Staging: netwave: delete the driver
[linux/fpc-iii.git] / drivers / net / pci-skeleton.c
blob36785853a149ddb36a7d17ab5966d41a4ee065b6
1 /*
3 drivers/net/pci-skeleton.c
5 Maintained by Jeff Garzik <jgarzik@pobox.com>
7 Original code came from 8139too.c, which in turns was based
8 originally on Donald Becker's rtl8139.c driver, versions 1.11
9 and older. This driver was originally based on rtl8139.c
10 version 1.07. Header of rtl8139.c version 1.11:
12 -----<snip>-----
14 Written 1997-2000 by Donald Becker.
15 This software may be used and distributed according to the
16 terms of the GNU General Public License (GPL), incorporated
17 herein by reference. Drivers based on or derived from this
18 code fall under the GPL and must retain the authorship,
19 copyright and license notice. This file is not a complete
20 program and may only be used when the entire operating
21 system is licensed under the GPL.
23 This driver is for boards based on the RTL8129 and RTL8139
24 PCI ethernet chips.
26 The author may be reached as becker@scyld.com, or C/O Scyld
27 Computing Corporation 410 Severn Ave., Suite 210 Annapolis
28 MD 21403
30 Support and updates available at
31 http://www.scyld.com/network/rtl8139.html
33 Twister-tuning table provided by Kinston
34 <shangh@realtek.com.tw>.
36 -----<snip>-----
38 This software may be used and distributed according to the terms
39 of the GNU General Public License, incorporated herein by reference.
42 -----------------------------------------------------------------------------
44 Theory of Operation
46 I. Board Compatibility
48 This device driver is designed for the RealTek RTL8139 series, the RealTek
49 Fast Ethernet controllers for PCI and CardBus. This chip is used on many
50 low-end boards, sometimes with its markings changed.
53 II. Board-specific settings
55 PCI bus devices are configured by the system at boot time, so no jumpers
56 need to be set on the board. The system BIOS will assign the
57 PCI INTA signal to a (preferably otherwise unused) system IRQ line.
59 III. Driver operation
61 IIIa. Rx Ring buffers
63 The receive unit uses a single linear ring buffer rather than the more
64 common (and more efficient) descriptor-based architecture. Incoming frames
65 are sequentially stored into the Rx region, and the host copies them into
66 skbuffs.
68 Comment: While it is theoretically possible to process many frames in place,
69 any delay in Rx processing would cause us to drop frames. More importantly,
70 the Linux protocol stack is not designed to operate in this manner.
72 IIIb. Tx operation
74 The RTL8139 uses a fixed set of four Tx descriptors in register space.
75 In a stunningly bad design choice, Tx frames must be 32 bit aligned. Linux
76 aligns the IP header on word boundaries, and 14 byte ethernet header means
77 that almost all frames will need to be copied to an alignment buffer.
79 IVb. References
81 http://www.realtek.com.tw/cn/cn.html
82 http://www.scyld.com/expert/NWay.html
84 IVc. Errata
88 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
90 #include <linux/module.h>
91 #include <linux/kernel.h>
92 #include <linux/pci.h>
93 #include <linux/init.h>
94 #include <linux/ioport.h>
95 #include <linux/netdevice.h>
96 #include <linux/etherdevice.h>
97 #include <linux/delay.h>
98 #include <linux/ethtool.h>
99 #include <linux/mii.h>
100 #include <linux/crc32.h>
101 #include <linux/io.h>
103 #define NETDRV_VERSION "1.0.1"
104 #define MODNAME "netdrv"
105 #define NETDRV_DRIVER_LOAD_MSG "MyVendor Fast Ethernet driver " NETDRV_VERSION " loaded"
107 static char version[] __devinitdata =
108 KERN_INFO NETDRV_DRIVER_LOAD_MSG "\n"
109 " Support available from http://foo.com/bar/baz.html\n";
111 /* define to 1 to enable PIO instead of MMIO */
112 #undef USE_IO_OPS
114 /* define to 1 to enable copious debugging info */
115 #undef NETDRV_DEBUG
117 /* define to 1 to disable lightweight runtime debugging checks */
118 #undef NETDRV_NDEBUG
121 #ifdef NETDRV_DEBUG
122 /* note: prints function name for you */
123 #define DPRINTK(fmt, args...) \
124 printk(KERN_DEBUG "%s: " fmt, __func__ , ## args)
125 #else
126 #define DPRINTK(fmt, args...) \
127 do { \
128 if (0) \
129 printk(KERN_DEBUG fmt, ##args); \
130 } while (0)
131 #endif
133 #ifdef NETDRV_NDEBUG
134 #define assert(expr) do {} while (0)
135 #else
136 #define assert(expr) \
137 if (!(expr)) { \
138 printk("Assertion failed! %s,%s,%s,line=%d\n", \
139 #expr, __FILE__, __func__, __LINE__); \
141 #endif
144 /* A few user-configurable values. */
145 /* media options */
146 static int media[] = {-1, -1, -1, -1, -1, -1, -1, -1};
148 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
149 static int max_interrupt_work = 20;
151 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
152 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
153 static int multicast_filter_limit = 32;
155 /* Size of the in-memory receive ring. */
156 #define RX_BUF_LEN_IDX 2 /* 0==8K, 1==16K, 2==32K, 3==64K */
157 #define RX_BUF_LEN (8192 << RX_BUF_LEN_IDX)
158 #define RX_BUF_PAD 16
159 #define RX_BUF_WRAP_PAD 2048 /* spare padding to handle lack of packet wrap */
160 #define RX_BUF_TOT_LEN (RX_BUF_LEN + RX_BUF_PAD + RX_BUF_WRAP_PAD)
162 /* Number of Tx descriptor registers. */
163 #define NUM_TX_DESC 4
165 /* max supported ethernet frame size -- must be at least (dev->mtu+14+4).*/
166 #define MAX_ETH_FRAME_SIZE 1536
168 /* Size of the Tx bounce buffers -- must be at least (dev->mtu+14+4). */
169 #define TX_BUF_SIZE MAX_ETH_FRAME_SIZE
170 #define TX_BUF_TOT_LEN (TX_BUF_SIZE * NUM_TX_DESC)
172 /* PCI Tuning Parameters
173 Threshold is bytes transferred to chip before transmission starts. */
174 #define TX_FIFO_THRESH 256 /* In bytes, rounded down to 32 byte units. */
176 /* The following settings are log_2(bytes)-4:
177 0==16 bytes 1==32 2==64 3==128 4==256 5==512 6==1024 7==end of packet.
