2 * FarSync WAN driver for Linux (2.6.x kernel version)
4 * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
6 * Copyright (C) 2001-2004 FarSite Communications Ltd.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
14 * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
15 * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/version.h>
21 #include <linux/pci.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/ioport.h>
25 #include <linux/init.h>
27 #include <linux/hdlc.h>
29 #include <asm/uaccess.h>
36 MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
37 MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
38 MODULE_LICENSE("GPL");
40 /* Driver configuration and global parameters
41 * ==========================================
44 /* Number of ports (per card) and cards supported
46 #define FST_MAX_PORTS 4
47 #define FST_MAX_CARDS 32
49 /* Default parameters for the link
51 #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is
53 #define FST_TXQ_DEPTH 16 /* This one is for the buffering
54 * of frames on the way down to the card
55 * so that we can keep the card busy
56 * and maximise throughput
58 #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
60 #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
61 * control from network layer */
62 #define FST_MAX_MTU 8000 /* Huge but possible */
63 #define FST_DEF_MTU 1500 /* Common sane value */
65 #define FST_TX_TIMEOUT (2*HZ)
68 #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
70 #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
74 * Modules parameters and associated variables
76 static int fst_txq_low
= FST_LOW_WATER_MARK
;
77 static int fst_txq_high
= FST_HIGH_WATER_MARK
;
78 static int fst_max_reads
= 7;
79 static int fst_excluded_cards
= 0;
80 static int fst_excluded_list
[FST_MAX_CARDS
];
82 module_param(fst_txq_low
, int, 0);
83 module_param(fst_txq_high
, int, 0);
84 module_param(fst_max_reads
, int, 0);
85 module_param(fst_excluded_cards
, int, 0);
86 module_param_array(fst_excluded_list
, int, NULL
, 0);
88 /* Card shared memory layout
89 * =========================
93 /* This information is derived in part from the FarSite FarSync Smc.h
94 * file. Unfortunately various name clashes and the non-portability of the
95 * bit field declarations in that file have meant that I have chosen to
96 * recreate the information here.
98 * The SMC (Shared Memory Configuration) has a version number that is
99 * incremented every time there is a significant change. This number can
100 * be used to check that we have not got out of step with the firmware
101 * contained in the .CDE files.
103 #define SMC_VERSION 24
105 #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
107 #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main
108 * configuration structure */
109 #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA
112 #define LEN_TX_BUFFER 8192 /* Size of packet buffers */
113 #define LEN_RX_BUFFER 8192
115 #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */
116 #define LEN_SMALL_RX_BUFFER 256
118 #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */
119 #define NUM_RX_BUFFER 8
121 /* Interrupt retry time in milliseconds */
122 #define INT_RETRY_TIME 2
124 /* The Am186CH/CC processors support a SmartDMA mode using circular pools
125 * of buffer descriptors. The structure is almost identical to that used
126 * in the LANCE Ethernet controllers. Details available as PDF from the
127 * AMD web site: http://www.amd.com/products/epd/processors/\
128 * 2.16bitcont/3.am186cxfa/a21914/21914.pdf
130 struct txdesc
{ /* Transmit descriptor */
131 volatile u16 ladr
; /* Low order address of packet. This is a
132 * linear address in the Am186 memory space
134 volatile u8 hadr
; /* High order address. Low 4 bits only, high 4
137 volatile u8 bits
; /* Status and config */
138 volatile u16 bcnt
; /* 2s complement of packet size in low 15 bits.
139 * Transmit terminal count interrupt enable in
142 u16 unused
; /* Not used in Tx */
145 struct rxdesc
{ /* Receive descriptor */
146 volatile u16 ladr
; /* Low order address of packet */
147 volatile u8 hadr
; /* High order address */
148 volatile u8 bits
; /* Status and config */
149 volatile u16 bcnt
; /* 2s complement of buffer size in low 15 bits.
150 * Receive terminal count interrupt enable in
153 volatile u16 mcnt
; /* Message byte count (15 bits) */
156 /* Convert a length into the 15 bit 2's complement */
157 /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */
158 /* Since we need to set the high bit to enable the completion interrupt this
159 * can be made a lot simpler
161 #define cnv_bcnt(len) (-(len))
163 /* Status and config bits for the above */
164 #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */
165 #define TX_STP 0x02 /* Tx: start of packet */
166 #define TX_ENP 0x01 /* Tx: end of packet */
167 #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */
168 #define RX_FRAM 0x20 /* Rx: framing error */
169 #define RX_OFLO 0x10 /* Rx: overflow error */
170 #define RX_CRC 0x08 /* Rx: CRC error */
171 #define RX_HBUF 0x04 /* Rx: buffer error */
172 #define RX_STP 0x02 /* Rx: start of packet */
173 #define RX_ENP 0x01 /* Rx: end of packet */
175 /* Interrupts from the card are caused by various events which are presented
176 * in a circular buffer as several events may be processed on one physical int
178 #define MAX_CIRBUFF 32
181 u8 rdindex
; /* read, then increment and wrap */
182 u8 wrindex
; /* write, then increment and wrap */
183 u8 evntbuff
[MAX_CIRBUFF
];
186 /* Interrupt event codes.
187 * Where appropriate the two low order bits indicate the port number
189 #define CTLA_CHG 0x18 /* Control signal changed */
190 #define CTLB_CHG 0x19
191 #define CTLC_CHG 0x1A
192 #define CTLD_CHG 0x1B
194 #define INIT_CPLT 0x20 /* Initialisation complete */
195 #define INIT_FAIL 0x21 /* Initialisation failed */
197 #define ABTA_SENT 0x24 /* Abort sent */
198 #define ABTB_SENT 0x25
199 #define ABTC_SENT 0x26
200 #define ABTD_SENT 0x27
202 #define TXA_UNDF 0x28 /* Transmission underflow */
203 #define TXB_UNDF 0x29
204 #define TXC_UNDF 0x2A
205 #define TXD_UNDF 0x2B
210 #define TE1_ALMA 0x30
212 /* Port physical configuration. See farsync.h for field values */
214 u16 lineInterface
; /* Physical interface type */
215 u8 x25op
; /* Unused at present */
216 u8 internalClock
; /* 1 => internal clock, 0 => external */
217 u8 transparentMode
; /* 1 => on, 0 => off */
218 u8 invertClock
; /* 0 => normal, 1 => inverted */
219 u8 padBytes
[6]; /* Padding */
220 u32 lineSpeed
; /* Speed in bps */
223 /* TE1 port physical configuration */
247 u32 receiveBufferDelay
;
248 u32 framingErrorCount
;
249 u32 codeViolationCount
;
254 u8 receiveRemoteAlarm
;
255 u8 alarmIndicationSignal
;
259 /* Finally sling all the above together into the shared memory structure.
260 * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
261 * evolving under NT for some time so I guess we're stuck with it.
262 * The structure starts at offset SMC_BASE.
263 * See farsync.h for some field values.
