Staging: netwave: delete the driver
[linux/fpc-iii.git] / drivers / net / sfc / nic.c
blobb06f8e348307d3896f4f10e0e9f0cb3c4b7807e0
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include "net_driver.h"
17 #include "bitfield.h"
18 #include "efx.h"
19 #include "nic.h"
20 #include "regs.h"
21 #include "io.h"
22 #include "workarounds.h"
24 /**************************************************************************
26 * Configurable values
28 **************************************************************************
31 /* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
36 * goes idle.
38 #define TX_DC_ENTRIES 16
39 #define TX_DC_ENTRIES_ORDER 1
41 #define RX_DC_ENTRIES 64
42 #define RX_DC_ENTRIES_ORDER 3
44 /* RX FIFO XOFF watermark
46 * When the amount of the RX FIFO increases used increases past this
47 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
48 * This also has an effect on RX/TX arbitration
50 int efx_nic_rx_xoff_thresh = -1;
51 module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
52 MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
54 /* RX FIFO XON watermark
56 * When the amount of the RX FIFO used decreases below this
57 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
58 * This also has an effect on RX/TX arbitration
60 int efx_nic_rx_xon_thresh = -1;
61 module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
62 MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
64 /* If EFX_MAX_INT_ERRORS internal errors occur within
65 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
66 * disable it.
68 #define EFX_INT_ERROR_EXPIRE 3600
69 #define EFX_MAX_INT_ERRORS 5
71 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
73 #define EFX_FLUSH_INTERVAL 10
74 #define EFX_FLUSH_POLL_COUNT 100
76 /* Size and alignment of special buffers (4KB) */
77 #define EFX_BUF_SIZE 4096
79 /* Depth of RX flush request fifo */
80 #define EFX_RX_FLUSH_COUNT 4
82 /**************************************************************************
84 * Solarstorm hardware access
86 **************************************************************************/
88 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
89 unsigned int index)
91 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
92 value, index);
95 /* Read the current event from the event queue */
96 static inline efx_qword_t *efx_event(struct efx_channel *channel,
97 unsigned int index)
99 return (((efx_qword_t *) (channel->eventq.addr)) + index);
102 /* See if an event is present
104 * We check both the high and low dword of the event for all ones. We
105 * wrote all ones when we cleared the event, and no valid event can
106 * have all ones in either its high or low dwords. This approach is
107 * robust against reordering.
109 * Note that using a single 64-bit comparison is incorrect; even
110 * though the CPU read will be atomic, the DMA write may not be.
112 static inline int efx_event_present(efx_qword_t *event)
114 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
115 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
118 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
119 const efx_oword_t *mask)
121 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
122 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
125 int efx_nic_test_registers(struct efx_nic *efx,
126 const struct efx_nic_register_test *regs,
127 size_t n_regs)
129 unsigned address = 0, i, j;
130 efx_oword_t mask, imask, original, reg, buf;
132 /* Falcon should be in loopback to isolate the XMAC from the PHY */
133 WARN_ON(!LOOPBACK_INTERNAL(efx));
135 for (i = 0; i < n_regs; ++i) {
136 address = regs[i].address;
137 mask = imask = regs[i].mask;
138 EFX_INVERT_OWORD(imask);
140 efx_reado(efx, &original, address);
142 /* bit sweep on and off */
143 for (j = 0; j < 128; j++) {
144 if (!EFX_EXTRACT_OWORD32(mask, j, j))
145 continue;
147 /* Test this testable bit can be set in isolation */
148 EFX_AND_OWORD(reg, original, mask);
149 EFX_SET_OWORD32(reg, j, j, 1);
151 efx_writeo(efx, &reg, address);
152 efx_reado(efx, &buf, address);
154 if (efx_masked_compare_oword(&reg, &buf, &mask))
155 goto fail;
157 /* Test this testable bit can be cleared in isolation */
158 EFX_OR_OWORD(reg, original, mask);
159 EFX_SET_OWORD32(reg, j, j, 0);
161 efx_writeo(efx, &reg, address);
162 efx_reado(efx, &buf, address);
164 if (efx_masked_compare_oword(&reg, &buf, &mask))
165 goto fail;
168 efx_writeo(efx, &original, address);
171 return 0;
173 fail:
174 EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
175 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
176 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
177 return -EIO;
180 /**************************************************************************
182 * Special buffer handling
183 * Special buffers are used for event queues and the TX and RX
184 * descriptor rings.
186 *************************************************************************/
189 * Initialise a special buffer
191 * This will define a buffer (previously allocated via
192 * efx_alloc_special_buffer()) in the buffer table, allowing
193 * it to be used for event queues, descriptor rings etc.
