Staging: netwave: delete the driver
[linux/fpc-iii.git] / drivers / net / ns83820.c
blobe88e97cd1b10805803fb876c73af9c06848cb47f
1 #define VERSION "0.23"
2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * ChangeLog
30 * =========
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
38 * fiddling with TXCFG
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
46 * - fix >> 32 bugs
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
62 * - gmii bus probing
63 * - fix missed txok introduced during performance
64 * tuning
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
71 * Driver Overview
72 * ===============
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
86 * Cameo SOHO-GA2000T SOHO-GA2500T
87 * D-Link DGE-500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
90 * Netgear GA621
92 * Special thanks to SMC for providing hardware to test this driver on.
94 * Reports of success or failure would be greatly appreciated.
96 //#define dprintk printk
97 #define dprintk(x...) do { } while (0)
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/workqueue.h>
108 #include <linux/init.h>
109 #include <linux/ip.h> /* for iph */
110 #include <linux/in.h> /* for IPPROTO_... */
111 #include <linux/compiler.h>
112 #include <linux/prefetch.h>
113 #include <linux/ethtool.h>
114 #include <linux/sched.h>
115 #include <linux/timer.h>
116 #include <linux/if_vlan.h>
117 #include <linux/rtnetlink.h>
118 #include <linux/jiffies.h>
119 #include <linux/slab.h>
121 #include <asm/io.h>
122 #include <asm/uaccess.h>
123 #include <asm/system.h>
125 #define DRV_NAME "ns83820"
127 /* Global parameters. See module_param near the bottom. */
128 static int ihr = 2;
129 static int reset_phy = 0;
130 static int lnksts = 0; /* CFG_LNKSTS bit polarity */
132 /* Dprintk is used for more interesting debug events */
133 #undef Dprintk
134 #define Dprintk dprintk
136 /* tunables */
137 #define RX_BUF_SIZE 1500 /* 8192 */
138 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
139 #define NS83820_VLAN_ACCEL_SUPPORT
140 #endif
142 /* Must not exceed ~65000. */
143 #define NR_RX_DESC 64
144 #define NR_TX_DESC 128
146 /* not tunable */
147 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
149 #define MIN_TX_DESC_FREE 8
151 /* register defines */
152 #define CFGCS 0x04
154 #define CR_TXE 0x00000001
155 #define CR_TXD 0x00000002
156 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
157 * The Receive engine skips one descriptor and moves
158 * onto the next one!! */
159 #define CR_RXE 0x00000004
160 #define CR_RXD 0x00000008
161 #define CR_TXR 0x00000010
162 #define CR_RXR 0x00000020
163 #define CR_SWI 0x00000080
164 #define CR_RST 0x00000100
166 #define PTSCR_EEBIST_FAIL 0x00000001
167 #define PTSCR_EEBIST_EN 0x00000002
168 #define PTSCR_EELOAD_EN 0x00000004
169 #define PTSCR_RBIST_FAIL 0x000001b8
170 #define PTSCR_RBIST_DONE 0x00000200
171 #define PTSCR_RBIST_EN 0x00000400
172 #define PTSCR_RBIST_RST 0x00002000
174 #define MEAR_EEDI 0x00000001
175 #define MEAR_EEDO 0x00000002
176 #define MEAR_EECLK 0x00000004
177 #define MEAR_EESEL 0x00000008
178 #define MEAR_MDIO 0x00000010
179 #define MEAR_MDDIR 0x00000020
180 #define MEAR_MDC 0x00000040
182 #define ISR_TXDESC3 0x40000000
183 #define ISR_TXDESC2 0x20000000
184 #define ISR_TXDESC1 0x10000000
185 #define ISR_TXDESC0 0x08000000
186 #define ISR_RXDESC3 0x04000000
187 #define ISR_RXDESC2 0x02000000
188 #define ISR_RXDESC1 0x01000000
189 #define ISR_RXDESC0 0x00800000
190 #define ISR_TXRCMP 0x00400000
191 #define ISR_RXRCMP 0x00200000
192 #define ISR_DPERR 0x00100000
193 #define ISR_SSERR 0x00080000
194 #define ISR_RMABT 0x00040000
195 #define ISR_RTABT 0x00020000
196 #define ISR_RXSOVR 0x00010000
197 #define ISR_HIBINT 0x00008000
198 #define ISR_PHY 0x00004000
199 #define ISR_PME 0x00002000
200 #define ISR_SWI 0x00001000
201 #define ISR_MIB 0x00000800
202 #define ISR_TXURN 0x00000400
203 #define ISR_TXIDLE 0x00000200
204 #define ISR_TXERR 0x00000100
205 #define ISR_TXDESC 0x00000080
206 #define ISR_TXOK 0x00000040
207 #define ISR_RXORN 0x00000020
208 #define ISR_RXIDLE 0x00000010
209 #define ISR_RXEARLY 0x00000008
210 #define ISR_RXERR 0x00000004
211 #define ISR_RXDESC 0x00000002
212 #define ISR_RXOK 0x00000001
214 #define TXCFG_CSI 0x80000000
215 #define TXCFG_HBI 0x40000000
216 #define TXCFG_MLB 0x20000000
217 #define TXCFG_ATP 0x10000000
218 #define TXCFG_ECRETRY 0x00800000
219 #define TXCFG_BRST_DIS 0x00080000
220 #define TXCFG_MXDMA1024 0x00000000
221 #define TXCFG_MXDMA512 0x00700000
222 #define TXCFG_MXDMA256 0x00600000
223 #define TXCFG_MXDMA128 0x00500000
224 #define TXCFG_MXDMA64 0x00400000
225 #define TXCFG_MXDMA32 0x00300000
226 #define TXCFG_MXDMA16 0x00200000
227 #define TXCFG_MXDMA8 0x00100000
229 #define CFG_LNKSTS 0x80000000
230 #define CFG_SPDSTS 0x60000000
231 #define CFG_SPDSTS1 0x40000000
232 #define CFG_SPDSTS0 0x20000000
233 #define CFG_DUPSTS 0x10000000
234 #define CFG_TBI_EN 0x01000000
235 #define CFG_MODE_1000 0x00400000
236 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
237 * Read the Phy response and then configure the MAC accordingly */
238 #define CFG_AUTO_1000 0x00200000
239 #define CFG_PINT_CTL 0x001c0000
240 #define CFG_PINT_DUPSTS 0x00100000
241 #define CFG_PINT_LNKSTS 0x00080000
242 #define CFG_PINT_SPDSTS 0x00040000
243 #define CFG_TMRTEST 0x00020000
244 #define CFG_MRM_DIS 0x00010000
245 #define CFG_MWI_DIS 0x00008000
246 #define CFG_T64ADDR 0x00004000
247 #define CFG_PCI64_DET 0x00002000
248 #define CFG_DATA64_EN 0x00001000
249 #define CFG_M64ADDR 0x00000800
250 #define CFG_PHY_RST 0x00000400
251 #define CFG_PHY_DIS 0x00000200
252 #define CFG_EXTSTS_EN 0x00000100
253 #define CFG_REQALG 0x00000080
254 #define CFG_SB 0x00000040
255 #define CFG_POW 0x00000020
256 #define CFG_EXD 0x00000010
257 #define CFG_PESEL 0x00000008
258 #define CFG_BROM_DIS 0x00000004
259 #define CFG_EXT_125 0x00000002
260 #define CFG_BEM 0x00000001
262 #define EXTSTS_UDPPKT 0x00200000
263 #define EXTSTS_TCPPKT 0x00080000
264 #define EXTSTS_IPPKT 0x00020000
265 #define EXTSTS_VPKT 0x00010000
266 #define EXTSTS_VTG_MASK 0x0000ffff
268 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
270 #define MIBC_MIBS 0x00000008
271 #define MIBC_ACLR 0x00000004
272 #define MIBC_FRZ 0x00000002
273 #define MIBC_WRN 0x00000001
275 #define PCR_PSEN (1 << 31)
276 #define PCR_PS_MCAST (1 << 30)
277 #define PCR_PS_DA (1 << 29)
278 #define PCR_STHI_8 (3 << 23)