266 /* DMA descriptor rings */
267 struct rxdesc rxDescrRing
[FST_MAX_PORTS
][NUM_RX_BUFFER
];
268 struct txdesc txDescrRing
[FST_MAX_PORTS
][NUM_TX_BUFFER
];
270 /* Obsolete small buffers */
271 u8 smallRxBuffer
[FST_MAX_PORTS
][NUM_RX_BUFFER
][LEN_SMALL_RX_BUFFER
];
272 u8 smallTxBuffer
[FST_MAX_PORTS
][NUM_TX_BUFFER
][LEN_SMALL_TX_BUFFER
];
274 u8 taskStatus
; /* 0x00 => initialising, 0x01 => running,
278 u8 interruptHandshake
; /* Set to 0x01 by adapter to signal interrupt,
279 * set to 0xEE by host to acknowledge interrupt
282 u16 smcVersion
; /* Must match SMC_VERSION */
284 u32 smcFirmwareVersion
; /* 0xIIVVRRBB where II = product ID, VV = major
285 * version, RR = revision and BB = build
288 u16 txa_done
; /* Obsolete completion flags */
297 u16 mailbox
[4]; /* Diagnostics mailbox. Not used */
299 struct cirbuff interruptEvent
; /* interrupt causes */
301 u32 v24IpSts
[FST_MAX_PORTS
]; /* V.24 control input status */
302 u32 v24OpSts
[FST_MAX_PORTS
]; /* V.24 control output status */
304 struct port_cfg portConfig
[FST_MAX_PORTS
];
306 u16 clockStatus
[FST_MAX_PORTS
]; /* lsb: 0=> present, 1=> absent */
308 u16 cableStatus
; /* lsb: 0=> present, 1=> absent */
310 u16 txDescrIndex
[FST_MAX_PORTS
]; /* transmit descriptor ring index */
311 u16 rxDescrIndex
[FST_MAX_PORTS
]; /* receive descriptor ring index */
313 u16 portMailbox
[FST_MAX_PORTS
][2]; /* command, modifier */
314 u16 cardMailbox
[4]; /* Not used */
316 /* Number of times the card thinks the host has
317 * missed an interrupt by not acknowledging
318 * within 2mS (I guess NT has problems)
320 u32 interruptRetryCount
;
322 /* Driver private data used as an ID. We'll not
323 * use this as I'd rather keep such things
324 * in main memory rather than on the PCI bus
326 u32 portHandle
[FST_MAX_PORTS
];
328 /* Count of Tx underflows for stats */
329 u32 transmitBufferUnderflow
[FST_MAX_PORTS
];
331 /* Debounced V.24 control input status */
332 u32 v24DebouncedSts
[FST_MAX_PORTS
];
334 /* Adapter debounce timers. Don't touch */
335 u32 ctsTimer
[FST_MAX_PORTS
];
336 u32 ctsTimerRun
[FST_MAX_PORTS
];
337 u32 dcdTimer
[FST_MAX_PORTS
];
338 u32 dcdTimerRun
[FST_MAX_PORTS
];
340 u32 numberOfPorts
; /* Number of ports detected at startup */
344 u16 cardMode
; /* Bit-mask to enable features:
345 * Bit 0: 1 enables LED identify mode
348 u16 portScheduleOffset
;
350 struct su_config suConfig
; /* TE1 Bits */
351 struct su_status suStatus
;
353 u32 endOfSmcSignature
; /* endOfSmcSignature MUST be the last member of
354 * the structure and marks the end of shared
355 * memory. Adapter code initializes it as
360 /* endOfSmcSignature value */
361 #define END_SIG 0x12345678
363 /* Mailbox values. (portMailbox) */
364 #define NOP 0 /* No operation */
365 #define ACK 1 /* Positive acknowledgement to PC driver */
366 #define NAK 2 /* Negative acknowledgement to PC driver */
367 #define STARTPORT 3 /* Start an HDLC port */
368 #define STOPPORT 4 /* Stop an HDLC port */
369 #define ABORTTX 5 /* Abort the transmitter for a port */
370 #define SETV24O 6 /* Set V24 outputs */
372 /* PLX Chip Register Offsets */
373 #define CNTRL_9052 0x50 /* Control Register */
374 #define CNTRL_9054 0x6c /* Control Register */
376 #define INTCSR_9052 0x4c /* Interrupt control/status register */
377 #define INTCSR_9054 0x68 /* Interrupt control/status register */
379 /* 9054 DMA Registers */
381 * Note that we will be using DMA Channel 0 for copying rx data
382 * and Channel 1 for copying tx data
384 #define DMAMODE0 0x80
385 #define DMAPADR0 0x84
386 #define DMALADR0 0x88
389 #define DMAMODE1 0x94
390 #define DMAPADR1 0x98
391 #define DMALADR1 0x9c
400 #define DMAMARBR 0xac
402 #define FST_MIN_DMA_LEN 64
403 #define FST_RX_DMA_INT 0x01
404 #define FST_TX_DMA_INT 0x02
405 #define FST_CARD_INT 0x04
407 /* Larger buffers are positioned in memory at offset BFM_BASE */
409 u8 txBuffer
[FST_MAX_PORTS
][NUM_TX_BUFFER
][LEN_TX_BUFFER
];
410 u8 rxBuffer
[FST_MAX_PORTS
][NUM_RX_BUFFER
][LEN_RX_BUFFER
];
413 /* Calculate offset of a buffer object within the shared memory window */
414 #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X))
418 /* Device driver private information
419 * =================================
421 /* Per port (line or channel) information
423 struct fst_port_info
{
424 struct net_device
*dev
; /* Device struct - must be first */
425 struct fst_card_info
*card
; /* Card we're associated with */
426 int index
; /* Port index on the card */
427 int hwif
; /* Line hardware (lineInterface copy) */
428 int run
; /* Port is running */
429 int mode
; /* Normal or FarSync raw */
430 int rxpos
; /* Next Rx buffer to use */
431 int txpos
; /* Next Tx buffer to use */
432 int txipos
; /* Next Tx buffer to check for free */
433 int start
; /* Indication of start/stop to network */
435 * A sixteen entry transmit queue
437 int txqs
; /* index to get next buffer to tx */
438 int txqe
; /* index to queue next packet */
439 struct sk_buff
*txq
[FST_TXQ_DEPTH
]; /* The queue */
443 /* Per card information
445 struct fst_card_info
{
446 char __iomem
*mem
; /* Card memory mapped to kernel space */
447 char __iomem
*ctlmem
; /* Control memory for PCI cards */
448 unsigned int phys_mem
; /* Physical memory window address */
449 unsigned int phys_ctlmem
; /* Physical control memory address */
450 unsigned int irq
; /* Interrupt request line number */
451 unsigned int nports
; /* Number of serial ports */
452 unsigned int type
; /* Type index of card */
453 unsigned int state
; /* State of card */
454 spinlock_t card_lock
; /* Lock for SMP access */
455 unsigned short pci_conf
; /* PCI card config in I/O space */
457 struct fst_port_info ports
[FST_MAX_PORTS
];
458 struct pci_dev
*device
; /* Information about the pci device */
459 int card_no
; /* Inst of the card on the system */
460 int family
; /* TxP or TxU */
461 int dmarx_in_progress
;
462 int dmatx_in_progress
;
463 unsigned long int_count
;
464 unsigned long int_time_ave
;
465 void *rx_dma_handle_host
;
466 dma_addr_t rx_dma_handle_card
;
467 void *tx_dma_handle_host
;
468 dma_addr_t tx_dma_handle_card
;
469 struct sk_buff
*dma_skb_rx
;
470 struct fst_port_info
*dma_port_rx
;
471 struct fst_port_info
*dma_port_tx
;
478 /* Convert an HDLC device pointer into a port info pointer and similar */
479 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
480 #define port_to_dev(P) ((P)->dev)
484 * Shared memory window access macros
486 * We have a nice memory based structure above, which could be directly
487 * mapped on i386 but might not work on other architectures unless we use
488 * the readb,w,l and writeb,w,l macros. Unfortunately these macros take
489 * physical offsets so we have to convert. The only saving grace is that
490 * this should all collapse back to a simple indirection eventually.
492 #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X))
494 #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E))
495 #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E))
496 #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E))
498 #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E))
499 #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
500 #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
507 static int fst_debug_mask
= { FST_DEBUG
};
509 /* Most common debug activity is to print something if the corresponding bit
510 * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to
511 * support variable numbers of macro parameters. The inverted if prevents us
512 * eating someone else's else clause.
514 #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \
517 printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
520 #define dbg(X...) /* NOP */
523 /* Printing short cuts
525 #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A )
526 #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
527 #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A )
530 * PCI ID lookup table
532 static DEFINE_PCI_DEVICE_TABLE(fst_pci_dev_id
) = {
533 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T2P
, PCI_ANY_ID
,
534 PCI_ANY_ID
, 0, 0, FST_TYPE_T2P
},
536 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T4P
, PCI_ANY_ID
,
537 PCI_ANY_ID
, 0, 0, FST_TYPE_T4P
},
539 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T1U
, PCI_ANY_ID
,
540 PCI_ANY_ID
, 0, 0, FST_TYPE_T1U
},
542 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T2U
, PCI_ANY_ID
,
543 PCI_ANY_ID
, 0, 0, FST_TYPE_T2U
},
545 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_T4U
, PCI_ANY_ID
,
546 PCI_ANY_ID
, 0, 0, FST_TYPE_T4U
},
548 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_TE1
, PCI_ANY_ID
,
549 PCI_ANY_ID
, 0, 0, FST_TYPE_TE1
},
551 {PCI_VENDOR_ID_FARSITE
, PCI_DEVICE_ID_FARSITE_TE1C
, PCI_ANY_ID
,
552 PCI_ANY_ID
, 0, 0, FST_TYPE_TE1
},
556 MODULE_DEVICE_TABLE(pci
, fst_pci_dev_id
);
559 * Device Driver Work Queues
561 * So that we don't spend too much time processing events in the
562 * Interrupt Service routine, we will declare a work queue per Card
563 * and make the ISR schedule a task in the queue for later execution.
564 * In the 2.4 Kernel we used to use the immediate queue for BH's
565 * Now that they are gone, tasklets seem to be much better than work
569 static void do_bottom_half_tx(struct fst_card_info
*card
);
570 static void do_bottom_half_rx(struct fst_card_info
*card
);
571 static void fst_process_tx_work_q(unsigned long work_q
);
572 static void fst_process_int_work_q(unsigned long work_q
);
574 static DECLARE_TASKLET(fst_tx_task
, fst_process_tx_work_q
, 0);
575 static DECLARE_TASKLET(fst_int_task
, fst_process_int_work_q
, 0);
577 static struct fst_card_info
*fst_card_array
[FST_MAX_CARDS
];
578 static spinlock_t fst_work_q_lock
;
579 static u64 fst_work_txq
;
580 static u64 fst_work_intq
;
583 fst_q_work_item(u64
* queue
, int card_index
)
589 * Grab the queue exclusively
591 spin_lock_irqsave(&fst_work_q_lock
, flags
);
594 * Making an entry in the queue is simply a matter of setting
595 * a bit for the card indicating that there is work to do in the
596 * bottom half for the card. Note the limitation of 64 cards.
597 * That ought to be enough
599 mask
= 1 << card_index
;
601 spin_unlock_irqrestore(&fst_work_q_lock
, flags
);
605 fst_process_tx_work_q(unsigned long /*void **/work_q
)
612 * Grab the queue exclusively
614 dbg(DBG_TX
, "fst_process_tx_work_q\n");
615 spin_lock_irqsave(&fst_work_q_lock
, flags
);
616 work_txq
= fst_work_txq
;
618 spin_unlock_irqrestore(&fst_work_q_lock
, flags
);
621 * Call the bottom half for each card with work waiting
623 for (i
= 0; i
< FST_MAX_CARDS
; i
++) {
624 if (work_txq
& 0x01) {
625 if (fst_card_array
[i
] != NULL
) {
626 dbg(DBG_TX
, "Calling tx bh for card %d\n", i
);
627 do_bottom_half_tx(fst_card_array
[i
]);
630 work_txq
= work_txq
>> 1;
635 fst_process_int_work_q(unsigned long /*void **/work_q
)
642 * Grab the queue exclusively
644 dbg(DBG_INTR
, "fst_process_int_work_q\n");
645 spin_lock_irqsave(&fst_work_q_lock
, flags
);
646 work_intq
= fst_work_intq
;
648 spin_unlock_irqrestore(&fst_work_q_lock
, flags
);
651 * Call the bottom half for each card with work waiting
653 for (i
= 0; i
< FST_MAX_CARDS
; i
++) {
654 if (work_intq
& 0x01) {
655 if (fst_card_array
[i
] != NULL
) {
657 "Calling rx & tx bh for card %d\n", i
);
658 do_bottom_half_rx(fst_card_array
[i
]);
659 do_bottom_half_tx(fst_card_array
[i
]);
662 work_intq
= work_intq
>> 1;
666 /* Card control functions
667 * ======================
669 /* Place the processor in reset state
671 * Used to be a simple write to card control space but a glitch in the latest
672 * AMD Am186CH processor means that we now have to do it by asserting and de-
673 * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
674 * at offset 9052_CNTRL. Note the updates for the TXU.
