1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
22 #include "workarounds.h"
24 /**************************************************************************
28 **************************************************************************
31 /* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
44 /* RX FIFO XOFF watermark
46 * When the amount of the RX FIFO increases used increases past this
47 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
48 * This also has an effect on RX/TX arbitration
50 int efx_nic_rx_xoff_thresh
= -1;
51 module_param_named(rx_xoff_thresh_bytes
, efx_nic_rx_xoff_thresh
, int, 0644);
52 MODULE_PARM_DESC(rx_xoff_thresh_bytes
, "RX fifo XOFF threshold");
54 /* RX FIFO XON watermark
56 * When the amount of the RX FIFO used decreases below this
57 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
58 * This also has an effect on RX/TX arbitration
60 int efx_nic_rx_xon_thresh
= -1;
61 module_param_named(rx_xon_thresh_bytes
, efx_nic_rx_xon_thresh
, int, 0644);
62 MODULE_PARM_DESC(rx_xon_thresh_bytes
, "RX fifo XON threshold");
64 /* If EFX_MAX_INT_ERRORS internal errors occur within
65 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
68 #define EFX_INT_ERROR_EXPIRE 3600
69 #define EFX_MAX_INT_ERRORS 5
71 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
73 #define EFX_FLUSH_INTERVAL 10
74 #define EFX_FLUSH_POLL_COUNT 100
76 /* Size and alignment of special buffers (4KB) */
77 #define EFX_BUF_SIZE 4096
79 /* Depth of RX flush request fifo */
80 #define EFX_RX_FLUSH_COUNT 4
82 /**************************************************************************
84 * Solarstorm hardware access
86 **************************************************************************/
88 static inline void efx_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
91 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
95 /* Read the current event from the event queue */
96 static inline efx_qword_t
*efx_event(struct efx_channel
*channel
,
99 return (((efx_qword_t
*) (channel
->eventq
.addr
)) + index
);
102 /* See if an event is present
104 * We check both the high and low dword of the event for all ones. We
105 * wrote all ones when we cleared the event, and no valid event can
106 * have all ones in either its high or low dwords. This approach is
107 * robust against reordering.
109 * Note that using a single 64-bit comparison is incorrect; even
110 * though the CPU read will be atomic, the DMA write may not be.
112 static inline int efx_event_present(efx_qword_t
*event
)
114 return (!(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
115 EFX_DWORD_IS_ALL_ONES(event
->dword
[1])));
118 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
119 const efx_oword_t
*mask
)
121 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
122 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
125 int efx_nic_test_registers(struct efx_nic
*efx
,
126 const struct efx_nic_register_test
*regs
,
129 unsigned address
= 0, i
, j
;
130 efx_oword_t mask
, imask
, original
, reg
, buf
;
132 /* Falcon should be in loopback to isolate the XMAC from the PHY */
133 WARN_ON(!LOOPBACK_INTERNAL(efx
));
135 for (i
= 0; i
< n_regs
; ++i
) {
136 address
= regs
[i
].address
;
137 mask
= imask
= regs
[i
].mask
;
138 EFX_INVERT_OWORD(imask
);
140 efx_reado(efx
, &original
, address
);
142 /* bit sweep on and off */
143 for (j
= 0; j
< 128; j
++) {
144 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
147 /* Test this testable bit can be set in isolation */
148 EFX_AND_OWORD(reg
, original
, mask
);
149 EFX_SET_OWORD32(reg
, j
, j
, 1);
151 efx_writeo(efx
, ®
, address
);
152 efx_reado(efx
, &buf
, address
);
154 if (efx_masked_compare_oword(®
, &buf
, &mask
))
157 /* Test this testable bit can be cleared in isolation */
158 EFX_OR_OWORD(reg
, original
, mask
);
159 EFX_SET_OWORD32(reg
, j
, j
, 0);
161 efx_writeo(efx
, ®
, address
);
162 efx_reado(efx
, &buf
, address
);
164 if (efx_masked_compare_oword(®
, &buf
, &mask
))
168 efx_writeo(efx
, &original
, address
);
174 EFX_ERR(efx
, "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
175 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
176 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
180 /**************************************************************************
182 * Special buffer handling
183 * Special buffers are used for event queues and the TX and RX
186 *************************************************************************/
189 * Initialise a special buffer
191 * This will define a buffer (previously allocated via
192 * efx_alloc_special_buffer()) in the buffer table, allowing
193 * it to be used for event queues, descriptor rings etc.
196 efx_init_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
198 efx_qword_t buf_desc
;
203 EFX_BUG_ON_PARANOID(!buffer
->addr
);
205 /* Write buffer descriptors to NIC */
206 for (i
= 0; i
< buffer
->entries
; i
++) {
207 index
= buffer
->index
+ i
;
208 dma_addr
= buffer
->dma_addr
+ (i
* 4096);
209 EFX_LOG(efx
, "mapping special buffer %d at %llx\n",
210 index
, (unsigned long long)dma_addr
);
211 EFX_POPULATE_QWORD_3(buf_desc
,
212 FRF_AZ_BUF_ADR_REGION
, 0,
213 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
214 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
215 efx_write_buf_tbl(efx
, &buf_desc
, index
);
219 /* Unmaps a buffer and clears the buffer table entries */
221 efx_fini_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
223 efx_oword_t buf_tbl_upd
;
224 unsigned int start
= buffer
->index
;
225 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
227 if (!buffer
->entries
)
230 EFX_LOG(efx
, "unmapping special buffers %d-%d\n",
231 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
233 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
234 FRF_AZ_BUF_UPD_CMD
, 0,
235 FRF_AZ_BUF_CLR_CMD
, 1,
236 FRF_AZ_BUF_CLR_END_ID
, end
,
237 FRF_AZ_BUF_CLR_START_ID
, start
);
238 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
242 * Allocate a new special buffer
244 * This allocates memory for a new buffer, clears it and allocates a
245 * new buffer ID range. It does not write into the buffer table.
247 * This call will allocate 4KB buffers, since 8KB buffers can't be
248 * used for event queues and descriptor rings.