279 #define PCR_STLO_4 (1 << 23)
280 #define PCR_FFHI_8K (3 << 21)
281 #define PCR_FFLO_4K (1 << 21)
282 #define PCR_PAUSE_CNT 0xFFFE
284 #define RXCFG_AEP 0x80000000
285 #define RXCFG_ARP 0x40000000
286 #define RXCFG_STRIPCRC 0x20000000
287 #define RXCFG_RX_FD 0x10000000
288 #define RXCFG_ALP 0x08000000
289 #define RXCFG_AIRL 0x04000000
290 #define RXCFG_MXDMA512 0x00700000
291 #define RXCFG_DRTH 0x0000003e
292 #define RXCFG_DRTH0 0x00000002
294 #define RFCR_RFEN 0x80000000
295 #define RFCR_AAB 0x40000000
296 #define RFCR_AAM 0x20000000
297 #define RFCR_AAU 0x10000000
298 #define RFCR_APM 0x08000000
299 #define RFCR_APAT 0x07800000
300 #define RFCR_APAT3 0x04000000
301 #define RFCR_APAT2 0x02000000
302 #define RFCR_APAT1 0x01000000
303 #define RFCR_APAT0 0x00800000
304 #define RFCR_AARP 0x00400000
305 #define RFCR_MHEN 0x00200000
306 #define RFCR_UHEN 0x00100000
307 #define RFCR_ULM 0x00080000
309 #define VRCR_RUDPE 0x00000080
310 #define VRCR_RTCPE 0x00000040
311 #define VRCR_RIPE 0x00000020
312 #define VRCR_IPEN 0x00000010
313 #define VRCR_DUTF 0x00000008
314 #define VRCR_DVTF 0x00000004
315 #define VRCR_VTREN 0x00000002
316 #define VRCR_VTDEN 0x00000001
318 #define VTCR_PPCHK 0x00000008
319 #define VTCR_GCHK 0x00000004
320 #define VTCR_VPPTI 0x00000002
321 #define VTCR_VGTI 0x00000001
323 #define CR 0x00
324 #define CFG 0x04
325 #define MEAR 0x08
326 #define PTSCR 0x0c
327 #define ISR 0x10
328 #define IMR 0x14
329 #define IER 0x18
330 #define IHR 0x1c
331 #define TXDP 0x20
332 #define TXDP_HI 0x24
333 #define TXCFG 0x28
334 #define GPIOR 0x2c
335 #define RXDP 0x30
336 #define RXDP_HI 0x34
337 #define RXCFG 0x38
338 #define PQCR 0x3c
339 #define WCSR 0x40
340 #define PCR 0x44
341 #define RFCR 0x48
342 #define RFDR 0x4c
344 #define SRR 0x58
346 #define VRCR 0xbc
347 #define VTCR 0xc0
348 #define VDR 0xc4
349 #define CCSR 0xcc
351 #define TBICR 0xe0
352 #define TBISR 0xe4
353 #define TANAR 0xe8
354 #define TANLPAR 0xec
355 #define TANER 0xf0
356 #define TESR 0xf4
358 #define TBICR_MR_AN_ENABLE 0x00001000
359 #define TBICR_MR_RESTART_AN 0x00000200
361 #define TBISR_MR_LINK_STATUS 0x00000020
362 #define TBISR_MR_AN_COMPLETE 0x00000004
364 #define TANAR_PS2 0x00000100
365 #define TANAR_PS1 0x00000080
366 #define TANAR_HALF_DUP 0x00000040
367 #define TANAR_FULL_DUP 0x00000020
369 #define GPIOR_GP5_OE 0x00000200
370 #define GPIOR_GP4_OE 0x00000100
371 #define GPIOR_GP3_OE 0x00000080
372 #define GPIOR_GP2_OE 0x00000040
373 #define GPIOR_GP1_OE 0x00000020
374 #define GPIOR_GP3_OUT 0x00000004
375 #define GPIOR_GP1_OUT 0x00000001
377 #define LINK_AUTONEGOTIATE 0x01
378 #define LINK_DOWN 0x02
379 #define LINK_UP 0x04
381 #define HW_ADDR_LEN sizeof(dma_addr_t)
382 #define desc_addr_set(desc, addr) \
383 do { \
384 ((desc)[0] = cpu_to_le32(addr)); \
385 if (HW_ADDR_LEN == 8) \
386 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
387 } while(0)
388 #define desc_addr_get(desc) \
389 (le32_to_cpu((desc)[0]) | \
390 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
392 #define DESC_LINK 0
393 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
394 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
395 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
397 #define CMDSTS_OWN 0x80000000
398 #define CMDSTS_MORE 0x40000000
399 #define CMDSTS_INTR 0x20000000
400 #define CMDSTS_ERR 0x10000000
401 #define CMDSTS_OK 0x08000000
402 #define CMDSTS_RUNT 0x00200000
403 #define CMDSTS_LEN_MASK 0x0000ffff
405 #define CMDSTS_DEST_MASK 0x01800000
406 #define CMDSTS_DEST_SELF 0x00800000
407 #define CMDSTS_DEST_MULTI 0x01000000
409 #define DESC_SIZE 8 /* Should be cache line sized */
411 struct rx_info {
412 spinlock_t lock;
413 int up;
414 unsigned long idle;
416 struct sk_buff *skbs[NR_RX_DESC];
418 __le32 *next_rx_desc;
419 u16 next_rx, next_empty;
421 __le32 *descs;
422 dma_addr_t phy_descs;
426 struct ns83820 {
427 struct net_device_stats stats;
428 u8 __iomem *base;
430 struct pci_dev *pci_dev;
431 struct net_device *ndev;
433 #ifdef NS83820_VLAN_ACCEL_SUPPORT
434 struct vlan_group *vlgrp;
435 #endif
437 struct rx_info rx_info;
438 struct tasklet_struct rx_tasklet;
440 unsigned ihr;
441 struct work_struct tq_refill;
443 /* protects everything below. irqsave when using. */
444 spinlock_t misc_lock;
446 u32 CFG_cache;
448 u32 MEAR_cache;
449 u32 IMR_cache;
451 unsigned linkstate;
453 spinlock_t tx_lock;
455 u16 tx_done_idx;
456 u16 tx_idx;
457 volatile u16 tx_free_idx; /* idx of free desc chain */
458 u16 tx_intr_idx;
460 atomic_t nr_tx_skbs;
461 struct sk_buff *tx_skbs[NR_TX_DESC];
463 char pad[16] __attribute__((aligned(16)));
464 __le32 *tx_descs;
465 dma_addr_t tx_phy_descs;
467 struct timer_list tx_watchdog;
470 static inline struct ns83820 *PRIV(struct net_device *dev)
472 return netdev_priv(dev);
475 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
477 static inline void kick_rx(struct net_device *ndev)
479 struct ns83820 *dev = PRIV(ndev);
480 dprintk("kick_rx: maybe kicking\n");
481 if (test_and_clear_bit(0, &dev->rx_info.idle)) {
482 dprintk("actually kicking\n");
483 writel(dev->rx_info.phy_descs +
484 (4 * DESC_SIZE * dev->rx_info.next_rx),
485 dev->base + RXDP);
486 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
487 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
488 ndev->name);
489 __kick_rx(dev);
493 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
494 #define start_tx_okay(dev) \
495 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
498 #ifdef NS83820_VLAN_ACCEL_SUPPORT
499 static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
501 struct ns83820 *dev = PRIV(ndev);
503 spin_lock_irq(&dev->misc_lock);
504 spin_lock(&dev->tx_lock);
506 dev->vlgrp = grp;
508 spin_unlock(&dev->tx_lock);
509 spin_unlock_irq(&dev->misc_lock);
511 #endif
513 /* Packet Receiver
515 * The hardware supports linked lists of receive descriptors for
516 * which ownership is transfered back and forth by means of an
517 * ownership bit. While the hardware does support the use of a
518 * ring for receive descriptors, we only make use of a chain in
519 * an attempt to reduce bus traffic under heavy load scenarios.
520 * This will also make bugs a bit more obvious. The current code
521 * only makes use of a single rx chain; I hope to implement
522 * priority based rx for version 1.0. Goal: even under overload
523 * conditions, still route realtime traffic with as low jitter as
524 * possible.