677 fst_cpureset(struct fst_card_info
*card
)
679 unsigned char interrupt_line_register
;
680 unsigned long j
= jiffies
+ 1;
683 if (card
->family
== FST_FAMILY_TXU
) {
684 if (pci_read_config_byte
685 (card
->device
, PCI_INTERRUPT_LINE
, &interrupt_line_register
)) {
687 "Error in reading interrupt line register\n");
690 * Assert PLX software reset and Am186 hardware reset
691 * and then deassert the PLX software reset but 186 still in reset
693 outw(0x440f, card
->pci_conf
+ CNTRL_9054
+ 2);
694 outw(0x040f, card
->pci_conf
+ CNTRL_9054
+ 2);
696 * We are delaying here to allow the 9054 to reset itself
701 outw(0x240f, card
->pci_conf
+ CNTRL_9054
+ 2);
703 * We are delaying here to allow the 9054 to reload its eeprom
708 outw(0x040f, card
->pci_conf
+ CNTRL_9054
+ 2);
710 if (pci_write_config_byte
711 (card
->device
, PCI_INTERRUPT_LINE
, interrupt_line_register
)) {
713 "Error in writing interrupt line register\n");
717 regval
= inl(card
->pci_conf
+ CNTRL_9052
);
719 outl(regval
| 0x40000000, card
->pci_conf
+ CNTRL_9052
);
720 outl(regval
& ~0x40000000, card
->pci_conf
+ CNTRL_9052
);
724 /* Release the processor from reset
727 fst_cpurelease(struct fst_card_info
*card
)
729 if (card
->family
== FST_FAMILY_TXU
) {
731 * Force posted writes to complete
733 (void) readb(card
->mem
);
736 * Release LRESET DO = 1
737 * Then release Local Hold, DO = 1
739 outw(0x040e, card
->pci_conf
+ CNTRL_9054
+ 2);
740 outw(0x040f, card
->pci_conf
+ CNTRL_9054
+ 2);
742 (void) readb(card
->ctlmem
);
746 /* Clear the cards interrupt flag
749 fst_clear_intr(struct fst_card_info
*card
)
751 if (card
->family
== FST_FAMILY_TXU
) {
752 (void) readb(card
->ctlmem
);
754 /* Poke the appropriate PLX chip register (same as enabling interrupts)
756 outw(0x0543, card
->pci_conf
+ INTCSR_9052
);
760 /* Enable card interrupts
763 fst_enable_intr(struct fst_card_info
*card
)
765 if (card
->family
== FST_FAMILY_TXU
) {
766 outl(0x0f0c0900, card
->pci_conf
+ INTCSR_9054
);
768 outw(0x0543, card
->pci_conf
+ INTCSR_9052
);
772 /* Disable card interrupts
775 fst_disable_intr(struct fst_card_info
*card
)
777 if (card
->family
== FST_FAMILY_TXU
) {
778 outl(0x00000000, card
->pci_conf
+ INTCSR_9054
);
780 outw(0x0000, card
->pci_conf
+ INTCSR_9052
);
784 /* Process the result of trying to pass a received frame up the stack
787 fst_process_rx_status(int rx_status
, char *name
)
799 dbg(DBG_ASS
, "%s: Received packet dropped\n", name
);
805 /* Initilaise DMA for PLX 9054
808 fst_init_dma(struct fst_card_info
*card
)
811 * This is only required for the PLX 9054
813 if (card
->family
== FST_FAMILY_TXU
) {
814 pci_set_master(card
->device
);
815 outl(0x00020441, card
->pci_conf
+ DMAMODE0
);
816 outl(0x00020441, card
->pci_conf
+ DMAMODE1
);
817 outl(0x0, card
->pci_conf
+ DMATHR
);
821 /* Tx dma complete interrupt
824 fst_tx_dma_complete(struct fst_card_info
*card
, struct fst_port_info
*port
,
827 struct net_device
*dev
= port_to_dev(port
);
830 * Everything is now set, just tell the card to go
832 dbg(DBG_TX
, "fst_tx_dma_complete\n");
833 FST_WRB(card
, txDescrRing
[port
->index
][txpos
].bits
,
834 DMA_OWN
| TX_STP
| TX_ENP
);
835 dev
->stats
.tx_packets
++;
836 dev
->stats
.tx_bytes
+= len
;
837 dev
->trans_start
= jiffies
;
841 * Mark it for our own raw sockets interface
843 static __be16
farsync_type_trans(struct sk_buff
*skb
, struct net_device
*dev
)
846 skb_reset_mac_header(skb
);
847 skb
->pkt_type
= PACKET_HOST
;
848 return htons(ETH_P_CUST
);
851 /* Rx dma complete interrupt
854 fst_rx_dma_complete(struct fst_card_info
*card
, struct fst_port_info
*port
,
855 int len
, struct sk_buff
*skb
, int rxp
)
857 struct net_device
*dev
= port_to_dev(port
);
861 dbg(DBG_TX
, "fst_rx_dma_complete\n");
863 memcpy(skb_put(skb
, len
), card
->rx_dma_handle_host
, len
);
865 /* Reset buffer descriptor */
866 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
869 dev
->stats
.rx_packets
++;
870 dev
->stats
.rx_bytes
+= len
;
873 dbg(DBG_RX
, "Pushing the frame up the stack\n");
874 if (port
->mode
== FST_RAW
)
875 skb
->protocol
= farsync_type_trans(skb
, dev
);
877 skb
->protocol
= hdlc_type_trans(skb
, dev
);
878 rx_status
= netif_rx(skb
);
879 fst_process_rx_status(rx_status
, port_to_dev(port
)->name
);
880 if (rx_status
== NET_RX_DROP
)
881 dev
->stats
.rx_dropped
++;
885 * Receive a frame through the DMA
888 fst_rx_dma(struct fst_card_info
*card
, unsigned char *skb
,
889 unsigned char *mem
, int len
)
892 * This routine will setup the DMA and start it
895 dbg(DBG_RX
, "In fst_rx_dma %p %p %d\n", skb
, mem
, len
);
896 if (card
->dmarx_in_progress
) {
897 dbg(DBG_ASS
, "In fst_rx_dma while dma in progress\n");
900 outl((unsigned long) skb
, card
->pci_conf
+ DMAPADR0
); /* Copy to here */
901 outl((unsigned long) mem
, card
->pci_conf
+ DMALADR0
); /* from here */
902 outl(len
, card
->pci_conf
+ DMASIZ0
); /* for this length */
903 outl(0x00000000c, card
->pci_conf
+ DMADPR0
); /* In this direction */
906 * We use the dmarx_in_progress flag to flag the channel as busy
908 card
->dmarx_in_progress
= 1;
909 outb(0x03, card
->pci_conf
+ DMACSR0
); /* Start the transfer */
913 * Send a frame through the DMA
916 fst_tx_dma(struct fst_card_info
*card
, unsigned char *skb
,
917 unsigned char *mem
, int len
)
920 * This routine will setup the DMA and start it.
923 dbg(DBG_TX
, "In fst_tx_dma %p %p %d\n", skb
, mem
, len
);
924 if (card
->dmatx_in_progress
) {
925 dbg(DBG_ASS
, "In fst_tx_dma while dma in progress\n");
928 outl((unsigned long) skb
, card
->pci_conf
+ DMAPADR1
); /* Copy from here */
929 outl((unsigned long) mem
, card
->pci_conf
+ DMALADR1
); /* to here */
930 outl(len
, card
->pci_conf
+ DMASIZ1
); /* for this length */
931 outl(0x000000004, card
->pci_conf
+ DMADPR1
); /* In this direction */
934 * We use the dmatx_in_progress to flag the channel as busy
936 card
->dmatx_in_progress
= 1;
937 outb(0x03, card
->pci_conf
+ DMACSR1
); /* Start the transfer */
940 /* Issue a Mailbox command for a port.
941 * Note we issue them on a fire and forget basis, not expecting to see an
942 * error and not waiting for completion.