250 static int efx_alloc_special_buffer(struct efx_nic
*efx
,
251 struct efx_special_buffer
*buffer
,
254 len
= ALIGN(len
, EFX_BUF_SIZE
);
256 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
261 buffer
->entries
= len
/ EFX_BUF_SIZE
;
262 BUG_ON(buffer
->dma_addr
& (EFX_BUF_SIZE
- 1));
264 /* All zeros is a potentially valid event so memset to 0xff */
265 memset(buffer
->addr
, 0xff, len
);
267 /* Select new buffer ID */
268 buffer
->index
= efx
->next_buffer_table
;
269 efx
->next_buffer_table
+= buffer
->entries
;
271 EFX_LOG(efx
, "allocating special buffers %d-%d at %llx+%x "
272 "(virt %p phys %llx)\n", buffer
->index
,
273 buffer
->index
+ buffer
->entries
- 1,
274 (u64
)buffer
->dma_addr
, len
,
275 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
281 efx_free_special_buffer(struct efx_nic
*efx
, struct efx_special_buffer
*buffer
)
286 EFX_LOG(efx
, "deallocating special buffers %d-%d at %llx+%x "
287 "(virt %p phys %llx)\n", buffer
->index
,
288 buffer
->index
+ buffer
->entries
- 1,
289 (u64
)buffer
->dma_addr
, buffer
->len
,
290 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
292 pci_free_consistent(efx
->pci_dev
, buffer
->len
, buffer
->addr
,
298 /**************************************************************************
300 * Generic buffer handling
301 * These buffers are used for interrupt status and MAC stats
303 **************************************************************************/
305 int efx_nic_alloc_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
,
308 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
313 memset(buffer
->addr
, 0, len
);
317 void efx_nic_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
)
320 pci_free_consistent(efx
->pci_dev
, buffer
->len
,
321 buffer
->addr
, buffer
->dma_addr
);
326 /**************************************************************************
330 **************************************************************************/
332 /* Returns a pointer to the specified transmit descriptor in the TX
333 * descriptor queue belonging to the specified channel.
335 static inline efx_qword_t
*
336 efx_tx_desc(struct efx_tx_queue
*tx_queue
, unsigned int index
)
338 return (((efx_qword_t
*) (tx_queue
->txd
.addr
)) + index
);
341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342 static inline void efx_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
347 write_ptr
= tx_queue
->write_count
& EFX_TXQ_MASK
;
348 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
349 efx_writed_page(tx_queue
->efx
, ®
,
350 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
354 /* For each entry inserted into the software descriptor ring, create a
355 * descriptor in the hardware TX descriptor ring (in host memory), and
358 void efx_nic_push_buffers(struct efx_tx_queue
*tx_queue
)
361 struct efx_tx_buffer
*buffer
;
365 BUG_ON(tx_queue
->write_count
== tx_queue
->insert_count
);
368 write_ptr
= tx_queue
->write_count
& EFX_TXQ_MASK
;
369 buffer
= &tx_queue
->buffer
[write_ptr
];
370 txd
= efx_tx_desc(tx_queue
, write_ptr
);
371 ++tx_queue
->write_count
;
373 /* Create TX descriptor ring entry */
374 EFX_POPULATE_QWORD_4(*txd
,
375 FSF_AZ_TX_KER_CONT
, buffer
->continuation
,
376 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
377 FSF_AZ_TX_KER_BUF_REGION
, 0,
378 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
379 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
381 wmb(); /* Ensure descriptors are written before they are fetched */
382 efx_notify_tx_desc(tx_queue
);
385 /* Allocate hardware resources for a TX queue */
386 int efx_nic_probe_tx(struct efx_tx_queue
*tx_queue
)
388 struct efx_nic
*efx
= tx_queue
->efx
;
389 BUILD_BUG_ON(EFX_TXQ_SIZE
< 512 || EFX_TXQ_SIZE
> 4096 ||
390 EFX_TXQ_SIZE
& EFX_TXQ_MASK
);
391 return efx_alloc_special_buffer(efx
, &tx_queue
->txd
,
392 EFX_TXQ_SIZE
* sizeof(efx_qword_t
));
395 void efx_nic_init_tx(struct efx_tx_queue
*tx_queue
)
397 efx_oword_t tx_desc_ptr
;
398 struct efx_nic
*efx
= tx_queue
->efx
;
400 tx_queue
->flushed
= FLUSH_NONE
;
402 /* Pin TX descriptor ring */
403 efx_init_special_buffer(efx
, &tx_queue
->txd
);
405 /* Push TX descriptor ring to card */
406 EFX_POPULATE_OWORD_10(tx_desc_ptr
,
407 FRF_AZ_TX_DESCQ_EN
, 1,
408 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
409 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
410 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
411 FRF_AZ_TX_DESCQ_EVQ_ID
,
412 tx_queue
->channel
->channel
,
413 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
414 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
415 FRF_AZ_TX_DESCQ_SIZE
,
416 __ffs(tx_queue
->txd
.entries
),
417 FRF_AZ_TX_DESCQ_TYPE
, 0,
418 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
420 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) {
421 int csum
= tx_queue
->queue
== EFX_TX_QUEUE_OFFLOAD_CSUM
;
422 EFX_SET_OWORD_FIELD(tx_desc_ptr
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
423 EFX_SET_OWORD_FIELD(tx_desc_ptr
, FRF_BZ_TX_TCP_CHKSM_DIS
,
427 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
430 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
) {
433 /* Only 128 bits in this register */
434 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT
>= 128);
436 efx_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
437 if (tx_queue
->queue
== EFX_TX_QUEUE_OFFLOAD_CSUM
)
438 clear_bit_le(tx_queue
->queue
, (void *)®
);
440 set_bit_le(tx_queue
->queue
, (void *)®
);
441 efx_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
445 static void efx_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
447 struct efx_nic
*efx
= tx_queue
->efx
;
448 efx_oword_t tx_flush_descq
;
450 tx_queue
->flushed
= FLUSH_PENDING
;
452 /* Post a flush command */
453 EFX_POPULATE_OWORD_2(tx_flush_descq
,
454 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
455 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
456 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