526 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
528 desc_addr_set(desc + DESC_LINK, link);
529 desc_addr_set(desc + DESC_BUFPTR, buf);
530 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
531 mb();
532 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
535 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
536 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
538 unsigned next_empty;
539 u32 cmdsts;
540 __le32 *sg;
541 dma_addr_t buf;
543 next_empty = dev->rx_info.next_empty;
545 /* don't overrun last rx marker */
546 if (unlikely(nr_rx_empty(dev) <= 2)) {
547 kfree_skb(skb);
548 return 1;
551 #if 0
552 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
553 dev->rx_info.next_empty,
554 dev->rx_info.nr_used,
555 dev->rx_info.next_rx
557 #endif
559 sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
560 BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
561 dev->rx_info.skbs[next_empty] = skb;
563 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
564 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
565 buf = pci_map_single(dev->pci_dev, skb->data,
566 REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
567 build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
568 /* update link of previous rx */
569 if (likely(next_empty != dev->rx_info.next_rx))
570 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
572 return 0;
575 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
577 struct ns83820 *dev = PRIV(ndev);
578 unsigned i;
579 unsigned long flags = 0;
581 if (unlikely(nr_rx_empty(dev) <= 2))
582 return 0;
584 dprintk("rx_refill(%p)\n", ndev);
585 if (gfp == GFP_ATOMIC)
586 spin_lock_irqsave(&dev->rx_info.lock, flags);
587 for (i=0; i<NR_RX_DESC; i++) {
588 struct sk_buff *skb;
589 long res;
591 /* extra 16 bytes for alignment */
592 skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
593 if (unlikely(!skb))
594 break;
596 skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
597 if (gfp != GFP_ATOMIC)
598 spin_lock_irqsave(&dev->rx_info.lock, flags);
599 res = ns83820_add_rx_skb(dev, skb);
600 if (gfp != GFP_ATOMIC)
601 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
602 if (res) {
603 i = 1;
604 break;
607 if (gfp == GFP_ATOMIC)
608 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
610 return i ? 0 : -ENOMEM;
613 static void rx_refill_atomic(struct net_device *ndev)
615 rx_refill(ndev, GFP_ATOMIC);
618 /* REFILL */
619 static inline void queue_refill(struct work_struct *work)
621 struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
622 struct net_device *ndev = dev->ndev;
624 rx_refill(ndev, GFP_KERNEL);
625 if (dev->rx_info.up)
626 kick_rx(ndev);
629 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
631 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
634 static void phy_intr(struct net_device *ndev)
636 struct ns83820 *dev = PRIV(ndev);
637 static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
638 u32 cfg, new_cfg;
639 u32 tbisr, tanar, tanlpar;
640 int speed, fullduplex, newlinkstate;
642 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
644 if (dev->CFG_cache & CFG_TBI_EN) {
645 /* we have an optical transceiver */
646 tbisr = readl(dev->base + TBISR);
647 tanar = readl(dev->base + TANAR);
648 tanlpar = readl(dev->base + TANLPAR);
649 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
650 tbisr, tanar, tanlpar);
652 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) &&
653 (tanar & TANAR_FULL_DUP)) ) {
655 /* both of us are full duplex */
656 writel(readl(dev->base + TXCFG)
657 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
658 dev->base + TXCFG);
659 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
660 dev->base + RXCFG);
661 /* Light up full duplex LED */
662 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
663 dev->base + GPIOR);
665 } else if (((tanlpar & TANAR_HALF_DUP) &&
666 (tanar & TANAR_HALF_DUP)) ||
667 ((tanlpar & TANAR_FULL_DUP) &&
668 (tanar & TANAR_HALF_DUP)) ||
669 ((tanlpar & TANAR_HALF_DUP) &&
670 (tanar & TANAR_FULL_DUP))) {
672 /* one or both of us are half duplex */
673 writel((readl(dev->base + TXCFG)
674 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
675 dev->base + TXCFG);
676 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
677 dev->base + RXCFG);
678 /* Turn off full duplex LED */
679 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
680 dev->base + GPIOR);
683 speed = 4; /* 1000F */
685 } else {
686 /* we have a copper transceiver */
687 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
689 if (cfg & CFG_SPDSTS1)
690 new_cfg |= CFG_MODE_1000;
691 else
692 new_cfg &= ~CFG_MODE_1000;
694 speed = ((cfg / CFG_SPDSTS0) & 3);
695 fullduplex = (cfg & CFG_DUPSTS);
697 if (fullduplex) {
698 new_cfg |= CFG_SB;
699 writel(readl(dev->base + TXCFG)
700 | TXCFG_CSI | TXCFG_HBI,
701 dev->base + TXCFG);
702 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
703 dev->base + RXCFG);
704 } else {
705 writel(readl(dev->base + TXCFG)
706 & ~(TXCFG_CSI | TXCFG_HBI),
707 dev->base + TXCFG);
708 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
709 dev->base + RXCFG);
712 if ((cfg & CFG_LNKSTS) &&
713 ((new_cfg ^ dev->CFG_cache) != 0)) {
714 writel(new_cfg, dev->base + CFG);
715 dev->CFG_cache = new_cfg;
718 dev->CFG_cache &= ~CFG_SPDSTS;
719 dev->CFG_cache |= cfg & CFG_SPDSTS;
722 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
724 if (newlinkstate & LINK_UP &&
725 dev->linkstate != newlinkstate) {
726 netif_start_queue(ndev);
727 netif_wake_queue(ndev);
728 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
729 ndev->name,
730 speeds[speed],
731 fullduplex ? "full" : "half");
732 } else if (newlinkstate & LINK_DOWN &&
733 dev->linkstate != newlinkstate) {
734 netif_stop_queue(ndev);
735 printk(KERN_INFO "%s: link now down.\n", ndev->name);
738 dev->linkstate = newlinkstate;
741 static int ns83820_setup_rx(struct net_device *ndev)
743 struct ns83820 *dev = PRIV(ndev);
744 unsigned i;
745 int ret;
747 dprintk("ns83820_setup_rx(%p)\n", ndev);
749 dev->rx_info.idle = 1;
750 dev->rx_info.next_rx = 0;
751 dev->rx_info.next_rx_desc = dev->rx_info.descs;
752 dev->rx_info.next_empty = 0;
754 for (i=0; i<NR_RX_DESC; i++)
755 clear_rx_desc(dev, i);
757 writel(0, dev->base + RXDP_HI);
758 writel(dev->rx_info.phy_descs, dev->base + RXDP);
760 ret = rx_refill(ndev, GFP_KERNEL);
761 if (!ret) {
762 dprintk("starting receiver\n");
763 /* prevent the interrupt handler from stomping on us */
764 spin_lock_irq(&dev->rx_info.lock);
766 writel(0x0001, dev->base + CCSR);
767 writel(0, dev->base + RFCR);
768 writel(0x7fc00000, dev->base + RFCR);
769 writel(0xffc00000, dev->base + RFCR);
771 dev->rx_info.up = 1;
773 phy_intr(ndev);
775 /* Okay, let it rip */
776 spin_lock_irq(&dev->misc_lock);
777 dev->IMR_cache |= ISR_PHY;
778 dev->IMR_cache |= ISR_RXRCMP;
779 //dev->IMR_cache |= ISR_RXERR;
780 //dev->IMR_cache |= ISR_RXOK;
781 dev->IMR_cache |= ISR_RXORN;
782 dev->IMR_cache |= ISR_RXSOVR;
783 dev->IMR_cache |= ISR_RXDESC;
784 dev->IMR_cache |= ISR_RXIDLE;
785 dev->IMR_cache |= ISR_TXDESC;
786 dev->IMR_cache |= ISR_TXIDLE;
788 writel(dev->IMR_cache, dev->base + IMR);
789 writel(1, dev->base + IER);
790 spin_unlock(&dev->misc_lock);
792 kick_rx(ndev);
794 spin_unlock_irq(&dev->rx_info.lock);
796 return ret;
799 static void ns83820_cleanup_rx(struct ns83820 *dev)
801 unsigned i;
802 unsigned long flags;
804 dprintk("ns83820_cleanup_rx(%p)\n", dev);
806 /* disable receive interrupts */
807 spin_lock_irqsave(&dev->misc_lock, flags);
808 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
809 writel(dev->IMR_cache, dev->base + IMR);
810 spin_unlock_irqrestore(&dev->misc_lock, flags);
812 /* synchronize with the interrupt handler and kill it */
813 dev->rx_info.up = 0;
814 synchronize_irq(dev->pci_dev->irq);
816 /* touch the pci bus... */
817 readl(dev->base + IMR);
819 /* assumes the transmitter is already disabled and reset */
820 writel(0, dev->base + RXDP_HI);
821 writel(0, dev->base + RXDP);
823 for (i=0; i<NR_RX_DESC; i++) {
824 struct sk_buff *skb = dev->rx_info.skbs[i];
825 dev->rx_info.skbs[i] = NULL;
826 clear_rx_desc(dev, i);
827 kfree_skb(skb);
831 static void ns83820_rx_kick(struct net_device *ndev)
833 struct ns83820 *dev = PRIV(ndev);
834 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
835 if (dev->rx_info.up) {
836 rx_refill_atomic(ndev);
837 kick_rx(ndev);
841 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
842 schedule_work(&dev->tq_refill);
843 else
844 kick_rx(ndev);
845 if (dev->rx_info.idle)
846 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
849 /* rx_irq
852 static void rx_irq(struct net_device *ndev)
854 struct ns83820 *dev = PRIV(ndev);
855 struct rx_info *info = &dev->rx_info;
856 unsigned next_rx;
857 int rx_rc, len;
858 u32 cmdsts;
859 __le32 *desc;
860 unsigned long flags;
861 int nr = 0;
863 dprintk("rx_irq(%p)\n", ndev);
864 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
865 readl(dev->base + RXDP),
866 (long)(dev->rx_info.phy_descs),
867 (int)dev->rx_info.next_rx,
868 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
869 (int)dev->rx_info.next_empty,
870 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
873 spin_lock_irqsave(&info->lock, flags);
874 if (!info->up)
875 goto out;
877 dprintk("walking descs\n");
878 next_rx = info->next_rx;
879 desc = info->next_rx_desc;
880 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
881 (cmdsts != CMDSTS_OWN)) {
882 struct sk_buff *skb;
883 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
884 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
886 dprintk("cmdsts: %08x\n", cmdsts);
887 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
888 dprintk("extsts: %08x\n", extsts);
890 skb = info->skbs[next_rx];
891 info->skbs[next_rx] = NULL;
892 info->next_rx = (next_rx + 1) % NR_RX_DESC;
894 mb();
895 clear_rx_desc(dev, next_rx);
897 pci_unmap_single(dev->pci_dev, bufptr,
898 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
899 len = cmdsts & CMDSTS_LEN_MASK;
900 #ifdef NS83820_VLAN_ACCEL_SUPPORT
901 /* NH: As was mentioned below, this chip is kinda
902 * brain dead about vlan tag stripping. Frames
903 * that are 64 bytes with a vlan header appended
904 * like arp frames, or pings, are flagged as Runts
905 * when the tag is stripped and hardware. This
906 * also means that the OK bit in the descriptor
907 * is cleared when the frame comes in so we have
908 * to do a specific length check here to make sure
909 * the frame would have been ok, had we not stripped
910 * the tag.
