1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/delay.h>
33 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
);
34 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
);
35 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
);
36 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
);
37 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
);
38 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
39 u16
*data
, bool read
);
40 static u32
e1000_get_phy_addr_for_hv_page(u32 page
);
41 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
42 u16
*data
, bool read
);
44 /* Cable length tables */
45 static const u16 e1000_m88_cable_length_table
[] =
46 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
47 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
48 ARRAY_SIZE(e1000_m88_cable_length_table)
50 static const u16 e1000_igp_2_cable_length_table
[] =
51 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
52 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
53 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
54 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
55 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
56 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
57 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
59 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
60 ARRAY_SIZE(e1000_igp_2_cable_length_table)
62 #define BM_PHY_REG_PAGE(offset) \
63 ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
64 #define BM_PHY_REG_NUM(offset) \
65 ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
66 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
67 ~MAX_PHY_REG_ADDRESS)))
69 #define HV_INTC_FC_PAGE_START 768
70 #define I82578_ADDR_REG 29
71 #define I82577_ADDR_REG 16
72 #define I82577_CFG_REG 22
73 #define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
74 #define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
75 #define I82577_CTRL_REG 23
77 /* 82577 specific PHY registers */
78 #define I82577_PHY_CTRL_2 18
79 #define I82577_PHY_STATUS_2 26
80 #define I82577_PHY_DIAG_STATUS 31
82 /* I82577 PHY Status 2 */
83 #define I82577_PHY_STATUS2_REV_POLARITY 0x0400
84 #define I82577_PHY_STATUS2_MDIX 0x0800
85 #define I82577_PHY_STATUS2_SPEED_MASK 0x0300
86 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
88 /* I82577 PHY Control 2 */
89 #define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
90 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
92 /* I82577 PHY Diagnostics Status */
93 #define I82577_DSTATUS_CABLE_LENGTH 0x03FC
94 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
96 /* BM PHY Copper Specific Control 1 */
97 #define BM_CS_CTRL1 16
99 #define HV_MUX_DATA_CTRL PHY_REG(776, 16)
100 #define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
101 #define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
104 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
105 * @hw: pointer to the HW structure
107 * Read the PHY management control register and check whether a PHY reset
108 * is blocked. If a reset is not blocked return 0, otherwise
109 * return E1000_BLK_PHY_RESET (12).
111 s32
e1000e_check_reset_block_generic(struct e1000_hw
*hw
)
117 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
118 E1000_BLK_PHY_RESET
: 0;
122 * e1000e_get_phy_id - Retrieve the PHY ID and revision
123 * @hw: pointer to the HW structure
125 * Reads the PHY registers and stores the PHY ID and possibly the PHY
126 * revision in the hardware structure.
128 s32
e1000e_get_phy_id(struct e1000_hw
*hw
)
130 struct e1000_phy_info
*phy
= &hw
->phy
;
135 if (!(phy
->ops
.read_reg
))
138 while (retry_count
< 2) {
139 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
143 phy
->id
= (u32
)(phy_id
<< 16);
145 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
149 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
150 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
152 if (phy
->id
!= 0 && phy
->id
!= PHY_REVISION_MASK
)
162 * e1000e_phy_reset_dsp - Reset PHY DSP
163 * @hw: pointer to the HW structure
165 * Reset the digital signal processor.
167 s32
e1000e_phy_reset_dsp(struct e1000_hw
*hw
)
171 ret_val
= e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
175 return e1e_wphy(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
179 * e1000e_read_phy_reg_mdic - Read MDI control register
180 * @hw: pointer to the HW structure
181 * @offset: register offset to be read
182 * @data: pointer to the read data
184 * Reads the MDI control register in the PHY at offset and stores the
185 * information read to data.
187 s32
e1000e_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
189 struct e1000_phy_info
*phy
= &hw
->phy
;
192 if (offset
> MAX_PHY_REG_ADDRESS
) {
193 e_dbg("PHY Address %d is out of range\n", offset
);
194 return -E1000_ERR_PARAM
;
198 * Set up Op-code, Phy Address, and register offset in the MDI
199 * Control register. The MAC will take care of interfacing with the
200 * PHY to retrieve the desired data.
202 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
203 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
204 (E1000_MDIC_OP_READ
));
209 * Poll the ready bit to see if the MDI read completed
210 * Increasing the time out as testing showed failures with
213 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
216 if (mdic
& E1000_MDIC_READY
)
219 if (!(mdic
& E1000_MDIC_READY
)) {
220 e_dbg("MDI Read did not complete\n");
221 return -E1000_ERR_PHY
;
223 if (mdic
& E1000_MDIC_ERROR
) {
224 e_dbg("MDI Error\n");
225 return -E1000_ERR_PHY
;
233 * e1000e_write_phy_reg_mdic - Write MDI control register
234 * @hw: pointer to the HW structure
235 * @offset: register offset to write to
236 * @data: data to write to register at offset
238 * Writes data to MDI control register in the PHY at offset.
240 s32
e1000e_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
242 struct e1000_phy_info
*phy
= &hw
->phy
;
245 if (offset
> MAX_PHY_REG_ADDRESS
) {
246 e_dbg("PHY Address %d is out of range\n", offset
);
247 return -E1000_ERR_PARAM
;
251 * Set up Op-code, Phy Address, and register offset in the MDI
252 * Control register. The MAC will take care of interfacing with the
253 * PHY to retrieve the desired data.
255 mdic
= (((u32
)data
) |
256 (offset
<< E1000_MDIC_REG_SHIFT
) |
257 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
258 (E1000_MDIC_OP_WRITE
));
263 * Poll the ready bit to see if the MDI read completed
264 * Increasing the time out as testing showed failures with
267 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
270 if (mdic
& E1000_MDIC_READY
)
273 if (!(mdic
& E1000_MDIC_READY
)) {
274 e_dbg("MDI Write did not complete\n");
275 return -E1000_ERR_PHY
;
277 if (mdic
& E1000_MDIC_ERROR
) {
278 e_dbg("MDI Error\n");
279 return -E1000_ERR_PHY
;
286 * e1000e_read_phy_reg_m88 - Read m88 PHY register
287 * @hw: pointer to the HW structure
288 * @offset: register offset to be read
289 * @data: pointer to the read data
291 * Acquires semaphore, if necessary, then reads the PHY register at offset
292 * and storing the retrieved information in data. Release any acquired
293 * semaphores before exiting.
295 s32
e1000e_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
299 ret_val
= hw
->phy
.ops
.acquire(hw
);
303 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
306 hw
->phy
.ops
.release(hw
);
312 * e1000e_write_phy_reg_m88 - Write m88 PHY register
313 * @hw: pointer to the HW structure
314 * @offset: register offset to write to
315 * @data: data to write at register offset
317 * Acquires semaphore, if necessary, then writes the data to PHY register
318 * at the offset. Release any acquired semaphores before exiting.
320 s32
e1000e_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
324 ret_val
= hw
->phy
.ops
.acquire(hw
);
328 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
331 hw
->phy
.ops
.release(hw
);
337 * __e1000e_read_phy_reg_igp - Read igp PHY register
338 * @hw: pointer to the HW structure
339 * @offset: register offset to be read
340 * @data: pointer to the read data
341 * @locked: semaphore has already been acquired or not
343 * Acquires semaphore, if necessary, then reads the PHY register at offset
344 * and stores the retrieved information in data. Release any acquired
345 * semaphores before exiting.
347 static s32
__e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
353 if (!(hw
->phy
.ops
.acquire
))
356 ret_val
= hw
->phy
.ops
.acquire(hw
);
361 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
362 ret_val
= e1000e_write_phy_reg_mdic(hw
,
363 IGP01E1000_PHY_PAGE_SELECT
,
369 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
374 hw
->phy
.ops
.release(hw
);
380 * e1000e_read_phy_reg_igp - Read igp PHY register
381 * @hw: pointer to the HW structure
382 * @offset: register offset to be read
383 * @data: pointer to the read data
385 * Acquires semaphore then reads the PHY register at offset and stores the
386 * retrieved information in data.
387 * Release the acquired semaphore before exiting.
389 s32
e1000e_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
391 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, false);
395 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
396 * @hw: pointer to the HW structure
397 * @offset: register offset to be read
398 * @data: pointer to the read data
400 * Reads the PHY register at offset and stores the retrieved information
401 * in data. Assumes semaphore already acquired.
403 s32
e1000e_read_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
405 return __e1000e_read_phy_reg_igp(hw
, offset
, data
, true);
409 * e1000e_write_phy_reg_igp - Write igp PHY register
410 * @hw: pointer to the HW structure
411 * @offset: register offset to write to
412 * @data: data to write at register offset
413 * @locked: semaphore has already been acquired or not
415 * Acquires semaphore, if necessary, then writes the data to PHY register
416 * at the offset. Release any acquired semaphores before exiting.
418 static s32
__e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
,
424 if (!(hw
->phy
.ops
.acquire
))
427 ret_val
= hw
->phy
.ops
.acquire(hw
);
432 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
433 ret_val
= e1000e_write_phy_reg_mdic(hw
,
434 IGP01E1000_PHY_PAGE_SELECT
,
440 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
445 hw
->phy
.ops
.release(hw
);
452 * e1000e_write_phy_reg_igp - Write igp PHY register
453 * @hw: pointer to the HW structure
454 * @offset: register offset to write to
455 * @data: data to write at register offset
457 * Acquires semaphore then writes the data to PHY register
458 * at the offset. Release any acquired semaphores before exiting.