459 void efx_nic_fini_tx(struct efx_tx_queue
*tx_queue
)
461 struct efx_nic
*efx
= tx_queue
->efx
;
462 efx_oword_t tx_desc_ptr
;
464 /* The queue should have been flushed */
465 WARN_ON(tx_queue
->flushed
!= FLUSH_DONE
);
467 /* Remove TX descriptor ring from card */
468 EFX_ZERO_OWORD(tx_desc_ptr
);
469 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
472 /* Unpin TX descriptor ring */
473 efx_fini_special_buffer(efx
, &tx_queue
->txd
);
476 /* Free buffers backing TX queue */
477 void efx_nic_remove_tx(struct efx_tx_queue
*tx_queue
)
479 efx_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
482 /**************************************************************************
486 **************************************************************************/
488 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
489 static inline efx_qword_t
*
490 efx_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned int index
)
492 return (((efx_qword_t
*) (rx_queue
->rxd
.addr
)) + index
);
495 /* This creates an entry in the RX descriptor queue */
497 efx_build_rx_desc(struct efx_rx_queue
*rx_queue
, unsigned index
)
499 struct efx_rx_buffer
*rx_buf
;
502 rxd
= efx_rx_desc(rx_queue
, index
);
503 rx_buf
= efx_rx_buffer(rx_queue
, index
);
504 EFX_POPULATE_QWORD_3(*rxd
,
505 FSF_AZ_RX_KER_BUF_SIZE
,
507 rx_queue
->efx
->type
->rx_buffer_padding
,
508 FSF_AZ_RX_KER_BUF_REGION
, 0,
509 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
512 /* This writes to the RX_DESC_WPTR register for the specified receive
515 void efx_nic_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
520 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
521 efx_build_rx_desc(rx_queue
,
522 rx_queue
->notified_count
&
524 ++rx_queue
->notified_count
;
528 write_ptr
= rx_queue
->added_count
& EFX_RXQ_MASK
;
529 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
530 efx_writed_page(rx_queue
->efx
, ®
,
531 FR_AZ_RX_DESC_UPD_DWORD_P0
, rx_queue
->queue
);
534 int efx_nic_probe_rx(struct efx_rx_queue
*rx_queue
)
536 struct efx_nic
*efx
= rx_queue
->efx
;
537 BUILD_BUG_ON(EFX_RXQ_SIZE
< 512 || EFX_RXQ_SIZE
> 4096 ||
538 EFX_RXQ_SIZE
& EFX_RXQ_MASK
);
539 return efx_alloc_special_buffer(efx
, &rx_queue
->rxd
,
540 EFX_RXQ_SIZE
* sizeof(efx_qword_t
));
543 void efx_nic_init_rx(struct efx_rx_queue
*rx_queue
)
545 efx_oword_t rx_desc_ptr
;
546 struct efx_nic
*efx
= rx_queue
->efx
;
547 bool is_b0
= efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
;
548 bool iscsi_digest_en
= is_b0
;
550 EFX_LOG(efx
, "RX queue %d ring in special buffers %d-%d\n",
551 rx_queue
->queue
, rx_queue
->rxd
.index
,
552 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
554 rx_queue
->flushed
= FLUSH_NONE
;
556 /* Pin RX descriptor ring */
557 efx_init_special_buffer(efx
, &rx_queue
->rxd
);
559 /* Push RX descriptor ring to card */
560 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
561 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
562 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
563 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
564 FRF_AZ_RX_DESCQ_EVQ_ID
,
565 rx_queue
->channel
->channel
,
566 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
567 FRF_AZ_RX_DESCQ_LABEL
, rx_queue
->queue
,
568 FRF_AZ_RX_DESCQ_SIZE
,
569 __ffs(rx_queue
->rxd
.entries
),
570 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
571 /* For >=B0 this is scatter so disable */
572 FRF_AZ_RX_DESCQ_JUMBO
, !is_b0
,
573 FRF_AZ_RX_DESCQ_EN
, 1);
574 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
578 static void efx_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
580 struct efx_nic
*efx
= rx_queue
->efx
;
581 efx_oword_t rx_flush_descq
;
583 rx_queue
->flushed
= FLUSH_PENDING
;
585 /* Post a flush command */
586 EFX_POPULATE_OWORD_2(rx_flush_descq
,
587 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
588 FRF_AZ_RX_FLUSH_DESCQ
, rx_queue
->queue
);
589 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
592 void efx_nic_fini_rx(struct efx_rx_queue
*rx_queue
)
594 efx_oword_t rx_desc_ptr
;
595 struct efx_nic
*efx
= rx_queue
->efx
;
597 /* The queue should already have been flushed */
598 WARN_ON(rx_queue
->flushed
!= FLUSH_DONE
);
600 /* Remove RX descriptor ring from card */
601 EFX_ZERO_OWORD(rx_desc_ptr
);
602 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
605 /* Unpin RX descriptor ring */
606 efx_fini_special_buffer(efx
, &rx_queue
->rxd
);
609 /* Free buffers backing RX queue */
610 void efx_nic_remove_rx(struct efx_rx_queue
*rx_queue
)
612 efx_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
615 /**************************************************************************
617 * Event queue processing
618 * Event queues are processed by per-channel tasklets.
620 **************************************************************************/
622 /* Update a channel's event queue's read pointer (RPTR) register
624 * This writes the EVQ_RPTR_REG register for the specified channel's
627 void efx_nic_eventq_read_ack(struct efx_channel
*channel
)
630 struct efx_nic
*efx
= channel
->efx
;
632 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
, channel
->eventq_read_ptr
);
633 efx_writed_table(efx
, ®
, efx
->type
->evq_rptr_tbl_base
,
637 /* Use HW to insert a SW defined event */
638 void efx_generate_event(struct efx_channel
*channel
, efx_qword_t
*event
)
640 efx_oword_t drv_ev_reg
;
642 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
643 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
644 drv_ev_reg
.u32
[0] = event
->u32
[0];
645 drv_ev_reg
.u32
[1] = event
->u32
[1];
646 drv_ev_reg
.u32
[2] = 0;
647 drv_ev_reg
.u32
[3] = 0;
648 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, channel
->channel
);
649 efx_writeo(channel
->efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
652 /* Handle a transmit completion event
654 * The NIC batches TX completion events; the message we receive is of
655 * the form "complete all TX events up to this index".