912 if (likely((CMDSTS_OK & cmdsts) ||
913 ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
914 #else
915 if (likely(CMDSTS_OK & cmdsts)) {
916 #endif
917 skb_put(skb, len);
918 if (unlikely(!skb))
919 goto netdev_mangle_me_harder_failed;
920 if (cmdsts & CMDSTS_DEST_MULTI)
921 dev->stats.multicast ++;
922 dev->stats.rx_packets ++;
923 dev->stats.rx_bytes += len;
924 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
925 skb->ip_summed = CHECKSUM_UNNECESSARY;
926 } else {
927 skb->ip_summed = CHECKSUM_NONE;
929 skb->protocol = eth_type_trans(skb, ndev);
930 #ifdef NS83820_VLAN_ACCEL_SUPPORT
931 if(extsts & EXTSTS_VPKT) {
932 unsigned short tag;
933 tag = ntohs(extsts & EXTSTS_VTG_MASK);
934 rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
935 } else {
936 rx_rc = netif_rx(skb);
938 #else
939 rx_rc = netif_rx(skb);
940 #endif
941 if (NET_RX_DROP == rx_rc) {
942 netdev_mangle_me_harder_failed:
943 dev->stats.rx_dropped ++;
945 } else {
946 kfree_skb(skb);
949 nr++;
950 next_rx = info->next_rx;
951 desc = info->descs + (DESC_SIZE * next_rx);
953 info->next_rx = next_rx;
954 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
956 out:
957 if (0 && !nr) {
958 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
961 spin_unlock_irqrestore(&info->lock, flags);
964 static void rx_action(unsigned long _dev)
966 struct net_device *ndev = (void *)_dev;
967 struct ns83820 *dev = PRIV(ndev);
968 rx_irq(ndev);
969 writel(ihr, dev->base + IHR);
971 spin_lock_irq(&dev->misc_lock);
972 dev->IMR_cache |= ISR_RXDESC;
973 writel(dev->IMR_cache, dev->base + IMR);
974 spin_unlock_irq(&dev->misc_lock);
976 rx_irq(ndev);
977 ns83820_rx_kick(ndev);
980 /* Packet Transmit code
982 static inline void kick_tx(struct ns83820 *dev)
984 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
985 dev, dev->tx_idx, dev->tx_free_idx);
986 writel(CR_TXE, dev->base + CR);
989 /* No spinlock needed on the transmit irq path as the interrupt handler is
990 * serialized.
992 static void do_tx_done(struct net_device *ndev)
994 struct ns83820 *dev = PRIV(ndev);
995 u32 cmdsts, tx_done_idx;
996 __le32 *desc;
998 dprintk("do_tx_done(%p)\n", ndev);
999 tx_done_idx = dev->tx_done_idx;
1000 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1002 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1003 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1004 while ((tx_done_idx != dev->tx_free_idx) &&
1005 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1006 struct sk_buff *skb;
1007 unsigned len;
1008 dma_addr_t addr;
1010 if (cmdsts & CMDSTS_ERR)
1011 dev->stats.tx_errors ++;
1012 if (cmdsts & CMDSTS_OK)
1013 dev->stats.tx_packets ++;
1014 if (cmdsts & CMDSTS_OK)
1015 dev->stats.tx_bytes += cmdsts & 0xffff;
1017 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1018 tx_done_idx, dev->tx_free_idx, cmdsts);
1019 skb = dev->tx_skbs[tx_done_idx];
1020 dev->tx_skbs[tx_done_idx] = NULL;
1021 dprintk("done(%p)\n", skb);
1023 len = cmdsts & CMDSTS_LEN_MASK;
1024 addr = desc_addr_get(desc + DESC_BUFPTR);
1025 if (skb) {
1026 pci_unmap_single(dev->pci_dev,
1027 addr,
1028 len,
1029 PCI_DMA_TODEVICE);
1030 dev_kfree_skb_irq(skb);
1031 atomic_dec(&dev->nr_tx_skbs);
1032 } else
1033 pci_unmap_page(dev->pci_dev,
1034 addr,
1035 len,
1036 PCI_DMA_TODEVICE);
1038 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1039 dev->tx_done_idx = tx_done_idx;
1040 desc[DESC_CMDSTS] = cpu_to_le32(0);
1041 mb();
1042 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1045 /* Allow network stack to resume queueing packets after we've
1046 * finished transmitting at least 1/4 of the packets in the queue.
1048 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1049 dprintk("start_queue(%p)\n", ndev);
1050 netif_start_queue(ndev);
1051 netif_wake_queue(ndev);
1055 static void ns83820_cleanup_tx(struct ns83820 *dev)
1057 unsigned i;
1059 for (i=0; i<NR_TX_DESC; i++) {
1060 struct sk_buff *skb = dev->tx_skbs[i];
1061 dev->tx_skbs[i] = NULL;
1062 if (skb) {
1063 __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1064 pci_unmap_single(dev->pci_dev,
1065 desc_addr_get(desc + DESC_BUFPTR),
1066 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1067 PCI_DMA_TODEVICE);
1068 dev_kfree_skb_irq(skb);
1069 atomic_dec(&dev->nr_tx_skbs);
1073 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1076 /* transmit routine. This code relies on the network layer serializing
1077 * its calls in, but will run happily in parallel with the interrupt
1078 * handler. This code currently has provisions for fragmenting tx buffers
1079 * while trying to track down a bug in either the zero copy code or
1080 * the tx fifo (hence the MAX_FRAG_LEN).