179 #define RX_FIFO_THRESH 6 /* Rx buffer level before first PCI xfer. */
180 #define RX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
181 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
184 /* Operational parameters that usually are not changed. */
185 /* Time in jiffies before concluding the transmitter is hung. */
186 #define TX_TIMEOUT (6 * HZ)
188 enum {
189 HAS_CHIP_XCVR = 0x020000,
190 HAS_LNK_CHNG = 0x040000,
193 #define NETDRV_MIN_IO_SIZE 0x80
194 #define RTL8139B_IO_SIZE 256
196 #define NETDRV_CAPS (HAS_CHIP_XCVR | HAS_LNK_CHNG)
198 typedef enum {
199 RTL8139 = 0,
200 NETDRV_CB,
201 SMC1211TX,
202 /*MPX5030,*/
203 DELTA8139,
204 ADDTRON8139,
205 } board_t;
208 /* indexed by board_t, above */
209 static struct {
210 const char *name;
211 } board_info[] __devinitdata = {
212 { "RealTek RTL8139 Fast Ethernet" },
213 { "RealTek RTL8139B PCI/CardBus" },
214 { "SMC1211TX EZCard 10/100 (RealTek RTL8139)" },
215 /* { MPX5030, "Accton MPX5030 (RealTek RTL8139)" },*/
216 { "Delta Electronics 8139 10/100BaseTX" },
217 { "Addtron Technolgy 8139 10/100BaseTX" },
221 static DEFINE_PCI_DEVICE_TABLE(netdrv_pci_tbl) = {
222 {0x10ec, 0x8139, PCI_ANY_ID, PCI_ANY_ID, 0, 0, RTL8139 },
223 {0x10ec, 0x8138, PCI_ANY_ID, PCI_ANY_ID, 0, 0, NETDRV_CB },
224 {0x1113, 0x1211, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMC1211TX },
225 /* {0x1113, 0x1211, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MPX5030 },*/
226 {0x1500, 0x1360, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DELTA8139 },
227 {0x4033, 0x1360, PCI_ANY_ID, PCI_ANY_ID, 0, 0, ADDTRON8139 },
228 {0,}
230 MODULE_DEVICE_TABLE(pci, netdrv_pci_tbl);
233 /* The rest of these values should never change. */
235 /* Symbolic offsets to registers. */
236 enum NETDRV_registers {
237 MAC0 = 0, /* Ethernet hardware address. */
238 MAR0 = 8, /* Multicast filter. */
239 TxStatus0 = 0x10, /* Transmit status (Four 32bit registers). */
240 TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */
241 RxBuf = 0x30,
242 RxEarlyCnt = 0x34,
243 RxEarlyStatus = 0x36,
244 ChipCmd = 0x37,
245 RxBufPtr = 0x38,
246 RxBufAddr = 0x3A,
247 IntrMask = 0x3C,
248 IntrStatus = 0x3E,
249 TxConfig = 0x40,
250 ChipVersion = 0x43,
251 RxConfig = 0x44,
252 Timer = 0x48, /* A general-purpose counter. */
253 RxMissed = 0x4C, /* 24 bits valid, write clears. */
254 Cfg9346 = 0x50,
255 Config0 = 0x51,
256 Config1 = 0x52,
257 FlashReg = 0x54,
258 MediaStatus = 0x58,
259 Config3 = 0x59,
260 Config4 = 0x5A, /* absent on RTL-8139A */
261 HltClk = 0x5B,
262 MultiIntr = 0x5C,
263 TxSummary = 0x60,
264 BasicModeCtrl = 0x62,
265 BasicModeStatus = 0x64,
266 NWayAdvert = 0x66,
267 NWayLPAR = 0x68,
268 NWayExpansion = 0x6A,
269 /* Undocumented registers, but required for proper operation. */
270 FIFOTMS = 0x70, /* FIFO Control and test. */
271 CSCR = 0x74, /* Chip Status and Configuration Register. */
272 PARA78 = 0x78,
273 PARA7c = 0x7c, /* Magic transceiver parameter register. */
274 Config5 = 0xD8, /* absent on RTL-8139A */
277 enum ClearBitMasks {
278 MultiIntrClear = 0xF000,
279 ChipCmdClear = 0xE2,
280 Config1Clear = (1 << 7) | (1 << 6) | (1 << 3) | (1 << 2) | (1 << 1),
283 enum ChipCmdBits {
284 CmdReset = 0x10,
285 CmdRxEnb = 0x08,
286 CmdTxEnb = 0x04,
287 RxBufEmpty = 0x01,
290 /* Interrupt register bits, using my own meaningful names. */
291 enum IntrStatusBits {
292 PCIErr = 0x8000,
293 PCSTimeout = 0x4000,
294 RxFIFOOver = 0x40,
295 RxUnderrun = 0x20,
296 RxOverflow = 0x10,
297 TxErr = 0x08,
298 TxOK = 0x04,
299 RxErr = 0x02,
300 RxOK = 0x01,
302 enum TxStatusBits {
303 TxHostOwns = 0x2000,
304 TxUnderrun = 0x4000,
305 TxStatOK = 0x8000,
306 TxOutOfWindow = 0x20000000,
307 TxAborted = 0x40000000,
308 TxCarrierLost = 0x80000000,
310 enum RxStatusBits {
311 RxMulticast = 0x8000,
312 RxPhysical = 0x4000,
313 RxBroadcast = 0x2000,
314 RxBadSymbol = 0x0020,
315 RxRunt = 0x0010,
316 RxTooLong = 0x0008,
317 RxCRCErr = 0x0004,
318 RxBadAlign = 0x0002,
319 RxStatusOK = 0x0001,
322 /* Bits in RxConfig. */
323 enum rx_mode_bits {
324 AcceptErr = 0x20,
325 AcceptRunt = 0x10,
326 AcceptBroadcast = 0x08,
327 AcceptMulticast = 0x04,
328 AcceptMyPhys = 0x02,
329 AcceptAllPhys = 0x01,
332 /* Bits in TxConfig. */
333 enum tx_config_bits {
334 TxIFG1 = (1 << 25), /* Interframe Gap Time */
335 TxIFG0 = (1 << 24), /* Enabling these bits violates IEEE 802.3 */
336 TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
337 TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */
338 TxClearAbt = (1 << 0), /* Clear abort (WO) */
339 TxDMAShift = 8, /* DMA burst value(0-7) is shift this many bits */
341 TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
344 /* Bits in Config1 */
345 enum Config1Bits {
346 Cfg1_PM_Enable = 0x01,
347 Cfg1_VPD_Enable = 0x02,
348 Cfg1_PIO = 0x04,
349 Cfg1_MMIO = 0x08,
350 Cfg1_LWAKE = 0x10,
351 Cfg1_Driver_Load = 0x20,
352 Cfg1_LED0 = 0x40,
353 Cfg1_LED1 = 0x80,
356 enum RxConfigBits {
357 /* Early Rx threshold, none or X/16 */
358 RxCfgEarlyRxNone = 0,
359 RxCfgEarlyRxShift = 24,
361 /* rx fifo threshold */
362 RxCfgFIFOShift = 13,
363 RxCfgFIFONone = (7 << RxCfgFIFOShift),
365 /* Max DMA burst */
366 RxCfgDMAShift = 8,
367 RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
369 /* rx ring buffer length */
370 RxCfgRcv8K = 0,
371 RxCfgRcv16K = (1 << 11),
372 RxCfgRcv32K = (1 << 12),
373 RxCfgRcv64K = (1 << 11) | (1 << 12),
375 /* Disable packet wrap at end of Rx buffer */
376 RxNoWrap = (1 << 7),
380 /* Twister tuning parameters from RealTek.
381 Completely undocumented, but required to tune bad links. */
382 enum CSCRBits {
383 CSCR_LinkOKBit = 0x0400,
384 CSCR_LinkChangeBit = 0x0800,
385 CSCR_LinkStatusBits = 0x0f000,
386 CSCR_LinkDownOffCmd = 0x003c0,
387 CSCR_LinkDownCmd = 0x0f3c0,
391 enum Cfg9346Bits {
392 Cfg9346_Lock = 0x00,
393 Cfg9346_Unlock = 0xC0,
397 #define PARA78_default 0x78fa8388
398 #define PARA7c_default 0xcb38de43 /* param[0][3] */
399 #define PARA7c_xxx 0xcb38de43
400 static const unsigned long param[4][4] = {
401 {0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
402 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
403 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
404 {0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
407 struct ring_info {
408 struct sk_buff *skb;
409 dma_addr_t mapping;
413 typedef enum {
414 CH_8139 = 0,
415 CH_8139_K,
416 CH_8139A,
417 CH_8139B,
418 CH_8130,
419 CH_8139C,
420 } chip_t;
423 /* directly indexed by chip_t, above */
424 static const struct {
425 const char *name;
426 u8 version; /* from RTL8139C docs */
427 u32 RxConfigMask; /* should clear the bits supported by this chip */
428 } rtl_chip_info[] = {
429 { "RTL-8139",
430 0x40,
431 0xf0fe0040, /* XXX copied from RTL8139A, verify */
434 { "RTL-8139 rev K",
435 0x60,
436 0xf0fe0040,
439 { "RTL-8139A",
440 0x70,
441 0xf0fe0040,
444 { "RTL-8139B",
445 0x78,
446 0xf0fc0040
449 { "RTL-8130",
450 0x7C,
451 0xf0fe0040, /* XXX copied from RTL8139A, verify */
454 { "RTL-8139C",
455 0x74,
456 0xf0fc0040, /* XXX copied from RTL8139B, verify */
462 struct netdrv_private {
463 board_t board;
464 void *mmio_addr;
465 int drv_flags;
466 struct pci_dev *pci_dev;
467 struct timer_list timer; /* Media selection timer. */
468 unsigned char *rx_ring;
469 unsigned int cur_rx; /* Index into the Rx buffer of next Rx pkt. */
470 unsigned int tx_flag;
471 atomic_t cur_tx;
472 atomic_t dirty_tx;
473 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
474 struct ring_info tx_info[NUM_TX_DESC];
475 unsigned char *tx_buf[NUM_TX_DESC]; /* Tx bounce buffers */