658 efx_handle_tx_event(struct efx_channel
*channel
, efx_qword_t
*event
)
660 unsigned int tx_ev_desc_ptr
;
661 unsigned int tx_ev_q_label
;
662 struct efx_tx_queue
*tx_queue
;
663 struct efx_nic
*efx
= channel
->efx
;
665 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
666 /* Transmit completion */
667 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
668 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
669 tx_queue
= &efx
->tx_queue
[tx_ev_q_label
];
670 channel
->irq_mod_score
+=
671 (tx_ev_desc_ptr
- tx_queue
->read_count
) &
673 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
674 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
675 /* Rewrite the FIFO write pointer */
676 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
677 tx_queue
= &efx
->tx_queue
[tx_ev_q_label
];
679 if (efx_dev_registered(efx
))
680 netif_tx_lock(efx
->net_dev
);
681 efx_notify_tx_desc(tx_queue
);
682 if (efx_dev_registered(efx
))
683 netif_tx_unlock(efx
->net_dev
);
684 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
) &&
685 EFX_WORKAROUND_10727(efx
)) {
686 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
688 EFX_ERR(efx
, "channel %d unexpected TX event "
689 EFX_QWORD_FMT
"\n", channel
->channel
,
690 EFX_QWORD_VAL(*event
));
694 /* Detect errors included in the rx_evt_pkt_ok bit. */
695 static void efx_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
696 const efx_qword_t
*event
,
700 struct efx_nic
*efx
= rx_queue
->efx
;
701 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
702 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
703 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
704 bool rx_ev_other_err
, rx_ev_pause_frm
;
705 bool rx_ev_hdr_type
, rx_ev_mcast_pkt
;
706 unsigned rx_ev_pkt_type
;
708 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
709 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
710 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
711 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
712 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
713 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
714 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
715 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
716 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
717 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
718 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
719 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
720 rx_ev_drib_nib
= ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) ?
721 0 : EFX_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
722 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
724 /* Every error apart from tobe_disc and pause_frm */
725 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
726 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
727 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
729 /* Count errors that are not in MAC stats. Ignore expected
730 * checksum errors during self-test. */
732 ++rx_queue
->channel
->n_rx_frm_trunc
;
733 else if (rx_ev_tobe_disc
)
734 ++rx_queue
->channel
->n_rx_tobe_disc
;
735 else if (!efx
->loopback_selftest
) {
736 if (rx_ev_ip_hdr_chksum_err
)
737 ++rx_queue
->channel
->n_rx_ip_hdr_chksum_err
;
738 else if (rx_ev_tcp_udp_chksum_err
)
739 ++rx_queue
->channel
->n_rx_tcp_udp_chksum_err
;
742 /* The frame must be discarded if any of these are true. */
743 *discard
= (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
744 rx_ev_tobe_disc
| rx_ev_pause_frm
);
746 /* TOBE_DISC is expected on unicast mismatches; don't print out an
747 * error message. FRM_TRUNC indicates RXDP dropped the packet due
748 * to a FIFO overflow.
750 #ifdef EFX_ENABLE_DEBUG
751 if (rx_ev_other_err
) {
752 EFX_INFO_RL(efx
, " RX queue %d unexpected RX event "
753 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
754 rx_queue
->queue
, EFX_QWORD_VAL(*event
),
755 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
756 rx_ev_ip_hdr_chksum_err
?
757 " [IP_HDR_CHKSUM_ERR]" : "",
758 rx_ev_tcp_udp_chksum_err
?
759 " [TCP_UDP_CHKSUM_ERR]" : "",
760 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
761 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
762 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
763 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
764 rx_ev_pause_frm
? " [PAUSE]" : "");
769 /* Handle receive events that are not in-order. */
771 efx_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
, unsigned index
)
773 struct efx_nic
*efx
= rx_queue
->efx
;
774 unsigned expected
, dropped
;
776 expected
= rx_queue
->removed_count
& EFX_RXQ_MASK
;
777 dropped
= (index
- expected
) & EFX_RXQ_MASK
;
778 EFX_INFO(efx
, "dropped %d events (index=%d expected=%d)\n",
779 dropped
, index
, expected
);
781 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
782 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
785 /* Handle a packet received event
787 * The NIC gives a "discard" flag if it's a unicast packet with the
788 * wrong destination address
789 * Also "is multicast" and "matches multicast filter" flags can be used to
790 * discard non-matching multicast packets.
793 efx_handle_rx_event(struct efx_channel
*channel
, const efx_qword_t
*event
)
795 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
796 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
797 unsigned expected_ptr
;
798 bool rx_ev_pkt_ok
, discard
= false, checksummed
;
799 struct efx_rx_queue
*rx_queue
;
800 struct efx_nic
*efx
= channel
->efx
;
802 /* Basic packet information */
803 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
804 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
805 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
806 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
));
807 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
) != 1);
808 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
811 rx_queue
= &efx
->rx_queue
[channel
->channel
];
813 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
814 expected_ptr
= rx_queue
->removed_count
& EFX_RXQ_MASK
;
815 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
))
816 efx_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
);
818 if (likely(rx_ev_pkt_ok
)) {
819 /* If packet is marked as OK and packet type is TCP/IP or
820 * UDP/IP, then we can rely on the hardware checksum.