945 fst_issue_cmd(struct fst_port_info
*port
, unsigned short cmd
)
947 struct fst_card_info
*card
;
948 unsigned short mbval
;
953 spin_lock_irqsave(&card
->card_lock
, flags
);
954 mbval
= FST_RDW(card
, portMailbox
[port
->index
][0]);
957 /* Wait for any previous command to complete */
958 while (mbval
> NAK
) {
959 spin_unlock_irqrestore(&card
->card_lock
, flags
);
960 schedule_timeout_uninterruptible(1);
961 spin_lock_irqsave(&card
->card_lock
, flags
);
963 if (++safety
> 2000) {
964 printk_err("Mailbox safety timeout\n");
968 mbval
= FST_RDW(card
, portMailbox
[port
->index
][0]);
971 dbg(DBG_CMD
, "Mailbox clear after %d jiffies\n", safety
);
974 dbg(DBG_CMD
, "issue_cmd: previous command was NAK'd\n");
977 FST_WRW(card
, portMailbox
[port
->index
][0], cmd
);
979 if (cmd
== ABORTTX
|| cmd
== STARTPORT
) {
985 spin_unlock_irqrestore(&card
->card_lock
, flags
);
988 /* Port output signals control
991 fst_op_raise(struct fst_port_info
*port
, unsigned int outputs
)
993 outputs
|= FST_RDL(port
->card
, v24OpSts
[port
->index
]);
994 FST_WRL(port
->card
, v24OpSts
[port
->index
], outputs
);
997 fst_issue_cmd(port
, SETV24O
);
1001 fst_op_lower(struct fst_port_info
*port
, unsigned int outputs
)
1003 outputs
= ~outputs
& FST_RDL(port
->card
, v24OpSts
[port
->index
]);
1004 FST_WRL(port
->card
, v24OpSts
[port
->index
], outputs
);
1007 fst_issue_cmd(port
, SETV24O
);
1011 * Setup port Rx buffers
1014 fst_rx_config(struct fst_port_info
*port
)
1018 unsigned int offset
;
1019 unsigned long flags
;
1020 struct fst_card_info
*card
;
1024 spin_lock_irqsave(&card
->card_lock
, flags
);
1025 for (i
= 0; i
< NUM_RX_BUFFER
; i
++) {
1026 offset
= BUF_OFFSET(rxBuffer
[pi
][i
][0]);
1028 FST_WRW(card
, rxDescrRing
[pi
][i
].ladr
, (u16
) offset
);
1029 FST_WRB(card
, rxDescrRing
[pi
][i
].hadr
, (u8
) (offset
>> 16));
1030 FST_WRW(card
, rxDescrRing
[pi
][i
].bcnt
, cnv_bcnt(LEN_RX_BUFFER
));
1031 FST_WRW(card
, rxDescrRing
[pi
][i
].mcnt
, LEN_RX_BUFFER
);
1032 FST_WRB(card
, rxDescrRing
[pi
][i
].bits
, DMA_OWN
);
1035 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1039 * Setup port Tx buffers
1042 fst_tx_config(struct fst_port_info
*port
)
1046 unsigned int offset
;
1047 unsigned long flags
;
1048 struct fst_card_info
*card
;
1052 spin_lock_irqsave(&card
->card_lock
, flags
);
1053 for (i
= 0; i
< NUM_TX_BUFFER
; i
++) {
1054 offset
= BUF_OFFSET(txBuffer
[pi
][i
][0]);
1056 FST_WRW(card
, txDescrRing
[pi
][i
].ladr
, (u16
) offset
);
1057 FST_WRB(card
, txDescrRing
[pi
][i
].hadr
, (u8
) (offset
>> 16));
1058 FST_WRW(card
, txDescrRing
[pi
][i
].bcnt
, 0);
1059 FST_WRB(card
, txDescrRing
[pi
][i
].bits
, 0);
1064 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1067 /* TE1 Alarm change interrupt event
1070 fst_intr_te1_alarm(struct fst_card_info
*card
, struct fst_port_info
*port
)
1076 los
= FST_RDB(card
, suStatus
.lossOfSignal
);
1077 rra
= FST_RDB(card
, suStatus
.receiveRemoteAlarm
);
1078 ais
= FST_RDB(card
, suStatus
.alarmIndicationSignal
);
1084 if (netif_carrier_ok(port_to_dev(port
))) {
1085 dbg(DBG_INTR
, "Net carrier off\n");
1086 netif_carrier_off(port_to_dev(port
));
1092 if (!netif_carrier_ok(port_to_dev(port
))) {
1093 dbg(DBG_INTR
, "Net carrier on\n");
1094 netif_carrier_on(port_to_dev(port
));
1099 dbg(DBG_INTR
, "Assert LOS Alarm\n");
1101 dbg(DBG_INTR
, "De-assert LOS Alarm\n");
1103 dbg(DBG_INTR
, "Assert RRA Alarm\n");
1105 dbg(DBG_INTR
, "De-assert RRA Alarm\n");
1108 dbg(DBG_INTR
, "Assert AIS Alarm\n");
1110 dbg(DBG_INTR
, "De-assert AIS Alarm\n");
1113 /* Control signal change interrupt event
1116 fst_intr_ctlchg(struct fst_card_info
*card
, struct fst_port_info
*port
)
1120 signals
= FST_RDL(card
, v24DebouncedSts
[port
->index
]);
1122 if (signals
& (((port
->hwif
== X21
) || (port
->hwif
== X21D
))
1123 ? IPSTS_INDICATE
: IPSTS_DCD
)) {
1124 if (!netif_carrier_ok(port_to_dev(port
))) {
1125 dbg(DBG_INTR
, "DCD active\n");
1126 netif_carrier_on(port_to_dev(port
));
1129 if (netif_carrier_ok(port_to_dev(port
))) {
1130 dbg(DBG_INTR
, "DCD lost\n");
1131 netif_carrier_off(port_to_dev(port
));
1139 fst_log_rx_error(struct fst_card_info
*card
, struct fst_port_info
*port
,
1140 unsigned char dmabits
, int rxp
, unsigned short len
)
1142 struct net_device
*dev
= port_to_dev(port
);
1145 * Increment the appropriate error counter
1147 dev
->stats
.rx_errors
++;
1148 if (dmabits
& RX_OFLO
) {
1149 dev
->stats
.rx_fifo_errors
++;
1150 dbg(DBG_ASS
, "Rx fifo error on card %d port %d buffer %d\n",
1151 card
->card_no
, port
->index
, rxp
);
1153 if (dmabits
& RX_CRC
) {
1154 dev
->stats
.rx_crc_errors
++;
1155 dbg(DBG_ASS
, "Rx crc error on card %d port %d\n",
1156 card
->card_no
, port
->index
);
1158 if (dmabits
& RX_FRAM
) {
1159 dev
->stats
.rx_frame_errors
++;
1160 dbg(DBG_ASS
, "Rx frame error on card %d port %d\n",
1161 card
->card_no
, port
->index
);
1163 if (dmabits
== (RX_STP
| RX_ENP
)) {
1164 dev
->stats
.rx_length_errors
++;
1165 dbg(DBG_ASS
, "Rx length error (%d) on card %d port %d\n",
1166 len
, card
->card_no
, port
->index
);
1170 /* Rx Error Recovery
1173 fst_recover_rx_error(struct fst_card_info
*card
, struct fst_port_info
*port
,
1174 unsigned char dmabits
, int rxp
, unsigned short len
)
1181 * Discard buffer descriptors until we see the start of the
1182 * next frame. Note that for long frames this could be in
1183 * a subsequent interrupt.
1186 while ((dmabits
& (DMA_OWN
| RX_STP
)) == 0) {
1187 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1188 rxp
= (rxp
+1) % NUM_RX_BUFFER
;
1189 if (++i
> NUM_RX_BUFFER
) {
1190 dbg(DBG_ASS
, "intr_rx: Discarding more bufs"
1194 dmabits
= FST_RDB(card
, rxDescrRing
[pi
][rxp
].bits
);
1195 dbg(DBG_ASS
, "DMA Bits of next buffer was %x\n", dmabits
);
1197 dbg(DBG_ASS
, "There were %d subsequent buffers in error\n", i
);
1199 /* Discard the terminal buffer */
1200 if (!(dmabits
& DMA_OWN
)) {
1201 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1202 rxp
= (rxp
+1) % NUM_RX_BUFFER
;
1209 /* Rx complete interrupt
1212 fst_intr_rx(struct fst_card_info
*card
, struct fst_port_info
*port
)
1214 unsigned char dmabits
;
1219 struct sk_buff
*skb
;
1220 struct net_device
*dev
= port_to_dev(port
);
1222 /* Check we have a buffer to process */
1225 dmabits
= FST_RDB(card
, rxDescrRing
[pi
][rxp
].bits
);
1226 if (dmabits
& DMA_OWN
) {
1227 dbg(DBG_RX
| DBG_INTR
, "intr_rx: No buffer port %d pos %d\n",
1231 if (card
->dmarx_in_progress
) {
1235 /* Get buffer length */
1236 len
= FST_RDW(card
, rxDescrRing
[pi
][rxp
].mcnt
);
1237 /* Discard the CRC */
1241 * This seems to happen on the TE1 interface sometimes
1242 * so throw the frame away and log the event.
1244 printk_err("Frame received with 0 length. Card %d Port %d\n",
1245 card
->card_no
, port
->index
);
1246 /* Return descriptor to card */
1247 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1249 rxp
= (rxp
+1) % NUM_RX_BUFFER
;
1254 /* Check buffer length and for other errors. We insist on one packet
1255 * in one buffer. This simplifies things greatly and since we've
1256 * allocated 8K it shouldn't be a real world limitation
1258 dbg(DBG_RX
, "intr_rx: %d,%d: flags %x len %d\n", pi
, rxp
, dmabits
, len
);
1259 if (dmabits
!= (RX_STP
| RX_ENP
) || len
> LEN_RX_BUFFER
- 2) {
1260 fst_log_rx_error(card
, port
, dmabits
, rxp
, len
);
1261 fst_recover_rx_error(card
, port
, dmabits
, rxp
, len
);
1266 if ((skb
= dev_alloc_skb(len
)) == NULL
) {
1267 dbg(DBG_RX
, "intr_rx: can't allocate buffer\n");
1269 dev
->stats
.rx_dropped
++;
1271 /* Return descriptor to card */
1272 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1274 rxp
= (rxp
+1) % NUM_RX_BUFFER
;
1280 * We know the length we need to receive, len.