460 s32
e1000e_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
462 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, false);
466 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
467 * @hw: pointer to the HW structure
468 * @offset: register offset to write to
469 * @data: data to write at register offset
471 * Writes the data to PHY register at the offset.
472 * Assumes semaphore already acquired.
474 s32
e1000e_write_phy_reg_igp_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
476 return __e1000e_write_phy_reg_igp(hw
, offset
, data
, true);
480 * __e1000_read_kmrn_reg - Read kumeran register
481 * @hw: pointer to the HW structure
482 * @offset: register offset to be read
483 * @data: pointer to the read data
484 * @locked: semaphore has already been acquired or not
486 * Acquires semaphore, if necessary. Then reads the PHY register at offset
487 * using the kumeran interface. The information retrieved is stored in data.
488 * Release any acquired semaphores before exiting.
490 static s32
__e1000_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
497 if (!(hw
->phy
.ops
.acquire
))
500 ret_val
= hw
->phy
.ops
.acquire(hw
);
505 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
506 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
507 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
511 kmrnctrlsta
= er32(KMRNCTRLSTA
);
512 *data
= (u16
)kmrnctrlsta
;
515 hw
->phy
.ops
.release(hw
);
522 * e1000e_read_kmrn_reg - Read kumeran register
523 * @hw: pointer to the HW structure
524 * @offset: register offset to be read
525 * @data: pointer to the read data
527 * Acquires semaphore then reads the PHY register at offset using the
528 * kumeran interface. The information retrieved is stored in data.
529 * Release the acquired semaphore before exiting.
531 s32
e1000e_read_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
533 return __e1000_read_kmrn_reg(hw
, offset
, data
, false);
537 * e1000e_read_kmrn_reg_locked - Read kumeran register
538 * @hw: pointer to the HW structure
539 * @offset: register offset to be read
540 * @data: pointer to the read data
542 * Reads the PHY register at offset using the kumeran interface. The
543 * information retrieved is stored in data.
544 * Assumes semaphore already acquired.
546 s32
e1000e_read_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
548 return __e1000_read_kmrn_reg(hw
, offset
, data
, true);
552 * __e1000_write_kmrn_reg - Write kumeran register
553 * @hw: pointer to the HW structure
554 * @offset: register offset to write to
555 * @data: data to write at register offset
556 * @locked: semaphore has already been acquired or not
558 * Acquires semaphore, if necessary. Then write the data to PHY register
559 * at the offset using the kumeran interface. Release any acquired semaphores
562 static s32
__e1000_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
,
569 if (!(hw
->phy
.ops
.acquire
))
572 ret_val
= hw
->phy
.ops
.acquire(hw
);
577 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
578 E1000_KMRNCTRLSTA_OFFSET
) | data
;
579 ew32(KMRNCTRLSTA
, kmrnctrlsta
);
584 hw
->phy
.ops
.release(hw
);
591 * e1000e_write_kmrn_reg - Write kumeran register
592 * @hw: pointer to the HW structure
593 * @offset: register offset to write to
594 * @data: data to write at register offset
596 * Acquires semaphore then writes the data to the PHY register at the offset
597 * using the kumeran interface. Release the acquired semaphore before exiting.
599 s32
e1000e_write_kmrn_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
601 return __e1000_write_kmrn_reg(hw
, offset
, data
, false);
605 * e1000e_write_kmrn_reg_locked - Write kumeran register
606 * @hw: pointer to the HW structure
607 * @offset: register offset to write to
608 * @data: data to write at register offset
610 * Write the data to PHY register at the offset using the kumeran interface.
611 * Assumes semaphore already acquired.
613 s32
e1000e_write_kmrn_reg_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
615 return __e1000_write_kmrn_reg(hw
, offset
, data
, true);
619 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
620 * @hw: pointer to the HW structure
622 * Sets up Carrier-sense on Transmit and downshift values.
624 s32
e1000_copper_link_setup_82577(struct e1000_hw
*hw
)
626 struct e1000_phy_info
*phy
= &hw
->phy
;
630 /* Enable CRS on TX. This must be set for half-duplex operation. */
631 ret_val
= phy
->ops
.read_reg(hw
, I82577_CFG_REG
, &phy_data
);
635 phy_data
|= I82577_CFG_ASSERT_CRS_ON_TX
;
637 /* Enable downshift */
638 phy_data
|= I82577_CFG_ENABLE_DOWNSHIFT
;
640 ret_val
= phy
->ops
.write_reg(hw
, I82577_CFG_REG
, phy_data
);
647 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
648 * @hw: pointer to the HW structure
650 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
651 * and downshift values are set also.
653 s32
e1000e_copper_link_setup_m88(struct e1000_hw
*hw
)
655 struct e1000_phy_info
*phy
= &hw
->phy
;
659 /* Enable CRS on Tx. This must be set for half-duplex operation. */
660 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
664 /* For BM PHY this bit is downshift enable */
665 if (phy
->type
!= e1000_phy_bm
)
666 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
670 * MDI/MDI-X = 0 (default)
671 * 0 - Auto for all speeds
674 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
676 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
680 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
683 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
686 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
690 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
696 * disable_polarity_correction = 0 (default)
697 * Automatic Correction for Reversed Cable Polarity
701 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
702 if (phy
->disable_polarity_correction
== 1)
703 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
705 /* Enable downshift on BM (disabled by default) */
706 if (phy
->type
== e1000_phy_bm
)
707 phy_data
|= BME1000_PSCR_ENABLE_DOWNSHIFT
;
709 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
713 if ((phy
->type
== e1000_phy_m88
) &&
714 (phy
->revision
< E1000_REVISION_4
) &&
715 (phy
->id
!= BME1000_E_PHY_ID_R2
)) {
717 * Force TX_CLK in the Extended PHY Specific Control Register
720 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
724 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
726 if ((phy
->revision
== 2) &&
727 (phy
->id
== M88E1111_I_PHY_ID
)) {
728 /* 82573L PHY - set the downshift counter to 5x. */
729 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
730 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
732 /* Configure Master and Slave downshift values */
733 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
734 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
735 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
736 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
738 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
743 if ((phy
->type
== e1000_phy_bm
) && (phy
->id
== BME1000_E_PHY_ID_R2
)) {
744 /* Set PHY page 0, register 29 to 0x0003 */
745 ret_val
= e1e_wphy(hw
, 29, 0x0003);
749 /* Set PHY page 0, register 30 to 0x0000 */
750 ret_val
= e1e_wphy(hw
, 30, 0x0000);
755 /* Commit the changes. */
756 ret_val
= e1000e_commit_phy(hw
);
758 e_dbg("Error committing the PHY changes\n");
762 if (phy
->type
== e1000_phy_82578
) {
763 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
768 /* 82578 PHY - set the downshift count to 1x. */
769 phy_data
|= I82578_EPSCR_DOWNSHIFT_ENABLE
;
770 phy_data
&= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK
;
771 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
781 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
782 * @hw: pointer to the HW structure
784 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
787 s32
e1000e_copper_link_setup_igp(struct e1000_hw
*hw
)
789 struct e1000_phy_info
*phy
= &hw
->phy
;
793 ret_val
= e1000_phy_hw_reset(hw
);
795 e_dbg("Error resetting the PHY.\n");
800 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
801 * timeout issues when LFS is enabled.
805 /* disable lplu d0 during driver init */
806 ret_val
= e1000_set_d0_lplu_state(hw
, false);
808 e_dbg("Error Disabling LPLU D0\n");
811 /* Configure mdi-mdix settings */
812 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
816 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
820 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
823 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
827 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
830 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
834 /* set auto-master slave resolution settings */
835 if (hw
->mac
.autoneg
) {
837 * when autonegotiation advertisement is only 1000Mbps then we
838 * should disable SmartSpeed and enable Auto MasterSlave
839 * resolution as hardware default.
841 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
842 /* Disable SmartSpeed */
843 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
848 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
849 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
854 /* Set auto Master/Slave resolution process */
855 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
859 data
&= ~CR_1000T_MS_ENABLE
;
860 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
865 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &data
);
869 /* load defaults for future use */
870 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
871 ((data
& CR_1000T_MS_VALUE
) ?
872 e1000_ms_force_master
:
873 e1000_ms_force_slave
) :
876 switch (phy
->ms_type
) {
877 case e1000_ms_force_master
:
878 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
880 case e1000_ms_force_slave
:
881 data
|= CR_1000T_MS_ENABLE
;
882 data
&= ~(CR_1000T_MS_VALUE
);
885 data
&= ~CR_1000T_MS_ENABLE
;
889 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, data
);
896 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
897 * @hw: pointer to the HW structure
899 * Reads the MII auto-neg advertisement register and/or the 1000T control
900 * register and if the PHY is already setup for auto-negotiation, then
901 * return successful. Otherwise, setup advertisement and flow control to
902 * the appropriate values for the wanted auto-negotiation.