476 unsigned char *tx_bufs; /* Tx bounce buffer region. */
477 dma_addr_t rx_ring_dma;
478 dma_addr_t tx_bufs_dma;
479 char phys[4]; /* MII device addresses. */
480 char twistie, twist_row, twist_col; /* Twister tune state. */
481 unsigned int full_duplex:1; /* Full-duplex operation requested. */
482 unsigned int duplex_lock:1;
483 unsigned int default_port:4; /* Last dev->if_port value. */
484 unsigned int media2:4; /* Secondary monitored media port. */
485 unsigned int medialock:1; /* Don't sense media type. */
486 unsigned int mediasense:1; /* Media sensing in progress. */
487 spinlock_t lock;
488 chip_t chipset;
491 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
492 MODULE_DESCRIPTION("Skeleton for a PCI Fast Ethernet driver");
493 MODULE_LICENSE("GPL");
494 module_param(multicast_filter_limit, int, 0);
495 module_param(max_interrupt_work, int, 0);
496 module_param_array(media, int, NULL, 0);
497 MODULE_PARM_DESC(multicast_filter_limit,
498 MODNAME " maximum number of filtered multicast addresses");
499 MODULE_PARM_DESC(max_interrupt_work,
500 MODNAME " maximum events handled per interrupt");
501 MODULE_PARM_DESC(media,
502 MODNAME " Bits 0-3: media type, bit 17: full duplex");
504 static int read_eeprom(void *ioaddr, int location, int addr_len);
505 static int netdrv_open(struct net_device *dev);
506 static int mdio_read(struct net_device *dev, int phy_id, int location);
507 static void mdio_write(struct net_device *dev, int phy_id, int location,
508 int val);
509 static void netdrv_timer(unsigned long data);
510 static void netdrv_tx_timeout(struct net_device *dev);
511 static void netdrv_init_ring(struct net_device *dev);
512 static int netdrv_start_xmit(struct sk_buff *skb,
513 struct net_device *dev);
514 static irqreturn_t netdrv_interrupt(int irq, void *dev_instance);
515 static int netdrv_close(struct net_device *dev);
516 static int netdrv_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
517 static void netdrv_set_rx_mode(struct net_device *dev);
518 static void netdrv_hw_start(struct net_device *dev);
521 #ifdef USE_IO_OPS
523 #define NETDRV_R8(reg) inb(((unsigned long)ioaddr) + (reg))
524 #define NETDRV_R16(reg) inw(((unsigned long)ioaddr) + (reg))
525 #define NETDRV_R32(reg) ((unsigned long)inl(((unsigned long)ioaddr) + (reg)))
526 #define NETDRV_W8(reg, val8) outb((val8), ((unsigned long)ioaddr) + (reg))
527 #define NETDRV_W16(reg, val16) outw((val16), ((unsigned long)ioaddr) + (reg))
528 #define NETDRV_W32(reg, val32) outl((val32), ((unsigned long)ioaddr) + (reg))
529 #define NETDRV_W8_F NETDRV_W8
530 #define NETDRV_W16_F NETDRV_W16
531 #define NETDRV_W32_F NETDRV_W32
532 #undef readb
533 #undef readw
534 #undef readl
535 #undef writeb
536 #undef writew
537 #undef writel
538 #define readb(addr) inb((unsigned long)(addr))
539 #define readw(addr) inw((unsigned long)(addr))
540 #define readl(addr) inl((unsigned long)(addr))
541 #define writeb(val, addr) outb((val), (unsigned long)(addr))
542 #define writew(val, addr) outw((val), (unsigned long)(addr))
543 #define writel(val, addr) outl((val), (unsigned long)(addr))
545 #else
547 /* write MMIO register, with flush */
548 /* Flush avoids rtl8139 bug w/ posted MMIO writes */
549 #define NETDRV_W8_F(reg, val8) \
550 do { \
551 writeb((val8), ioaddr + (reg)); \
552 readb(ioaddr + (reg)); \
553 } while (0)
554 #define NETDRV_W16_F(reg, val16) \
555 do { \
556 writew((val16), ioaddr + (reg)); \
557 readw(ioaddr + (reg)); \
558 } while (0)
559 #define NETDRV_W32_F(reg, val32) \
560 do { \
561 writel((val32), ioaddr + (reg)); \
562 readl(ioaddr + (reg)); \
563 } while (0)
566 #ifdef MMIO_FLUSH_AUDIT_COMPLETE
568 /* write MMIO register */
569 #define NETDRV_W8(reg, val8) writeb((val8), ioaddr + (reg))
570 #define NETDRV_W16(reg, val16) writew((val16), ioaddr + (reg))
571 #define NETDRV_W32(reg, val32) writel((val32), ioaddr + (reg))
573 #else
575 /* write MMIO register, then flush */
576 #define NETDRV_W8 NETDRV_W8_F
577 #define NETDRV_W16 NETDRV_W16_F
578 #define NETDRV_W32 NETDRV_W32_F
580 #endif /* MMIO_FLUSH_AUDIT_COMPLETE */
582 /* read MMIO register */
583 #define NETDRV_R8(reg) readb(ioaddr + (reg))
584 #define NETDRV_R16(reg) readw(ioaddr + (reg))
585 #define NETDRV_R32(reg) ((unsigned long) readl(ioaddr + (reg)))
587 #endif /* USE_IO_OPS */
590 static const u16 netdrv_intr_mask =
591 PCIErr | PCSTimeout | RxUnderrun | RxOverflow | RxFIFOOver |
592 TxErr | TxOK | RxErr | RxOK;
594 static const unsigned int netdrv_rx_config =
595 RxCfgEarlyRxNone | RxCfgRcv32K | RxNoWrap |
596 (RX_FIFO_THRESH << RxCfgFIFOShift) |
597 (RX_DMA_BURST << RxCfgDMAShift);
600 static int __devinit netdrv_init_board(struct pci_dev *pdev,
601 struct net_device **dev_out,
602 void **ioaddr_out)
604 void *ioaddr = NULL;
605 struct net_device *dev;
606 struct netdrv_private *tp;
607 int rc, i;
608 u32 pio_start, pio_end, pio_flags, pio_len;
609 unsigned long mmio_start, mmio_end, mmio_flags, mmio_len;
610 u32 tmp;
612 DPRINTK("ENTER\n");
614 assert(pdev != NULL);
615 assert(ioaddr_out != NULL);
617 *ioaddr_out = NULL;
618 *dev_out = NULL;
620 /* dev zeroed in alloc_etherdev */
621 dev = alloc_etherdev(sizeof(*tp));
622 if (dev == NULL) {
623 dev_err(&pdev->dev, "unable to alloc new ethernet\n");
624 DPRINTK("EXIT, returning -ENOMEM\n");
625 return -ENOMEM;
627 SET_NETDEV_DEV(dev, &pdev->dev);
628 tp = netdev_priv(dev);
630 /* enable device(incl. PCI PM wakeup), and bus-mastering */
631 rc = pci_enable_device(pdev);
632 if (rc)
633 goto err_out;
635 pio_start = pci_resource_start(pdev, 0);
636 pio_end = pci_resource_end(pdev, 0);
637 pio_flags = pci_resource_flags(pdev, 0);
638 pio_len = pci_resource_len(pdev, 0);
640 mmio_start = pci_resource_start(pdev, 1);
641 mmio_end = pci_resource_end(pdev, 1);
642 mmio_flags = pci_resource_flags(pdev, 1);
643 mmio_len = pci_resource_len(pdev, 1);
645 /* set this immediately, we need to know before
646 * we talk to the chip directly */
647 DPRINTK("PIO region size == %#02X\n", pio_len);
648 DPRINTK("MMIO region size == %#02lX\n", mmio_len);
650 /* make sure PCI base addr 0 is PIO */
651 if (!(pio_flags & IORESOURCE_IO)) {
652 dev_err(&pdev->dev, "region #0 not a PIO resource, aborting\n");
653 rc = -ENODEV;
654 goto err_out;
657 /* make sure PCI base addr 1 is MMIO */
658 if (!(mmio_flags & IORESOURCE_MEM)) {
659 dev_err(&pdev->dev, "region #1 not an MMIO resource, aborting\n");
660 rc = -ENODEV;
661 goto err_out;
664 /* check for weird/broken PCI region reporting */
665 if ((pio_len < NETDRV_MIN_IO_SIZE) ||
666 (mmio_len < NETDRV_MIN_IO_SIZE)) {
667 dev_err(&pdev->dev, "Invalid PCI region size(s), aborting\n");
668 rc = -ENODEV;
669 goto err_out;
672 rc = pci_request_regions(pdev, MODNAME);
673 if (rc)
674 goto err_out;
676 pci_set_master(pdev);
678 #ifdef USE_IO_OPS
679 ioaddr = (void *)pio_start;
680 #else
681 /* ioremap MMIO region */
682 ioaddr = ioremap(mmio_start, mmio_len);
683 if (ioaddr == NULL) {
684 dev_err(&pdev->dev, "cannot remap MMIO, aborting\n");
685 rc = -EIO;
686 goto err_out_free_res;
688 #endif /* USE_IO_OPS */
690 /* Soft reset the chip. */
691 NETDRV_W8(ChipCmd, (NETDRV_R8(ChipCmd) & ChipCmdClear) | CmdReset);
693 /* Check that the chip has finished the reset. */
694 for (i = 1000; i > 0; i--)
695 if ((NETDRV_R8(ChipCmd) & CmdReset) == 0)
696 break;
697 else
698 udelay(10);
700 /* Bring the chip out of low-power mode. */
701 /* <insert device-specific code here> */
703 #ifndef USE_IO_OPS
704 /* sanity checks -- ensure PIO and MMIO registers agree */
705 assert(inb(pio_start+Config0) == readb(ioaddr+Config0));
706 assert(inb(pio_start+Config1) == readb(ioaddr+Config1));