823 likely(efx
->rx_checksum_enabled
) &&
824 (rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP
||
825 rx_ev_hdr_type
== FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP
);
827 efx_handle_rx_not_ok(rx_queue
, event
, &rx_ev_pkt_ok
, &discard
);
831 /* Detect multicast packets that didn't match the filter */
832 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
833 if (rx_ev_mcast_pkt
) {
834 unsigned int rx_ev_mcast_hash_match
=
835 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
837 if (unlikely(!rx_ev_mcast_hash_match
)) {
838 ++channel
->n_rx_mcast_mismatch
;
843 channel
->irq_mod_score
+= 2;
845 /* Handle received packet */
846 efx_rx_packet(rx_queue
, rx_ev_desc_ptr
, rx_ev_byte_cnt
,
847 checksummed
, discard
);
850 /* Global events are basically PHY events */
852 efx_handle_global_event(struct efx_channel
*channel
, efx_qword_t
*event
)
854 struct efx_nic
*efx
= channel
->efx
;
855 bool handled
= false;
857 if (EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_G_PHY0_INTR
) ||
858 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XG_PHY0_INTR
) ||
859 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XFP_PHY0_INTR
)) {
864 if ((efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
) &&
865 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_XG_MGT_INTR
)) {
866 efx
->xmac_poll_required
= true;
870 if (efx_nic_rev(efx
) <= EFX_REV_FALCON_A1
?
871 EFX_QWORD_FIELD(*event
, FSF_AA_GLB_EV_RX_RECOVERY
) :
872 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_RX_RECOVERY
)) {
873 EFX_ERR(efx
, "channel %d seen global RX_RESET "
874 "event. Resetting.\n", channel
->channel
);
876 atomic_inc(&efx
->rx_reset
);
877 efx_schedule_reset(efx
, EFX_WORKAROUND_6555(efx
) ?
878 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
883 EFX_ERR(efx
, "channel %d unknown global event "
884 EFX_QWORD_FMT
"\n", channel
->channel
,
885 EFX_QWORD_VAL(*event
));
889 efx_handle_driver_event(struct efx_channel
*channel
, efx_qword_t
*event
)
891 struct efx_nic
*efx
= channel
->efx
;
892 unsigned int ev_sub_code
;
893 unsigned int ev_sub_data
;
895 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
896 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
898 switch (ev_sub_code
) {
899 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
900 EFX_TRACE(efx
, "channel %d TXQ %d flushed\n",
901 channel
->channel
, ev_sub_data
);
903 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
904 EFX_TRACE(efx
, "channel %d RXQ %d flushed\n",
905 channel
->channel
, ev_sub_data
);
907 case FSE_AZ_EVQ_INIT_DONE_EV
:
908 EFX_LOG(efx
, "channel %d EVQ %d initialised\n",
909 channel
->channel
, ev_sub_data
);
911 case FSE_AZ_SRM_UPD_DONE_EV
:
912 EFX_TRACE(efx
, "channel %d SRAM update done\n",
915 case FSE_AZ_WAKE_UP_EV
:
916 EFX_TRACE(efx
, "channel %d RXQ %d wakeup event\n",
917 channel
->channel
, ev_sub_data
);
919 case FSE_AZ_TIMER_EV
:
920 EFX_TRACE(efx
, "channel %d RX queue %d timer expired\n",
921 channel
->channel
, ev_sub_data
);
923 case FSE_AA_RX_RECOVER_EV
:
924 EFX_ERR(efx
, "channel %d seen DRIVER RX_RESET event. "
925 "Resetting.\n", channel
->channel
);
926 atomic_inc(&efx
->rx_reset
);
927 efx_schedule_reset(efx
,
928 EFX_WORKAROUND_6555(efx
) ?
929 RESET_TYPE_RX_RECOVERY
:
932 case FSE_BZ_RX_DSC_ERROR_EV
:
933 EFX_ERR(efx
, "RX DMA Q %d reports descriptor fetch error."
934 " RX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
935 efx_schedule_reset(efx
, RESET_TYPE_RX_DESC_FETCH
);
937 case FSE_BZ_TX_DSC_ERROR_EV
:
938 EFX_ERR(efx
, "TX DMA Q %d reports descriptor fetch error."
939 " TX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
940 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
943 EFX_TRACE(efx
, "channel %d unknown driver event code %d "
944 "data %04x\n", channel
->channel
, ev_sub_code
,
950 int efx_nic_process_eventq(struct efx_channel
*channel
, int rx_quota
)
952 unsigned int read_ptr
;
953 efx_qword_t event
, *p_event
;
957 read_ptr
= channel
->eventq_read_ptr
;
960 p_event
= efx_event(channel
, read_ptr
);
963 if (!efx_event_present(&event
))
967 EFX_TRACE(channel
->efx
, "channel %d event is "EFX_QWORD_FMT
"\n",
968 channel
->channel
, EFX_QWORD_VAL(event
));
970 /* Clear this event by marking it all ones */
971 EFX_SET_QWORD(*p_event
);
973 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
976 case FSE_AZ_EV_CODE_RX_EV
:
977 efx_handle_rx_event(channel
, &event
);
980 case FSE_AZ_EV_CODE_TX_EV
:
981 efx_handle_tx_event(channel
, &event
);
983 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
984 channel
->eventq_magic
= EFX_QWORD_FIELD(
985 event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
986 EFX_LOG(channel
->efx
, "channel %d received generated "
987 "event "EFX_QWORD_FMT
"\n", channel
->channel
,
988 EFX_QWORD_VAL(event
));
990 case FSE_AZ_EV_CODE_GLOBAL_EV
:
991 efx_handle_global_event(channel
, &event
);
993 case FSE_AZ_EV_CODE_DRIVER_EV
:
994 efx_handle_driver_event(channel
, &event
);
996 case FSE_CZ_EV_CODE_MCDI_EV
:
997 efx_mcdi_process_event(channel
, &event
);
1000 EFX_ERR(channel
->efx
, "channel %d unknown event type %d"
1001 " (data " EFX_QWORD_FMT
")\n", channel
->channel
,
1002 ev_code
, EFX_QWORD_VAL(event
));
1005 /* Increment read pointer */
1006 read_ptr
= (read_ptr
+ 1) & EFX_EVQ_MASK
;
1008 } while (rx_packets
< rx_quota
);
1010 channel
->eventq_read_ptr
= read_ptr
;
1015 /* Allocate buffer table entries for event queue */
1016 int efx_nic_probe_eventq(struct efx_channel
*channel
)
1018 struct efx_nic
*efx
= channel
->efx
;
1019 BUILD_BUG_ON(EFX_EVQ_SIZE
< 512 || EFX_EVQ_SIZE
> 32768 ||
1020 EFX_EVQ_SIZE
& EFX_EVQ_MASK
);
1021 return efx_alloc_special_buffer(efx
, &channel
->eventq
,
1022 EFX_EVQ_SIZE
* sizeof(efx_qword_t
));
1025 void efx_nic_init_eventq(struct efx_channel
*channel
)
1028 struct efx_nic
*efx
= channel
->efx
;
1030 EFX_LOG(efx