904 static s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
906 struct e1000_phy_info
*phy
= &hw
->phy
;
908 u16 mii_autoneg_adv_reg
;
909 u16 mii_1000t_ctrl_reg
= 0;
911 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
913 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
914 ret_val
= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
918 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
919 /* Read the MII 1000Base-T Control Register (Address 9). */
920 ret_val
= e1e_rphy(hw
, PHY_1000T_CTRL
, &mii_1000t_ctrl_reg
);
926 * Need to parse both autoneg_advertised and fc and set up
927 * the appropriate PHY registers. First we will parse for
928 * autoneg_advertised software override. Since we can advertise
929 * a plethora of combinations, we need to check each bit
934 * First we clear all the 10/100 mb speed bits in the Auto-Neg
935 * Advertisement Register (Address 4) and the 1000 mb speed bits in
936 * the 1000Base-T Control Register (Address 9).
938 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
939 NWAY_AR_100TX_HD_CAPS
|
940 NWAY_AR_10T_FD_CAPS
|
941 NWAY_AR_10T_HD_CAPS
);
942 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
944 e_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
946 /* Do we want to advertise 10 Mb Half Duplex? */
947 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
948 e_dbg("Advertise 10mb Half duplex\n");
949 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
952 /* Do we want to advertise 10 Mb Full Duplex? */
953 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
954 e_dbg("Advertise 10mb Full duplex\n");
955 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
958 /* Do we want to advertise 100 Mb Half Duplex? */
959 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
960 e_dbg("Advertise 100mb Half duplex\n");
961 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
964 /* Do we want to advertise 100 Mb Full Duplex? */
965 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
966 e_dbg("Advertise 100mb Full duplex\n");
967 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
970 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
971 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
972 e_dbg("Advertise 1000mb Half duplex request denied!\n");
974 /* Do we want to advertise 1000 Mb Full Duplex? */
975 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
976 e_dbg("Advertise 1000mb Full duplex\n");
977 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
981 * Check for a software override of the flow control settings, and
982 * setup the PHY advertisement registers accordingly. If
983 * auto-negotiation is enabled, then software will have to set the
984 * "PAUSE" bits to the correct value in the Auto-Negotiation
985 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
988 * The possible values of the "fc" parameter are:
989 * 0: Flow control is completely disabled
990 * 1: Rx flow control is enabled (we can receive pause frames
991 * but not send pause frames).
992 * 2: Tx flow control is enabled (we can send pause frames
993 * but we do not support receiving pause frames).
994 * 3: Both Rx and Tx flow control (symmetric) are enabled.
995 * other: No software override. The flow control configuration
996 * in the EEPROM is used.
998 switch (hw
->fc
.current_mode
) {
1001 * Flow control (Rx & Tx) is completely disabled by a
1002 * software over-ride.
1004 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1006 case e1000_fc_rx_pause
:
1008 * Rx Flow control is enabled, and Tx Flow control is
1009 * disabled, by a software over-ride.
1011 * Since there really isn't a way to advertise that we are
1012 * capable of Rx Pause ONLY, we will advertise that we
1013 * support both symmetric and asymmetric Rx PAUSE. Later
1014 * (in e1000e_config_fc_after_link_up) we will disable the
1015 * hw's ability to send PAUSE frames.
1017 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1019 case e1000_fc_tx_pause
:
1021 * Tx Flow control is enabled, and Rx Flow control is
1022 * disabled, by a software over-ride.
1024 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
1025 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
1029 * Flow control (both Rx and Tx) is enabled by a software
1032 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1035 e_dbg("Flow control param set incorrectly\n");
1036 ret_val
= -E1000_ERR_CONFIG
;
1040 ret_val
= e1e_wphy(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
1044 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1046 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
1047 ret_val
= e1e_wphy(hw
, PHY_1000T_CTRL
, mii_1000t_ctrl_reg
);
1054 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1055 * @hw: pointer to the HW structure
1057 * Performs initial bounds checking on autoneg advertisement parameter, then
1058 * configure to advertise the full capability. Setup the PHY to autoneg
1059 * and restart the negotiation process between the link partner. If
1060 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1062 static s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
1064 struct e1000_phy_info
*phy
= &hw
->phy
;
1069 * Perform some bounds checking on the autoneg advertisement
1072 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
1075 * If autoneg_advertised is zero, we assume it was not defaulted
1076 * by the calling code so we set to advertise full capability.
1078 if (phy
->autoneg_advertised
== 0)
1079 phy
->autoneg_advertised
= phy
->autoneg_mask
;
1081 e_dbg("Reconfiguring auto-neg advertisement params\n");
1082 ret_val
= e1000_phy_setup_autoneg(hw
);
1084 e_dbg("Error Setting up Auto-Negotiation\n");
1087 e_dbg("Restarting Auto-Neg\n");
1090 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1091 * the Auto Neg Restart bit in the PHY control register.
1093 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
1097 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
1098 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
1103 * Does the user want to wait for Auto-Neg to complete here, or
1104 * check at a later time (for example, callback routine).
1106 if (phy
->autoneg_wait_to_complete
) {
1107 ret_val
= e1000_wait_autoneg(hw
);
1109 e_dbg("Error while waiting for "
1110 "autoneg to complete\n");
1115 hw
->mac
.get_link_status
= 1;
1121 * e1000e_setup_copper_link - Configure copper link settings
1122 * @hw: pointer to the HW structure
1124 * Calls the appropriate function to configure the link for auto-neg or forced
1125 * speed and duplex. Then we check for link, once link is established calls
1126 * to configure collision distance and flow control are called. If link is
1127 * not established, we return -E1000_ERR_PHY (-2).
1129 s32
e1000e_setup_copper_link(struct e1000_hw
*hw
)
1134 if (hw
->mac
.autoneg
) {
1136 * Setup autoneg and flow control advertisement and perform
1139 ret_val
= e1000_copper_link_autoneg(hw
);
1144 * PHY will be set to 10H, 10F, 100H or 100F
1145 * depending on user settings.
1147 e_dbg("Forcing Speed and Duplex\n");
1148 ret_val
= e1000_phy_force_speed_duplex(hw
);
1150 e_dbg("Error Forcing Speed and Duplex\n");
1156 * Check link status. Wait up to 100 microseconds for link to become
1159 ret_val
= e1000e_phy_has_link_generic(hw
,
1160 COPPER_LINK_UP_LIMIT
,
1167 e_dbg("Valid link established!!!\n");
1168 e1000e_config_collision_dist(hw
);
1169 ret_val
= e1000e_config_fc_after_link_up(hw
);
1171 e_dbg("Unable to establish link!!!\n");
1178 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1179 * @hw: pointer to the HW structure
1181 * Calls the PHY setup function to force speed and duplex. Clears the
1182 * auto-crossover to force MDI manually. Waits for link and returns
1183 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1185 s32
e1000e_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1187 struct e1000_phy_info
*phy
= &hw
->phy
;
1192 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
1196 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1198 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
1203 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1204 * forced whenever speed and duplex are forced.
1206 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1210 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1211 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1213 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1217 e_dbg("IGP PSCR: %X\n", phy_data
);
1221 if (phy
->autoneg_wait_to_complete
) {
1222 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1224 ret_val
= e1000e_phy_has_link_generic(hw
,
1232 e_dbg("Link taking longer than expected.\n");
1235 ret_val
= e1000e_phy_has_link_generic(hw
,
1247 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1248 * @hw: pointer to the HW structure
1250 * Calls the PHY setup function to force speed and duplex. Clears the
1251 * auto-crossover to force MDI manually. Resets the PHY to commit the
1252 * changes. If time expires while waiting for link up, we reset the DSP.
1253 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1254 * successful completion, else return corresponding error code.
1256 s32
e1000e_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1258 struct e1000_phy_info
*phy
= &hw
->phy
;
1264 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1265 * forced whenever speed and duplex are forced.
1267 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1271 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1272 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1276 e_dbg("M88E1000 PSCR: %X\n", phy_data
);
1278 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_data
);
1282 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
1284 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_data
);
1288 /* Reset the phy to commit changes. */
1289 ret_val
= e1000e_commit_phy(hw
);
1293 if (phy
->autoneg_wait_to_complete
) {
1294 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1296 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1302 if (hw
->phy
.type
!= e1000_phy_m88
) {
1303 e_dbg("Link taking longer than expected.\n");
1306 * We didn't get link.
1307 * Reset the DSP and cross our fingers.
1309 ret_val
= e1e_wphy(hw
,
1310 M88E1000_PHY_PAGE_SELECT
,
1314 ret_val
= e1000e_phy_reset_dsp(hw
);
1321 ret_val
= e1000e_phy_has_link_generic(hw
, PHY_FORCE_LIMIT
,
1327 if (hw
->phy
.type
!= e1000_phy_m88
)
1330 ret_val
= e1e_rphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1335 * Resetting the phy means we need to re-force TX_CLK in the
1336 * Extended PHY Specific Control Register to 25MHz clock from
1337 * the reset value of 2.5MHz.
1339 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1340 ret_val
= e1e_wphy(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1345 * In addition, we must re-enable CRS on Tx for both half and full
1348 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1352 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1353 ret_val
= e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1359 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1360 * @hw: pointer to the HW structure
1362 * Forces the speed and duplex settings of the PHY.
1363 * This is a function pointer entry point only called by
1364 * PHY setup routines.