1082 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1083 struct net_device *ndev)
1085 struct ns83820 *dev = PRIV(ndev);
1086 u32 free_idx, cmdsts, extsts;
1087 int nr_free, nr_frags;
1088 unsigned tx_done_idx, last_idx;
1089 dma_addr_t buf;
1090 unsigned len;
1091 skb_frag_t *frag;
1092 int stopped = 0;
1093 int do_intr = 0;
1094 volatile __le32 *first_desc;
1096 dprintk("ns83820_hard_start_xmit\n");
1098 nr_frags = skb_shinfo(skb)->nr_frags;
1099 again:
1100 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1101 netif_stop_queue(ndev);
1102 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1103 return NETDEV_TX_BUSY;
1104 netif_start_queue(ndev);
1107 last_idx = free_idx = dev->tx_free_idx;
1108 tx_done_idx = dev->tx_done_idx;
1109 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1110 nr_free -= 1;
1111 if (nr_free <= nr_frags) {
1112 dprintk("stop_queue - not enough(%p)\n", ndev);
1113 netif_stop_queue(ndev);
1115 /* Check again: we may have raced with a tx done irq */
1116 if (dev->tx_done_idx != tx_done_idx) {
1117 dprintk("restart queue(%p)\n", ndev);
1118 netif_start_queue(ndev);
1119 goto again;
1121 return NETDEV_TX_BUSY;
1124 if (free_idx == dev->tx_intr_idx) {
1125 do_intr = 1;
1126 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1129 nr_free -= nr_frags;
1130 if (nr_free < MIN_TX_DESC_FREE) {
1131 dprintk("stop_queue - last entry(%p)\n", ndev);
1132 netif_stop_queue(ndev);
1133 stopped = 1;
1136 frag = skb_shinfo(skb)->frags;
1137 if (!nr_frags)
1138 frag = NULL;
1139 extsts = 0;
1140 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1141 extsts |= EXTSTS_IPPKT;
1142 if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1143 extsts |= EXTSTS_TCPPKT;
1144 else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1145 extsts |= EXTSTS_UDPPKT;
1148 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1149 if(vlan_tx_tag_present(skb)) {
1150 /* fetch the vlan tag info out of the
1151 * ancilliary data if the vlan code
1152 * is using hw vlan acceleration
1154 short tag = vlan_tx_tag_get(skb);
1155 extsts |= (EXTSTS_VPKT | htons(tag));
1157 #endif
1159 len = skb->len;
1160 if (nr_frags)
1161 len -= skb->data_len;
1162 buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1164 first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1166 for (;;) {
1167 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1169 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1170 (unsigned long long)buf);
1171 last_idx = free_idx;
1172 free_idx = (free_idx + 1) % NR_TX_DESC;
1173 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1174 desc_addr_set(desc + DESC_BUFPTR, buf);
1175 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1177 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1178 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1179 cmdsts |= len;
1180 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1182 if (!nr_frags)
1183 break;
1185 buf = pci_map_page(dev->pci_dev, frag->page,
1186 frag->page_offset,
1187 frag->size, PCI_DMA_TODEVICE);
1188 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1189 (long long)buf, (long) page_to_pfn(frag->page),
1190 frag->page_offset);
1191 len = frag->size;
1192 frag++;
1193 nr_frags--;
1195 dprintk("done pkt\n");
1197 spin_lock_irq(&dev->tx_lock);
1198 dev->tx_skbs[last_idx] = skb;
1199 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1200 dev->tx_free_idx = free_idx;
1201 atomic_inc(&dev->nr_tx_skbs);
1202 spin_unlock_irq(&dev->tx_lock);
1204 kick_tx(dev);
1206 /* Check again: we may have raced with a tx done irq */
1207 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1208 netif_start_queue(ndev);
1210 return NETDEV_TX_OK;
1213 static void ns83820_update_stats(struct ns83820 *dev)
1215 u8 __iomem *base = dev->base;
1217 /* the DP83820 will freeze counters, so we need to read all of them */
1218 dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
1219 dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
1220 dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
1221 dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
1222 /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1223 dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
1224 dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
1225 /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1226 /*dev->stats.rx_pause_count += */ readl(base + 0x80);
1227 /*dev->stats.tx_pause_count += */ readl(base + 0x84);
1228 dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
1231 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1233 struct ns83820 *dev = PRIV(ndev);
1235 /* somewhat overkill */
1236 spin_lock_irq(&dev->misc_lock);
1237 ns83820_update_stats(dev);
1238 spin_unlock_irq(&dev->misc_lock);
1240 return &dev->stats;
1243 /* Let ethtool retrieve info */
1244 static int ns83820_get_settings(struct net_device *ndev,
1245 struct ethtool_cmd *cmd)
1247 struct ns83820 *dev = PRIV(ndev);
1248 u32 cfg, tanar, tbicr;
1249 int have_optical = 0;
1250 int fullduplex = 0;
1253 * Here's the list of available ethtool commands from other drivers:
1254 * cmd->advertising =
1255 * cmd->speed =
1256 * cmd->duplex =
1257 * cmd->port = 0;
1258 * cmd->phy_address =
1259 * cmd->transceiver = 0;
1260 * cmd->autoneg =
1261 * cmd->maxtxpkt = 0;
1262 * cmd->maxrxpkt = 0;
1265 /* read current configuration */
1266 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1267 tanar = readl(dev->base + TANAR);
1268 tbicr = readl(dev->base + TBICR);
1270 if (dev->CFG_cache & CFG_TBI_EN) {
1271 /* we have an optical interface */
1272 have_optical = 1;
1273 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1275 } else {
1276 /* We have copper */
1277 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1280 cmd->supported = SUPPORTED_Autoneg;
1282 /* we have optical interface */
1283 if (dev->CFG_cache & CFG_TBI_EN) {
1284 cmd->supported |= SUPPORTED_1000baseT_Half |
1285 SUPPORTED_1000baseT_Full |
1286 SUPPORTED_FIBRE;
1287 cmd->port = PORT_FIBRE;
1288 } /* TODO: else copper related support */
1290 cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1291 switch (cfg / CFG_SPDSTS0 & 3) {
1292 case 2:
1293 cmd->speed = SPEED_1000;
1294 break;
1295 case 1:
1296 cmd->speed = SPEED_100;
1297 break;
1298 default:
1299 cmd->speed = SPEED_10;
1300 break;
1302 cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) ? 1: 0;
1303 return 0;
1306 /* Let ethool change settings*/
1307 static int ns83820_set_settings(struct net_device *ndev,
1308 struct ethtool_cmd *cmd)
1310 struct ns83820 *dev = PRIV(ndev);
1311 u32 cfg, tanar;
1312 int have_optical = 0;
1313 int fullduplex = 0;
1315 /* read current configuration */
1316 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1317 tanar = readl(dev->base + TANAR);
1319 if (dev->CFG_cache & CFG_TBI_EN) {
1320 /* we have optical */
1321 have_optical = 1;
1322 fullduplex = (tanar & TANAR_FULL_DUP);
1324 } else {
1325 /* we have copper */
1326 fullduplex = cfg & CFG_DUPSTS;
1329 spin_lock_irq(&dev->misc_lock);
1330 spin_lock(&dev->tx_lock);
1332 /* Set duplex */
1333 if (cmd->duplex != fullduplex) {
1334 if (have_optical) {
1335 /*set full duplex*/
1336 if (cmd->duplex == DUPLEX_FULL) {
1337 /* force full duplex */
1338 writel(readl(dev->base + TXCFG)
1339 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1340 dev->base + TXCFG);
1341 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1342 dev->base + RXCFG);
1343 /* Light up full duplex LED */
1344 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1345 dev->base + GPIOR);
1346 } else {
1347 /*TODO: set half duplex */
1350 } else {
1351 /*we have copper*/
1352 /* TODO: Set duplex for copper cards */
1354 printk(KERN_INFO "%s: Duplex set via ethtool\n",
1355 ndev->name);
1358 /* Set autonegotiation */
1359 if (1) {
1360 if (cmd->autoneg == AUTONEG_ENABLE) {
1361 /* restart auto negotiation */
1362 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1363 dev->base + TBICR);
1364 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1365 dev->linkstate = LINK_AUTONEGOTIATE;
1367 printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1368 ndev->name);
1369 } else {
1370 /* disable auto negotiation */
1371 writel(0x00000000, dev->base + TBICR);
1374 printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1375 cmd->autoneg ? "ENABLED" : "DISABLED");
1378 phy_intr(ndev);
1379 spin_unlock(&dev->tx_lock);
1380 spin_unlock_irq(&dev->misc_lock);
1382 return 0;
1384 /* end ethtool get/set support -df */
1386 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1388 struct ns83820 *dev = PRIV(ndev);
1389 strcpy(info->driver, "ns83820");
1390 strcpy(info->version, VERSION);
1391 strcpy(info->bus_info, pci_name(dev->pci_dev));
1394 static u32 ns83820_get_link(struct net_device *ndev)
1396 struct ns83820 *dev = PRIV(ndev);
1397 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1398 return cfg & CFG_LNKSTS ? 1 : 0;
1401 static const struct ethtool_ops ops = {
1402 .get_settings = ns83820_get_settings,
1403 .set_settings = ns83820_set_settings,
1404 .get_drvinfo = ns83820_get_drvinfo,
1405 .get_link = ns83820_get_link
1408 /* this function is called in irq context from the ISR */
1409 static void ns83820_mib_isr(struct ns83820 *dev)
1411 unsigned long flags;
1412 spin_lock_irqsave(&dev->misc_lock, flags);
1413 ns83820_update_stats(dev);
1414 spin_unlock_irqrestore(&dev->misc_lock, flags);
1417 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1418 static irqreturn_t ns83820_irq(int foo, void *data)
1420 struct net_device *ndev = data;
1421 struct ns83820 *dev = PRIV(ndev);
1422 u32 isr;
1423 dprintk("ns83820_irq(%p)\n", ndev);
1425 dev->ihr = 0;
1427 isr = readl(dev->base + ISR);
1428 dprintk("irq: %08x\n", isr);
1429 ns83820_do_isr(ndev, isr);
1430 return IRQ_HANDLED;
1433 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1435 struct ns83820 *dev = PRIV(ndev);
1436 unsigned long flags;
1438 #ifdef DEBUG
1439 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1440 Dprintk("odd isr? 0x%08x\n", isr);
1441 #endif
1443 if (ISR_RXIDLE & isr) {
1444 dev->rx_info.idle = 1;
1445 Dprintk("oh dear, we are idle\n");
1446 ns83820_rx_kick(ndev);
1449 if ((ISR_RXDESC | ISR_RXOK) & isr) {
1450 prefetch(dev->rx_info.next_rx_desc);
1452 spin_lock_irqsave(&dev->misc_lock, flags);
1453 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1454 writel(dev->IMR_cache, dev->base + IMR);
1455 spin_unlock_irqrestore(&dev->misc_lock, flags);
1457 tasklet_schedule(&dev->rx_tasklet);
1458 //rx_irq(ndev);
1459 //writel(4, dev->base + IHR);
1462 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1463 ns83820_rx_kick(ndev);
1465 if (unlikely(ISR_RXSOVR & isr)) {
1466 //printk("overrun: rxsovr\n");
1467 dev->stats.rx_fifo_errors ++;
1470 if (unlikely(ISR_RXORN & isr)) {
1471 //printk("overrun: rxorn\n");
1472 dev->stats.rx_fifo_errors ++;
1475 if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1476 writel(CR_RXE, dev->base + CR);
1478 if (ISR_TXIDLE & isr) {
1479 u32 txdp;
1480 txdp = readl(dev->base + TXDP);
1481 dprintk("txdp: %08x\n", txdp);
1482 txdp -= dev->tx_phy_descs;
1483 dev->tx_idx = txdp / (DESC_SIZE * 4);
1484 if (dev->tx_idx >= NR_TX_DESC) {
1485 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1486 dev->tx_idx = 0;
1488 /* The may have been a race between a pci originated read
1489 * and the descriptor update from the cpu. Just in case,
1490 * kick the transmitter if the hardware thinks it is on a
1491 * different descriptor than we are.