, "channel %d event queue in special buffers %d-%d\n",
1031 channel
->channel
, channel
->eventq
.index
,
1032 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1034 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
) {
1035 EFX_POPULATE_OWORD_3(reg
,
1036 FRF_CZ_TIMER_Q_EN
, 1,
1037 FRF_CZ_HOST_NOTIFY_MODE
, 0,
1038 FRF_CZ_TIMER_MODE
, FFE_CZ_TIMER_MODE_DIS
);
1039 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1042 /* Pin event queue buffer */
1043 efx_init_special_buffer(efx
, &channel
->eventq
);
1045 /* Fill event queue with all ones (i.e. empty events) */
1046 memset(channel
->eventq
.addr
, 0xff, channel
->eventq
.len
);
1048 /* Push event queue to card */
1049 EFX_POPULATE_OWORD_3(reg
,
1051 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1052 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1053 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1056 efx
->type
->push_irq_moderation(channel
);
1059 void efx_nic_fini_eventq(struct efx_channel
*channel
)
1062 struct efx_nic
*efx
= channel
->efx
;
1064 /* Remove event queue from card */
1065 EFX_ZERO_OWORD(reg
);
1066 efx_writeo_table(efx
, ®
, efx
->type
->evq_ptr_tbl_base
,
1068 if (efx_nic_rev(efx
) >= EFX_REV_SIENA_A0
)
1069 efx_writeo_table(efx
, ®
, FR_BZ_TIMER_TBL
, channel
->channel
);
1071 /* Unpin event queue */
1072 efx_fini_special_buffer(efx
, &channel
->eventq
);
1075 /* Free buffers backing event queue */
1076 void efx_nic_remove_eventq(struct efx_channel
*channel
)
1078 efx_free_special_buffer(channel
->efx
, &channel
->eventq
);
1082 /* Generates a test event on the event queue. A subsequent call to
1083 * process_eventq() should pick up the event and place the value of
1084 * "magic" into channel->eventq_magic;
1086 void efx_nic_generate_test_event(struct efx_channel
*channel
, unsigned int magic
)
1088 efx_qword_t test_event
;
1090 EFX_POPULATE_QWORD_2(test_event
, FSF_AZ_EV_CODE
,
1091 FSE_AZ_EV_CODE_DRV_GEN_EV
,
1092 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
1093 efx_generate_event(channel
, &test_event
);
1096 /**************************************************************************
1100 **************************************************************************/
1103 static void efx_poll_flush_events(struct efx_nic
*efx
)
1105 struct efx_channel
*channel
= &efx
->channel
[0];
1106 struct efx_tx_queue
*tx_queue
;
1107 struct efx_rx_queue
*rx_queue
;
1108 unsigned int read_ptr
= channel
->eventq_read_ptr
;
1109 unsigned int end_ptr
= (read_ptr
- 1) & EFX_EVQ_MASK
;
1112 efx_qword_t
*event
= efx_event(channel
, read_ptr
);
1113 int ev_code
, ev_sub_code
, ev_queue
;
1116 if (!efx_event_present(event
))
1119 ev_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_EV_CODE
);
1120 ev_sub_code
= EFX_QWORD_FIELD(*event
,
1121 FSF_AZ_DRIVER_EV_SUBCODE
);
1122 if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1123 ev_sub_code
== FSE_AZ_TX_DESCQ_FLS_DONE_EV
) {
1124 ev_queue
= EFX_QWORD_FIELD(*event
,
1125 FSF_AZ_DRIVER_EV_SUBDATA
);
1126 if (ev_queue
< EFX_TX_QUEUE_COUNT
) {
1127 tx_queue
= efx
->tx_queue
+ ev_queue
;
1128 tx_queue
->flushed
= FLUSH_DONE
;
1130 } else if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1131 ev_sub_code
== FSE_AZ_RX_DESCQ_FLS_DONE_EV
) {
1132 ev_queue
= EFX_QWORD_FIELD(
1133 *event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1134 ev_failed
= EFX_QWORD_FIELD(
1135 *event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1136 if (ev_queue
< efx
->n_rx_queues
) {
1137 rx_queue
= efx
->rx_queue
+ ev_queue
;
1139 ev_failed
? FLUSH_FAILED
: FLUSH_DONE
;
1143 /* We're about to destroy the queue anyway, so
1144 * it's ok to throw away every non-flush event */
1145 EFX_SET_QWORD(*event
);
1147 read_ptr
= (read_ptr
+ 1) & EFX_EVQ_MASK
;
1148 } while (read_ptr
!= end_ptr
);
1150 channel
->eventq_read_ptr
= read_ptr
;
1153 /* Handle tx and rx flushes at the same time, since they run in
1154 * parallel in the hardware and there's no reason for us to
1156 int efx_nic_flush_queues(struct efx_nic
*efx
)
1158 struct efx_rx_queue
*rx_queue
;
1159 struct efx_tx_queue
*tx_queue
;
1160 int i
, tx_pending
, rx_pending
;
1162 /* If necessary prepare the hardware for flushing */
1163 efx
->type
->prepare_flush(efx
);
1165 /* Flush all tx queues in parallel */
1166 efx_for_each_tx_queue(tx_queue
, efx
)
1167 efx_flush_tx_queue(tx_queue
);
1169 /* The hardware supports four concurrent rx flushes, each of which may
1170 * need to be retried if there is an outstanding descriptor fetch */
1171 for (i
= 0; i
< EFX_FLUSH_POLL_COUNT
; ++i
) {
1172 rx_pending
= tx_pending
= 0;
1173 efx_for_each_rx_queue(rx_queue
, efx
) {
1174 if (rx_queue
->flushed
== FLUSH_PENDING
)
1177 efx_for_each_rx_queue(rx_queue
, efx
) {
1178 if (rx_pending
== EFX_RX_FLUSH_COUNT
)
1180 if (rx_queue
->flushed
== FLUSH_FAILED
||
1181 rx_queue
->flushed
== FLUSH_NONE
) {
1182 efx_flush_rx_queue(rx_queue
);
1186 efx_for_each_tx_queue(tx_queue
, efx
) {
1187 if (tx_queue
->flushed
!= FLUSH_DONE
)
1191 if (rx_pending
== 0 && tx_pending
== 0)
1194 msleep(EFX_FLUSH_INTERVAL
);
1195 efx_poll_flush_events(efx
);
1198 /* Mark the queues as all flushed. We're going to return failure
1199 * leading to a reset, or fake up success anyway */
1200 efx_for_each_tx_queue(tx_queue
, efx
) {
1201 if (tx_queue
->flushed
!= FLUSH_DONE
)
1202 EFX_ERR(efx
, "tx queue %d flush command timed out\n",
1204 tx_queue
->flushed
= FLUSH_DONE
;
1206 efx_for_each_rx_queue(rx_queue
, efx
) {
1207 if (rx_queue
->flushed
!= FLUSH_DONE
)
1208 EFX_ERR(efx
, "rx queue %d flush command timed out\n",
1210 rx_queue
->flushed
= FLUSH_DONE
;
1213 if (EFX_WORKAROUND_7803(efx
))
1219 /**************************************************************************
1221 * Hardware interrupts
1222 * The hardware interrupt handler does very little work; all the event
1223 * queue processing is carried out by per-channel tasklets.