707 assert(inb(pio_start+TxConfig) == readb(ioaddr+TxConfig));
708 assert(inb(pio_start+RxConfig) == readb(ioaddr+RxConfig));
709 #endif /* !USE_IO_OPS */
711 /* identify chip attached to board */
712 tmp = NETDRV_R8(ChipVersion);
713 for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--)
714 if (tmp == rtl_chip_info[i].version) {
715 tp->chipset = i;
716 goto match;
719 /* if unknown chip, assume array element #0, original RTL-8139 in this case */
720 dev_printk(KERN_DEBUG, &pdev->dev,
721 "unknown chip version, assuming RTL-8139\n");
722 dev_printk(KERN_DEBUG, &pdev->dev, "TxConfig = %#lx\n",
723 NETDRV_R32(TxConfig));
724 tp->chipset = 0;
726 match:
727 DPRINTK("chipset id(%d) == index %d, '%s'\n",
728 tmp, tp->chipset, rtl_chip_info[tp->chipset].name);
730 rc = register_netdev(dev);
731 if (rc)
732 goto err_out_unmap;
734 DPRINTK("EXIT, returning 0\n");
735 *ioaddr_out = ioaddr;
736 *dev_out = dev;
737 return 0;
739 err_out_unmap:
740 #ifndef USE_IO_OPS
741 iounmap(ioaddr);
742 err_out_free_res:
743 #endif
744 pci_release_regions(pdev);
745 err_out:
746 free_netdev(dev);
747 DPRINTK("EXIT, returning %d\n", rc);
748 return rc;
751 static const struct net_device_ops netdrv_netdev_ops = {
752 .ndo_open = netdrv_open,
753 .ndo_stop = netdrv_close,
754 .ndo_start_xmit = netdrv_start_xmit,
755 .ndo_set_multicast_list = netdrv_set_rx_mode,
756 .ndo_do_ioctl = netdrv_ioctl,
757 .ndo_tx_timeout = netdrv_tx_timeout,
758 .ndo_change_mtu = eth_change_mtu,
759 .ndo_validate_addr = eth_validate_addr,
760 .ndo_set_mac_address = eth_mac_addr,
763 static int __devinit netdrv_init_one(struct pci_dev *pdev,
764 const struct pci_device_id *ent)
766 struct net_device *dev = NULL;
767 struct netdrv_private *tp;
768 int i, addr_len, option;
769 void *ioaddr = NULL;
770 static int board_idx = -1;
772 /* when built into the kernel, we only print version if device is found */
773 #ifndef MODULE
774 static int printed_version;
775 if (!printed_version++)
776 printk(version);
777 #endif
779 DPRINTK("ENTER\n");
781 assert(pdev != NULL);
782 assert(ent != NULL);
784 board_idx++;
786 i = netdrv_init_board(pdev, &dev, &ioaddr);
787 if (i < 0) {
788 DPRINTK("EXIT, returning %d\n", i);
789 return i;
792 tp = netdev_priv(dev);
794 assert(ioaddr != NULL);
795 assert(dev != NULL);
796 assert(tp != NULL);
798 addr_len = read_eeprom(ioaddr, 0, 8) == 0x8129 ? 8 : 6;
799 for (i = 0; i < 3; i++)
800 ((u16 *)(dev->dev_addr))[i] =
801 le16_to_cpu(read_eeprom(ioaddr, i + 7, addr_len));
803 dev->netdev_ops = &netdrv_netdev_ops;
804 dev->watchdog_timeo = TX_TIMEOUT;
806 dev->irq = pdev->irq;
807 dev->base_addr = (unsigned long) ioaddr;
809 /* netdev_priv()/tp zeroed and aligned in alloc_etherdev */
810 tp = netdev_priv(dev);
812 /* note: tp->chipset set in netdrv_init_board */
813 tp->drv_flags = PCI_COMMAND_IO | PCI_COMMAND_MEMORY |
814 PCI_COMMAND_MASTER | NETDRV_CAPS;
815 tp->pci_dev = pdev;
816 tp->board = ent->driver_data;
817 tp->mmio_addr = ioaddr;
818 spin_lock_init(&tp->lock);
820 pci_set_drvdata(pdev, dev);
822 tp->phys[0] = 32;
824 netdev_info(dev, "%s at %#lx, %pM IRQ %d\n",
825 board_info[ent->driver_data].name,
826 dev->base_addr, dev->dev_addr, dev->irq);
828 netdev_printk(KERN_DEBUG, dev, "Identified 8139 chip type '%s'\n",
829 rtl_chip_info[tp->chipset].name);
831 /* Put the chip into low-power mode. */
832 NETDRV_W8_F(Cfg9346, Cfg9346_Unlock);
834 /* The lower four bits are the media type. */
835 option = (board_idx > 7) ? 0 : media[board_idx];
836 if (option > 0) {
837 tp->full_duplex = (option & 0x200) ? 1 : 0;
838 tp->default_port = option & 15;
839 if (tp->default_port)
840 tp->medialock = 1;
843 if (tp->full_duplex) {
844 netdev_info(dev, "Media type forced to Full Duplex\n");
845 mdio_write(dev, tp->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
846 tp->duplex_lock = 1;
849 DPRINTK("EXIT - returning 0\n");
850 return 0;
854 static void __devexit netdrv_remove_one(struct pci_dev *pdev)
856 struct net_device *dev = pci_get_drvdata(pdev);
857 struct netdrv_private *np;
859 DPRINTK("ENTER\n");
861 assert(dev != NULL);
863 np = netdev_priv(dev);
864 assert(np != NULL);
866 unregister_netdev(dev);
868 #ifndef USE_IO_OPS
869 iounmap(np->mmio_addr);
870 #endif /* !USE_IO_OPS */
872 pci_release_regions(pdev);
874 free_netdev(dev);
876 pci_set_drvdata(pdev, NULL);
878 pci_disable_device(pdev);
880 DPRINTK("EXIT\n");
884 /* Serial EEPROM section. */
886 /* EEPROM_Ctrl bits. */
887 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
888 #define EE_CS 0x08 /* EEPROM chip select. */
889 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
890 #define EE_WRITE_0 0x00
891 #define EE_WRITE_1 0x02
892 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
893 #define EE_ENB (0x80 | EE_CS)
895 /* Delay between EEPROM clock transitions.
896 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
899 #define eeprom_delay() readl(ee_addr)
901 /* The EEPROM commands include the alway-set leading bit. */
902 #define EE_WRITE_CMD (5)
903 #define EE_READ_CMD (6)
904 #define EE_ERASE_CMD (7)
906 static int __devinit read_eeprom(void *ioaddr, int location, int addr_len)
908 int i;
909 unsigned retval = 0;
910 void *ee_addr = ioaddr + Cfg9346;
911 int read_cmd = location | (EE_READ_CMD << addr_len);
913 DPRINTK("ENTER\n");
915 writeb(EE_ENB & ~EE_CS, ee_addr);
916 writeb(EE_ENB, ee_addr);
917 eeprom_delay();
919 /* Shift the read command bits out. */
920 for (i = 4 + addr_len; i >= 0; i--) {
921 int dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
922 writeb(EE_ENB | dataval, ee_addr);
923 eeprom_delay();
924 writeb(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
925 eeprom_delay();
927 writeb(EE_ENB, ee_addr);
928 eeprom_delay();
930 for (i = 16; i > 0; i--) {
931 writeb(EE_ENB | EE_SHIFT_CLK, ee_addr);
932 eeprom_delay();
933 retval =
934 (retval << 1) | ((readb(ee_addr) & EE_DATA_READ) ? 1 :
936 writeb(EE_ENB, ee_addr);
937 eeprom_delay();
940 /* Terminate the EEPROM access. */
941 writeb(~EE_CS, ee_addr);
942 eeprom_delay();
944 DPRINTK("EXIT - returning %d\n", retval);
945 return retval;
948 /* MII serial management: mostly bogus for now. */
949 /* Read and write the MII management registers using software-generated
950 serial MDIO protocol.
951 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
952 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
953 "overclocking" issues. */
954 #define MDIO_DIR 0x80
955 #define MDIO_DATA_OUT 0x04
956 #define MDIO_DATA_IN 0x02
957 #define MDIO_CLK 0x01
958 #define MDIO_WRITE0 (MDIO_DIR)
959 #define MDIO_WRITE1 (MDIO_DIR | MDIO_DATA_OUT)
961 #define mdio_delay() readb(mdio_addr)
964 static char mii_2_8139_map[8] = {
965 BasicModeCtrl,
966 BasicModeStatus,
969 NWayAdvert,
970 NWayLPAR,
971 NWayExpansion,
976 /* Syncronize the MII management interface by shifting 32 one bits out. */
977 static void mdio_sync(void *mdio_addr)
979 int i;
981 DPRINTK("ENTER\n");
983 for (i = 32; i >= 0; i--) {
984 writeb(MDIO_WRITE1, mdio_addr);
985 mdio_delay();
986 writeb(MDIO_WRITE1 | MDIO_CLK, mdio_addr);
987 mdio_delay();
990 DPRINTK("EXIT\n");
994 static int mdio_read(struct net_device *dev, int phy_id, int location)
996 struct netdrv_private *tp = netdev_priv(dev);
997 void *mdio_addr = tp->mmio_addr + Config4;
998 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
999 int retval = 0;
1000 int i;
1002 DPRINTK("ENTER\n");
1004 if (phy_id > 31) { /* Really a 8139. Use internal registers. */
1005 DPRINTK("EXIT after directly using 8139 internal regs\n");
1006 return location < 8 && mii_2_8139_map[location] ?