1493 if (dev->tx_idx != dev->tx_free_idx)
1494 kick_tx(dev);
1497 /* Defer tx ring processing until more than a minimum amount of
1498 * work has accumulated
1500 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1501 spin_lock_irqsave(&dev->tx_lock, flags);
1502 do_tx_done(ndev);
1503 spin_unlock_irqrestore(&dev->tx_lock, flags);
1505 /* Disable TxOk if there are no outstanding tx packets.
1507 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1508 (dev->IMR_cache & ISR_TXOK)) {
1509 spin_lock_irqsave(&dev->misc_lock, flags);
1510 dev->IMR_cache &= ~ISR_TXOK;
1511 writel(dev->IMR_cache, dev->base + IMR);
1512 spin_unlock_irqrestore(&dev->misc_lock, flags);
1516 /* The TxIdle interrupt can come in before the transmit has
1517 * completed. Normally we reap packets off of the combination
1518 * of TxDesc and TxIdle and leave TxOk disabled (since it
1519 * occurs on every packet), but when no further irqs of this
1520 * nature are expected, we must enable TxOk.
1522 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1523 spin_lock_irqsave(&dev->misc_lock, flags);
1524 dev->IMR_cache |= ISR_TXOK;
1525 writel(dev->IMR_cache, dev->base + IMR);
1526 spin_unlock_irqrestore(&dev->misc_lock, flags);
1529 /* MIB interrupt: one of the statistics counters is about to overflow */
1530 if (unlikely(ISR_MIB & isr))
1531 ns83820_mib_isr(dev);
1533 /* PHY: Link up/down/negotiation state change */
1534 if (unlikely(ISR_PHY & isr))
1535 phy_intr(ndev);
1537 #if 0 /* Still working on the interrupt mitigation strategy */
1538 if (dev->ihr)
1539 writel(dev->ihr, dev->base + IHR);
1540 #endif
1543 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1545 Dprintk("resetting chip...\n");
1546 writel(which, dev->base + CR);
1547 do {
1548 schedule();
1549 } while (readl(dev->base + CR) & which);
1550 Dprintk("okay!\n");
1553 static int ns83820_stop(struct net_device *ndev)
1555 struct ns83820 *dev = PRIV(ndev);
1557 /* FIXME: protect against interrupt handler? */
1558 del_timer_sync(&dev->tx_watchdog);
1560 /* disable interrupts */
1561 writel(0, dev->base + IMR);
1562 writel(0, dev->base + IER);
1563 readl(dev->base + IER);
1565 dev->rx_info.up = 0;
1566 synchronize_irq(dev->pci_dev->irq);
1568 ns83820_do_reset(dev, CR_RST);
1570 synchronize_irq(dev->pci_dev->irq);
1572 spin_lock_irq(&dev->misc_lock);
1573 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1574 spin_unlock_irq(&dev->misc_lock);
1576 ns83820_cleanup_rx(dev);
1577 ns83820_cleanup_tx(dev);
1579 return 0;
1582 static void ns83820_tx_timeout(struct net_device *ndev)
1584 struct ns83820 *dev = PRIV(ndev);
1585 u32 tx_done_idx;
1586 __le32 *desc;
1587 unsigned long flags;
1589 spin_lock_irqsave(&dev->tx_lock, flags);
1591 tx_done_idx = dev->tx_done_idx;
1592 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1594 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1595 ndev->name,
1596 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1598 #if defined(DEBUG)
1600 u32 isr;
1601 isr = readl(dev->base + ISR);
1602 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1603 ns83820_do_isr(ndev, isr);
1605 #endif
1607 do_tx_done(ndev);
1609 tx_done_idx = dev->tx_done_idx;
1610 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1612 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1613 ndev->name,
1614 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1616 spin_unlock_irqrestore(&dev->tx_lock, flags);
1619 static void ns83820_tx_watch(unsigned long data)
1621 struct net_device *ndev = (void *)data;
1622 struct ns83820 *dev = PRIV(ndev);
1624 #if defined(DEBUG)
1625 printk("ns83820_tx_watch: %u %u %d\n",
1626 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1628 #endif
1630 if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1631 dev->tx_done_idx != dev->tx_free_idx) {
1632 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1633 ndev->name,
1634 dev->tx_done_idx, dev->tx_free_idx,
1635 atomic_read(&dev->nr_tx_skbs));
1636 ns83820_tx_timeout(ndev);
1639 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1642 static int ns83820_open(struct net_device *ndev)
1644 struct ns83820 *dev = PRIV(ndev);
1645 unsigned i;
1646 u32 desc;
1647 int ret;
1649 dprintk("ns83820_open\n");
1651 writel(0, dev->base + PQCR);
1653 ret = ns83820_setup_rx(ndev);
1654 if (ret)
1655 goto failed;
1657 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1658 for (i=0; i<NR_TX_DESC; i++) {
1659 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1660 = cpu_to_le32(
1661 dev->tx_phy_descs
1662 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1665 dev->tx_idx = 0;
1666 dev->tx_done_idx = 0;
1667 desc = dev->tx_phy_descs;
1668 writel(0, dev->base + TXDP_HI);
1669 writel(desc, dev->base + TXDP);
1671 init_timer(&dev->tx_watchdog);
1672 dev->tx_watchdog.data = (unsigned long)ndev;
1673 dev->tx_watchdog.function = ns83820_tx_watch;
1674 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1676 netif_start_queue(ndev); /* FIXME: wait for phy to come up */
1678 return 0;
1680 failed:
1681 ns83820_stop(ndev);
1682 return ret;
1685 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1687 unsigned i;
1688 for (i=0; i<3; i++) {
1689 u32 data;
1691 /* Read from the perfect match memory: this is loaded by
1692 * the chip from the EEPROM via the EELOAD self test.