195 static void
196 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
198 efx_qword_t buf_desc;
199 int index;
200 dma_addr_t dma_addr;
201 int i;
203 EFX_BUG_ON_PARANOID(!buffer->addr);
205 /* Write buffer descriptors to NIC */
206 for (i = 0; i < buffer->entries; i++) {
207 index = buffer->index + i;
208 dma_addr = buffer->dma_addr + (i * 4096);
209 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
210 index, (unsigned long long)dma_addr);
211 EFX_POPULATE_QWORD_3(buf_desc,
212 FRF_AZ_BUF_ADR_REGION, 0,
213 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
214 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
215 efx_write_buf_tbl(efx, &buf_desc, index);
219 /* Unmaps a buffer and clears the buffer table entries */
220 static void
221 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
223 efx_oword_t buf_tbl_upd;
224 unsigned int start = buffer->index;
225 unsigned int end = (buffer->index + buffer->entries - 1);
227 if (!buffer->entries)
228 return;
230 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
231 buffer->index, buffer->index + buffer->entries - 1);
233 EFX_POPULATE_OWORD_4(buf_tbl_upd,
234 FRF_AZ_BUF_UPD_CMD, 0,
235 FRF_AZ_BUF_CLR_CMD, 1,
236 FRF_AZ_BUF_CLR_END_ID, end,
237 FRF_AZ_BUF_CLR_START_ID, start);
238 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
242 * Allocate a new special buffer
244 * This allocates memory for a new buffer, clears it and allocates a
245 * new buffer ID range. It does not write into the buffer table.
247 * This call will allocate 4KB buffers, since 8KB buffers can't be
248 * used for event queues and descriptor rings.
250 static int efx_alloc_special_buffer(struct efx_nic *efx,
251 struct efx_special_buffer *buffer,
252 unsigned int len)
254 len = ALIGN(len, EFX_BUF_SIZE);
256 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
257 &buffer->dma_addr);
258 if (!buffer->addr)
259 return -ENOMEM;
260 buffer->len = len;
261 buffer->entries = len / EFX_BUF_SIZE;
262 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
264 /* All zeros is a potentially valid event so memset to 0xff */
265 memset(buffer->addr, 0xff, len);
267 /* Select new buffer ID */
268 buffer->index = efx->next_buffer_table;
269 efx->next_buffer_table += buffer->entries;
271 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
272 "(virt %p phys %llx)\n", buffer->index,
273 buffer->index + buffer->entries - 1,
274 (u64)buffer->dma_addr, len,
275 buffer->addr, (u64)virt_to_phys(buffer->addr));
277 return 0;
280 static void
281 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
283 if (!buffer->addr)
284 return;
286 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
287 "(virt %p phys %llx)\n", buffer->index,
288 buffer->index + buffer->entries - 1,
289 (u64)buffer->dma_addr, buffer->len,
290 buffer->addr, (u64)virt_to_phys(buffer->addr));
292 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
293 buffer->dma_addr);
294 buffer->addr = NULL;
295 buffer->entries = 0;
298 /**************************************************************************
300 * Generic buffer handling
301 * These buffers are used for interrupt status and MAC stats
303 **************************************************************************/
305 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306 unsigned int len)
308 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
309 &buffer->dma_addr);
310 if (!buffer->addr)
311 return -ENOMEM;
312 buffer->len = len;
313 memset(buffer->addr, 0, len);
314 return 0;
317 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
319 if (buffer->addr) {
320 pci_free_consistent(efx->pci_dev, buffer->len,
321 buffer->addr, buffer->dma_addr);
322 buffer->addr = NULL;
326 /**************************************************************************
328 * TX path
330 **************************************************************************/
332 /* Returns a pointer to the specified transmit descriptor in the TX
333 * descriptor queue belonging to the specified channel.
335 static inline efx_qword_t *
336 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
338 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
344 unsigned write_ptr;
345 efx_dword_t reg;
347 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
348 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349 efx_writed_page(tx_queue->efx, &reg,
350 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
354 /* For each entry inserted into the software descriptor ring, create a
355 * descriptor in the hardware TX descriptor ring (in host memory), and
356 * write a doorbell.
358 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
361 struct efx_tx_buffer *buffer;
362 efx_qword_t *txd;
363 unsigned write_ptr;
365 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
367 do {
368 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
369 buffer = &tx_queue->buffer[write_ptr];
370 txd = efx_tx_desc(tx_queue, write_ptr);
371 ++tx_queue->write_count;
373 /* Create TX descriptor ring entry */
374 EFX_POPULATE_QWORD_4(*txd,
375 FSF_AZ_TX_KER_CONT, buffer->continuation,
376 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
377 FSF_AZ_TX_KER_BUF_REGION, 0,
378 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
379 } while (tx_queue->write_count != tx_queue->insert_count);
381 wmb(); /* Ensure descriptors are written before they are fetched */
382 efx_notify_tx_desc(tx_queue);
385 /* Allocate hardware resources for a TX queue */
386 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
388 struct efx_nic *efx = tx_queue->efx;
389 BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
390 EFX_TXQ_SIZE & EFX_TXQ_MASK);
391 return efx_alloc_special_buffer(efx, &tx_queue->txd,
392 EFX_TXQ_SIZE * sizeof(efx_qword_t));
395 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
397 efx_oword_t tx_desc_ptr;
398 struct efx_nic *efx = tx_queue->efx;
400 tx_queue->flushed = FLUSH_NONE;
402 /* Pin TX descriptor ring */
403 efx_init_special_buffer(efx, &tx_queue->txd);
405 /* Push TX descriptor ring to card */
406 EFX_POPULATE_OWORD_10(tx_desc_ptr,
407 FRF_AZ_TX_DESCQ_EN, 1,
408 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
409 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
410 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
411 FRF_AZ_TX_DESCQ_EVQ_ID,
412 tx_queue->channel->channel,
413 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
414 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