1366 s32
e1000_phy_force_speed_duplex_ife(struct e1000_hw
*hw
)
1368 struct e1000_phy_info
*phy
= &hw
->phy
;
1373 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &data
);
1377 e1000e_phy_force_speed_duplex_setup(hw
, &data
);
1379 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, data
);
1383 /* Disable MDI-X support for 10/100 */
1384 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
1388 data
&= ~IFE_PMC_AUTO_MDIX
;
1389 data
&= ~IFE_PMC_FORCE_MDIX
;
1391 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, data
);
1395 e_dbg("IFE PMC: %X\n", data
);
1399 if (phy
->autoneg_wait_to_complete
) {
1400 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1402 ret_val
= e1000e_phy_has_link_generic(hw
,
1410 e_dbg("Link taking longer than expected.\n");
1413 ret_val
= e1000e_phy_has_link_generic(hw
,
1426 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427 * @hw: pointer to the HW structure
1428 * @phy_ctrl: pointer to current value of PHY_CONTROL
1430 * Forces speed and duplex on the PHY by doing the following: disable flow
1431 * control, force speed/duplex on the MAC, disable auto speed detection,
1432 * disable auto-negotiation, configure duplex, configure speed, configure
1433 * the collision distance, write configuration to CTRL register. The
1434 * caller must write to the PHY_CONTROL register for these settings to
1437 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1439 struct e1000_mac_info
*mac
= &hw
->mac
;
1442 /* Turn off flow control when forcing speed/duplex */
1443 hw
->fc
.current_mode
= e1000_fc_none
;
1445 /* Force speed/duplex on the mac */
1447 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1448 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1450 /* Disable Auto Speed Detection */
1451 ctrl
&= ~E1000_CTRL_ASDE
;
1453 /* Disable autoneg on the phy */
1454 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1456 /* Forcing Full or Half Duplex? */
1457 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1458 ctrl
&= ~E1000_CTRL_FD
;
1459 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1460 e_dbg("Half Duplex\n");
1462 ctrl
|= E1000_CTRL_FD
;
1463 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1464 e_dbg("Full Duplex\n");
1467 /* Forcing 10mb or 100mb? */
1468 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1469 ctrl
|= E1000_CTRL_SPD_100
;
1470 *phy_ctrl
|= MII_CR_SPEED_100
;
1471 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1472 e_dbg("Forcing 100mb\n");
1474 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1475 *phy_ctrl
|= MII_CR_SPEED_10
;
1476 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1477 e_dbg("Forcing 10mb\n");
1480 e1000e_config_collision_dist(hw
);
1486 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1487 * @hw: pointer to the HW structure
1488 * @active: boolean used to enable/disable lplu
1490 * Success returns 0, Failure returns 1
1492 * The low power link up (lplu) state is set to the power management level D3
1493 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1494 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1495 * is used during Dx states where the power conservation is most important.
1496 * During driver activity, SmartSpeed should be enabled so performance is
1499 s32
e1000e_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1501 struct e1000_phy_info
*phy
= &hw
->phy
;
1505 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1510 data
&= ~IGP02E1000_PM_D3_LPLU
;
1511 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1515 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1516 * during Dx states where the power conservation is most
1517 * important. During driver activity we should enable
1518 * SmartSpeed, so performance is maintained.
1520 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1521 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1526 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1527 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1531 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1532 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1537 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1538 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1543 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1544 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1545 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1546 data
|= IGP02E1000_PM_D3_LPLU
;
1547 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
1551 /* When LPLU is enabled, we should disable SmartSpeed */
1552 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1556 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1557 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1564 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1565 * @hw: pointer to the HW structure
1567 * Success returns 0, Failure returns 1
1569 * A downshift is detected by querying the PHY link health.
1571 s32
e1000e_check_downshift(struct e1000_hw
*hw
)
1573 struct e1000_phy_info
*phy
= &hw
->phy
;
1575 u16 phy_data
, offset
, mask
;
1577 switch (phy
->type
) {
1579 case e1000_phy_gg82563
:
1581 case e1000_phy_82578
:
1582 offset
= M88E1000_PHY_SPEC_STATUS
;
1583 mask
= M88E1000_PSSR_DOWNSHIFT
;
1585 case e1000_phy_igp_2
:
1586 case e1000_phy_igp_3
:
1587 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1588 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1591 /* speed downshift not supported */
1592 phy
->speed_downgraded
= false;
1596 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1599 phy
->speed_downgraded
= (phy_data
& mask
);
1605 * e1000_check_polarity_m88 - Checks the polarity.
1606 * @hw: pointer to the HW structure
1608 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1610 * Polarity is determined based on the PHY specific status register.
1612 s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1614 struct e1000_phy_info
*phy
= &hw
->phy
;
1618 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1621 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1622 ? e1000_rev_polarity_reversed
1623 : e1000_rev_polarity_normal
;
1629 * e1000_check_polarity_igp - Checks the polarity.
1630 * @hw: pointer to the HW structure
1632 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1634 * Polarity is determined based on the PHY port status register, and the
1635 * current speed (since there is no polarity at 100Mbps).
1637 s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1639 struct e1000_phy_info
*phy
= &hw
->phy
;
1641 u16 data
, offset
, mask
;
1644 * Polarity is determined based on the speed of
1647 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1651 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1652 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1653 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1654 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1657 * This really only applies to 10Mbps since
1658 * there is no polarity for 100Mbps (always 0).
1660 offset
= IGP01E1000_PHY_PORT_STATUS
;
1661 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1664 ret_val
= e1e_rphy(hw
, offset
, &data
);
1667 phy
->cable_polarity
= (data
& mask
)
1668 ? e1000_rev_polarity_reversed
1669 : e1000_rev_polarity_normal
;
1675 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1676 * @hw: pointer to the HW structure
1678 * Polarity is determined on the polarity reversal feature being enabled.
1680 s32
e1000_check_polarity_ife(struct e1000_hw
*hw
)
1682 struct e1000_phy_info
*phy
= &hw
->phy
;
1684 u16 phy_data
, offset
, mask
;
1687 * Polarity is determined based on the reversal feature being enabled.
1689 if (phy
->polarity_correction
) {
1690 offset
= IFE_PHY_EXTENDED_STATUS_CONTROL
;
1691 mask
= IFE_PESC_POLARITY_REVERSED
;
1693 offset
= IFE_PHY_SPECIAL_CONTROL
;
1694 mask
= IFE_PSC_FORCE_POLARITY
;
1697 ret_val
= e1e_rphy(hw
, offset
, &phy_data
);
1700 phy
->cable_polarity
= (phy_data
& mask
)
1701 ? e1000_rev_polarity_reversed
1702 : e1000_rev_polarity_normal
;
1708 * e1000_wait_autoneg - Wait for auto-neg completion
1709 * @hw: pointer to the HW structure
1711 * Waits for auto-negotiation to complete or for the auto-negotiation time
1712 * limit to expire, which ever happens first.
1714 static s32
e1000_wait_autoneg(struct e1000_hw
*hw
)
1719 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1720 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1721 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1724 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1727 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1733 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1740 * e1000e_phy_has_link_generic - Polls PHY for link
1741 * @hw: pointer to the HW structure
1742 * @iterations: number of times to poll for link
1743 * @usec_interval: delay between polling attempts
1744 * @success: pointer to whether polling was successful or not
1746 * Polls the PHY status register for link, 'iterations' number of times.
1748 s32
e1000e_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1749 u32 usec_interval
, bool *success
)
1754 for (i
= 0; i
< iterations
; i
++) {
1756 * Some PHYs require the PHY_STATUS register to be read
1757 * twice due to the link bit being sticky. No harm doing
1758 * it across the board.
1760 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1763 * If the first read fails, another entity may have
1764 * ownership of the resources, wait and try again to
1765 * see if they have relinquished the resources yet.
1767 udelay(usec_interval
);
1768 ret_val
= e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1771 if (phy_status
& MII_SR_LINK_STATUS
)
1773 if (usec_interval
>= 1000)
1774 mdelay(usec_interval
/1000);
1776 udelay(usec_interval
);
1779 *success
= (i
< iterations
);
1785 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1786 * @hw: pointer to the HW structure
1788 * Reads the PHY specific status register to retrieve the cable length
1789 * information. The cable length is determined by averaging the minimum and
1790 * maximum values to get the "average" cable length. The m88 PHY has four
1791 * possible cable length values, which are:
1792 * Register Value Cable Length
1796 * 3 110 - 140 meters
1799 s32
e1000e_get_cable_length_m88(struct e1000_hw
*hw
)
1801 struct e1000_phy_info
*phy
= &hw
->phy
;
1803 u16 phy_data
, index
;
1805 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1809 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1810 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1811 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1) {
1812 ret_val
= -E1000_ERR_PHY
;
1816 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1817 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1819 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1826 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1827 * @hw: pointer to the HW structure
1829 * The automatic gain control (agc) normalizes the amplitude of the
1830 * received signal, adjusting for the attenuation produced by the
1831 * cable. By reading the AGC registers, which represent the
1832 * combination of coarse and fine gain value, the value can be put
1833 * into a lookup table to obtain the approximate cable length
1836 s32
e1000e_get_cable_length_igp_2(struct e1000_hw
*hw
)
1838 struct e1000_phy_info
*phy
= &hw
->phy
;
1840 u16 phy_data
, i
, agc_value
= 0;
1841 u16 cur_agc_index
, max_agc_index
= 0;
1842 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1843 u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] =
1844 {IGP02E1000_PHY_AGC_A
,
1845 IGP02E1000_PHY_AGC_B
,
1846 IGP02E1000_PHY_AGC_C
,
1847 IGP02E1000_PHY_AGC_D
};
1849 /* Read the AGC registers for all channels */
1850 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1851 ret_val
= e1e_rphy(hw
, agc_reg_array
[i
], &phy_data
);
1856 * Getting bits 15:9, which represent the combination of
1857 * coarse and fine gain values. The result is a number
1858 * that can be put into the lookup table to obtain the
1859 * approximate cable length.