1694 writel(i*2, dev->base + RFCR);
1695 data = readl(dev->base + RFDR);
1697 *mac++ = data;
1698 *mac++ = data >> 8;
1702 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1704 if (new_mtu > RX_BUF_SIZE)
1705 return -EINVAL;
1706 ndev->mtu = new_mtu;
1707 return 0;
1710 static void ns83820_set_multicast(struct net_device *ndev)
1712 struct ns83820 *dev = PRIV(ndev);
1713 u8 __iomem *rfcr = dev->base + RFCR;
1714 u32 and_mask = 0xffffffff;
1715 u32 or_mask = 0;
1716 u32 val;
1718 if (ndev->flags & IFF_PROMISC)
1719 or_mask |= RFCR_AAU | RFCR_AAM;
1720 else
1721 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1723 if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev))
1724 or_mask |= RFCR_AAM;
1725 else
1726 and_mask &= ~RFCR_AAM;
1728 spin_lock_irq(&dev->misc_lock);
1729 val = (readl(rfcr) & and_mask) | or_mask;
1730 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1731 writel(val & ~RFCR_RFEN, rfcr);
1732 writel(val, rfcr);
1733 spin_unlock_irq(&dev->misc_lock);
1736 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1738 struct ns83820 *dev = PRIV(ndev);
1739 int timed_out = 0;
1740 unsigned long start;
1741 u32 status;
1742 int loops = 0;
1744 dprintk("%s: start %s\n", ndev->name, name);
1746 start = jiffies;
1748 writel(enable, dev->base + PTSCR);
1749 for (;;) {
1750 loops++;
1751 status = readl(dev->base + PTSCR);
1752 if (!(status & enable))
1753 break;
1754 if (status & done)
1755 break;
1756 if (status & fail)
1757 break;
1758 if (time_after_eq(jiffies, start + HZ)) {
1759 timed_out = 1;
1760 break;
1762 schedule_timeout_uninterruptible(1);
1765 if (status & fail)
1766 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1767 ndev->name, name, status, fail);
1768 else if (timed_out)
1769 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1770 ndev->name, name, status);
1772 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1775 #ifdef PHY_CODE_IS_FINISHED
1776 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1778 /* drive MDC low */
1779 dev->MEAR_cache &= ~MEAR_MDC;
1780 writel(dev->MEAR_cache, dev->base + MEAR);
1781 readl(dev->base + MEAR);
1783 /* enable output, set bit */
1784 dev->MEAR_cache |= MEAR_MDDIR;
1785 if (bit)
1786 dev->MEAR_cache |= MEAR_MDIO;
1787 else
1788 dev->MEAR_cache &= ~MEAR_MDIO;
1790 /* set the output bit */
1791 writel(dev->MEAR_cache, dev->base + MEAR);
1792 readl(dev->base + MEAR);
1794 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1795 udelay(1);
1797 /* drive MDC high causing the data bit to be latched */
1798 dev->MEAR_cache |= MEAR_MDC;
1799 writel(dev->MEAR_cache, dev->base + MEAR);
1800 readl(dev->base + MEAR);
1802 /* Wait again... */
1803 udelay(1);
1806 static int ns83820_mii_read_bit(struct ns83820 *dev)
1808 int bit;
1810 /* drive MDC low, disable output */
1811 dev->MEAR_cache &= ~MEAR_MDC;
1812 dev->MEAR_cache &= ~MEAR_MDDIR;
1813 writel(dev->MEAR_cache, dev->base + MEAR);
1814 readl(dev->base + MEAR);
1816 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1817 udelay(1);
1819 /* drive MDC high causing the data bit to be latched */
1820 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1821 dev->MEAR_cache |= MEAR_MDC;
1822 writel(dev->MEAR_cache, dev->base + MEAR);
1824 /* Wait again... */
1825 udelay(1);
1827 return bit;
1830 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1832 unsigned data = 0;
1833 int i;
1835 /* read some garbage so that we eventually sync up */
1836 for (i=0; i<64; i++)
1837 ns83820_mii_read_bit(dev);
1839 ns83820_mii_write_bit(dev, 0); /* start */
1840 ns83820_mii_write_bit(dev, 1);
1841 ns83820_mii_write_bit(dev, 1); /* opcode read */
1842 ns83820_mii_write_bit(dev, 0);
1844 /* write out the phy address: 5 bits, msb first */
1845 for (i=0; i<5; i++)
1846 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1848 /* write out the register address, 5 bits, msb first */
1849 for (i=0; i<5; i++)
1850 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1852 ns83820_mii_read_bit(dev); /* turn around cycles */
1853 ns83820_mii_read_bit(dev);
1855 /* read in the register data, 16 bits msb first */
1856 for (i=0; i<16; i++) {
1857 data <<= 1;
1858 data |= ns83820_mii_read_bit(dev);
1861 return data;
1864 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1866 int i;
1868 /* read some garbage so that we eventually sync up */
1869 for (i=0; i<64; i++)
1870 ns83820_mii_read_bit(dev);
1872 ns83820_mii_write_bit(dev, 0); /* start */
1873 ns83820_mii_write_bit(dev, 1);
1874 ns83820_mii_write_bit(dev, 0); /* opcode read */
1875 ns83820_mii_write_bit(dev, 1);
1877 /* write out the phy address: 5 bits, msb first */
1878 for (i=0; i<5; i++)
1879 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1881 /* write out the register address, 5 bits, msb first */
1882 for (i=0; i<5; i++)
1883 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1885 ns83820_mii_read_bit(dev); /* turn around cycles */
1886 ns83820_mii_read_bit(dev);
1888 /* read in the register data, 16 bits msb first */
1889 for (i=0; i<16; i++)
1890 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1892 return data;
1895 static void ns83820_probe_phy(struct net_device *ndev)
1897 struct ns83820 *dev = PRIV(ndev);
1898 static int first;
1899 int i;
1900 #define MII_PHYIDR1 0x02
1901 #define MII_PHYIDR2 0x03
1903 #if 0
1904 if (!first) {
1905 unsigned tmp;
1906 ns83820_mii_read_reg(dev, 1, 0x09);
1907 ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1909 tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1910 ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1911 udelay(1300);
1912 ns83820_mii_read_reg(dev, 1, 0x09);
1914 #endif
1915 first = 1;
1917 for (i=1; i<2; i++) {
1918 int j;
1919 unsigned a, b;
1920 a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1921 b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1923 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1924 // ndev->name, i, a, b);
1926 for (j=0; j<0x16; j+=4) {
1927 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1928 ndev->name, j,
1929 ns83820_mii_read_reg(dev, i, 0 + j),
1930 ns83820_mii_read_reg(dev, i, 1 + j),
1931 ns83820_mii_read_reg(dev, i, 2 + j),
1932 ns83820_mii_read_reg(dev, i, 3 + j)
1937 unsigned a, b;
1938 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1939 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1940 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1941 a = ns83820_mii_read_reg(dev, 1, 0x1d);
1943 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1944 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1945 b = ns83820_mii_read_reg(dev, 1, 0x1d);
1946 dprintk("version: 0x%04x 0x%04x\n", a, b);
1949 #endif
1951 static const struct net_device_ops netdev_ops = {
1952 .ndo_open = ns83820_open,
1953 .ndo_stop = ns83820_stop,
1954 .ndo_start_xmit = ns83820_hard_start_xmit,
1955 .ndo_get_stats = ns83820_get_stats,
1956 .ndo_change_mtu = ns83820_change_mtu,
1957 .ndo_set_multicast_list = ns83820_set_multicast,
1958 .ndo_validate_addr = eth_validate_addr,
1959 .ndo_set_mac_address = eth_mac_addr,
1960 .ndo_tx_timeout = ns83820_tx_timeout,
1961 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1962 .ndo_vlan_rx_register = ns83820_vlan_rx_register,
1963 #endif
1966 static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1967 const struct pci_device_id *id)
1969 struct net_device *ndev;
1970 struct ns83820 *dev;
1971 long addr;
1972 int err;
1973 int using_dac = 0;
1975 /* See if we can set the dma mask early on; failure is fatal. */
1976 if (sizeof(dma_addr_t) == 8 &&
1977 !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1978 using_dac = 1;
1979 } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1980 using_dac = 0;
1981 } else {
1982 dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1983 return -ENODEV;
1986 ndev = alloc_etherdev(sizeof(struct ns83820));
1987 dev = PRIV(ndev);
1989 err = -ENOMEM;
1990 if (!dev)
1991 goto out;
1993 dev->ndev = ndev;
1995 spin_lock_init(&dev->rx_info.lock);
1996 spin_lock_init(&dev->tx_lock);
1997 spin_lock_init(&dev->misc_lock);
1998 dev->pci_dev = pci_dev;
2000 SET_NETDEV_DEV(ndev, &pci_dev->dev);
2002 INIT_WORK(&dev->tq_refill, queue_refill);
2003 tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
2005 err = pci_enable_device(pci_dev);
2006 if (err) {
2007 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
2008 goto out_free;
2011 pci_set_master(pci_dev);
2012 addr = pci_resource_start(pci_dev, 1);
2013 dev->base = ioremap_nocache(addr, PAGE_SIZE);
2014 dev->tx_descs = pci_alloc_consistent(pci_dev,
2015 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
2016 dev->rx_info.descs = pci_alloc_consistent(pci_dev,
2017 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
2018 err = -ENOMEM;
2019 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
2020 goto out_disable;
2022 dprintk("%p: %08lx %p: %08lx\n",
2023 dev->tx_descs, (long)dev->tx_phy_descs,
2024 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2026 /* disable interrupts */
2027 writel(0, dev->base + IMR);
2028 writel(0, dev->base + IER);
2029 readl(dev->base + IER);
2031 dev->IMR_cache = 0;
2033 err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2034 DRV_NAME, ndev);
2035 if (err) {
2036 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2037 pci_dev->irq, err);
2038 goto out_disable;
2042 * FIXME: we are holding rtnl_lock() over obscenely long area only
2043 * because some of the setup code uses dev->name. It's Wrong(tm) -
2044 * we should be using driver-specific names for all that stuff.