415 FRF_AZ_TX_DESCQ_SIZE,
416 __ffs(tx_queue->txd.entries),
417 FRF_AZ_TX_DESCQ_TYPE, 0,
418 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
420 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
421 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
422 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
423 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
424 !csum);
427 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
428 tx_queue->queue);
430 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
431 efx_oword_t reg;
433 /* Only 128 bits in this register */
434 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
436 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
437 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
438 clear_bit_le(tx_queue->queue, (void *)&reg);
439 else
440 set_bit_le(tx_queue->queue, (void *)&reg);
441 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
445 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
447 struct efx_nic *efx = tx_queue->efx;
448 efx_oword_t tx_flush_descq;
450 tx_queue->flushed = FLUSH_PENDING;
452 /* Post a flush command */
453 EFX_POPULATE_OWORD_2(tx_flush_descq,
454 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
455 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
456 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
459 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
461 struct efx_nic *efx = tx_queue->efx;
462 efx_oword_t tx_desc_ptr;
464 /* The queue should have been flushed */
465 WARN_ON(tx_queue->flushed != FLUSH_DONE);
467 /* Remove TX descriptor ring from card */
468 EFX_ZERO_OWORD(tx_desc_ptr);
469 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
470 tx_queue->queue);
472 /* Unpin TX descriptor ring */
473 efx_fini_special_buffer(efx, &tx_queue->txd);
476 /* Free buffers backing TX queue */
477 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
479 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
482 /**************************************************************************
484 * RX path
486 **************************************************************************/
488 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
489 static inline efx_qword_t *
490 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
492 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
495 /* This creates an entry in the RX descriptor queue */
496 static inline void
497 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
499 struct efx_rx_buffer *rx_buf;
500 efx_qword_t *rxd;
502 rxd = efx_rx_desc(rx_queue, index);
503 rx_buf = efx_rx_buffer(rx_queue, index);
504 EFX_POPULATE_QWORD_3(*rxd,
505 FSF_AZ_RX_KER_BUF_SIZE,
506 rx_buf->len -
507 rx_queue->efx->type->rx_buffer_padding,
508 FSF_AZ_RX_KER_BUF_REGION, 0,
509 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
512 /* This writes to the RX_DESC_WPTR register for the specified receive
513 * descriptor ring.
515 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
517 efx_dword_t reg;
518 unsigned write_ptr;
520 while (rx_queue->notified_count != rx_queue->added_count) {
521 efx_build_rx_desc(rx_queue,
522 rx_queue->notified_count &
523 EFX_RXQ_MASK);
524 ++rx_queue->notified_count;
527 wmb();
528 write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
529 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
530 efx_writed_page(rx_queue->efx, &reg,
531 FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
534 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
536 struct efx_nic *efx = rx_queue->efx;
537 BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
538 EFX_RXQ_SIZE & EFX_RXQ_MASK);
539 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
540 EFX_RXQ_SIZE * sizeof(efx_qword_t));
543 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
545 efx_oword_t rx_desc_ptr;
546 struct efx_nic *efx = rx_queue->efx;
547 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
548 bool iscsi_digest_en = is_b0;
550 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
551 rx_queue->queue, rx_queue->rxd.index,
552 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
554 rx_queue->flushed = FLUSH_NONE;
556 /* Pin RX descriptor ring */
557 efx_init_special_buffer(efx, &rx_queue->rxd);
559 /* Push RX descriptor ring to card */
560 EFX_POPULATE_OWORD_10(rx_desc_ptr,
561 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
562 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
563 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
564 FRF_AZ_RX_DESCQ_EVQ_ID,
565 rx_queue->channel->channel,
566 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
567 FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
568 FRF_AZ_RX_DESCQ_SIZE,
569 __ffs(rx_queue->rxd.entries),
570 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
571 /* For >=B0 this is scatter so disable */
572 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
573 FRF_AZ_RX_DESCQ_EN, 1);
574 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
575 rx_queue->queue);
578 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
580 struct efx_nic *efx = rx_queue->efx;
581 efx_oword_t rx_flush_descq;
583 rx_queue->flushed = FLUSH_PENDING;
585 /* Post a flush command */
586 EFX_POPULATE_OWORD_2(rx_flush_descq,
587 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
588 FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
589 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
592 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
594 efx_oword_t rx_desc_ptr;
595 struct efx_nic *efx = rx_queue->efx;
597 /* The queue should already have been flushed */
598 WARN_ON(rx_queue->flushed != FLUSH_DONE);
600 /* Remove RX descriptor ring from card */
601 EFX_ZERO_OWORD(rx_desc_ptr);
602 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
603 rx_queue->queue);
605 /* Unpin RX descriptor ring */
606 efx_fini_special_buffer(efx, &rx_queue->rxd);
609 /* Free buffers backing RX queue */
610 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
612 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
615 /**************************************************************************
617 * Event queue processing
618 * Event queues are processed by per-channel tasklets.
620 **************************************************************************/
622 /* Update a channel's event queue's read pointer (RPTR) register
624 * This writes the EVQ_RPTR_REG register for the specified channel's
625 * event queue.