1225 **************************************************************************/
1227 /* Enable/disable/generate interrupts */
1228 static inline void efx_nic_interrupts(struct efx_nic
*efx
,
1229 bool enabled
, bool force
)
1231 efx_oword_t int_en_reg_ker
;
1232 unsigned int level
= 0;
1234 if (EFX_WORKAROUND_17213(efx
) && !EFX_INT_MODE_USE_MSI(efx
))
1235 /* Set the level always even if we're generating a test
1236 * interrupt, because our legacy interrupt handler is safe */
1239 EFX_POPULATE_OWORD_3(int_en_reg_ker
,
1240 FRF_AZ_KER_INT_LEVE_SEL
, level
,
1241 FRF_AZ_KER_INT_KER
, force
,
1242 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1243 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1246 void efx_nic_enable_interrupts(struct efx_nic
*efx
)
1248 struct efx_channel
*channel
;
1250 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1251 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1253 /* Enable interrupts */
1254 efx_nic_interrupts(efx
, true, false);
1256 /* Force processing of all the channels to get the EVQ RPTRs up to
1258 efx_for_each_channel(channel
, efx
)
1259 efx_schedule_channel(channel
);
1262 void efx_nic_disable_interrupts(struct efx_nic
*efx
)
1264 /* Disable interrupts */
1265 efx_nic_interrupts(efx
, false, false);
1268 /* Generate a test interrupt
1269 * Interrupt must already have been enabled, otherwise nasty things
1272 void efx_nic_generate_interrupt(struct efx_nic
*efx
)
1274 efx_nic_interrupts(efx
, true, true);
1277 /* Process a fatal interrupt
1278 * Disable bus mastering ASAP and schedule a reset
1280 irqreturn_t
efx_nic_fatal_interrupt(struct efx_nic
*efx
)
1282 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1283 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1284 efx_oword_t fatal_intr
;
1285 int error
, mem_perr
;
1287 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1288 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1290 EFX_ERR(efx
, "SYSTEM ERROR " EFX_OWORD_FMT
" status "
1291 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1292 EFX_OWORD_VAL(fatal_intr
),
1293 error
? "disabling bus mastering" : "no recognised error");
1297 /* If this is a memory parity error dump which blocks are offending */
1298 mem_perr
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
);
1301 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1302 EFX_ERR(efx
, "SYSTEM ERROR: memory parity error "
1303 EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
));
1306 /* Disable both devices */
1307 pci_clear_master(efx
->pci_dev
);
1308 if (efx_nic_is_dual_func(efx
))
1309 pci_clear_master(nic_data
->pci_dev2
);
1310 efx_nic_disable_interrupts(efx
);
1312 /* Count errors and reset or disable the NIC accordingly */
1313 if (efx
->int_error_count
== 0 ||
1314 time_after(jiffies
, efx
->int_error_expire
)) {
1315 efx
->int_error_count
= 0;
1316 efx
->int_error_expire
=
1317 jiffies
+ EFX_INT_ERROR_EXPIRE
* HZ
;
1319 if (++efx
->int_error_count
< EFX_MAX_INT_ERRORS
) {
1320 EFX_ERR(efx
, "SYSTEM ERROR - reset scheduled\n");
1321 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1323 EFX_ERR(efx
, "SYSTEM ERROR - max number of errors seen."
1324 "NIC will be disabled\n");
1325 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1331 /* Handle a legacy interrupt
1332 * Acknowledges the interrupt and schedule event queue processing.