2045 * For now that will do, but we really need to come back and kill
2046 * most of the dev_alloc_name() users later.
2048 rtnl_lock();
2049 err = dev_alloc_name(ndev, ndev->name);
2050 if (err < 0) {
2051 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2052 goto out_free_irq;
2055 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2056 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2057 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2059 ndev->netdev_ops = &netdev_ops;
2060 SET_ETHTOOL_OPS(ndev, &ops);
2061 ndev->watchdog_timeo = 5 * HZ;
2062 pci_set_drvdata(pci_dev, ndev);
2064 ns83820_do_reset(dev, CR_RST);
2066 /* Must reset the ram bist before running it */
2067 writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2068 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
2069 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2070 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2071 PTSCR_EEBIST_FAIL);
2072 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2074 /* I love config registers */
2075 dev->CFG_cache = readl(dev->base + CFG);
2077 if ((dev->CFG_cache & CFG_PCI64_DET)) {
2078 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2079 ndev->name);
2080 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2081 if (!(dev->CFG_cache & CFG_DATA64_EN))
2082 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2083 ndev->name);
2084 } else
2085 dev->CFG_cache &= ~(CFG_DATA64_EN);
2087 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
2088 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2089 CFG_M64ADDR);
2090 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2091 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
2092 dev->CFG_cache |= CFG_REQALG;
2093 dev->CFG_cache |= CFG_POW;
2094 dev->CFG_cache |= CFG_TMRTEST;
2096 /* When compiled with 64 bit addressing, we must always enable
2097 * the 64 bit descriptor format.
2099 if (sizeof(dma_addr_t) == 8)
2100 dev->CFG_cache |= CFG_M64ADDR;
2101 if (using_dac)
2102 dev->CFG_cache |= CFG_T64ADDR;
2104 /* Big endian mode does not seem to do what the docs suggest */
2105 dev->CFG_cache &= ~CFG_BEM;
2107 /* setup optical transceiver if we have one */
2108 if (dev->CFG_cache & CFG_TBI_EN) {
2109 printk(KERN_INFO "%s: enabling optical transceiver\n",
2110 ndev->name);
2111 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2113 /* setup auto negotiation feature advertisement */
2114 writel(readl(dev->base + TANAR)
2115 | TANAR_HALF_DUP | TANAR_FULL_DUP,
2116 dev->base + TANAR);
2118 /* start auto negotiation */
2119 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2120 dev->base + TBICR);
2121 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2122 dev->linkstate = LINK_AUTONEGOTIATE;
2124 dev->CFG_cache |= CFG_MODE_1000;
2127 writel(dev->CFG_cache, dev->base + CFG);
2128 dprintk("CFG: %08x\n", dev->CFG_cache);
2130 if (reset_phy) {
2131 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2132 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2133 msleep(10);
2134 writel(dev->CFG_cache, dev->base + CFG);
2137 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2138 * the PCI layer. FIXME.
2140 if (readl(dev->base + SRR))
2141 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2142 #endif
2144 /* Note! The DMA burst size interacts with packet
2145 * transmission, such that the largest packet that
2146 * can be transmitted is 8192 - FLTH - burst size.
2147 * If only the transmit fifo was larger...
2149 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2150 * some DELL and COMPAQ SMP systems */
2151 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2152 | ((1600 / 32) * 0x100),
2153 dev->base + TXCFG);
2155 /* Flush the interrupt holdoff timer */
2156 writel(0x000, dev->base + IHR);
2157 writel(0x100, dev->base + IHR);
2158 writel(0x000, dev->base + IHR);
2160 /* Set Rx to full duplex, don't accept runt, errored, long or length
2161 * range errored packets. Use 512 byte DMA.
2163 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2164 * some DELL and COMPAQ SMP systems
2165 * Turn on ALP, only we are accpeting Jumbo Packets */
2166 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2167 | RXCFG_STRIPCRC
2168 //| RXCFG_ALP
2169 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2171 /* Disable priority queueing */
2172 writel(0, dev->base + PQCR);
2174 /* Enable IP checksum validation and detetion of VLAN headers.
2175 * Note: do not set the reject options as at least the 0x102
2176 * revision of the chip does not properly accept IP fragments
2177 * at least for UDP.
2179 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2180 * the MAC it calculates the packetsize AFTER stripping the VLAN
2181 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2182 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2183 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2184 * it discrards it!. These guys......
2185 * also turn on tag stripping if hardware acceleration is enabled
2187 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2188 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2189 #else
2190 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2191 #endif
2192 writel(VRCR_INIT_VALUE, dev->base + VRCR);
2194 /* Enable per-packet TCP/UDP/IP checksumming
2195 * and per packet vlan tag insertion if
2196 * vlan hardware acceleration is enabled
2198 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2199 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2200 #else
2201 #define VTCR_INIT_VALUE VTCR_PPCHK
2202 #endif
2203 writel(VTCR_INIT_VALUE, dev->base + VTCR);
2205 /* Ramit : Enable async and sync pause frames */
2206 /* writel(0, dev->base + PCR); */
2207 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2208 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2209 dev->base + PCR);
2211 /* Disable Wake On Lan */
2212 writel(0, dev->base + WCSR);
2214 ns83820_getmac(dev, ndev->dev_addr);
2216 /* Yes, we support dumb IP checksum on transmit */
2217 ndev->features |= NETIF_F_SG;
2218 ndev->features |= NETIF_F_IP_CSUM;
2220 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2221 /* We also support hardware vlan acceleration */
2222 ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2223 #endif
2225 if (using_dac) {
2226 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2227 ndev->name);
2228 ndev->features |= NETIF_F_HIGHDMA;
2231 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2232 ndev->name,
2233 (unsigned)readl(dev->base + SRR) >> 8,
2234 (unsigned)readl(dev->base + SRR) & 0xff,
2235 ndev->dev_addr, addr, pci_dev->irq,
2236 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2239 #ifdef PHY_CODE_IS_FINISHED
2240 ns83820_probe_phy(ndev);
2241 #endif
2243 err = register_netdevice(ndev);
2244 if (err) {
2245 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2246 goto out_cleanup;
2248 rtnl_unlock();
2250 return 0;
2252 out_cleanup:
2253 writel(0, dev->base + IMR); /* paranoia */
2254 writel(0, dev->base + IER);
2255 readl(dev->base + IER);
2256 out_free_irq:
2257 rtnl_unlock();
2258 free_irq(pci_dev->irq, ndev);
2259 out_disable:
2260 if (dev->base)
2261 iounmap(dev->base);
2262 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2263 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2264 pci_disable_device(pci_dev);
2265 out_free:
2266 free_netdev(ndev);
2267 pci_set_drvdata(pci_dev, NULL);
2268 out:
2269 return err;
2272 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2274 struct net_device *ndev = pci_get_drvdata(pci_dev);
2275 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2277 if (!ndev) /* paranoia */
2278 return;
2280 writel(0, dev->base + IMR); /* paranoia */
2281 writel(0, dev->base + IER);
2282 readl(dev->base + IER);
2284 unregister_netdev(ndev);
2285 free_irq(dev->pci_dev->irq, ndev);
2286 iounmap(dev->base);
2287 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2288 dev->tx_descs, dev->tx_phy_descs);
2289 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2290 dev->rx_info.descs, dev->rx_info.phy_descs);
2291 pci_disable_device(dev->pci_dev);
2292 free_netdev(ndev);
2293 pci_set_drvdata(pci_dev, NULL);
2296 static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = {
2297 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2298 { 0, },
2301 static struct pci_driver driver = {
2302 .name = "ns83820",
2303 .id_table = ns83820_pci_tbl,
2304 .probe = ns83820_init_one,
2305 .remove = __devexit_p(ns83820_remove_one),
2306 #if 0 /* FIXME: implement */
2307 .suspend = ,
2308 .resume = ,
2309 #endif
2313 static int __init ns83820_init(void)
2315 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2316 return pci_register_driver(&driver);
2319 static void __exit ns83820_exit(void)
2321 pci_unregister_driver(&driver);
2324 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2325 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2326 MODULE_LICENSE("GPL");
2328 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2330 module_param(lnksts, int, 0);
2331 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2333 module_param(ihr, int, 0);
2334 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2336 module_param(reset_phy, int, 0);
2337 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2339 module_init(ns83820_init);
2340 module_exit(ns83820_exit);