627 void efx_nic_eventq_read_ack(struct efx_channel *channel)
629 efx_dword_t reg;
630 struct efx_nic *efx = channel->efx;
632 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
633 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
634 channel->channel);
637 /* Use HW to insert a SW defined event */
638 void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
640 efx_oword_t drv_ev_reg;
642 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
643 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
644 drv_ev_reg.u32[0] = event->u32[0];
645 drv_ev_reg.u32[1] = event->u32[1];
646 drv_ev_reg.u32[2] = 0;
647 drv_ev_reg.u32[3] = 0;
648 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
649 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
652 /* Handle a transmit completion event
654 * The NIC batches TX completion events; the message we receive is of
655 * the form "complete all TX events up to this index".
657 static void
658 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
660 unsigned int tx_ev_desc_ptr;
661 unsigned int tx_ev_q_label;
662 struct efx_tx_queue *tx_queue;
663 struct efx_nic *efx = channel->efx;
665 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
666 /* Transmit completion */
667 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
668 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
669 tx_queue = &efx->tx_queue[tx_ev_q_label];
670 channel->irq_mod_score +=
671 (tx_ev_desc_ptr - tx_queue->read_count) &
672 EFX_TXQ_MASK;
673 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
674 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
675 /* Rewrite the FIFO write pointer */
676 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
677 tx_queue = &efx->tx_queue[tx_ev_q_label];
679 if (efx_dev_registered(efx))
680 netif_tx_lock(efx->net_dev);
681 efx_notify_tx_desc(tx_queue);
682 if (efx_dev_registered(efx))
683 netif_tx_unlock(efx->net_dev);
684 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
685 EFX_WORKAROUND_10727(efx)) {
686 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
687 } else {
688 EFX_ERR(efx, "channel %d unexpected TX event "
689 EFX_QWORD_FMT"\n", channel->channel,
690 EFX_QWORD_VAL(*event));
694 /* Detect errors included in the rx_evt_pkt_ok bit. */
695 static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
696 const efx_qword_t *event,
697 bool *rx_ev_pkt_ok,
698 bool *discard)
700 struct efx_nic *efx = rx_queue->efx;
701 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
702 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
703 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
704 bool rx_ev_other_err, rx_ev_pause_frm;
705 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
706 unsigned rx_ev_pkt_type;
708 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
709 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
710 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
711 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
712 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
713 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
714 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
715 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
716 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
717 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
718 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
719 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
720 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
721 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
722 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
724 /* Every error apart from tobe_disc and pause_frm */
725 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
726 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
727 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
729 /* Count errors that are not in MAC stats. Ignore expected
730 * checksum errors during self-test. */
731 if (rx_ev_frm_trunc)
732 ++rx_queue->channel->n_rx_frm_trunc;
733 else if (rx_ev_tobe_disc)
734 ++rx_queue->channel->n_rx_tobe_disc;
735 else if (!efx->loopback_selftest) {
736 if (rx_ev_ip_hdr_chksum_err)
737 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
738 else if (rx_ev_tcp_udp_chksum_err)
739 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
742 /* The frame must be discarded if any of these are true. */
743 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
744 rx_ev_tobe_disc | rx_ev_pause_frm);
746 /* TOBE_DISC is expected on unicast mismatches; don't print out an
747 * error message. FRM_TRUNC indicates RXDP dropped the packet due
748 * to a FIFO overflow.
750 #ifdef EFX_ENABLE_DEBUG
751 if (rx_ev_other_err) {
752 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
753 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
754 rx_queue->queue, EFX_QWORD_VAL(*event),
755 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
756 rx_ev_ip_hdr_chksum_err ?
757 " [IP_HDR_CHKSUM_ERR]" : "",
758 rx_ev_tcp_udp_chksum_err ?
759 " [TCP_UDP_CHKSUM_ERR]" : "",
760 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
761 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
762 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
763 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
764 rx_ev_pause_frm ? " [PAUSE]" : "");
766 #endif
769 /* Handle receive events that are not in-order. */
770 static void
771 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
773 struct efx_nic *efx = rx_queue->efx;
774 unsigned expected, dropped;
776 expected = rx_queue->removed_count & EFX_RXQ_MASK;
777 dropped = (index - expected) & EFX_RXQ_MASK;
778 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
779 dropped, index, expected);
781 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
782 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
785 /* Handle a packet received event
787 * The NIC gives a "discard" flag if it's a unicast packet with the
788 * wrong destination address
789 * Also "is multicast" and "matches multicast filter" flags can be used to
790 * discard non-matching multicast packets.
792 static void
793 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
795 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
796 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
797 unsigned expected_ptr;
798 bool rx_ev_pkt_ok, discard = false, checksummed;
799 struct efx_rx_queue *rx_queue;
800 struct efx_nic *efx = channel->efx;
802 /* Basic packet information */
803 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
804 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
805 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
806 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
807 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
808 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
809 channel->channel);
811 rx_queue = &efx->rx_queue[channel->channel];
813 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
814 expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
815 if (unlikely(rx_ev_desc_ptr != expected_ptr))
816 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
818 if (likely(rx_ev_pkt_ok)) {
819 /* If packet is marked as OK and packet type is TCP/IP or
820 * UDP/IP, then we can rely on the hardware checksum.