1007 readw(tp->mmio_addr + mii_2_8139_map[location]) : 0;
1009 mdio_sync(mdio_addr);
1010 /* Shift the read command bits out. */
1011 for (i = 15; i >= 0; i--) {
1012 int dataval = (mii_cmd & (1 << i)) ? MDIO_DATA_OUT : 0;
1014 writeb(MDIO_DIR | dataval, mdio_addr);
1015 mdio_delay();
1016 writeb(MDIO_DIR | dataval | MDIO_CLK, mdio_addr);
1017 mdio_delay();
1020 /* Read the two transition, 16 data, and wire-idle bits. */
1021 for (i = 19; i > 0; i--) {
1022 writeb(0, mdio_addr);
1023 mdio_delay();
1024 retval = ((retval << 1) | ((readb(mdio_addr) & MDIO_DATA_IN))
1025 ? 1 : 0);
1026 writeb(MDIO_CLK, mdio_addr);
1027 mdio_delay();
1030 DPRINTK("EXIT, returning %d\n", (retval >> 1) & 0xffff);
1031 return (retval >> 1) & 0xffff;
1035 static void mdio_write(struct net_device *dev, int phy_id, int location,
1036 int value)
1038 struct netdrv_private *tp = netdev_priv(dev);
1039 void *mdio_addr = tp->mmio_addr + Config4;
1040 int mii_cmd =
1041 (0x5002 << 16) | (phy_id << 23) | (location << 18) | value;
1042 int i;
1044 DPRINTK("ENTER\n");
1046 if (phy_id > 31) { /* Really a 8139. Use internal registers. */
1047 if (location < 8 && mii_2_8139_map[location]) {
1048 writew(value,
1049 tp->mmio_addr + mii_2_8139_map[location]);
1050 readw(tp->mmio_addr + mii_2_8139_map[location]);
1052 DPRINTK("EXIT after directly using 8139 internal regs\n");
1053 return;
1055 mdio_sync(mdio_addr);
1057 /* Shift the command bits out. */
1058 for (i = 31; i >= 0; i--) {
1059 int dataval =
1060 (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
1061 writeb(dataval, mdio_addr);
1062 mdio_delay();
1063 writeb(dataval | MDIO_CLK, mdio_addr);
1064 mdio_delay();
1067 /* Clear out extra bits. */
1068 for (i = 2; i > 0; i--) {
1069 writeb(0, mdio_addr);
1070 mdio_delay();
1071 writeb(MDIO_CLK, mdio_addr);
1072 mdio_delay();
1075 DPRINTK("EXIT\n");
1079 static int netdrv_open(struct net_device *dev)
1081 struct netdrv_private *tp = netdev_priv(dev);
1082 int retval;
1083 void *ioaddr = tp->mmio_addr;
1085 DPRINTK("ENTER\n");
1087 retval = request_irq(dev->irq, netdrv_interrupt, IRQF_SHARED, dev->name, dev);
1088 if (retval) {
1089 DPRINTK("EXIT, returning %d\n", retval);
1090 return retval;
1093 tp->tx_bufs = pci_alloc_consistent(tp->pci_dev, TX_BUF_TOT_LEN,
1094 &tp->tx_bufs_dma);
1095 tp->rx_ring = pci_alloc_consistent(tp->pci_dev, RX_BUF_TOT_LEN,
1096 &tp->rx_ring_dma);
1097 if (tp->tx_bufs == NULL || tp->rx_ring == NULL) {
1098 free_irq(dev->irq, dev);
1100 if (tp->tx_bufs)
1101 pci_free_consistent(tp->pci_dev, TX_BUF_TOT_LEN,
1102 tp->tx_bufs, tp->tx_bufs_dma);
1103 if (tp->rx_ring)
1104 pci_free_consistent(tp->pci_dev, RX_BUF_TOT_LEN,
1105 tp->rx_ring, tp->rx_ring_dma);
1107 DPRINTK("EXIT, returning -ENOMEM\n");
1108 return -ENOMEM;
1112 tp->full_duplex = tp->duplex_lock;
1113 tp->tx_flag = (TX_FIFO_THRESH << 11) & 0x003f0000;
1115 netdrv_init_ring(dev);
1116 netdrv_hw_start(dev);
1118 netdev_dbg(dev, "ioaddr %#llx IRQ %d GP Pins %02x %s-duplex\n",
1119 (unsigned long long)pci_resource_start(tp->pci_dev, 1),
1120 dev->irq, NETDRV_R8(MediaStatus),
1121 tp->full_duplex ? "full" : "half");
1123 /* Set the timer to switch to check for link beat and perhaps switch
1124 to an alternate media type. */
1125 init_timer(&tp->timer);
1126 tp->timer.expires = jiffies + 3 * HZ;
1127 tp->timer.data = (unsigned long) dev;
1128 tp->timer.function = &netdrv_timer;
1129 add_timer(&tp->timer);
1131 DPRINTK("EXIT, returning 0\n");
1132 return 0;
1136 /* Start the hardware at open or resume. */
1137 static void netdrv_hw_start(struct net_device *dev)
1139 struct netdrv_private *tp = netdev_priv(dev);
1140 void *ioaddr = tp->mmio_addr;
1141 u32 i;
1143 DPRINTK("ENTER\n");
1145 /* Soft reset the chip. */
1146 NETDRV_W8(ChipCmd, (NETDRV_R8(ChipCmd) & ChipCmdClear) | CmdReset);
1147 udelay(100);
1149 /* Check that the chip has finished the reset. */
1150 for (i = 1000; i > 0; i--)
1151 if ((NETDRV_R8(ChipCmd) & CmdReset) == 0)
1152 break;
1154 /* Restore our idea of the MAC address. */
1155 NETDRV_W32_F(MAC0 + 0, cpu_to_le32(*(u32 *)(dev->dev_addr + 0)));
1156 NETDRV_W32_F(MAC0 + 4, cpu_to_le32(*(u32 *)(dev->dev_addr + 4)));
1158 /* Must enable Tx/Rx before setting transfer thresholds! */
1159 NETDRV_W8_F(ChipCmd, (NETDRV_R8(ChipCmd) & ChipCmdClear) |
1160 CmdRxEnb | CmdTxEnb);
1162 i = netdrv_rx_config |
1163 (NETDRV_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
1164 NETDRV_W32_F(RxConfig, i);
1166 /* Check this value: the documentation for IFG contradicts ifself. */
1167 NETDRV_W32(TxConfig, (TX_DMA_BURST << TxDMAShift));
1169 /* unlock Config[01234] and BMCR register writes */
1170 NETDRV_W8_F(Cfg9346, Cfg9346_Unlock);
1171 udelay(10);
1173 tp->cur_rx = 0;
1175 /* Lock Config[01234] and BMCR register writes */
1176 NETDRV_W8_F(Cfg9346, Cfg9346_Lock);
1177 udelay(10);
1179 /* init Rx ring buffer DMA address */
1180 NETDRV_W32_F(RxBuf, tp->rx_ring_dma);
1182 /* init Tx buffer DMA addresses */
1183 for (i = 0; i < NUM_TX_DESC; i++)
1184 NETDRV_W32_F(TxAddr0 + (i * 4), tp->tx_bufs_dma + (tp->tx_buf[i] - tp->tx_bufs));
1186 NETDRV_W32_F(RxMissed, 0);
1188 netdrv_set_rx_mode(dev);
1190 /* no early-rx interrupts */
1191 NETDRV_W16(MultiIntr, NETDRV_R16(MultiIntr) & MultiIntrClear);
1193 /* make sure RxTx has started */
1194 NETDRV_W8_F(ChipCmd, (NETDRV_R8(ChipCmd) & ChipCmdClear) |
1195 CmdRxEnb | CmdTxEnb);
1197 /* Enable all known interrupts by setting the interrupt mask. */
1198 NETDRV_W16_F(IntrMask, netdrv_intr_mask);
1200 netif_start_queue(dev);
1202 DPRINTK("EXIT\n");
1206 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1207 static void netdrv_init_ring(struct net_device *dev)
1209 struct netdrv_private *tp = netdev_priv(dev);
1210 int i;
1212 DPRINTK("ENTER\n");
1214 tp->cur_rx = 0;
1215 atomic_set(&tp->cur_tx, 0);
1216 atomic_set(&tp->dirty_tx, 0);
1218 for (i = 0; i < NUM_TX_DESC; i++) {
1219 tp->tx_info[i].skb = NULL;
1220 tp->tx_info[i].mapping = 0;
1221 tp->tx_buf[i] = &tp->tx_bufs[i * TX_BUF_SIZE];
1224 DPRINTK("EXIT\n");
1228 static void netdrv_timer(unsigned long data)
1230 struct net_device *dev = (struct net_device *) data;
1231 struct netdrv_private *tp = netdev_priv(dev);
1232 void *ioaddr = tp->mmio_addr;
1233 int next_tick = 60 * HZ;
1234 int mii_lpa;
1236 mii_lpa = mdio_read(dev, tp->phys[0], MII_LPA);
1238 if (!tp->duplex_lock && mii_lpa != 0xffff) {
1239 int duplex = ((mii_lpa & LPA_100FULL) ||
1240 (mii_lpa & 0x01C0) == 0x0040);