1281 * It's not worth using the DMA for reads of less than
1285 if ((len
< FST_MIN_DMA_LEN
) || (card
->family
== FST_FAMILY_TXP
)) {
1286 memcpy_fromio(skb_put(skb
, len
),
1287 card
->mem
+ BUF_OFFSET(rxBuffer
[pi
][rxp
][0]),
1290 /* Reset buffer descriptor */
1291 FST_WRB(card
, rxDescrRing
[pi
][rxp
].bits
, DMA_OWN
);
1294 dev
->stats
.rx_packets
++;
1295 dev
->stats
.rx_bytes
+= len
;
1298 dbg(DBG_RX
, "Pushing frame up the stack\n");
1299 if (port
->mode
== FST_RAW
)
1300 skb
->protocol
= farsync_type_trans(skb
, dev
);
1302 skb
->protocol
= hdlc_type_trans(skb
, dev
);
1303 rx_status
= netif_rx(skb
);
1304 fst_process_rx_status(rx_status
, port_to_dev(port
)->name
);
1305 if (rx_status
== NET_RX_DROP
)
1306 dev
->stats
.rx_dropped
++;
1308 card
->dma_skb_rx
= skb
;
1309 card
->dma_port_rx
= port
;
1310 card
->dma_len_rx
= len
;
1311 card
->dma_rxpos
= rxp
;
1312 fst_rx_dma(card
, (char *) card
->rx_dma_handle_card
,
1313 (char *) BUF_OFFSET(rxBuffer
[pi
][rxp
][0]), len
);
1315 if (rxp
!= port
->rxpos
) {
1316 dbg(DBG_ASS
, "About to increment rxpos by more than 1\n");
1317 dbg(DBG_ASS
, "rxp = %d rxpos = %d\n", rxp
, port
->rxpos
);
1319 rxp
= (rxp
+1) % NUM_RX_BUFFER
;
1324 * The bottom halfs to the ISR
1329 do_bottom_half_tx(struct fst_card_info
*card
)
1331 struct fst_port_info
*port
;
1334 struct sk_buff
*skb
;
1335 unsigned long flags
;
1336 struct net_device
*dev
;
1339 * Find a free buffer for the transmit
1340 * Step through each port on this card
1343 dbg(DBG_TX
, "do_bottom_half_tx\n");
1344 for (pi
= 0, port
= card
->ports
; pi
< card
->nports
; pi
++, port
++) {
1348 dev
= port_to_dev(port
);
1349 while (!(FST_RDB(card
, txDescrRing
[pi
][port
->txpos
].bits
) &
1351 !(card
->dmatx_in_progress
)) {
1353 * There doesn't seem to be a txdone event per-se
1354 * We seem to have to deduce it, by checking the DMA_OWN
1355 * bit on the next buffer we think we can use
1357 spin_lock_irqsave(&card
->card_lock
, flags
);
1358 if ((txq_length
= port
->txqe
- port
->txqs
) < 0) {
1360 * This is the case where one has wrapped and the
1361 * maths gives us a negative number
1363 txq_length
= txq_length
+ FST_TXQ_DEPTH
;
1365 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1366 if (txq_length
> 0) {
1368 * There is something to send
1370 spin_lock_irqsave(&card
->card_lock
, flags
);
1371 skb
= port
->txq
[port
->txqs
];
1373 if (port
->txqs
== FST_TXQ_DEPTH
) {
1376 spin_unlock_irqrestore(&card
->card_lock
, flags
);
1378 * copy the data and set the required indicators on the
1381 FST_WRW(card
, txDescrRing
[pi
][port
->txpos
].bcnt
,
1382 cnv_bcnt(skb
->len
));
1383 if ((skb
->len
< FST_MIN_DMA_LEN
) ||
1384 (card
->family
== FST_FAMILY_TXP
)) {
1385 /* Enqueue the packet with normal io */
1386 memcpy_toio(card
->mem
+
1387 BUF_OFFSET(txBuffer
[pi
]
1390 skb
->data
, skb
->len
);
1392 txDescrRing
[pi
][port
->txpos
].
1394 DMA_OWN
| TX_STP
| TX_ENP
);
1395 dev
->stats
.tx_packets
++;
1396 dev
->stats
.tx_bytes
+= skb
->len
;
1397 dev
->trans_start
= jiffies
;
1399 /* Or do it through dma */
1400 memcpy(card
->tx_dma_handle_host
,
1401 skb
->data
, skb
->len
);
1402 card
->dma_port_tx
= port
;
1403 card
->dma_len_tx
= skb
->len
;
1404 card
->dma_txpos
= port
->txpos
;
1409 BUF_OFFSET(txBuffer
[pi
]
1413 if (++port
->txpos
>= NUM_TX_BUFFER
)
1416 * If we have flow control on, can we now release it?
1419 if (txq_length
< fst_txq_low
) {
1420 netif_wake_queue(port_to_dev
1428 * Nothing to send so break out of the while loop
1437 do_bottom_half_rx(struct fst_card_info
*card
)
1439 struct fst_port_info
*port
;
1443 /* Check for rx completions on all ports on this card */
1444 dbg(DBG_RX
, "do_bottom_half_rx\n");
1445 for (pi
= 0, port
= card
->ports
; pi
< card
->nports
; pi
++, port
++) {
1449 while (!(FST_RDB(card
, rxDescrRing
[pi
][port
->rxpos
].bits
)
1450 & DMA_OWN
) && !(card
->dmarx_in_progress
)) {
1451 if (rx_count
> fst_max_reads
) {
1453 * Don't spend forever in receive processing
1454 * Schedule another event
1456 fst_q_work_item(&fst_work_intq
, card
->card_no
);
1457 tasklet_schedule(&fst_int_task
);
1458 break; /* Leave the loop */
1460 fst_intr_rx(card
, port
);
1467 * The interrupt service routine
1468 * Dev_id is our fst_card_info pointer
1471 fst_intr(int dummy
, void *dev_id
)
1473 struct fst_card_info
*card
= dev_id
;
1474 struct fst_port_info
*port
;
1475 int rdidx
; /* Event buffer indices */
1477 int event
; /* Actual event for processing */
1478 unsigned int dma_intcsr
= 0;
1479 unsigned int do_card_interrupt
;
1480 unsigned int int_retry_count
;
1483 * Check to see if the interrupt was for this card
1485 * Note that the call to clear the interrupt is important
1487 dbg(DBG_INTR
, "intr: %d %p\n", card
->irq
, card
);
1488 if (card
->state
!= FST_RUNNING
) {
1490 ("Interrupt received for card %d in a non running state (%d)\n",
1491 card
->card_no
, card
->state
);
1494 * It is possible to really be running, i.e. we have re-loaded
1496 * Clear and reprime the interrupt source
1498 fst_clear_intr(card
);
1502 /* Clear and reprime the interrupt source */
1503 fst_clear_intr(card
);
1506 * Is the interrupt for this card (handshake == 1)
1508 do_card_interrupt
= 0;
1509 if (FST_RDB(card
, interruptHandshake
) == 1) {
1510 do_card_interrupt
+= FST_CARD_INT
;
1511 /* Set the software acknowledge */
1512 FST_WRB(card
, interruptHandshake
, 0xEE);
1514 if (card
->family
== FST_FAMILY_TXU
) {
1516 * Is it a DMA Interrupt
1518 dma_intcsr
= inl(card
->pci_conf
+ INTCSR_9054
);
1519 if (dma_intcsr
& 0x00200000) {
1521 * DMA Channel 0 (Rx transfer complete)
1523 dbg(DBG_RX
, "DMA Rx xfer complete\n");
1524 outb(0x8, card
->pci_conf
+ DMACSR0
);
1525 fst_rx_dma_complete(card
, card
->dma_port_rx
,
1526 card
->dma_len_rx
, card
->dma_skb_rx
,
1528 card
->dmarx_in_progress
= 0;
1529 do_card_interrupt
+= FST_RX_DMA_INT
;
1531 if (dma_intcsr
& 0x00400000) {
1533 * DMA Channel 1 (Tx transfer complete)
1535 dbg(DBG_TX
, "DMA Tx xfer complete\n");
1536 outb(0x8, card
->pci_conf
+ DMACSR1
);
1537 fst_tx_dma_complete(card
, card
->dma_port_tx
,
1538 card
->dma_len_tx
, card
->dma_txpos
);
1539 card
->dmatx_in_progress
= 0;
1540 do_card_interrupt
+= FST_TX_DMA_INT
;
1545 * Have we been missing Interrupts
1547 int_retry_count
= FST_RDL(card
, interruptRetryCount
);
1548 if (int_retry_count
) {
1549 dbg(DBG_ASS
, "Card %d int_retry_count is %d\n",
1550 card
->card_no
, int_retry_count
);
1551 FST_WRL(card
, interruptRetryCount
, 0);
1554 if (!do_card_interrupt
) {
1558 /* Scehdule the bottom half of the ISR */
1559 fst_q_work_item(&fst_work_intq
, card
->card_no
);
1560 tasklet_schedule(&fst_int_task
);
1562 /* Drain the event queue */
1563 rdidx
= FST_RDB(card
, interruptEvent
.rdindex
) & 0x1f;
1564 wridx
= FST_RDB(card
, interruptEvent
.wrindex
) & 0x1f;
1565 while (rdidx
!= wridx
) {
1566 event
= FST_RDB(card
, interruptEvent
.evntbuff
[rdidx
]);
1567 port
= &card
->ports
[event
& 0x03];
1569 dbg(DBG_INTR
, "Processing Interrupt event: %x\n", event
);
1573 dbg(DBG_INTR
, "TE1 Alarm intr\n");
1575 fst_intr_te1_alarm(card
, port
);
1583 fst_intr_ctlchg(card
, port
);
1590 dbg(DBG_TX
, "Abort complete port %d\n", port
->index
);
1597 /* Difficult to see how we'd get this given that we
1598 * always load up the entire packet for DMA.