822 checksummed =
823 likely(efx->rx_checksum_enabled) &&
824 (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
825 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
826 } else {
827 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
828 checksummed = false;
831 /* Detect multicast packets that didn't match the filter */
832 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
833 if (rx_ev_mcast_pkt) {
834 unsigned int rx_ev_mcast_hash_match =
835 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
837 if (unlikely(!rx_ev_mcast_hash_match)) {
838 ++channel->n_rx_mcast_mismatch;
839 discard = true;
843 channel->irq_mod_score += 2;
845 /* Handle received packet */
846 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
847 checksummed, discard);
850 /* Global events are basically PHY events */
851 static void
852 efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
854 struct efx_nic *efx = channel->efx;
855 bool handled = false;
857 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
858 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
859 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
860 /* Ignored */
861 handled = true;
864 if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
865 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
866 efx->xmac_poll_required = true;
867 handled = true;
870 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
871 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
872 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
873 EFX_ERR(efx, "channel %d seen global RX_RESET "
874 "event. Resetting.\n", channel->channel);
876 atomic_inc(&efx->rx_reset);
877 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
878 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
879 handled = true;
882 if (!handled)
883 EFX_ERR(efx, "channel %d unknown global event "
884 EFX_QWORD_FMT "\n", channel->channel,
885 EFX_QWORD_VAL(*event));
888 static void
889 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
891 struct efx_nic *efx = channel->efx;
892 unsigned int ev_sub_code;
893 unsigned int ev_sub_data;
895 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
896 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
898 switch (ev_sub_code) {
899 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
900 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
901 channel->channel, ev_sub_data);
902 break;
903 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
904 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
905 channel->channel, ev_sub_data);
906 break;
907 case FSE_AZ_EVQ_INIT_DONE_EV:
908 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
909 channel->channel, ev_sub_data);
910 break;
911 case FSE_AZ_SRM_UPD_DONE_EV:
912 EFX_TRACE(efx, "channel %d SRAM update done\n",
913 channel->channel);
914 break;
915 case FSE_AZ_WAKE_UP_EV:
916 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
917 channel->channel, ev_sub_data);
918 break;
919 case FSE_AZ_TIMER_EV:
920 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
921 channel->channel, ev_sub_data);
922 break;
923 case FSE_AA_RX_RECOVER_EV:
924 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
925 "Resetting.\n", channel->channel);
926 atomic_inc(&efx->rx_reset);
927 efx_schedule_reset(efx,
928 EFX_WORKAROUND_6555(efx) ?
929 RESET_TYPE_RX_RECOVERY :
930 RESET_TYPE_DISABLE);
931 break;
932 case FSE_BZ_RX_DSC_ERROR_EV:
933 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
934 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
935 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
936 break;
937 case FSE_BZ_TX_DSC_ERROR_EV:
938 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
939 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
940 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
941 break;
942 default:
943 EFX_TRACE(efx, "channel %d unknown driver event code %d "
944 "data %04x\n", channel->channel, ev_sub_code,
945 ev_sub_data);
946 break;
950 int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota)
952 unsigned int read_ptr;
953 efx_qword_t event, *p_event;
954 int ev_code;
955 int rx_packets = 0;
957 read_ptr = channel->eventq_read_ptr;
959 do {
960 p_event = efx_event(channel, read_ptr);
961 event = *p_event;
963 if (!efx_event_present(&event))
964 /* End of events */
965 break;
967 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
968 channel->channel, EFX_QWORD_VAL(event));
970 /* Clear this event by marking it all ones */
971 EFX_SET_QWORD(*p_event);
973 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
975 switch (ev_code) {
976 case FSE_AZ_EV_CODE_RX_EV:
977 efx_handle_rx_event(channel, &event);
978 ++rx_packets;
979 break;
980 case FSE_AZ_EV_CODE_TX_EV:
981 efx_handle_tx_event(channel, &event);
982 break;
983 case FSE_AZ_EV_CODE_DRV_GEN_EV:
984 channel->eventq_magic = EFX_QWORD_FIELD(
985 event, FSF_AZ_DRV_GEN_EV_MAGIC);
986 EFX_LOG(channel->efx, "channel %d received generated "
987 "event "EFX_QWORD_FMT"\n", channel->channel,
988 EFX_QWORD_VAL(event));
989 break;
990 case FSE_AZ_EV_CODE_GLOBAL_EV:
991 efx_handle_global_event(channel, &event);
992 break;
993 case FSE_AZ_EV_CODE_DRIVER_EV:
994 efx_handle_driver_event(channel, &event);
995 break;
996 case FSE_CZ_EV_CODE_MCDI_EV:
997 efx_mcdi_process_event(channel, &event);
998 break;
999 default:
1000 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1001 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1002 ev_code, EFX_QWORD_VAL(event));
1005 /* Increment read pointer */
1006 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1008 } while (rx_packets < rx_quota);
1010 channel->eventq_read_ptr = read_ptr;
1011 return rx_packets;
1015 /* Allocate buffer table entries for event queue */
1016 int efx_nic_probe_eventq(struct efx_channel *channel)
1018 struct efx_nic *efx = channel->efx;
1019 BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1020 EFX_EVQ_SIZE & EFX_EVQ_MASK);
1021 return efx_alloc_special_buffer(efx, &channel->eventq,
1022 EFX_EVQ_SIZE * sizeof(efx_qword_t));
1025 void efx_nic_init_eventq(struct efx_channel *channel)
1027 efx_oword_t reg;
1028 struct efx_nic *efx = channel->efx;