1861 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1862 IGP02E1000_AGC_LENGTH_MASK
;
1864 /* Array index bound check. */
1865 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1866 (cur_agc_index
== 0))
1867 return -E1000_ERR_PHY
;
1869 /* Remove min & max AGC values from calculation. */
1870 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1871 e1000_igp_2_cable_length_table
[cur_agc_index
])
1872 min_agc_index
= cur_agc_index
;
1873 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1874 e1000_igp_2_cable_length_table
[cur_agc_index
])
1875 max_agc_index
= cur_agc_index
;
1877 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1880 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1881 e1000_igp_2_cable_length_table
[max_agc_index
]);
1882 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1884 /* Calculate cable length with the error range of +/- 10 meters. */
1885 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1886 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1887 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1889 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1895 * e1000e_get_phy_info_m88 - Retrieve PHY information
1896 * @hw: pointer to the HW structure
1898 * Valid for only copper links. Read the PHY status register (sticky read)
1899 * to verify that link is up. Read the PHY special control register to
1900 * determine the polarity and 10base-T extended distance. Read the PHY
1901 * special status register to determine MDI/MDIx and current speed. If
1902 * speed is 1000, then determine cable length, local and remote receiver.
1904 s32
e1000e_get_phy_info_m88(struct e1000_hw
*hw
)
1906 struct e1000_phy_info
*phy
= &hw
->phy
;
1911 if (phy
->media_type
!= e1000_media_type_copper
) {
1912 e_dbg("Phy info is only valid for copper media\n");
1913 return -E1000_ERR_CONFIG
;
1916 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1921 e_dbg("Phy info is only valid if link is up\n");
1922 return -E1000_ERR_CONFIG
;
1925 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1929 phy
->polarity_correction
= (phy_data
&
1930 M88E1000_PSCR_POLARITY_REVERSAL
);
1932 ret_val
= e1000_check_polarity_m88(hw
);
1936 ret_val
= e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1940 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
);
1942 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1943 ret_val
= e1000_get_cable_length(hw
);
1947 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
1951 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1952 ? e1000_1000t_rx_status_ok
1953 : e1000_1000t_rx_status_not_ok
;
1955 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1956 ? e1000_1000t_rx_status_ok
1957 : e1000_1000t_rx_status_not_ok
;
1959 /* Set values to "undefined" */
1960 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1961 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1962 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1969 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1970 * @hw: pointer to the HW structure
1972 * Read PHY status to determine if link is up. If link is up, then
1973 * set/determine 10base-T extended distance and polarity correction. Read
1974 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1975 * determine on the cable length, local and remote receiver.
1977 s32
e1000e_get_phy_info_igp(struct e1000_hw
*hw
)
1979 struct e1000_phy_info
*phy
= &hw
->phy
;
1984 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
1989 e_dbg("Phy info is only valid if link is up\n");
1990 return -E1000_ERR_CONFIG
;
1993 phy
->polarity_correction
= true;
1995 ret_val
= e1000_check_polarity_igp(hw
);
1999 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
2003 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
);
2005 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
2006 IGP01E1000_PSSR_SPEED_1000MBPS
) {
2007 ret_val
= e1000_get_cable_length(hw
);
2011 ret_val
= e1e_rphy(hw
, PHY_1000T_STATUS
, &data
);
2015 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2016 ? e1000_1000t_rx_status_ok
2017 : e1000_1000t_rx_status_not_ok
;
2019 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2020 ? e1000_1000t_rx_status_ok
2021 : e1000_1000t_rx_status_not_ok
;
2023 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2024 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2025 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2032 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2033 * @hw: pointer to the HW structure
2035 * Populates "phy" structure with various feature states.
2037 s32
e1000_get_phy_info_ife(struct e1000_hw
*hw
)
2039 struct e1000_phy_info
*phy
= &hw
->phy
;
2044 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
2049 e_dbg("Phy info is only valid if link is up\n");
2050 ret_val
= -E1000_ERR_CONFIG
;
2054 ret_val
= e1e_rphy(hw
, IFE_PHY_SPECIAL_CONTROL
, &data
);
2057 phy
->polarity_correction
= (data
& IFE_PSC_AUTO_POLARITY_DISABLE
)
2060 if (phy
->polarity_correction
) {
2061 ret_val
= e1000_check_polarity_ife(hw
);
2065 /* Polarity is forced */
2066 phy
->cable_polarity
= (data
& IFE_PSC_FORCE_POLARITY
)
2067 ? e1000_rev_polarity_reversed
2068 : e1000_rev_polarity_normal
;
2071 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, &data
);
2075 phy
->is_mdix
= (data
& IFE_PMC_MDIX_STATUS
) ? true : false;
2077 /* The following parameters are undefined for 10/100 operation. */
2078 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2079 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2080 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2087 * e1000e_phy_sw_reset - PHY software reset
2088 * @hw: pointer to the HW structure
2090 * Does a software reset of the PHY by reading the PHY control register and
2091 * setting/write the control register reset bit to the PHY.
2093 s32
e1000e_phy_sw_reset(struct e1000_hw
*hw
)
2098 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy_ctrl
);
2102 phy_ctrl
|= MII_CR_RESET
;
2103 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, phy_ctrl
);
2113 * e1000e_phy_hw_reset_generic - PHY hardware reset
2114 * @hw: pointer to the HW structure
2116 * Verify the reset block is not blocking us from resetting. Acquire
2117 * semaphore (if necessary) and read/set/write the device control reset
2118 * bit in the PHY. Wait the appropriate delay time for the device to
2119 * reset and release the semaphore (if necessary).
2121 s32
e1000e_phy_hw_reset_generic(struct e1000_hw
*hw
)
2123 struct e1000_phy_info
*phy
= &hw
->phy
;
2127 ret_val
= e1000_check_reset_block(hw
);
2131 ret_val
= phy
->ops
.acquire(hw
);
2136 ew32(CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2139 udelay(phy
->reset_delay_us
);
2146 phy
->ops
.release(hw
);
2148 return e1000_get_phy_cfg_done(hw
);
2152 * e1000e_get_cfg_done - Generic configuration done
2153 * @hw: pointer to the HW structure
2155 * Generic function to wait 10 milli-seconds for configuration to complete
2156 * and return success.
