4992 /* AER (Advanced Error Reporting) hooks */
4993 pci_enable_pcie_error_reporting(pdev
);
4995 pci_set_master(pdev
);
4996 /* PCI config space info */
4997 err
= pci_save_state(pdev
);
4999 goto err_alloc_etherdev
;
5002 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
5004 goto err_alloc_etherdev
;
5006 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5008 pci_set_drvdata(pdev
, netdev
);
5009 adapter
= netdev_priv(netdev
);
5011 adapter
->netdev
= netdev
;
5012 adapter
->pdev
= pdev
;
5014 adapter
->pba
= ei
->pba
;
5015 adapter
->flags
= ei
->flags
;
5016 adapter
->flags2
= ei
->flags2
;
5017 adapter
->hw
.adapter
= adapter
;
5018 adapter
->hw
.mac
.type
= ei
->mac
;
5019 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
5020 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
5022 mmio_start
= pci_resource_start(pdev
, 0);
5023 mmio_len
= pci_resource_len(pdev
, 0);
5026 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
5027 if (!adapter
->hw
.hw_addr
)
5030 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
5031 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
5032 flash_start
= pci_resource_start(pdev
, 1);
5033 flash_len
= pci_resource_len(pdev
, 1);
5034 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
5035 if (!adapter
->hw
.flash_address
)
5039 /* construct the net_device struct */
5040 netdev
->netdev_ops
= &e1000e_netdev_ops
;
5041 e1000e_set_ethtool_ops(netdev
);
5042 netdev
->watchdog_timeo
= 5 * HZ
;
5043 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
5044 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
5046 netdev
->mem_start
= mmio_start
;
5047 netdev
->mem_end
= mmio_start
+ mmio_len
;
5049 adapter
->bd_number
= cards_found
++;
5051 e1000e_check_options(adapter
);
5053 /* setup adapter struct */
5054 err
= e1000_sw_init(adapter
);
5060 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
5061 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
5062 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
5064 err
= ei
->get_variants(adapter
);
5068 if ((adapter
->flags
& FLAG_IS_ICH
) &&
5069 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
5070 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
5072 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
5074 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
5076 /* Copper options */
5077 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
5078 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
5079 adapter
->hw
.phy
.disable_polarity_correction
= 0;
5080 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
5083 if (e1000_check_reset_block(&adapter
->hw
))
5084 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5086 netdev
->features
= NETIF_F_SG
|
5088 NETIF_F_HW_VLAN_TX
|
5091 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
5092 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
5094 netdev
->features
|= NETIF_F_TSO
;
5095 netdev
->features
|= NETIF_F_TSO6
;
5097 netdev
->vlan_features
|= NETIF_F_TSO
;
5098 netdev
->vlan_features
|= NETIF_F_TSO6
;
5099 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
5100 netdev
->vlan_features
|= NETIF_F_SG
;
5103 netdev
->features
|= NETIF_F_HIGHDMA
;
5105 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
5106 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
5109 * before reading the NVM, reset the controller to
5110 * put the device in a known good starting state
5112 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
5115 * systems with ASPM and others may see the checksum fail on the first
5116 * attempt. Let's give it a few tries
5119 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
5122 e_err("The NVM Checksum Is Not Valid\n");
5128 e1000_eeprom_checks(adapter
);
5130 /* copy the MAC address */
5131 if (e1000e_read_mac_addr(&adapter
->hw
))
5132 e_err("NVM Read Error while reading MAC address\n");
5134 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5135 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5137 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
5138 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
5143 init_timer(&adapter
->watchdog_timer
);
5144 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
5145 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
5147 init_timer(&adapter
->phy_info_timer
);
5148 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
5149 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
5151 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
5152 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
5153 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
5154 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
5155 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
5157 /* Initialize link parameters. User can change them with ethtool */
5158 adapter
->hw
.mac
.autoneg
= 1;
5159 adapter
->fc_autoneg
= 1;
5160 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
5161 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
5162 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
5164 /* ring size defaults */
5165 adapter
->rx_ring
->count
= 256;
5166 adapter
->tx_ring
->count
= 256;
5169 * Initial Wake on LAN setting - If APM wake is enabled in
5170 * the EEPROM, enable the ACPI Magic Packet filter
5172 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
5173 /* APME bit in EEPROM is mapped to WUC.APME */
5174 eeprom_data
= er32(WUC
);
5175 eeprom_apme_mask
= E1000_WUC_APME
;
5176 if (eeprom_data
& E1000_WUC_PHY_WAKE
)
5177 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
5178 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
5179 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
5180 (adapter
->hw
.bus
.func
== 1))
5181 e1000_read_nvm(&adapter
->hw
,
5182 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
5184 e1000_read_nvm(&adapter
->hw
,
5185 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
5188 /* fetch WoL from EEPROM */
5189 if (eeprom_data
& eeprom_apme_mask
)
5190 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
5193 * now that we have the eeprom settings, apply the special cases
5194 * where the eeprom may be wrong or the board simply won't support
5195 * wake on lan on a particular port
5197 if (!(adapter
->flags
& FLAG_HAS_WOL
))
5198 adapter
->eeprom_wol
= 0;
5200 /* initialize the wol settings based on the eeprom settings */
5201 adapter
->wol
= adapter
->eeprom_wol
;
5202 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
5204 /* save off EEPROM version number */
5205 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
5207 /* reset the hardware with the new settings */
5208 e1000e_reset(adapter
);
5211 * If the controller has AMT, do not set DRV_LOAD until the interface
5212 * is up. For all other cases, let the f/w know that the h/w is now
5213 * under the control of the driver.