1600 dbg(DBG_TX
, "Tx underflow port %d\n", port
->index
);
1601 port_to_dev(port
)->stats
.tx_errors
++;
1602 port_to_dev(port
)->stats
.tx_fifo_errors
++;
1603 dbg(DBG_ASS
, "Tx underflow on card %d port %d\n",
1604 card
->card_no
, port
->index
);
1608 dbg(DBG_INIT
, "Card init OK intr\n");
1612 dbg(DBG_INIT
, "Card init FAILED intr\n");
1613 card
->state
= FST_IFAILED
;
1617 printk_err("intr: unknown card event %d. ignored\n",
1622 /* Bump and wrap the index */
1623 if (++rdidx
>= MAX_CIRBUFF
)
1626 FST_WRB(card
, interruptEvent
.rdindex
, rdidx
);
1630 /* Check that the shared memory configuration is one that we can handle
1631 * and that some basic parameters are correct
1634 check_started_ok(struct fst_card_info
*card
)
1638 /* Check structure version and end marker */
1639 if (FST_RDW(card
, smcVersion
) != SMC_VERSION
) {
1640 printk_err("Bad shared memory version %d expected %d\n",
1641 FST_RDW(card
, smcVersion
), SMC_VERSION
);
1642 card
->state
= FST_BADVERSION
;
1645 if (FST_RDL(card
, endOfSmcSignature
) != END_SIG
) {
1646 printk_err("Missing shared memory signature\n");
1647 card
->state
= FST_BADVERSION
;
1650 /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
1651 if ((i
= FST_RDB(card
, taskStatus
)) == 0x01) {
1652 card
->state
= FST_RUNNING
;
1653 } else if (i
== 0xFF) {
1654 printk_err("Firmware initialisation failed. Card halted\n");
1655 card
->state
= FST_HALTED
;
1657 } else if (i
!= 0x00) {
1658 printk_err("Unknown firmware status 0x%x\n", i
);
1659 card
->state
= FST_HALTED
;
1663 /* Finally check the number of ports reported by firmware against the
1664 * number we assumed at card detection. Should never happen with
1665 * existing firmware etc so we just report it for the moment.
1667 if (FST_RDL(card
, numberOfPorts
) != card
->nports
) {
1668 printk_warn("Port count mismatch on card %d."
1669 " Firmware thinks %d we say %d\n", card
->card_no
,
1670 FST_RDL(card
, numberOfPorts
), card
->nports
);
1675 set_conf_from_info(struct fst_card_info
*card
, struct fst_port_info
*port
,
1676 struct fstioc_info
*info
)
1679 unsigned char my_framing
;
1681 /* Set things according to the user set valid flags
1682 * Several of the old options have been invalidated/replaced by the
1683 * generic hdlc package.
1686 if (info
->valid
& FSTVAL_PROTO
) {
1687 if (info
->proto
== FST_RAW
)
1688 port
->mode
= FST_RAW
;
1690 port
->mode
= FST_GEN_HDLC
;
1693 if (info
->valid
& FSTVAL_CABLE
)
1696 if (info
->valid
& FSTVAL_SPEED
)
1699 if (info
->valid
& FSTVAL_PHASE
)
1700 FST_WRB(card
, portConfig
[port
->index
].invertClock
,
1702 if (info
->valid
& FSTVAL_MODE
)
1703 FST_WRW(card
, cardMode
, info
->cardMode
);
1704 if (info
->valid
& FSTVAL_TE1
) {
1705 FST_WRL(card
, suConfig
.dataRate
, info
->lineSpeed
);
1706 FST_WRB(card
, suConfig
.clocking
, info
->clockSource
);
1707 my_framing
= FRAMING_E1
;
1708 if (info
->framing
== E1
)
1709 my_framing
= FRAMING_E1
;
1710 if (info
->framing
== T1
)
1711 my_framing
= FRAMING_T1
;
1712 if (info
->framing
== J1
)
1713 my_framing
= FRAMING_J1
;
1714 FST_WRB(card
, suConfig
.framing
, my_framing
);
1715 FST_WRB(card
, suConfig
.structure
, info
->structure
);
1716 FST_WRB(card
, suConfig
.interface
, info
->interface
);
1717 FST_WRB(card
, suConfig
.coding
, info
->coding
);
1718 FST_WRB(card
, suConfig
.lineBuildOut
, info
->lineBuildOut
);
1719 FST_WRB(card
, suConfig
.equalizer
, info
->equalizer
);
1720 FST_WRB(card
, suConfig
.transparentMode
, info
->transparentMode
);
1721 FST_WRB(card
, suConfig
.loopMode
, info
->loopMode
);
1722 FST_WRB(card
, suConfig
.range
, info
->range
);
1723 FST_WRB(card
, suConfig
.txBufferMode
, info
->txBufferMode
);
1724 FST_WRB(card
, suConfig
.rxBufferMode
, info
->rxBufferMode
);
1725 FST_WRB(card
, suConfig
.startingSlot
, info
->startingSlot
);
1726 FST_WRB(card
, suConfig
.losThreshold
, info
->losThreshold
);
1728 FST_WRB(card
, suConfig
.enableIdleCode
, 1);
1730 FST_WRB(card
, suConfig
.enableIdleCode
, 0);
1731 FST_WRB(card
, suConfig
.idleCode
, info
->idleCode
);
1733 if (info
->valid
& FSTVAL_TE1
) {
1734 printk("Setting TE1 data\n");
1735 printk("Line Speed = %d\n", info
->lineSpeed
);
1736 printk("Start slot = %d\n", info
->startingSlot
);
1737 printk("Clock source = %d\n", info
->clockSource
);
1738 printk("Framing = %d\n", my_framing
);
1739 printk("Structure = %d\n", info
->structure
);
1740 printk("interface = %d\n", info
->interface
);
1741 printk("Coding = %d\n", info
->coding
);
1742 printk("Line build out = %d\n", info
->lineBuildOut
);
1743 printk("Equaliser = %d\n", info
->equalizer
);
1744 printk("Transparent mode = %d\n",
1745 info
->transparentMode
);
1746 printk("Loop mode = %d\n", info
->loopMode
);
1747 printk("Range = %d\n", info
->range
);
1748 printk("Tx Buffer mode = %d\n", info
->txBufferMode
);
1749 printk("Rx Buffer mode = %d\n", info
->rxBufferMode
);
1750 printk("LOS Threshold = %d\n", info
->losThreshold
);
1751 printk("Idle Code = %d\n", info
->idleCode
);
1756 if (info
->valid
& FSTVAL_DEBUG
) {
1757 fst_debug_mask
= info
->debug
;
1765 gather_conf_info(struct fst_card_info
*card
, struct fst_port_info
*port
,
1766 struct fstioc_info
*info
)
1770 memset(info
, 0, sizeof (struct fstioc_info
));
1773 info
->kernelVersion
= LINUX_VERSION_CODE
;
1774 info
->nports
= card
->nports
;
1775 info
->type
= card
->type
;
1776 info
->state
= card
->state
;
1777 info
->proto
= FST_GEN_HDLC
;
1780 info
->debug
= fst_debug_mask
;
1783 /* Only mark information as valid if card is running.