1334 static irqreturn_t
efx_legacy_interrupt(int irq
, void *dev_id
)
1336 struct efx_nic
*efx
= dev_id
;
1337 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1338 irqreturn_t result
= IRQ_NONE
;
1339 struct efx_channel
*channel
;
1344 /* Read the ISR which also ACKs the interrupts */
1345 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1346 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1348 /* Check to see if we have a serious error condition */
1349 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1350 if (unlikely(syserr
))
1351 return efx_nic_fatal_interrupt(efx
);
1354 if (EFX_WORKAROUND_15783(efx
))
1355 efx
->irq_zero_count
= 0;
1357 /* Schedule processing of any interrupting queues */
1358 efx_for_each_channel(channel
, efx
) {
1360 efx_schedule_channel(channel
);
1363 result
= IRQ_HANDLED
;
1365 } else if (EFX_WORKAROUND_15783(efx
) &&
1366 efx
->irq_zero_count
++ == 0) {
1369 /* Ensure we rearm all event queues */
1370 efx_for_each_channel(channel
, efx
) {
1371 event
= efx_event(channel
, channel
->eventq_read_ptr
);
1372 if (efx_event_present(event
))
1373 efx_schedule_channel(channel
);
1376 result
= IRQ_HANDLED
;
1379 if (result
== IRQ_HANDLED
) {
1380 efx
->last_irq_cpu
= raw_smp_processor_id();
1381 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1382 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1383 } else if (EFX_WORKAROUND_15783(efx
)) {
1384 /* We can't return IRQ_HANDLED more than once on seeing ISR0=0
1385 * because this might be a shared interrupt, but we do need to
1386 * check the channel every time and preemptively rearm it if
1388 efx_for_each_channel(channel
, efx
) {
1389 if (!channel
->work_pending
)
1390 efx_nic_eventq_read_ack(channel
);
1397 /* Handle an MSI interrupt
1399 * Handle an MSI hardware interrupt. This routine schedules event
1400 * queue processing. No interrupt acknowledgement cycle is necessary.
1401 * Also, we never need to check that the interrupt is for us, since
1402 * MSI interrupts cannot be shared.
1404 static irqreturn_t
efx_msi_interrupt(int irq
, void *dev_id
)
1406 struct efx_channel
*channel
= dev_id
;
1407 struct efx_nic
*efx
= channel
->efx
;
1408 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1411 efx
->last_irq_cpu
= raw_smp_processor_id();
1412 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1413 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1415 /* Check to see if we have a serious error condition */
1416 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1417 if (unlikely(syserr
))
1418 return efx_nic_fatal_interrupt(efx
);
1420 /* Schedule processing of the channel */
1421 efx_schedule_channel(channel
);
1427 /* Setup RSS indirection table.
1428 * This maps from the hash value of the packet to RXQ
1430 static void efx_setup_rss_indir_table(struct efx_nic
*efx
)
1433 unsigned long offset
;
1436 if (efx_nic_rev(efx
) < EFX_REV_FALCON_B0
)
1439 for (offset
= FR_BZ_RX_INDIRECTION_TBL
;
1440 offset
< FR_BZ_RX_INDIRECTION_TBL
+ 0x800;
1442 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1443 i
% efx
->n_rx_queues
);
1444 efx_writed(efx
, &dword
, offset
);
1449 /* Hook interrupt handler(s)
1450 * Try MSI and then legacy interrupts.
1452 int efx_nic_init_interrupt(struct efx_nic
*efx
)
1454 struct efx_channel
*channel
;
1457 if (!EFX_INT_MODE_USE_MSI(efx
)) {
1458 irq_handler_t handler
;
1459 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1460 handler
= efx_legacy_interrupt
;
1462 handler
= falcon_legacy_interrupt_a1
;
1464 rc
= request_irq(efx
->legacy_irq
, handler
, IRQF_SHARED
,
1467 EFX_ERR(efx
, "failed to hook legacy IRQ %d\n",
1474 /* Hook MSI or MSI-X interrupt */
1475 efx_for_each_channel(channel
, efx
) {
1476 rc
= request_irq(channel
->irq
, efx_msi_interrupt
,
1477 IRQF_PROBE_SHARED
, /* Not shared */
1478 channel
->name
, channel
);
1480 EFX_ERR(efx
, "failed to hook IRQ %d\n", channel
->irq
);
1488 efx_for_each_channel(channel
, efx
)
1489 free_irq(channel
->irq
, channel
);
1494 void efx_nic_fini_interrupt(struct efx_nic
*efx
)
1496 struct efx_channel
*channel
;
1499 /* Disable MSI/MSI-X interrupts */
1500 efx_for_each_channel(channel
, efx
) {
1502 free_irq(channel
->irq
, channel
);
1505 /* ACK legacy interrupt */
1506 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1507 efx_reado(efx
, ®
, FR_BZ_INT_ISR0
);
1509 falcon_irq_ack_a1(efx
);
1511 /* Disable legacy interrupt */
1512 if (efx
->legacy_irq
)
1513 free_irq(efx
->legacy_irq
, efx
);
1516 u32
efx_nic_fpga_ver(struct efx_nic
*efx
)
1518 efx_oword_t altera_build
;
1519 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
1520 return EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
);
1523 void efx_nic_init_common(struct efx_nic
*efx
)
1527 /* Set positions of descriptor caches in SRAM. */
1528 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
,
1529 efx
->type
->tx_dc_base
/ 8);
1530 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
1531 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
,
1532 efx
->type
->rx_dc_base
/ 8);
1533 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
1535 /* Set TX descriptor cache size. */
1536 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
1537 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
1538 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
1540 /* Set RX descriptor cache size. Set low watermark to size-8, as
1541 * this allows most efficient prefetching.
1543 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
1544 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
1545 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
1546 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
1547 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
1549 /* Program INT_KER address */
1550 EFX_POPULATE_OWORD_2(temp
,
1551 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1552 EFX_INT_MODE_USE_MSI(efx
),
1553 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1554 efx_writeo(efx
, &temp
, FR_AZ_INT_ADR_KER
);
1556 /* Enable all the genuinely fatal interrupts. (They are still
1557 * masked by the overall interrupt mask, controlled by
1558 * falcon_interrupts()).
1560 * Note: All other fatal interrupts are enabled
1562 EFX_POPULATE_OWORD_3(temp
,
1563 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
1564 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
1565 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
1566 EFX_INVERT_OWORD(temp
);
1567 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
1569 efx_setup_rss_indir_table(efx
);
1571 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1572 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1574 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
1575 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
1576 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
1577 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
1578 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 0);
1579 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
1580 /* Enable SW_EV to inherit in char driver - assume harmless here */
1581 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
1582 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1583 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
1584 /* Disable hardware watchdog which can misfire */
1585 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_WD_TMR
, 0x3fffff);
1586 /* Squash TX of packets of 16 bytes or less */
1587 if (efx_nic_rev(efx
) >= EFX_REV_FALCON_B0
)
1588 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
1589 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);