2158 s32
e1000e_get_cfg_done(struct e1000_hw
*hw
)
2165 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2166 * @hw: pointer to the HW structure
2168 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2170 s32
e1000e_phy_init_script_igp3(struct e1000_hw
*hw
)
2172 e_dbg("Running IGP 3 PHY init script\n");
2174 /* PHY init IGP 3 */
2175 /* Enable rise/fall, 10-mode work in class-A */
2176 e1e_wphy(hw
, 0x2F5B, 0x9018);
2177 /* Remove all caps from Replica path filter */
2178 e1e_wphy(hw
, 0x2F52, 0x0000);
2179 /* Bias trimming for ADC, AFE and Driver (Default) */
2180 e1e_wphy(hw
, 0x2FB1, 0x8B24);
2181 /* Increase Hybrid poly bias */
2182 e1e_wphy(hw
, 0x2FB2, 0xF8F0);
2183 /* Add 4% to Tx amplitude in Gig mode */
2184 e1e_wphy(hw
, 0x2010, 0x10B0);
2185 /* Disable trimming (TTT) */
2186 e1e_wphy(hw
, 0x2011, 0x0000);
2187 /* Poly DC correction to 94.6% + 2% for all channels */
2188 e1e_wphy(hw
, 0x20DD, 0x249A);
2189 /* ABS DC correction to 95.9% */
2190 e1e_wphy(hw
, 0x20DE, 0x00D3);
2191 /* BG temp curve trim */
2192 e1e_wphy(hw
, 0x28B4, 0x04CE);
2193 /* Increasing ADC OPAMP stage 1 currents to max */
2194 e1e_wphy(hw
, 0x2F70, 0x29E4);
2195 /* Force 1000 ( required for enabling PHY regs configuration) */
2196 e1e_wphy(hw
, 0x0000, 0x0140);
2197 /* Set upd_freq to 6 */
2198 e1e_wphy(hw
, 0x1F30, 0x1606);
2200 e1e_wphy(hw
, 0x1F31, 0xB814);
2201 /* Disable adaptive fixed FFE (Default) */
2202 e1e_wphy(hw
, 0x1F35, 0x002A);
2203 /* Enable FFE hysteresis */
2204 e1e_wphy(hw
, 0x1F3E, 0x0067);
2205 /* Fixed FFE for short cable lengths */
2206 e1e_wphy(hw
, 0x1F54, 0x0065);
2207 /* Fixed FFE for medium cable lengths */
2208 e1e_wphy(hw
, 0x1F55, 0x002A);
2209 /* Fixed FFE for long cable lengths */
2210 e1e_wphy(hw
, 0x1F56, 0x002A);
2211 /* Enable Adaptive Clip Threshold */
2212 e1e_wphy(hw
, 0x1F72, 0x3FB0);
2213 /* AHT reset limit to 1 */
2214 e1e_wphy(hw
, 0x1F76, 0xC0FF);
2215 /* Set AHT master delay to 127 msec */
2216 e1e_wphy(hw
, 0x1F77, 0x1DEC);
2217 /* Set scan bits for AHT */
2218 e1e_wphy(hw
, 0x1F78, 0xF9EF);
2219 /* Set AHT Preset bits */
2220 e1e_wphy(hw
, 0x1F79, 0x0210);
2221 /* Change integ_factor of channel A to 3 */
2222 e1e_wphy(hw
, 0x1895, 0x0003);
2223 /* Change prop_factor of channels BCD to 8 */
2224 e1e_wphy(hw
, 0x1796, 0x0008);
2225 /* Change cg_icount + enable integbp for channels BCD */
2226 e1e_wphy(hw
, 0x1798, 0xD008);
2228 * Change cg_icount + enable integbp + change prop_factor_master
2229 * to 8 for channel A
2231 e1e_wphy(hw
, 0x1898, 0xD918);
2232 /* Disable AHT in Slave mode on channel A */
2233 e1e_wphy(hw
, 0x187A, 0x0800);
2235 * Enable LPLU and disable AN to 1000 in non-D0a states,
2238 e1e_wphy(hw
, 0x0019, 0x008D);
2239 /* Enable restart AN on an1000_dis change */
2240 e1e_wphy(hw
, 0x001B, 0x2080);
2241 /* Enable wh_fifo read clock in 10/100 modes */
2242 e1e_wphy(hw
, 0x0014, 0x0045);
2243 /* Restart AN, Speed selection is 1000 */
2244 e1e_wphy(hw
, 0x0000, 0x1340);
2249 /* Internal function pointers */
2252 * e1000_get_phy_cfg_done - Generic PHY configuration done
2253 * @hw: pointer to the HW structure
2255 * Return success if silicon family did not implement a family specific
2256 * get_cfg_done function.
2258 static s32
e1000_get_phy_cfg_done(struct e1000_hw
*hw
)
2260 if (hw
->phy
.ops
.get_cfg_done
)
2261 return hw
->phy
.ops
.get_cfg_done(hw
);
2267 * e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2268 * @hw: pointer to the HW structure
2270 * When the silicon family has not implemented a forced speed/duplex
2271 * function for the PHY, simply return 0.
2273 static s32
e1000_phy_force_speed_duplex(struct e1000_hw
*hw
)
2275 if (hw
->phy
.ops
.force_speed_duplex
)
2276 return hw
->phy
.ops
.force_speed_duplex(hw
);
2282 * e1000e_get_phy_type_from_id - Get PHY type from id
2283 * @phy_id: phy_id read from the phy
2285 * Returns the phy type from the id.
2287 enum e1000_phy_type
e1000e_get_phy_type_from_id(u32 phy_id
)
2289 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2292 case M88E1000_I_PHY_ID
:
2293 case M88E1000_E_PHY_ID
:
2294 case M88E1111_I_PHY_ID
:
2295 case M88E1011_I_PHY_ID
:
2296 phy_type
= e1000_phy_m88
;
2298 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
2299 phy_type
= e1000_phy_igp_2
;
2301 case GG82563_E_PHY_ID
:
2302 phy_type
= e1000_phy_gg82563
;
2304 case IGP03E1000_E_PHY_ID
:
2305 phy_type
= e1000_phy_igp_3
;
2308 case IFE_PLUS_E_PHY_ID
:
2309 case IFE_C_E_PHY_ID
:
2310 phy_type
= e1000_phy_ife
;
2312 case BME1000_E_PHY_ID
:
2313 case BME1000_E_PHY_ID_R2
:
2314 phy_type
= e1000_phy_bm
;
2316 case I82578_E_PHY_ID
:
2317 phy_type
= e1000_phy_82578
;
2319 case I82577_E_PHY_ID
:
2320 phy_type
= e1000_phy_82577
;
2323 phy_type
= e1000_phy_unknown
;
2330 * e1000e_determine_phy_address - Determines PHY address.
2331 * @hw: pointer to the HW structure
2333 * This uses a trial and error method to loop through possible PHY
2334 * addresses. It tests each by reading the PHY ID registers and
2335 * checking for a match.
2337 s32
e1000e_determine_phy_address(struct e1000_hw
*hw
)
2339 s32 ret_val
= -E1000_ERR_PHY_TYPE
;
2342 enum e1000_phy_type phy_type
= e1000_phy_unknown
;
2344 hw
->phy
.id
= phy_type
;
2346 for (phy_addr
= 0; phy_addr
< E1000_MAX_PHY_ADDR
; phy_addr
++) {
2347 hw
->phy
.addr
= phy_addr
;
2351 e1000e_get_phy_id(hw
);
2352 phy_type
= e1000e_get_phy_type_from_id(hw
->phy
.id
);
2355 * If phy_type is valid, break - we found our
2358 if (phy_type
!= e1000_phy_unknown
) {
2372 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2373 * @page: page to access
2375 * Returns the phy address for the page requested.
2377 static u32
e1000_get_phy_addr_for_bm_page(u32 page
, u32 reg
)
2381 if ((page
>= 768) || (page
== 0 && reg
== 25) || (reg
== 31))
2388 * e1000e_write_phy_reg_bm - Write BM PHY register
2389 * @hw: pointer to the HW structure
2390 * @offset: register offset to write to
2391 * @data: data to write at register offset
2393 * Acquires semaphore, if necessary, then writes the data to PHY register
2394 * at the offset. Release any acquired semaphores before exiting.
2396 s32
e1000e_write_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2399 u32 page_select
= 0;
2400 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2403 ret_val
= hw
->phy
.ops
.acquire(hw
);
2407 /* Page 800 works differently than the rest so it has its own func */
2408 if (page
== BM_WUC_PAGE
) {
2409 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2414 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2416 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2418 * Page select is register 31 for phy address 1 and 22 for
2419 * phy address 2 and 3. Page select is shifted only for
2422 if (hw
->phy
.addr
== 1) {
2423 page_shift
= IGP_PAGE_SHIFT
;
2424 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2427 page_select
= BM_PHY_PAGE_SELECT
;
2430 /* Page is shifted left, PHY expects (page x 32) */
2431 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2432 (page
<< page_shift
));
2437 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2441 hw
->phy
.ops
.release(hw
);
2446 * e1000e_read_phy_reg_bm - Read BM PHY register
2447 * @hw: pointer to the HW structure
2448 * @offset: register offset to be read
2449 * @data: pointer to the read data
2451 * Acquires semaphore, if necessary, then reads the PHY register at offset
2452 * and storing the retrieved information in data. Release any acquired
2453 * semaphores before exiting.
2455 s32
e1000e_read_phy_reg_bm(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2458 u32 page_select
= 0;
2459 u32 page
= offset
>> IGP_PAGE_SHIFT
;
2462 ret_val
= hw
->phy
.ops
.acquire(hw
);
2466 /* Page 800 works differently than the rest so it has its own func */
2467 if (page
== BM_WUC_PAGE
) {
2468 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2473 hw
->phy
.addr
= e1000_get_phy_addr_for_bm_page(page
, offset
);
2475 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2477 * Page select is register 31 for phy address 1 and 22 for
2478 * phy address 2 and 3. Page select is shifted only for
2481 if (hw
->phy
.addr
== 1) {
2482 page_shift
= IGP_PAGE_SHIFT
;
2483 page_select
= IGP01E1000_PHY_PAGE_SELECT
;
2486 page_select
= BM_PHY_PAGE_SELECT
;
2489 /* Page is shifted left, PHY expects (page x 32) */
2490 ret_val
= e1000e_write_phy_reg_mdic(hw
, page_select
,
2491 (page
<< page_shift
));
2496 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2499 hw
->phy
.ops
.release(hw
);
2504 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2505 * @hw: pointer to the HW structure
2506 * @offset: register offset to be read
2507 * @data: pointer to the read data
2509 * Acquires semaphore, if necessary, then reads the PHY register at offset
2510 * and storing the retrieved information in data. Release any acquired
2511 * semaphores before exiting.
2513 s32
e1000e_read_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2516 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2518 ret_val
= hw
->phy
.ops
.acquire(hw
);
2522 /* Page 800 works differently than the rest so it has its own func */
2523 if (page
== BM_WUC_PAGE
) {
2524 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, data
,
2531 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2533 /* Page is shifted left, PHY expects (page x 32) */
2534 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2541 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2544 hw
->phy
.ops
.release(hw
);
2549 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2550 * @hw: pointer to the HW structure
2551 * @offset: register offset to write to
2552 * @data: data to write at register offset
2554 * Acquires semaphore, if necessary, then writes the data to PHY register
2555 * at the offset. Release any acquired semaphores before exiting.