1241 if (tp->full_duplex != duplex) {
1242 tp->full_duplex = duplex;
1243 netdev_info(dev, "Setting %s-duplex based on MII #%d link partner ability of %04x\n",
1244 tp->full_duplex ? "full" : "half",
1245 tp->phys[0], mii_lpa);
1246 NETDRV_W8(Cfg9346, Cfg9346_Unlock);
1247 NETDRV_W8(Config1, tp->full_duplex ? 0x60 : 0x20);
1248 NETDRV_W8(Cfg9346, Cfg9346_Lock);
1252 netdev_dbg(dev, "Media selection tick, Link partner %04x\n",
1253 NETDRV_R16(NWayLPAR));
1254 netdev_dbg(dev, "Other registers are IntMask %04x IntStatus %04x RxStatus %04lx\n",
1255 NETDRV_R16(IntrMask),
1256 NETDRV_R16(IntrStatus),
1257 NETDRV_R32(RxEarlyStatus));
1258 netdev_dbg(dev, "Chip config %02x %02x\n",
1259 NETDRV_R8(Config0), NETDRV_R8(Config1));
1261 tp->timer.expires = jiffies + next_tick;
1262 add_timer(&tp->timer);
1266 static void netdrv_tx_clear(struct net_device *dev)
1268 int i;
1269 struct netdrv_private *tp = netdev_priv(dev);
1271 atomic_set(&tp->cur_tx, 0);
1272 atomic_set(&tp->dirty_tx, 0);
1274 /* Dump the unsent Tx packets. */
1275 for (i = 0; i < NUM_TX_DESC; i++) {
1276 struct ring_info *rp = &tp->tx_info[i];
1277 if (rp->mapping != 0) {
1278 pci_unmap_single(tp->pci_dev, rp->mapping,
1279 rp->skb->len, PCI_DMA_TODEVICE);
1280 rp->mapping = 0;
1282 if (rp->skb) {
1283 dev_kfree_skb(rp->skb);
1284 rp->skb = NULL;
1285 dev->stats.tx_dropped++;
1291 static void netdrv_tx_timeout(struct net_device *dev)
1293 struct netdrv_private *tp = netdev_priv(dev);
1294 void *ioaddr = tp->mmio_addr;
1295 int i;
1296 u8 tmp8;
1297 unsigned long flags;
1299 netdev_dbg(dev, "Transmit timeout, status %02x %04x media %02x\n",
1300 NETDRV_R8(ChipCmd),
1301 NETDRV_R16(IntrStatus),
1302 NETDRV_R8(MediaStatus));
1304 /* disable Tx ASAP, if not already */
1305 tmp8 = NETDRV_R8(ChipCmd);
1306 if (tmp8 & CmdTxEnb)
1307 NETDRV_W8(ChipCmd, tmp8 & ~CmdTxEnb);
1309 /* Disable interrupts by clearing the interrupt mask. */
1310 NETDRV_W16(IntrMask, 0x0000);
1312 /* Emit info to figure out what went wrong. */
1313 netdev_dbg(dev, "Tx queue start entry %d dirty entry %d\n",
1314 atomic_read(&tp->cur_tx),
1315 atomic_read(&tp->dirty_tx));
1316 for (i = 0; i < NUM_TX_DESC; i++)
1317 netdev_dbg(dev, "Tx descriptor %d is %08lx%s\n",
1318 i, NETDRV_R32(TxStatus0 + (i * 4)),
1319 i == atomic_read(&tp->dirty_tx) % NUM_TX_DESC ?
1320 "(queue head)" : "");
1322 /* Stop a shared interrupt from scavenging while we are. */
1323 spin_lock_irqsave(&tp->lock, flags);
1325 netdrv_tx_clear(dev);
1327 spin_unlock_irqrestore(&tp->lock, flags);
1329 /* ...and finally, reset everything */
1330 netdrv_hw_start(dev);
1332 netif_wake_queue(dev);
1337 static int netdrv_start_xmit(struct sk_buff *skb, struct net_device *dev)
1339 struct netdrv_private *tp = netdev_priv(dev);
1340 void *ioaddr = tp->mmio_addr;
1341 int entry;
1343 /* Calculate the next Tx descriptor entry. */
1344 entry = atomic_read(&tp->cur_tx) % NUM_TX_DESC;
1346 assert(tp->tx_info[entry].skb == NULL);
1347 assert(tp->tx_info[entry].mapping == 0);
1349 tp->tx_info[entry].skb = skb;
1350 /* tp->tx_info[entry].mapping = 0; */
1351 skb_copy_from_linear_data(skb, tp->tx_buf[entry], skb->len);
1353 /* Note: the chip doesn't have auto-pad! */
1354 NETDRV_W32(TxStatus0 + (entry * sizeof(u32)),
1355 tp->tx_flag | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1357 dev->trans_start = jiffies;
1358 atomic_inc(&tp->cur_tx);
1359 if ((atomic_read(&tp->cur_tx) - atomic_read(&tp->dirty_tx)) >= NUM_TX_DESC)
1360 netif_stop_queue(dev);
1362 netdev_dbg(dev, "Queued Tx packet at %p size %u to slot %d\n",
1363 skb->data, skb->len, entry);
1365 return NETDEV_TX_OK;
1369 static void netdrv_tx_interrupt(struct net_device *dev,
1370 struct netdrv_private *tp,
1371 void *ioaddr)
1373 int cur_tx, dirty_tx, tx_left;
1375 assert(dev != NULL);
1376 assert(tp != NULL);
1377 assert(ioaddr != NULL);
1379 dirty_tx = atomic_read(&tp->dirty_tx);
1381 cur_tx = atomic_read(&tp->cur_tx);
1382 tx_left = cur_tx - dirty_tx;
1383 while (tx_left > 0) {
1384 int entry = dirty_tx % NUM_TX_DESC;
1385 int txstatus;
1387 txstatus = NETDRV_R32(TxStatus0 + (entry * sizeof(u32)));
1389 if (!(txstatus & (TxStatOK | TxUnderrun | TxAborted)))
1390 break; /* It still hasn't been Txed */
1392 /* Note: TxCarrierLost is always asserted at 100mbps. */
1393 if (txstatus & (TxOutOfWindow | TxAborted)) {
1394 /* There was an major error, log it. */
1395 netdev_dbg(dev, "Transmit error, Tx status %#08x\n",
1396 txstatus);
1397 dev->stats.tx_errors++;
1398 if (txstatus & TxAborted) {
1399 dev->stats.tx_aborted_errors++;
1400 NETDRV_W32(TxConfig, TxClearAbt | (TX_DMA_BURST << TxDMAShift));
1402 if (txstatus & TxCarrierLost)
1403 dev->stats.tx_carrier_errors++;
1404 if (txstatus & TxOutOfWindow)
1405 dev->stats.tx_window_errors++;
1406 } else {
1407 if (txstatus & TxUnderrun) {
1408 /* Add 64 to the Tx FIFO threshold. */
1409 if (tp->tx_flag < 0x00300000)
1410 tp->tx_flag += 0x00020000;
1411 dev->stats.tx_fifo_errors++;
1413 dev->stats.collisions += (txstatus >> 24) & 15;
1414 dev->stats.tx_bytes += txstatus & 0x7ff;
1415 dev->stats.tx_packets++;
1418 /* Free the original skb. */
1419 if (tp->tx_info[entry].mapping != 0) {
1420 pci_unmap_single(tp->pci_dev,
1421 tp->tx_info[entry].mapping,
1422 tp->tx_info[entry].skb->len,
1423 PCI_DMA_TODEVICE);
1424 tp->tx_info[entry].mapping = 0;
1426 dev_kfree_skb_irq(tp->tx_info[entry].skb);
1427 tp->tx_info[entry].skb = NULL;
1428 dirty_tx++;
1429 if (dirty_tx < 0) { /* handle signed int overflow */
1430 atomic_sub(cur_tx, &tp->cur_tx); /* XXX racy? */
1431 dirty_tx = cur_tx - tx_left + 1;
1433 if (netif_queue_stopped(dev))
1434 netif_wake_queue(dev);
1436 cur_tx = atomic_read(&tp->cur_tx);
1437 tx_left = cur_tx - dirty_tx;
1441 #ifndef NETDRV_NDEBUG
1442 if (atomic_read(&tp->cur_tx) - dirty_tx > NUM_TX_DESC) {
1443 netdev_err(dev, "Out-of-sync dirty pointer, %d vs. %d\n",
1444 dirty_tx, atomic_read(&tp->cur_tx));
1445 dirty_tx += NUM_TX_DESC;
1447 #endif /* NETDRV_NDEBUG */
1449 atomic_set(&tp->dirty_tx, dirty_tx);
1453 /* TODO: clean this up! Rx reset need not be this intensive */
1454 static void netdrv_rx_err(u32 rx_status, struct net_device *dev,
1455 struct netdrv_private *tp, void *ioaddr)
1457 u8 tmp8;
1458 int tmp_work = 1000;
1460 netdev_dbg(dev, "Ethernet frame had errors, status %08x\n", rx_status);
1461 if (rx_status & RxTooLong)
1462 netdev_dbg(dev, "Oversized Ethernet frame, status %04x!\n",
1463 rx_status);
1464 /* A.C.: The chip hangs here. */