1030 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1031 channel->channel, channel->eventq.index,
1032 channel->eventq.index + channel->eventq.entries - 1);
1034 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1035 EFX_POPULATE_OWORD_3(reg,
1036 FRF_CZ_TIMER_Q_EN, 1,
1037 FRF_CZ_HOST_NOTIFY_MODE, 0,
1038 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1039 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1042 /* Pin event queue buffer */
1043 efx_init_special_buffer(efx, &channel->eventq);
1045 /* Fill event queue with all ones (i.e. empty events) */
1046 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1048 /* Push event queue to card */
1049 EFX_POPULATE_OWORD_3(reg,
1050 FRF_AZ_EVQ_EN, 1,
1051 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1052 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1053 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1054 channel->channel);
1056 efx->type->push_irq_moderation(channel);
1059 void efx_nic_fini_eventq(struct efx_channel *channel)
1061 efx_oword_t reg;
1062 struct efx_nic *efx = channel->efx;
1064 /* Remove event queue from card */
1065 EFX_ZERO_OWORD(reg);
1066 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1067 channel->channel);
1068 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1069 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1071 /* Unpin event queue */
1072 efx_fini_special_buffer(efx, &channel->eventq);
1075 /* Free buffers backing event queue */
1076 void efx_nic_remove_eventq(struct efx_channel *channel)
1078 efx_free_special_buffer(channel->efx, &channel->eventq);
1082 /* Generates a test event on the event queue. A subsequent call to
1083 * process_eventq() should pick up the event and place the value of
1084 * "magic" into channel->eventq_magic;
1086 void efx_nic_generate_test_event(struct efx_channel *channel, unsigned int magic)
1088 efx_qword_t test_event;
1090 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1091 FSE_AZ_EV_CODE_DRV_GEN_EV,
1092 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1093 efx_generate_event(channel, &test_event);
1096 /**************************************************************************
1098 * Flush handling
1100 **************************************************************************/
1103 static void efx_poll_flush_events(struct efx_nic *efx)
1105 struct efx_channel *channel = &efx->channel[0];
1106 struct efx_tx_queue *tx_queue;
1107 struct efx_rx_queue *rx_queue;
1108 unsigned int read_ptr = channel->eventq_read_ptr;
1109 unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1111 do {
1112 efx_qword_t *event = efx_event(channel, read_ptr);
1113 int ev_code, ev_sub_code, ev_queue;
1114 bool ev_failed;
1116 if (!efx_event_present(event))
1117 break;
1119 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1120 ev_sub_code = EFX_QWORD_FIELD(*event,
1121 FSF_AZ_DRIVER_EV_SUBCODE);
1122 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1123 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1124 ev_queue = EFX_QWORD_FIELD(*event,
1125 FSF_AZ_DRIVER_EV_SUBDATA);
1126 if (ev_queue < EFX_TX_QUEUE_COUNT) {
1127 tx_queue = efx->tx_queue + ev_queue;
1128 tx_queue->flushed = FLUSH_DONE;
1130 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1131 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1132 ev_queue = EFX_QWORD_FIELD(
1133 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1134 ev_failed = EFX_QWORD_FIELD(
1135 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1136 if (ev_queue < efx->n_rx_queues) {
1137 rx_queue = efx->rx_queue + ev_queue;
1138 rx_queue->flushed =
1139 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1143 /* We're about to destroy the queue anyway, so
1144 * it's ok to throw away every non-flush event */
1145 EFX_SET_QWORD(*event);
1147 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1148 } while (read_ptr != end_ptr);
1150 channel->eventq_read_ptr = read_ptr;
1153 /* Handle tx and rx flushes at the same time, since they run in
1154 * parallel in the hardware and there's no reason for us to
1155 * serialise them */
1156 int efx_nic_flush_queues(struct efx_nic *efx)
1158 struct efx_rx_queue *rx_queue;
1159 struct efx_tx_queue *tx_queue;
1160 int i, tx_pending, rx_pending;
1162 /* If necessary prepare the hardware for flushing */
1163 efx->type->prepare_flush(efx);
1165 /* Flush all tx queues in parallel */
1166 efx_for_each_tx_queue(tx_queue, efx)
1167 efx_flush_tx_queue(tx_queue);
1169 /* The hardware supports four concurrent rx flushes, each of which may
1170 * need to be retried if there is an outstanding descriptor fetch */
1171 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1172 rx_pending = tx_pending = 0;
1173 efx_for_each_rx_queue(rx_queue, efx) {
1174 if (rx_queue->flushed == FLUSH_PENDING)
1175 ++rx_pending;
1177 efx_for_each_rx_queue(rx_queue, efx) {
1178 if (rx_pending == EFX_RX_FLUSH_COUNT)
1179 break;
1180 if (rx_queue->flushed == FLUSH_FAILED ||
1181 rx_queue->flushed == FLUSH_NONE) {
1182 efx_flush_rx_queue(rx_queue);
1183 ++rx_pending;
1186 efx_for_each_tx_queue(tx_queue, efx) {
1187 if (tx_queue->flushed != FLUSH_DONE)
1188 ++tx_pending;
1191 if (rx_pending == 0 && tx_pending == 0)
1192 return 0;
1194 msleep(EFX_FLUSH_INTERVAL);
1195 efx_poll_flush_events(efx);
1198 /* Mark the queues as all flushed. We're going to return failure
1199 * leading to a reset, or fake up success anyway */
1200 efx_for_each_tx_queue(tx_queue, efx) {
1201 if (tx_queue->flushed != FLUSH_DONE)
1202 EFX_ERR(efx, "tx queue %d flush command timed out\n",
1203 tx_queue->queue);
1204 tx_queue->flushed = FLUSH_DONE;
1206 efx_for_each_rx_queue(rx_queue, efx) {
1207 if (rx_queue->flushed != FLUSH_DONE)
1208 EFX_ERR(efx, "rx queue %d flush command timed out\n",
1209 rx_queue->queue);
1210 rx_queue->flushed = FLUSH_DONE;
1213 if (EFX_WORKAROUND_7803(efx))
1214 return 0;
1216 return -ETIMEDOUT;
1219 /**************************************************************************
1221 * Hardware interrupts
1222 * The hardware interrupt handler does very little work; all the event
1223 * queue processing is carried out by per-channel tasklets.