2557 s32
e1000e_write_phy_reg_bm2(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2560 u16 page
= (u16
)(offset
>> IGP_PAGE_SHIFT
);
2562 ret_val
= hw
->phy
.ops
.acquire(hw
);
2566 /* Page 800 works differently than the rest so it has its own func */
2567 if (page
== BM_WUC_PAGE
) {
2568 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
, &data
,
2575 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
2576 /* Page is shifted left, PHY expects (page x 32) */
2577 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_PHY_PAGE_SELECT
,
2584 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
2588 hw
->phy
.ops
.release(hw
);
2593 * e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register
2594 * @hw: pointer to the HW structure
2595 * @offset: register offset to be read or written
2596 * @data: pointer to the data to read or write
2597 * @read: determines if operation is read or write
2599 * Acquires semaphore, if necessary, then reads the PHY register at offset
2600 * and storing the retrieved information in data. Release any acquired
2601 * semaphores before exiting. Note that procedure to read the wakeup
2602 * registers are different. It works as such:
2603 * 1) Set page 769, register 17, bit 2 = 1
2604 * 2) Set page to 800 for host (801 if we were manageability)
2605 * 3) Write the address using the address opcode (0x11)
2606 * 4) Read or write the data using the data opcode (0x12)
2607 * 5) Restore 769_17.2 to its original value
2609 * Assumes semaphore already acquired.
2611 static s32
e1000_access_phy_wakeup_reg_bm(struct e1000_hw
*hw
, u32 offset
,
2612 u16
*data
, bool read
)
2615 u16 reg
= BM_PHY_REG_NUM(offset
);
2618 /* Gig must be disabled for MDIO accesses to page 800 */
2619 if ((hw
->mac
.type
== e1000_pchlan
) &&
2620 (!(er32(PHY_CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)))
2621 e_dbg("Attempting to access page 800 while gig enabled.\n");
2623 /* All operations in this function are phy address 1 */
2627 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
2628 (BM_WUC_ENABLE_PAGE
<< IGP_PAGE_SHIFT
));
2630 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, &phy_reg
);
2632 e_dbg("Could not read PHY page 769\n");
2636 /* First clear bit 4 to avoid a power state change */
2637 phy_reg
&= ~(BM_WUC_HOST_WU_BIT
);
2638 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
2640 e_dbg("Could not clear PHY page 769 bit 4\n");
2644 /* Write bit 2 = 1, and clear bit 4 to 769_17 */
2645 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
,
2646 phy_reg
| BM_WUC_ENABLE_BIT
);
2648 e_dbg("Could not write PHY page 769 bit 2\n");
2652 /* Select page 800 */
2653 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
2654 (BM_WUC_PAGE
<< IGP_PAGE_SHIFT
));
2656 /* Write the page 800 offset value using opcode 0x11 */
2657 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ADDRESS_OPCODE
, reg
);
2659 e_dbg("Could not write address opcode to page 800\n");
2664 /* Read the page 800 value using opcode 0x12 */
2665 ret_val
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2668 /* Write the page 800 value using opcode 0x12 */
2669 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_DATA_OPCODE
,
2674 e_dbg("Could not access data value from page 800\n");
2679 * Restore 769_17.2 to its original value
2682 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
2683 (BM_WUC_ENABLE_PAGE
<< IGP_PAGE_SHIFT
));
2685 /* Clear 769_17.2 */
2686 ret_val
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
2688 e_dbg("Could not clear PHY page 769 bit 2\n");
2697 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2698 * @hw: pointer to the HW structure
2700 * In the case of a PHY power down to save power, or to turn off link during a
2701 * driver unload, or wake on lan is not enabled, restore the link to previous
2704 void e1000_power_up_phy_copper(struct e1000_hw
*hw
)
2708 /* The PHY will retain its settings across a power down/up cycle */
2709 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2710 mii_reg
&= ~MII_CR_POWER_DOWN
;
2711 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2715 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2716 * @hw: pointer to the HW structure
2718 * In the case of a PHY power down to save power, or to turn off link during a
2719 * driver unload, or wake on lan is not enabled, restore the link to previous
2722 void e1000_power_down_phy_copper(struct e1000_hw
*hw
)
2726 /* The PHY will retain its settings across a power down/up cycle */
2727 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2728 mii_reg
|= MII_CR_POWER_DOWN
;
2729 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2734 * e1000e_commit_phy - Soft PHY reset
2735 * @hw: pointer to the HW structure
2737 * Performs a soft PHY reset on those that apply. This is a function pointer
2738 * entry point called by drivers.
2740 s32
e1000e_commit_phy(struct e1000_hw
*hw
)
2742 if (hw
->phy
.ops
.commit
)
2743 return hw
->phy
.ops
.commit(hw
);
2749 * e1000_set_d0_lplu_state - Sets low power link up state for D0
2750 * @hw: pointer to the HW structure
2751 * @active: boolean used to enable/disable lplu
2753 * Success returns 0, Failure returns 1
2755 * The low power link up (lplu) state is set to the power management level D0
2756 * and SmartSpeed is disabled when active is true, else clear lplu for D0
2757 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
2758 * is used during Dx states where the power conservation is most important.
2759 * During driver activity, SmartSpeed should be enabled so performance is
2760 * maintained. This is a function pointer entry point called by drivers.
2762 static s32
e1000_set_d0_lplu_state(struct e1000_hw
*hw
, bool active
)
2764 if (hw
->phy
.ops
.set_d0_lplu_state
)
2765 return hw
->phy
.ops
.set_d0_lplu_state(hw
, active
);
2771 * __e1000_read_phy_reg_hv - Read HV PHY register
2772 * @hw: pointer to the HW structure
2773 * @offset: register offset to be read
2774 * @data: pointer to the read data
2775 * @locked: semaphore has already been acquired or not
2777 * Acquires semaphore, if necessary, then reads the PHY register at offset
2778 * and stores the retrieved information in data. Release any acquired
2779 * semaphore before exiting.
2781 static s32
__e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
,
2785 u16 page
= BM_PHY_REG_PAGE(offset
);
2786 u16 reg
= BM_PHY_REG_NUM(offset
);
2789 ret_val
= hw
->phy
.ops
.acquire(hw
);
2794 /* Page 800 works differently than the rest so it has its own func */
2795 if (page
== BM_WUC_PAGE
) {
2796 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
,
2801 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2802 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2807 hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2809 if (page
== HV_INTC_FC_PAGE_START
)
2812 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2813 u32 phy_addr
= hw
->phy
.addr
;
2817 /* Page is shifted left, PHY expects (page x 32) */
2818 ret_val
= e1000e_write_phy_reg_mdic(hw
,
2819 IGP01E1000_PHY_PAGE_SELECT
,
2820 (page
<< IGP_PAGE_SHIFT
));
2821 hw
->phy
.addr
= phy_addr
;
2827 ret_val
= e1000e_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
2831 hw
->phy
.ops
.release(hw
);
2837 * e1000_read_phy_reg_hv - Read HV PHY register
2838 * @hw: pointer to the HW structure
2839 * @offset: register offset to be read
2840 * @data: pointer to the read data
2842 * Acquires semaphore then reads the PHY register at offset and stores
2843 * the retrieved information in data. Release the acquired semaphore
2846 s32
e1000_read_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2848 return __e1000_read_phy_reg_hv(hw
, offset
, data
, false);
2852 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2853 * @hw: pointer to the HW structure
2854 * @offset: register offset to be read
2855 * @data: pointer to the read data
2857 * Reads the PHY register at offset and stores the retrieved information
2858 * in data. Assumes semaphore already acquired.
2860 s32
e1000_read_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
2862 return __e1000_read_phy_reg_hv(hw
, offset
, data
, true);
2866 * __e1000_write_phy_reg_hv - Write HV PHY register
2867 * @hw: pointer to the HW structure
2868 * @offset: register offset to write to
2869 * @data: data to write at register offset
2870 * @locked: semaphore has already been acquired or not
2872 * Acquires semaphore, if necessary, then writes the data to PHY register
2873 * at the offset. Release any acquired semaphores before exiting.
2875 static s32
__e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
,
2879 u16 page
= BM_PHY_REG_PAGE(offset
);
2880 u16 reg
= BM_PHY_REG_NUM(offset
);
2883 ret_val
= hw
->phy
.ops
.acquire(hw
);
2888 /* Page 800 works differently than the rest so it has its own func */
2889 if (page
== BM_WUC_PAGE
) {
2890 ret_val
= e1000_access_phy_wakeup_reg_bm(hw
, offset
,
2895 if (page
> 0 && page
< HV_INTC_FC_PAGE_START
) {
2896 ret_val
= e1000_access_phy_debug_regs_hv(hw
, offset
,
2901 hw
->phy
.addr
= e1000_get_phy_addr_for_hv_page(page
);
2903 if (page
== HV_INTC_FC_PAGE_START
)
2907 * Workaround MDIO accesses being disabled after entering IEEE Power
2908 * Down (whenever bit 11 of the PHY Control register is set)
2910 if ((hw
->phy
.type
== e1000_phy_82578
) &&
2911 (hw
->phy
.revision
>= 1) &&
2912 (hw
->phy
.addr
== 2) &&
2913 ((MAX_PHY_REG_ADDRESS
& reg
) == 0) &&
2914 (data
& (1 << 11))) {
2916 ret_val
= e1000_access_phy_debug_regs_hv(hw
, (1 << 6) | 0x3,
2922 if (reg
> MAX_PHY_MULTI_PAGE_REG
) {
2923 u32 phy_addr
= hw
->phy
.addr
;
2927 /* Page is shifted left, PHY expects (page x 32) */
2928 ret_val
= e1000e_write_phy_reg_mdic(hw
,
2929 IGP01E1000_PHY_PAGE_SELECT
,
2930 (page
<< IGP_PAGE_SHIFT
));
2931 hw
->phy
.addr
= phy_addr
;
2937 ret_val
= e1000e_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& reg
,
2942 hw
->phy
.ops
.release(hw
);
2948 * e1000_write_phy_reg_hv - Write HV PHY register
2949 * @hw: pointer to the HW structure
2950 * @offset: register offset to write to
2951 * @data: data to write at register offset
2953 * Acquires semaphore then writes the data to PHY register at the offset.