1465 dev->stats.rx_errors++;
1466 if (rx_status & (RxBadSymbol | RxBadAlign))
1467 dev->stats.rx_frame_errors++;
1468 if (rx_status & (RxRunt | RxTooLong))
1469 dev->stats.rx_length_errors++;
1470 if (rx_status & RxCRCErr)
1471 dev->stats.rx_crc_errors++;
1472 /* Reset the receiver, based on RealTek recommendation.(Bug?) */
1473 tp->cur_rx = 0;
1475 /* disable receive */
1476 tmp8 = NETDRV_R8(ChipCmd) & ChipCmdClear;
1477 NETDRV_W8_F(ChipCmd, tmp8 | CmdTxEnb);
1479 /* A.C.: Reset the multicast list. */
1480 netdrv_set_rx_mode(dev);
1482 /* XXX potentially temporary hack to
1483 * restart hung receiver */
1484 while (--tmp_work > 0) {
1485 tmp8 = NETDRV_R8(ChipCmd);
1486 if ((tmp8 & CmdRxEnb) && (tmp8 & CmdTxEnb))
1487 break;
1488 NETDRV_W8_F(ChipCmd,
1489 (tmp8 & ChipCmdClear) | CmdRxEnb | CmdTxEnb);
1492 /* G.S.: Re-enable receiver */
1493 /* XXX temporary hack to work around receiver hang */
1494 netdrv_set_rx_mode(dev);
1496 if (tmp_work <= 0)
1497 netdev_warn(dev, "tx/rx enable wait too long\n");
1501 /* The data sheet doesn't describe the Rx ring at all, so I'm guessing at the
1502 field alignments and semantics. */
1503 static void netdrv_rx_interrupt(struct net_device *dev,
1504 struct netdrv_private *tp, void *ioaddr)
1506 unsigned char *rx_ring;
1507 u16 cur_rx;
1509 assert(dev != NULL);
1510 assert(tp != NULL);
1511 assert(ioaddr != NULL);
1513 rx_ring = tp->rx_ring;
1514 cur_rx = tp->cur_rx;
1516 netdev_dbg(dev, "In netdrv_rx(), current %04x BufAddr %04x, free to %04x, Cmd %02x\n",
1517 cur_rx, NETDRV_R16(RxBufAddr),
1518 NETDRV_R16(RxBufPtr), NETDRV_R8(ChipCmd));
1520 while ((NETDRV_R8(ChipCmd) & RxBufEmpty) == 0) {
1521 int ring_offset = cur_rx % RX_BUF_LEN;
1522 u32 rx_status;
1523 unsigned int rx_size;
1524 unsigned int pkt_size;
1525 struct sk_buff *skb;
1527 /* read size+status of next frame from DMA ring buffer */
1528 rx_status = le32_to_cpu(*(u32 *)(rx_ring + ring_offset));
1529 rx_size = rx_status >> 16;
1530 pkt_size = rx_size - 4;
1532 netdev_dbg(dev, "netdrv_rx() status %04x, size %04x, cur %04x\n",
1533 rx_status, rx_size, cur_rx);
1534 #if defined(NETDRV_DEBUG) && (NETDRV_DEBUG > 2)
1535 print_hex_dump_bytes("Frame contents: ", HEX_DUMP_OFFSET,
1536 &rx_ring[ring_offset], 70);
1537 #endif
1539 /* If Rx err or invalid rx_size/rx_status received
1540 *(which happens if we get lost in the ring),
1541 * Rx process gets reset, so we abort any further
1542 * Rx processing.
1544 if ((rx_size > (MAX_ETH_FRAME_SIZE+4)) ||
1545 (!(rx_status & RxStatusOK))) {
1546 netdrv_rx_err(rx_status, dev, tp, ioaddr);
1547 return;
1550 /* Malloc up new buffer, compatible with net-2e. */
1551 /* Omit the four octet CRC from the length. */
1553 /* TODO: consider allocating skb's outside of
1554 * interrupt context, both to speed interrupt processing,
1555 * and also to reduce the chances of having to
1556 * drop packets here under memory pressure.
1559 skb = dev_alloc_skb(pkt_size + 2);
1560 if (skb) {
1561 skb_reserve(skb, 2); /* 16 byte align the IP fields. */
1563 skb_copy_to_linear_data(skb, &rx_ring[ring_offset + 4], pkt_size);
1564 skb_put(skb, pkt_size);
1566 skb->protocol = eth_type_trans(skb, dev);
1567 netif_rx(skb);
1568 dev->stats.rx_bytes += pkt_size;
1569 dev->stats.rx_packets++;
1570 } else {
1571 netdev_warn(dev, "Memory squeeze, dropping packet\n");
1572 dev->stats.rx_dropped++;
1575 cur_rx = (cur_rx + rx_size + 4 + 3) & ~3;
1576 NETDRV_W16_F(RxBufPtr, cur_rx - 16);
1579 netdev_dbg(dev, "Done netdrv_rx(), current %04x BufAddr %04x, free to %04x, Cmd %02x\n",
1580 cur_rx, NETDRV_R16(RxBufAddr),
1581 NETDRV_R16(RxBufPtr), NETDRV_R8(ChipCmd));
1583 tp->cur_rx = cur_rx;
1587 static void netdrv_weird_interrupt(struct net_device *dev,
1588 struct netdrv_private *tp,
1589 void *ioaddr,
1590 int status, int link_changed)
1592 netdev_printk(KERN_DEBUG, dev, "Abnormal interrupt, status %08x\n",
1593 status);
1595 assert(dev != NULL);
1596 assert(tp != NULL);
1597 assert(ioaddr != NULL);
1599 /* Update the error count. */
1600 dev->stats.rx_missed_errors += NETDRV_R32(RxMissed);
1601 NETDRV_W32(RxMissed, 0);
1603 if ((status & RxUnderrun) && link_changed &&
1604 (tp->drv_flags & HAS_LNK_CHNG)) {
1605 /* Really link-change on new chips. */
1606 int lpar = NETDRV_R16(NWayLPAR);
1607 int duplex = ((lpar & 0x0100) || (lpar & 0x01C0) == 0x0040 ||
1608 tp->duplex_lock);
1609 if (tp->full_duplex != duplex) {
1610 tp->full_duplex = duplex;
1611 NETDRV_W8(Cfg9346, Cfg9346_Unlock);
1612 NETDRV_W8(Config1, tp->full_duplex ? 0x60 : 0x20);
1613 NETDRV_W8(Cfg9346, Cfg9346_Lock);
1615 status &= ~RxUnderrun;
1618 /* XXX along with netdrv_rx_err, are we double-counting errors? */
1619 if (status & (RxUnderrun | RxOverflow | RxErr | RxFIFOOver))
1620 dev->stats.rx_errors++;
1622 if (status & (PCSTimeout))
1623 dev->stats.rx_length_errors++;
1624 if (status & (RxUnderrun | RxFIFOOver))
1625 dev->stats.rx_fifo_errors++;
1626 if (status & RxOverflow) {
1627 dev->stats.rx_over_errors++;
1628 tp->cur_rx = NETDRV_R16(RxBufAddr) % RX_BUF_LEN;
1629 NETDRV_W16_F(RxBufPtr, tp->cur_rx - 16);
1631 if (status & PCIErr) {
1632 u16 pci_cmd_status;
1633 pci_read_config_word(tp->pci_dev, PCI_STATUS, &pci_cmd_status);
1635 netdev_err(dev, "PCI Bus error %04x\n", pci_cmd_status);
1640 /* The interrupt handler does all of the Rx thread work and cleans up
1641 after the Tx thread. */
1642 static irqreturn_t netdrv_interrupt(int irq, void *dev_instance)
1644 struct net_device *dev = (struct net_device *) dev_instance;
1645 struct netdrv_private *tp = netdev_priv(dev);
1646 int boguscnt = max_interrupt_work;
1647 void *ioaddr = tp->mmio_addr;
1648 int status = 0, link_changed = 0; /* avoid bogus "uninit" warning */
1649 int handled = 0;
1651 spin_lock(&tp->lock);
1653 do {
1654 status = NETDRV_R16(IntrStatus);
1656 /* h/w no longer present(hotplug?) or major error, bail */
1657 if (status == 0xFFFF)
1658 break;
1660 handled = 1;
1661 /* Acknowledge all of the current interrupt sources ASAP */
1662 NETDRV_W16_F(IntrStatus, status);
1664 netdev_dbg(dev, "interrupt status=%#04x new intstat=%#04x\n",
1665 status, NETDRV_R16(IntrStatus));
1667 if ((status &
1668 (PCIErr | PCSTimeout | RxUnderrun | RxOverflow |
1669 RxFIFOOver | TxErr | TxOK | RxErr | RxOK)) == 0)
1670 break;
1672 /* Check uncommon events with one test. */
1673 if (status & (PCIErr | PCSTimeout | RxUnderrun | RxOverflow |
1674 RxFIFOOver | TxErr | RxErr))
1675 netdrv_weird_interrupt(dev, tp, ioaddr,