5215 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5216 e1000_get_hw_control(adapter
);
5218 strcpy(netdev
->name
, "eth%d");
5219 err
= register_netdev(netdev
);
5223 /* carrier off reporting is important to ethtool even BEFORE open */
5224 netif_carrier_off(netdev
);
5226 e1000_print_device_info(adapter
);
5231 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5232 e1000_release_hw_control(adapter
);
5234 if (!e1000_check_reset_block(&adapter
->hw
))
5235 e1000_phy_hw_reset(&adapter
->hw
);
5238 kfree(adapter
->tx_ring
);
5239 kfree(adapter
->rx_ring
);
5241 if (adapter
->hw
.flash_address
)
5242 iounmap(adapter
->hw
.flash_address
);
5243 e1000e_reset_interrupt_capability(adapter
);
5245 iounmap(adapter
->hw
.hw_addr
);
5247 free_netdev(netdev
);
5249 pci_release_selected_regions(pdev
,
5250 pci_select_bars(pdev
, IORESOURCE_MEM
));
5253 pci_disable_device(pdev
);
5258 * e1000_remove - Device Removal Routine
5259 * @pdev: PCI device information struct
5261 * e1000_remove is called by the PCI subsystem to alert the driver
5262 * that it should release a PCI device. The could be caused by a
5263 * Hot-Plug event, or because the driver is going to be removed from
5266 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
5268 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5269 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5272 * flush_scheduled work may reschedule our watchdog task, so
5273 * explicitly disable watchdog tasks from being rescheduled
5275 set_bit(__E1000_DOWN
, &adapter
->state
);
5276 del_timer_sync(&adapter
->watchdog_timer
);
5277 del_timer_sync(&adapter
->phy_info_timer
);
5279 cancel_work_sync(&adapter
->reset_task
);
5280 cancel_work_sync(&adapter
->watchdog_task
);
5281 cancel_work_sync(&adapter
->downshift_task
);
5282 cancel_work_sync(&adapter
->update_phy_task
);
5283 cancel_work_sync(&adapter
->print_hang_task
);
5284 flush_scheduled_work();
5286 if (!(netdev
->flags
& IFF_UP
))
5287 e1000_power_down_phy(adapter
);
5289 unregister_netdev(netdev
);
5292 * Release control of h/w to f/w. If f/w is AMT enabled, this
5293 * would have already happened in close and is redundant.
5295 e1000_release_hw_control(adapter
);
5297 e1000e_reset_interrupt_capability(adapter
);
5298 kfree(adapter
->tx_ring
);
5299 kfree(adapter
->rx_ring
);
5301 iounmap(adapter
->hw
.hw_addr
);
5302 if (adapter
->hw
.flash_address
)
5303 iounmap(adapter
->hw
.flash_address
);
5304 pci_release_selected_regions(pdev
,
5305 pci_select_bars(pdev
, IORESOURCE_MEM
));
5307 free_netdev(netdev
);
5310 pci_disable_pcie_error_reporting(pdev
);
5312 pci_disable_device(pdev
);
5315 /* PCI Error Recovery (ERS) */
5316 static struct pci_error_handlers e1000_err_handler
= {
5317 .error_detected
= e1000_io_error_detected
,
5318 .slot_reset
= e1000_io_slot_reset
,
5319 .resume
= e1000_io_resume
,
5322 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
5323 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
5324 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
5325 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
5326 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
5327 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
5328 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
5329 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
5330 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
5331 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
5333 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
5334 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
5335 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
5336 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
5338 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
5339 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
5340 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
5342 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
5343 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
5344 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
5346 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
5347 board_80003es2lan
},
5348 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
5349 board_80003es2lan
},
5350 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
5351 board_80003es2lan
},
5352 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
5353 board_80003es2lan
},
5355 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
5356 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
5357 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
5358 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
5359 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
5360 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
5361 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
5362 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
5364 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
5365 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
5366 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
5367 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
5368 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
5369 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
5370 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
5371 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
5372 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
5374 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
5375 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
5376 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
5378 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
5379 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
5381 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
5382 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
5383 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
5384 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
5386 { } /* terminate list */
5388 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
5390 /* PCI Device API Driver */
5391 static struct pci_driver e1000_driver
= {
5392 .name
= e1000e_driver_name
,
5393 .id_table
= e1000_pci_tbl
,
5394 .probe
= e1000_probe
,
5395 .remove
= __devexit_p(e1000_remove
),
5397 /* Power Management Hooks */
5398 .suspend
= e1000_suspend
,
5399 .resume
= e1000_resume
,
5401 .shutdown
= e1000_shutdown
,
5402 .err_handler
= &e1000_err_handler
5406 * e1000_init_module - Driver Registration Routine
5408 * e1000_init_module is the first routine called when the driver is
5409 * loaded. All it does is register with the PCI subsystem.
5411 static int __init
e1000_init_module(void)
5414 printk(KERN_INFO
"%s: Intel(R) PRO/1000 Network Driver - %s\n",
5415 e1000e_driver_name
, e1000e_driver_version
);
5416 printk(KERN_INFO
"%s: Copyright (c) 1999 - 2009 Intel Corporation.\n",
5417 e1000e_driver_name
);
5418 ret
= pci_register_driver(&e1000_driver
);
5422 module_init(e1000_init_module
);
5425 * e1000_exit_module - Driver Exit Cleanup Routine
5427 * e1000_exit_module is called just before the driver is removed
5430 static void __exit
e1000_exit_module(void)
5432 pci_unregister_driver(&e1000_driver
);
5434 module_exit(e1000_exit_module
);
5437 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5438 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5439 MODULE_LICENSE("GPL");
5440 MODULE_VERSION(DRV_VERSION
);