1784 * Copy the data anyway in case it is useful for diagnostics
1786 info
->valid
= ((card
->state
== FST_RUNNING
) ? FSTVAL_ALL
: FSTVAL_CARD
)
1792 info
->lineInterface
= FST_RDW(card
, portConfig
[i
].lineInterface
);
1793 info
->internalClock
= FST_RDB(card
, portConfig
[i
].internalClock
);
1794 info
->lineSpeed
= FST_RDL(card
, portConfig
[i
].lineSpeed
);
1795 info
->invertClock
= FST_RDB(card
, portConfig
[i
].invertClock
);
1796 info
->v24IpSts
= FST_RDL(card
, v24IpSts
[i
]);
1797 info
->v24OpSts
= FST_RDL(card
, v24OpSts
[i
]);
1798 info
->clockStatus
= FST_RDW(card
, clockStatus
[i
]);
1799 info
->cableStatus
= FST_RDW(card
, cableStatus
);
1800 info
->cardMode
= FST_RDW(card
, cardMode
);
1801 info
->smcFirmwareVersion
= FST_RDL(card
, smcFirmwareVersion
);
1804 * The T2U can report cable presence for both A or B
1805 * in bits 0 and 1 of cableStatus. See which port we are and
1808 if (card
->family
== FST_FAMILY_TXU
) {
1809 if (port
->index
== 0) {
1813 info
->cableStatus
= info
->cableStatus
& 1;
1818 info
->cableStatus
= info
->cableStatus
>> 1;
1819 info
->cableStatus
= info
->cableStatus
& 1;
1823 * Some additional bits if we are TE1
1825 if (card
->type
== FST_TYPE_TE1
) {
1826 info
->lineSpeed
= FST_RDL(card
, suConfig
.dataRate
);
1827 info
->clockSource
= FST_RDB(card
, suConfig
.clocking
);
1828 info
->framing
= FST_RDB(card
, suConfig
.framing
);
1829 info
->structure
= FST_RDB(card
, suConfig
.structure
);
1830 info
->interface
= FST_RDB(card
, suConfig
.interface
);
1831 info
->coding
= FST_RDB(card
, suConfig
.coding
);
1832 info
->lineBuildOut
= FST_RDB(card
, suConfig
.lineBuildOut
);
1833 info
->equalizer
= FST_RDB(card
, suConfig
.equalizer
);
1834 info
->loopMode
= FST_RDB(card
, suConfig
.loopMode
);
1835 info
->range
= FST_RDB(card
, suConfig
.range
);
1836 info
->txBufferMode
= FST_RDB(card
, suConfig
.txBufferMode
);
1837 info
->rxBufferMode
= FST_RDB(card
, suConfig
.rxBufferMode
);
1838 info
->startingSlot
= FST_RDB(card
, suConfig
.startingSlot
);
1839 info
->losThreshold
= FST_RDB(card
, suConfig
.losThreshold
);
1840 if (FST_RDB(card
, suConfig
.enableIdleCode
))
1841 info
->idleCode
= FST_RDB(card
, suConfig
.idleCode
);
1844 info
->receiveBufferDelay
=
1845 FST_RDL(card
, suStatus
.receiveBufferDelay
);
1846 info
->framingErrorCount
=
1847 FST_RDL(card
, suStatus
.framingErrorCount
);
1848 info
->codeViolationCount
=
1849 FST_RDL(card
, suStatus
.codeViolationCount
);
1850 info
->crcErrorCount
= FST_RDL(card
, suStatus
.crcErrorCount
);
1851 info
->lineAttenuation
= FST_RDL(card
, suStatus
.lineAttenuation
);
1852 info
->lossOfSignal
= FST_RDB(card
, suStatus
.lossOfSignal
);
1853 info
->receiveRemoteAlarm
=
1854 FST_RDB(card
, suStatus
.receiveRemoteAlarm
);
1855 info
->alarmIndicationSignal
=
1856 FST_RDB(card
, suStatus
.alarmIndicationSignal
);
1861 fst_set_iface(struct fst_card_info
*card
, struct fst_port_info
*port
,
1864 sync_serial_settings sync
;
1867 if (ifr
->ifr_settings
.size
!= sizeof (sync
)) {
1872 (&sync
, ifr
->ifr_settings
.ifs_ifsu
.sync
, sizeof (sync
))) {
1881 switch (ifr
->ifr_settings
.type
) {
1883 FST_WRW(card
, portConfig
[i
].lineInterface
, V35
);
1888 FST_WRW(card
, portConfig
[i
].lineInterface
, V24
);
1893 FST_WRW(card
, portConfig
[i
].lineInterface
, X21
);
1898 FST_WRW(card
, portConfig
[i
].lineInterface
, X21D
);
1903 FST_WRW(card
, portConfig
[i
].lineInterface
, T1
);
1908 FST_WRW(card
, portConfig
[i
].lineInterface
, E1
);
1912 case IF_IFACE_SYNC_SERIAL
:
1919 switch (sync
.clock_type
) {
1921 FST_WRB(card
, portConfig
[i
].internalClock
, EXTCLK
);
1925 FST_WRB(card
, portConfig
[i
].internalClock
, INTCLK
);
1931 FST_WRL(card
, portConfig
[i
].lineSpeed
, sync
.clock_rate
);
1936 fst_get_iface(struct fst_card_info
*card
, struct fst_port_info
*port
,
1939 sync_serial_settings sync
;
1942 /* First check what line type is set, we'll default to reporting X.21
1943 * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
1946 switch (port
->hwif
) {
1948 ifr
->ifr_settings
.type
= IF_IFACE_E1
;
1951 ifr
->ifr_settings
.type
= IF_IFACE_T1
;
1954 ifr
->ifr_settings
.type
= IF_IFACE_V35
;
1957 ifr
->ifr_settings
.type
= IF_IFACE_V24
;
1960 ifr
->ifr_settings
.type
= IF_IFACE_X21D
;
1964 ifr
->ifr_settings
.type
= IF_IFACE_X21
;
1967 if (ifr
->ifr_settings
.size
== 0) {
1968 return 0; /* only type requested */
1970 if (ifr
->ifr_settings
.size
< sizeof (sync
)) {
1975 sync
.clock_rate
= FST_RDL(card
, portConfig
[i
].lineSpeed
);
1976 /* Lucky card and linux use same encoding here */
1977 sync
.clock_type
= FST_RDB(card
, portConfig
[i
].internalClock
) ==
1978 INTCLK
? CLOCK_INT
: CLOCK_EXT
;
1981 if (copy_to_user(ifr
->ifr_settings
.ifs_ifsu
.sync
, &sync
, sizeof (sync
))) {
1985 ifr
->ifr_settings
.size
= sizeof (sync
);
1990 fst_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1992 struct fst_card_info
*card
;
1993 struct fst_port_info
*port
;
1994 struct fstioc_write wrthdr
;
1995 struct fstioc_info info
;
1996 unsigned long flags
;
1999 dbg(DBG_IOCTL
, "ioctl: %x, %p\n", cmd
, ifr
->ifr_data
);
2001 port
= dev_to_port(dev
);
2004 if (!capable(CAP_NET_ADMIN
))
2010 card
->state
= FST_RESET
;
2014 fst_cpurelease(card
);
2015 card
->state
= FST_STARTING
;
2018 case FSTWRITE
: /* Code write (download) */
2020 /* First copy in the header with the length and offset of data
2023 if (ifr
->ifr_data
== NULL
) {
2026 if (copy_from_user(&wrthdr
, ifr
->ifr_data
,
2027 sizeof (struct fstioc_write
))) {
2031 /* Sanity check the parameters. We don't support partial writes
2032 * when going over the top
2034 if (wrthdr
.size
> FST_MEMSIZE
|| wrthdr
.offset
> FST_MEMSIZE
||
2035 wrthdr
.size
+ wrthdr
.offset
> FST_MEMSIZE
) {
2039 /* Now copy the data to the card. */
2041 buf
= kmalloc(wrthdr
.size
, GFP_KERNEL
);
2045 if (copy_from_user(buf
,
2046 ifr
->ifr_data
+ sizeof (struct fstioc_write
),
2052 memcpy_toio(card
->mem
+ wrthdr
.offset
, buf
, wrthdr
.size
);
2055 /* Writes to the memory of a card in the reset state constitute
2058 if (card
->state
== FST_RESET
) {
2059 card
->state
= FST_DOWNLOAD
;
2065 /* If card has just been started check the shared memory config
2066 * version and marker
2068 if (card
->state
== FST_STARTING
) {
2069 check_started_ok(card
);
2071 /* If everything checked out enable card interrupts */
2072 if (card
->state
== FST_RUNNING
) {
2073 spin_lock_irqsave(&card
->card_lock
, flags
);
2074 fst_enable_intr(card
);
2075 FST_WRB(card
, interruptHandshake
, 0xEE);
2076 spin_unlock_irqrestore(&card
->card_lock
, flags
);
2080 if (ifr
->ifr_data
== NULL
) {
2084 gather_conf_info(card
, port
, &info
);
2086 if (copy_to_user(ifr
->ifr_data
, &info
, sizeof (info
))) {
2094 * Most of the settings have been moved to the generic ioctls
2095 * this just covers debug and board ident now
2098 if (card
->state
!= FST_RUNNING
) {
2100 ("Attempt to configure card %d in non-running state (%d)\n",
2101 card
->card_no
, card
->state
);
2104 if (copy_from_user(&info
, ifr
->ifr_data
, sizeof (info
))) {
2108 return set_conf_from_info(card
, port
, &info
);
2111 switch (ifr
->ifr_settings
.type
) {
2113 return fst_get_iface(card
, port
, ifr
);
2115 case IF_IFACE_SYNC_SERIAL
:
2122 return fst_set_iface(card
, port
, ifr
);
2125 port
->mode
= FST_RAW
;
2129 if (port
->mode
== FST_RAW
) {
2130 ifr
->ifr_settings
.type
= IF_PROTO_RAW
;
2133 return hdlc_ioctl(dev
, ifr
, cmd
);
2136 port
->mode
= FST_GEN_HDLC
;
2137 dbg(DBG_IOCTL
, "Passing this type to hdlc %x\n",
2138 ifr
->ifr_settings
.type
);
2139 return hdlc_ioctl(dev
, ifr
, cmd
);
2143 /* Not one of ours. Pass through to HDLC package */
2144 return hdlc_ioctl(dev
, ifr
, cmd
);
2149 fst_openport(struct fst_port_info
*port
)
2154 /* Only init things if card is actually running. This allows open to
2155 * succeed for downloads etc.