2954 * Release the acquired semaphores before exiting.
2956 s32
e1000_write_phy_reg_hv(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2958 return __e1000_write_phy_reg_hv(hw
, offset
, data
, false);
2962 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2963 * @hw: pointer to the HW structure
2964 * @offset: register offset to write to
2965 * @data: data to write at register offset
2967 * Writes the data to PHY register at the offset. Assumes semaphore
2970 s32
e1000_write_phy_reg_hv_locked(struct e1000_hw
*hw
, u32 offset
, u16 data
)
2972 return __e1000_write_phy_reg_hv(hw
, offset
, data
, true);
2976 * e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
2977 * @page: page to be accessed
2979 static u32
e1000_get_phy_addr_for_hv_page(u32 page
)
2983 if (page
>= HV_INTC_FC_PAGE_START
)
2990 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2991 * @hw: pointer to the HW structure
2992 * @offset: register offset to be read or written
2993 * @data: pointer to the data to be read or written
2994 * @read: determines if operation is read or written
2996 * Reads the PHY register at offset and stores the retreived information
2997 * in data. Assumes semaphore already acquired. Note that the procedure
2998 * to read these regs uses the address port and data port to read/write.
3000 static s32
e1000_access_phy_debug_regs_hv(struct e1000_hw
*hw
, u32 offset
,
3001 u16
*data
, bool read
)
3007 /* This takes care of the difference with desktop vs mobile phy */
3008 addr_reg
= (hw
->phy
.type
== e1000_phy_82578
) ?
3009 I82578_ADDR_REG
: I82577_ADDR_REG
;
3010 data_reg
= addr_reg
+ 1;
3012 /* All operations in this function are phy address 2 */
3015 /* masking with 0x3F to remove the page from offset */
3016 ret_val
= e1000e_write_phy_reg_mdic(hw
, addr_reg
, (u16
)offset
& 0x3F);
3018 e_dbg("Could not write PHY the HV address register\n");
3022 /* Read or write the data value next */
3024 ret_val
= e1000e_read_phy_reg_mdic(hw
, data_reg
, data
);
3026 ret_val
= e1000e_write_phy_reg_mdic(hw
, data_reg
, *data
);
3029 e_dbg("Could not read data value from HV data register\n");
3038 * e1000_link_stall_workaround_hv - Si workaround
3039 * @hw: pointer to the HW structure
3041 * This function works around a Si bug where the link partner can get
3042 * a link up indication before the PHY does. If small packets are sent
3043 * by the link partner they can be placed in the packet buffer without
3044 * being properly accounted for by the PHY and will stall preventing
3045 * further packets from being received. The workaround is to clear the
3046 * packet buffer after the PHY detects link up.
3048 s32
e1000_link_stall_workaround_hv(struct e1000_hw
*hw
)
3053 if (hw
->phy
.type
!= e1000_phy_82578
)
3056 /* Do not apply workaround if in PHY loopback bit 14 set */
3057 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &data
);
3058 if (data
& PHY_CONTROL_LB
)
3061 /* check if link is up and at 1Gbps */
3062 ret_val
= hw
->phy
.ops
.read_reg(hw
, BM_CS_STATUS
, &data
);
3066 data
&= BM_CS_STATUS_LINK_UP
|
3067 BM_CS_STATUS_RESOLVED
|
3068 BM_CS_STATUS_SPEED_MASK
;
3070 if (data
!= (BM_CS_STATUS_LINK_UP
|
3071 BM_CS_STATUS_RESOLVED
|
3072 BM_CS_STATUS_SPEED_1000
))
3077 /* flush the packets in the fifo buffer */
3078 ret_val
= hw
->phy
.ops
.write_reg(hw
, HV_MUX_DATA_CTRL
,
3079 HV_MUX_DATA_CTRL_GEN_TO_MAC
|
3080 HV_MUX_DATA_CTRL_FORCE_SPEED
);
3084 ret_val
= hw
->phy
.ops
.write_reg(hw
, HV_MUX_DATA_CTRL
,
3085 HV_MUX_DATA_CTRL_GEN_TO_MAC
);
3092 * e1000_check_polarity_82577 - Checks the polarity.
3093 * @hw: pointer to the HW structure
3095 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3097 * Polarity is determined based on the PHY specific status register.
3099 s32
e1000_check_polarity_82577(struct e1000_hw
*hw
)
3101 struct e1000_phy_info
*phy
= &hw
->phy
;
3105 ret_val
= phy
->ops
.read_reg(hw
, I82577_PHY_STATUS_2
, &data
);
3108 phy
->cable_polarity
= (data
& I82577_PHY_STATUS2_REV_POLARITY
)
3109 ? e1000_rev_polarity_reversed
3110 : e1000_rev_polarity_normal
;
3116 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3117 * @hw: pointer to the HW structure
3119 * Calls the PHY setup function to force speed and duplex. Clears the
3120 * auto-crossover to force MDI manually. Waits for link and returns
3121 * successful if link up is successful, else -E1000_ERR_PHY (-2).
3123 s32
e1000_phy_force_speed_duplex_82577(struct e1000_hw
*hw
)
3125 struct e1000_phy_info
*phy
= &hw
->phy
;
3130 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
3134 e1000e_phy_force_speed_duplex_setup(hw
, &phy_data
);
3136 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
3141 * Clear Auto-Crossover to force MDI manually. 82577 requires MDI
3142 * forced whenever speed and duplex are forced.
3144 ret_val
= phy
->ops
.read_reg(hw
, I82577_PHY_CTRL_2
, &phy_data
);
3148 phy_data
&= ~I82577_PHY_CTRL2_AUTO_MDIX
;
3149 phy_data
&= ~I82577_PHY_CTRL2_FORCE_MDI_MDIX
;
3151 ret_val
= phy
->ops
.write_reg(hw
, I82577_PHY_CTRL_2
, phy_data
);
3155 e_dbg("I82577_PHY_CTRL_2: %X\n", phy_data
);
3159 if (phy
->autoneg_wait_to_complete
) {
3160 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3162 ret_val
= e1000e_phy_has_link_generic(hw
,
3170 e_dbg("Link taking longer than expected.\n");
3173 ret_val
= e1000e_phy_has_link_generic(hw
,
3186 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3187 * @hw: pointer to the HW structure
3189 * Read PHY status to determine if link is up. If link is up, then
3190 * set/determine 10base-T extended distance and polarity correction. Read
3191 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3192 * determine on the cable length, local and remote receiver.
3194 s32
e1000_get_phy_info_82577(struct e1000_hw
*hw
)
3196 struct e1000_phy_info
*phy
= &hw
->phy
;
3201 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3206 e_dbg("Phy info is only valid if link is up\n");
3207 ret_val
= -E1000_ERR_CONFIG
;
3211 phy
->polarity_correction
= true;
3213 ret_val
= e1000_check_polarity_82577(hw
);
3217 ret_val
= phy
->ops
.read_reg(hw
, I82577_PHY_STATUS_2
, &data
);
3221 phy
->is_mdix
= (data
& I82577_PHY_STATUS2_MDIX
) ? true : false;
3223 if ((data
& I82577_PHY_STATUS2_SPEED_MASK
) ==
3224 I82577_PHY_STATUS2_SPEED_1000MBPS
) {
3225 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
3229 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
3233 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
3234 ? e1000_1000t_rx_status_ok
3235 : e1000_1000t_rx_status_not_ok
;
3237 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
3238 ? e1000_1000t_rx_status_ok
3239 : e1000_1000t_rx_status_not_ok
;
3241 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
3242 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
3243 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
3251 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3252 * @hw: pointer to the HW structure
3254 * Reads the diagnostic status register and verifies result is valid before
3255 * placing it in the phy_cable_length field.
3257 s32
e1000_get_cable_length_82577(struct e1000_hw
*hw
)
3259 struct e1000_phy_info
*phy
= &hw
->phy
;
3261 u16 phy_data
, length
;
3263 ret_val
= phy
->ops
.read_reg(hw
, I82577_PHY_DIAG_STATUS
, &phy_data
);
3267 length
= (phy_data
& I82577_DSTATUS_CABLE_LENGTH
) >>
3268 I82577_DSTATUS_CABLE_LENGTH_SHIFT
;
3270 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
3271 ret_val
= -E1000_ERR_PHY
;
3273 phy
->cable_length
= length
;