1676 status, link_changed);
1678 if (status & (RxOK | RxUnderrun | RxOverflow | RxFIFOOver)) /* Rx interrupt */
1679 netdrv_rx_interrupt(dev, tp, ioaddr);
1681 if (status & (TxOK | TxErr))
1682 netdrv_tx_interrupt(dev, tp, ioaddr);
1684 boguscnt--;
1685 } while (boguscnt > 0);
1687 if (boguscnt <= 0) {
1688 netdev_warn(dev, "Too much work at interrupt, IntrStatus=%#04x\n",
1689 status);
1691 /* Clear all interrupt sources. */
1692 NETDRV_W16(IntrStatus, 0xffff);
1695 spin_unlock(&tp->lock);
1697 netdev_dbg(dev, "exiting interrupt, intr_status=%#04x\n",
1698 NETDRV_R16(IntrStatus));
1699 return IRQ_RETVAL(handled);
1703 static int netdrv_close(struct net_device *dev)
1705 struct netdrv_private *tp = netdev_priv(dev);
1706 void *ioaddr = tp->mmio_addr;
1707 unsigned long flags;
1709 DPRINTK("ENTER\n");
1711 netif_stop_queue(dev);
1713 netdev_dbg(dev, "Shutting down ethercard, status was %#04x\n",
1714 NETDRV_R16(IntrStatus));
1716 del_timer_sync(&tp->timer);
1718 spin_lock_irqsave(&tp->lock, flags);
1720 /* Stop the chip's Tx and Rx DMA processes. */
1721 NETDRV_W8(ChipCmd, (NETDRV_R8(ChipCmd) & ChipCmdClear));
1723 /* Disable interrupts by clearing the interrupt mask. */
1724 NETDRV_W16(IntrMask, 0x0000);
1726 /* Update the error counts. */
1727 dev->stats.rx_missed_errors += NETDRV_R32(RxMissed);
1728 NETDRV_W32(RxMissed, 0);
1730 spin_unlock_irqrestore(&tp->lock, flags);
1732 free_irq(dev->irq, dev);
1734 netdrv_tx_clear(dev);
1736 pci_free_consistent(tp->pci_dev, RX_BUF_TOT_LEN,
1737 tp->rx_ring, tp->rx_ring_dma);
1738 pci_free_consistent(tp->pci_dev, TX_BUF_TOT_LEN,
1739 tp->tx_bufs, tp->tx_bufs_dma);
1740 tp->rx_ring = NULL;
1741 tp->tx_bufs = NULL;
1743 /* Green! Put the chip in low-power mode. */
1744 NETDRV_W8(Cfg9346, Cfg9346_Unlock);
1745 NETDRV_W8(Config1, 0x03);
1746 NETDRV_W8(Cfg9346, Cfg9346_Lock);
1748 DPRINTK("EXIT\n");
1749 return 0;
1753 static int netdrv_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1755 struct netdrv_private *tp = netdev_priv(dev);
1756 struct mii_ioctl_data *data = if_mii(rq);
1757 unsigned long flags;
1758 int rc = 0;
1760 DPRINTK("ENTER\n");
1762 switch (cmd) {
1763 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1764 data->phy_id = tp->phys[0] & 0x3f;
1765 /* Fall Through */
1767 case SIOCGMIIREG: /* Read MII PHY register. */
1768 spin_lock_irqsave(&tp->lock, flags);
1769 data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1770 spin_unlock_irqrestore(&tp->lock, flags);
1771 break;
1773 case SIOCSMIIREG: /* Write MII PHY register. */
1774 spin_lock_irqsave(&tp->lock, flags);
1775 mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1776 spin_unlock_irqrestore(&tp->lock, flags);
1777 break;
1779 default:
1780 rc = -EOPNOTSUPP;
1781 break;
1784 DPRINTK("EXIT, returning %d\n", rc);
1785 return rc;
1788 /* Set or clear the multicast filter for this adaptor.
1789 This routine is not state sensitive and need not be SMP locked. */
1791 static void netdrv_set_rx_mode(struct net_device *dev)
1793 struct netdrv_private *tp = netdev_priv(dev);
1794 void *ioaddr = tp->mmio_addr;
1795 u32 mc_filter[2]; /* Multicast hash filter */
1796 int rx_mode;
1797 u32 tmp;
1799 DPRINTK("ENTER\n");
1801 netdev_dbg(dev, "%s(%04x) done -- Rx config %08lx\n",
1802 __func__, dev->flags, NETDRV_R32(RxConfig));
1804 /* Note: do not reorder, GCC is clever about common statements. */
1805 if (dev->flags & IFF_PROMISC) {
1806 rx_mode =
1807 AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
1808 AcceptAllPhys;
1809 mc_filter[1] = mc_filter[0] = 0xffffffff;
1810 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1811 (dev->flags & IFF_ALLMULTI)) {
1812 /* Too many to filter perfectly -- accept all multicasts. */
1813 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1814 mc_filter[1] = mc_filter[0] = 0xffffffff;
1815 } else {
1816 struct dev_mc_list *mclist;
1818 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1819 mc_filter[1] = mc_filter[0] = 0;
1820 netdev_for_each_mc_addr(mclist, dev) {
1821 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1823 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1827 /* if called from irq handler, lock already acquired */
1828 if (!in_irq())
1829 spin_lock_irq(&tp->lock);
1831 /* We can safely update without stopping the chip. */
1832 tmp = netdrv_rx_config | rx_mode |
1833 (NETDRV_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
1834 NETDRV_W32_F(RxConfig, tmp);
1835 NETDRV_W32_F(MAR0 + 0, mc_filter[0]);
1836 NETDRV_W32_F(MAR0 + 4, mc_filter[1]);
1838 if (!in_irq())
1839 spin_unlock_irq(&tp->lock);
1841 DPRINTK("EXIT\n");
1845 #ifdef CONFIG_PM
1847 static int netdrv_suspend(struct pci_dev *pdev, pm_message_t state)
1849 struct net_device *dev = pci_get_drvdata(pdev);
1850 struct netdrv_private *tp = netdev_priv(dev);
1851 void *ioaddr = tp->mmio_addr;
1852 unsigned long flags;
1854 if (!netif_running(dev))
1855 return 0;
1856 netif_device_detach(dev);
1858 spin_lock_irqsave(&tp->lock, flags);
1860 /* Disable interrupts, stop Tx and Rx. */
1861 NETDRV_W16(IntrMask, 0x0000);
1862 NETDRV_W8(ChipCmd, (NETDRV_R8(ChipCmd) & ChipCmdClear));
1864 /* Update the error counts. */
1865 dev->stats.rx_missed_errors += NETDRV_R32(RxMissed);
1866 NETDRV_W32(RxMissed, 0);
1868 spin_unlock_irqrestore(&tp->lock, flags);
1870 pci_save_state(pdev);
1871 pci_set_power_state(pdev, PCI_D3hot);
1873 return 0;
1877 static int netdrv_resume(struct pci_dev *pdev)
1879 struct net_device *dev = pci_get_drvdata(pdev);
1880 /*struct netdrv_private *tp = netdev_priv(dev);*/
1882 if (!netif_running(dev))
1883 return 0;
1884 pci_set_power_state(pdev, PCI_D0);
1885 pci_restore_state(pdev);
1886 netif_device_attach(dev);
1887 netdrv_hw_start(dev);
1889 return 0;
1892 #endif /* CONFIG_PM */
1895 static struct pci_driver netdrv_pci_driver = {
1896 .name = MODNAME,
1897 .id_table = netdrv_pci_tbl,
1898 .probe = netdrv_init_one,
1899 .remove = __devexit_p(netdrv_remove_one),
1900 #ifdef CONFIG_PM
1901 .suspend = netdrv_suspend,
1902 .resume = netdrv_resume,
1903 #endif /* CONFIG_PM */
1907 static int __init netdrv_init_module(void)
1909 /* when a module, this is printed whether or not devices are found in probe */
1910 #ifdef MODULE
1911 printk(version);
1912 #endif
1913 return pci_register_driver(&netdrv_pci_driver);
1917 static void __exit netdrv_cleanup_module(void)
1919 pci_unregister_driver(&netdrv_pci_driver);
1923 module_init(netdrv_init_module);
1924 module_exit(netdrv_cleanup_module);