1225 **************************************************************************/
1227 /* Enable/disable/generate interrupts */
1228 static inline void efx_nic_interrupts(struct efx_nic *efx,
1229 bool enabled, bool force)
1231 efx_oword_t int_en_reg_ker;
1232 unsigned int level = 0;
1234 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1235 /* Set the level always even if we're generating a test
1236 * interrupt, because our legacy interrupt handler is safe */
1237 level = 0x1f;
1239 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1240 FRF_AZ_KER_INT_LEVE_SEL, level,
1241 FRF_AZ_KER_INT_KER, force,
1242 FRF_AZ_DRV_INT_EN_KER, enabled);
1243 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1246 void efx_nic_enable_interrupts(struct efx_nic *efx)
1248 struct efx_channel *channel;
1250 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1251 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1253 /* Enable interrupts */
1254 efx_nic_interrupts(efx, true, false);
1256 /* Force processing of all the channels to get the EVQ RPTRs up to
1257 date */
1258 efx_for_each_channel(channel, efx)
1259 efx_schedule_channel(channel);
1262 void efx_nic_disable_interrupts(struct efx_nic *efx)
1264 /* Disable interrupts */
1265 efx_nic_interrupts(efx, false, false);
1268 /* Generate a test interrupt
1269 * Interrupt must already have been enabled, otherwise nasty things
1270 * may happen.
1272 void efx_nic_generate_interrupt(struct efx_nic *efx)
1274 efx_nic_interrupts(efx, true, true);
1277 /* Process a fatal interrupt
1278 * Disable bus mastering ASAP and schedule a reset
1280 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1282 struct falcon_nic_data *nic_data = efx->nic_data;
1283 efx_oword_t *int_ker = efx->irq_status.addr;
1284 efx_oword_t fatal_intr;
1285 int error, mem_perr;
1287 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1288 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1290 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1291 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1292 EFX_OWORD_VAL(fatal_intr),
1293 error ? "disabling bus mastering" : "no recognised error");
1294 if (error == 0)
1295 goto out;
1297 /* If this is a memory parity error dump which blocks are offending */
1298 mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1299 if (mem_perr) {
1300 efx_oword_t reg;
1301 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1302 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1303 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1306 /* Disable both devices */
1307 pci_clear_master(efx->pci_dev);
1308 if (efx_nic_is_dual_func(efx))
1309 pci_clear_master(nic_data->pci_dev2);
1310 efx_nic_disable_interrupts(efx);
1312 /* Count errors and reset or disable the NIC accordingly */
1313 if (efx->int_error_count == 0 ||
1314 time_after(jiffies, efx->int_error_expire)) {
1315 efx->int_error_count = 0;
1316 efx->int_error_expire =
1317 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1319 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1320 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1321 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1322 } else {
1323 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1324 "NIC will be disabled\n");
1325 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1327 out:
1328 return IRQ_HANDLED;
1331 /* Handle a legacy interrupt
1332 * Acknowledges the interrupt and schedule event queue processing.
1334 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1336 struct efx_nic *efx = dev_id;
1337 efx_oword_t *int_ker = efx->irq_status.addr;
1338 irqreturn_t result = IRQ_NONE;
1339 struct efx_channel *channel;
1340 efx_dword_t reg;
1341 u32 queues;
1342 int syserr;
1344 /* Read the ISR which also ACKs the interrupts */
1345 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1346 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1348 /* Check to see if we have a serious error condition */
1349 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1350 if (unlikely(syserr))
1351 return efx_nic_fatal_interrupt(efx);
1353 if (queues != 0) {
1354 if (EFX_WORKAROUND_15783(efx))
1355 efx->irq_zero_count = 0;
1357 /* Schedule processing of any interrupting queues */
1358 efx_for_each_channel(channel, efx) {
1359 if (queues & 1)
1360 efx_schedule_channel(channel);
1361 queues >>= 1;
1363 result = IRQ_HANDLED;
1365 } else if (EFX_WORKAROUND_15783(efx) &&
1366 efx->irq_zero_count++ == 0) {
1367 efx_qword_t *event;
1369 /* Ensure we rearm all event queues */
1370 efx_for_each_channel(channel, efx) {
1371 event = efx_event(channel, channel->eventq_read_ptr);
1372 if (efx_event_present(event))
1373 efx_schedule_channel(channel);
1376 result = IRQ_HANDLED;
1379 if (result == IRQ_HANDLED) {
1380 efx->last_irq_cpu = raw_smp_processor_id();
1381 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1382 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1383 } else if (EFX_WORKAROUND_15783(efx)) {
1384 /* We can't return IRQ_HANDLED more than once on seeing ISR0=0
1385 * because this might be a shared interrupt, but we do need to
1386 * check the channel every time and preemptively rearm it if
1387 * it's idle. */
1388 efx_for_each_channel(channel, efx) {
1389 if (!channel->work_pending)
1390 efx_nic_eventq_read_ack(channel);
1394 return result;
1397 /* Handle an MSI interrupt
1399 * Handle an MSI hardware interrupt. This routine schedules event
1400 * queue processing. No interrupt acknowledgement cycle is necessary.
1401 * Also, we never need to check that the interrupt is for us, since
1402 * MSI interrupts cannot be shared.
1404 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1406 struct efx_channel *channel = dev_id;
1407 struct efx_nic *efx = channel->efx;
1408 efx_oword_t *int_ker = efx->irq_status.addr;
1409 int syserr;
1411 efx->last_irq_cpu = raw_smp_processor_id();
1412 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1413 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1415 /* Check to see if we have a serious error condition */
1416 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1417 if (unlikely(syserr))
1418 return efx_nic_fatal_interrupt(efx);
1420 /* Schedule processing of the channel */
1421 efx_schedule_channel(channel);
1423 return IRQ_HANDLED;
1427 /* Setup RSS indirection table.
1428 * This maps from the hash value of the packet to RXQ
1430 static void efx_setup_rss_indir_table(struct efx_nic *efx)
1432 int i = 0;
1433 unsigned long offset;
1434 efx_dword_t dword;
1436 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1437 return;
1439 for (offset = FR_BZ_RX_INDIRECTION_TBL;
1440 offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1441 offset += 0x10) {
1442 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1443 i % efx->n_rx_queues);
1444 efx_writed(efx, &dword, offset);
1445 i++;
1449 /* Hook interrupt handler(s)
1450 * Try MSI and then legacy interrupts.
1452 int efx_nic_init_interrupt(struct efx_nic *efx)
1454 struct efx_channel *channel;
1455 int rc;
1457 if (!EFX_INT_MODE_USE_MSI(efx)) {
1458 irq_handler_t handler;
1459 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1460 handler = efx_legacy_interrupt;
1461 else
1462 handler = falcon_legacy_interrupt_a1;
1464 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1465 efx->name, efx);
1466 if (rc) {
1467 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1468 efx->pci_dev->irq);
1469 goto fail1;
1471 return 0;
1474 /* Hook MSI or MSI-X interrupt */
1475 efx_for_each_channel(channel, efx) {
1476 rc = request_irq(channel->irq, efx_msi_interrupt,
1477 IRQF_PROBE_SHARED, /* Not shared */
1478 channel->name, channel);
1479 if (rc) {
1480 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1481 goto fail2;
1485 return 0;
1487 fail2:
1488 efx_for_each_channel(channel, efx)
1489 free_irq(channel->irq, channel);
1490 fail1:
1491 return rc;
1494 void efx_nic_fini_interrupt(struct efx_nic *efx)
1496 struct efx_channel *channel;
1497 efx_oword_t reg;
1499 /* Disable MSI/MSI-X interrupts */
1500 efx_for_each_channel(channel, efx) {
1501 if (channel->irq)
1502 free_irq(channel->irq, channel);
1505 /* ACK legacy interrupt */
1506 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1507 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1508 else
1509 falcon_irq_ack_a1(efx);
1511 /* Disable legacy interrupt */
1512 if (efx->legacy_irq)
1513 free_irq(efx->legacy_irq, efx);
1516 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1518 efx_oword_t altera_build;
1519 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1520 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1523 void efx_nic_init_common(struct efx_nic *efx)
1525 efx_oword_t temp;
1527 /* Set positions of descriptor caches in SRAM. */
1528 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1529 efx->type->tx_dc_base / 8);
1530 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1531 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1532 efx->type->rx_dc_base / 8);
1533 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1535 /* Set TX descriptor cache size. */
1536 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1537 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1538 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1540 /* Set RX descriptor cache size. Set low watermark to size-8, as
1541 * this allows most efficient prefetching.
1543 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1544 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1545 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1546 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1547 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1549 /* Program INT_KER address */
1550 EFX_POPULATE_OWORD_2(temp,
1551 FRF_AZ_NORM_INT_VEC_DIS_KER,
1552 EFX_INT_MODE_USE_MSI(efx),
1553 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1554 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1556 /* Enable all the genuinely fatal interrupts. (They are still
1557 * masked by the overall interrupt mask, controlled by
1558 * falcon_interrupts()).
1560 * Note: All other fatal interrupts are enabled
1562 EFX_POPULATE_OWORD_3(temp,
1563 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1564 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1565 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1566 EFX_INVERT_OWORD(temp);
1567 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1569 efx_setup_rss_indir_table(efx);
1571 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1572 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1574 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1575 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1576 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1577 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1578 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
1579 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1580 /* Enable SW_EV to inherit in char driver - assume harmless here */
1581 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1582 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1583 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1584 /* Disable hardware watchdog which can misfire */
1585 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1586 /* Squash TX of packets of 16 bytes or less */
1587 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1588 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1589 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);