2157 if (port
->card
->state
== FST_RUNNING
) {
2159 dbg(DBG_OPEN
, "open: found port already running\n");
2161 fst_issue_cmd(port
, STOPPORT
);
2165 fst_rx_config(port
);
2166 fst_tx_config(port
);
2167 fst_op_raise(port
, OPSTS_RTS
| OPSTS_DTR
);
2169 fst_issue_cmd(port
, STARTPORT
);
2172 signals
= FST_RDL(port
->card
, v24DebouncedSts
[port
->index
]);
2173 if (signals
& (((port
->hwif
== X21
) || (port
->hwif
== X21D
))
2174 ? IPSTS_INDICATE
: IPSTS_DCD
))
2175 netif_carrier_on(port_to_dev(port
));
2177 netif_carrier_off(port_to_dev(port
));
2179 txq_length
= port
->txqe
- port
->txqs
;
2187 fst_closeport(struct fst_port_info
*port
)
2189 if (port
->card
->state
== FST_RUNNING
) {
2192 fst_op_lower(port
, OPSTS_RTS
| OPSTS_DTR
);
2194 fst_issue_cmd(port
, STOPPORT
);
2196 dbg(DBG_OPEN
, "close: port not running\n");
2202 fst_open(struct net_device
*dev
)
2205 struct fst_port_info
*port
;
2207 port
= dev_to_port(dev
);
2208 if (!try_module_get(THIS_MODULE
))
2211 if (port
->mode
!= FST_RAW
) {
2212 err
= hdlc_open(dev
);
2218 netif_wake_queue(dev
);
2223 fst_close(struct net_device
*dev
)
2225 struct fst_port_info
*port
;
2226 struct fst_card_info
*card
;
2227 unsigned char tx_dma_done
;
2228 unsigned char rx_dma_done
;
2230 port
= dev_to_port(dev
);
2233 tx_dma_done
= inb(card
->pci_conf
+ DMACSR1
);
2234 rx_dma_done
= inb(card
->pci_conf
+ DMACSR0
);
2236 "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
2237 card
->dmatx_in_progress
, tx_dma_done
, card
->dmarx_in_progress
,
2240 netif_stop_queue(dev
);
2241 fst_closeport(dev_to_port(dev
));
2242 if (port
->mode
!= FST_RAW
) {
2245 module_put(THIS_MODULE
);
2250 fst_attach(struct net_device
*dev
, unsigned short encoding
, unsigned short parity
)
2253 * Setting currently fixed in FarSync card so we check and forget
2255 if (encoding
!= ENCODING_NRZ
|| parity
!= PARITY_CRC16_PR1_CCITT
)
2261 fst_tx_timeout(struct net_device
*dev
)
2263 struct fst_port_info
*port
;
2264 struct fst_card_info
*card
;
2266 port
= dev_to_port(dev
);
2268 dev
->stats
.tx_errors
++;
2269 dev
->stats
.tx_aborted_errors
++;
2270 dbg(DBG_ASS
, "Tx timeout card %d port %d\n",
2271 card
->card_no
, port
->index
);
2272 fst_issue_cmd(port
, ABORTTX
);
2274 dev
->trans_start
= jiffies
;
2275 netif_wake_queue(dev
);
2280 fst_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2282 struct fst_card_info
*card
;
2283 struct fst_port_info
*port
;
2284 unsigned long flags
;
2287 port
= dev_to_port(dev
);
2289 dbg(DBG_TX
, "fst_start_xmit: length = %d\n", skb
->len
);
2291 /* Drop packet with error if we don't have carrier */
2292 if (!netif_carrier_ok(dev
)) {
2294 dev
->stats
.tx_errors
++;
2295 dev
->stats
.tx_carrier_errors
++;
2297 "Tried to transmit but no carrier on card %d port %d\n",
2298 card
->card_no
, port
->index
);
2299 return NETDEV_TX_OK
;
2302 /* Drop it if it's too big! MTU failure ? */
2303 if (skb
->len
> LEN_TX_BUFFER
) {
2304 dbg(DBG_ASS
, "Packet too large %d vs %d\n", skb
->len
,
2307 dev
->stats
.tx_errors
++;
2308 return NETDEV_TX_OK
;
2312 * We are always going to queue the packet
2313 * so that the bottom half is the only place we tx from
2314 * Check there is room in the port txq
2316 spin_lock_irqsave(&card
->card_lock
, flags
);
2317 if ((txq_length
= port
->txqe
- port
->txqs
) < 0) {
2319 * This is the case where the next free has wrapped but the
2322 txq_length
= txq_length
+ FST_TXQ_DEPTH
;
2324 spin_unlock_irqrestore(&card
->card_lock
, flags
);
2325 if (txq_length
> fst_txq_high
) {
2327 * We have got enough buffers in the pipeline. Ask the network
2328 * layer to stop sending frames down
2330 netif_stop_queue(dev
);
2331 port
->start
= 1; /* I'm using this to signal stop sent up */
2334 if (txq_length
== FST_TXQ_DEPTH
- 1) {
2336 * This shouldn't have happened but such is life
2339 dev
->stats
.tx_errors
++;
2340 dbg(DBG_ASS
, "Tx queue overflow card %d port %d\n",
2341 card
->card_no
, port
->index
);
2342 return NETDEV_TX_OK
;
2348 spin_lock_irqsave(&card
->card_lock
, flags
);
2349 port
->txq
[port
->txqe
] = skb
;
2351 if (port
->txqe
== FST_TXQ_DEPTH
)
2353 spin_unlock_irqrestore(&card
->card_lock
, flags
);
2355 /* Scehdule the bottom half which now does transmit processing */
2356 fst_q_work_item(&fst_work_txq
, card
->card_no
);
2357 tasklet_schedule(&fst_tx_task
);
2359 return NETDEV_TX_OK
;
2363 * Card setup having checked hardware resources.
2364 * Should be pretty bizarre if we get an error here (kernel memory
2365 * exhaustion is one possibility). If we do see a problem we report it
2366 * via a printk and leave the corresponding interface and all that follow
2369 static char *type_strings
[] __devinitdata
= {
2370 "no hardware", /* Should never be seen */
2379 static void __devinit
2380 fst_init_card(struct fst_card_info
*card
)
2385 /* We're working on a number of ports based on the card ID. If the
2386 * firmware detects something different later (should never happen)
2387 * we'll have to revise it in some way then.
2389 for (i
= 0; i
< card
->nports
; i
++) {
2390 err
= register_hdlc_device(card
->ports
[i
].dev
);
2393 printk_err ("Cannot register HDLC device for port %d"
2394 " (errno %d)\n", i
, -err
);
2395 for (j
= i
; j
< card
->nports
; j
++) {
2396 free_netdev(card
->ports
[j
].dev
);
2397 card
->ports
[j
].dev
= NULL
;
2404 printk_info("%s-%s: %s IRQ%d, %d ports\n",
2405 port_to_dev(&card
->ports
[0])->name
,
2406 port_to_dev(&card
->ports
[card
->nports
- 1])->name
,
2407 type_strings
[card
->type
], card
->irq
, card
->nports
);
2410 static const struct net_device_ops fst_ops
= {
2411 .ndo_open
= fst_open
,
2412 .ndo_stop
= fst_close
,
2413 .ndo_change_mtu
= hdlc_change_mtu
,
2414 .ndo_start_xmit
= hdlc_start_xmit
,
2415 .ndo_do_ioctl
= fst_ioctl
,
2416 .ndo_tx_timeout
= fst_tx_timeout
,
2420 * Initialise card when detected.
2421 * Returns 0 to indicate success, or errno otherwise.
2423 static int __devinit
2424 fst_add_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2426 static int firsttime_done
= 0;
2427 static int no_of_cards_added
= 0;
2428 struct fst_card_info
*card
;
2432 if (!firsttime_done
) {
2433 printk_info("FarSync WAN driver " FST_USER_VERSION
2434 " (c) 2001-2004 FarSite Communications Ltd.\n");
2436 dbg(DBG_ASS
, "The value of debug mask is %x\n", fst_debug_mask
);
2440 * We are going to be clever and allow certain cards not to be
2441 * configured. An exclude list can be provided in /etc/modules.conf
2443 if (fst_excluded_cards
!= 0) {
2445 * There are cards to exclude
2448 for (i
= 0; i
< fst_excluded_cards
; i
++) {
2449 if ((pdev
->devfn
) >> 3 == fst_excluded_list
[i
]) {
2450 printk_info("FarSync PCI device %d not assigned\n",
2451 (pdev
->devfn
) >> 3);
2457 /* Allocate driver private data */
2458 card
= kzalloc(sizeof (struct fst_card_info
), GFP_KERNEL
);
2460 printk_err("FarSync card found but insufficient memory for"
2461 " driver storage\n");
2465 /* Try to enable the device */
2466 if ((err
= pci_enable_device(pdev
)) != 0) {
2467 printk_err("Failed to enable card. Err %d\n", -err
);
2472 if ((err
= pci_request_regions(pdev
, "FarSync")) !=0) {
2473 printk_err("Failed to allocate regions. Err %d\n", -err
);
2474 pci_disable_device(pdev
);
2479 /* Get virtual addresses of memory regions */
2480 card
->pci_conf
= pci_resource_start(pdev
, 1);
2481 card
->phys_mem
= pci_resource_start(pdev
, 2);
2482 card
->phys_ctlmem
= pci_resource_start(pdev
, 3);
2483 if ((card
->mem
= ioremap(card
->phys_mem
, FST_MEMSIZE
)) == NULL
) {
2484 printk_err("Physical memory remap failed\n");
2485 pci_release_regions(pdev
);
2486 pci_disable_device(pdev
);
2490 if ((card
->ctlmem
= ioremap(card
->phys_ctlmem
, 0x10)) == NULL
) {
2491 printk_err("Control memory remap failed\n");
2492 pci_release_regions(pdev
);
2493 pci_disable_device(pdev
);
2497 dbg(DBG_PCI
, "kernel mem %p, ctlmem %p\n", card
->mem
, card
->ctlmem
);
2499 /* Register the interrupt handler */
2500 if (request_irq(pdev
->irq
, fst_intr
, IRQF_SHARED
, FST_DEV_NAME
, card
)) {
2501 printk_err("Unable to register interrupt %d\n", card
->irq
);
2502 pci_release_regions(pdev
);
2503 pci_disable_device(pdev
);
2504 iounmap(card
->ctlmem
);
2510 /* Record info we need */
2511 card
->irq
= pdev
->irq
;
2512 card
->type
= ent
->driver_data
;
2513 card
->family
= ((ent
->driver_data
== FST_TYPE_T2P
) ||
2514 (ent
->driver_data
== FST_TYPE_T4P
))
2515 ? FST_FAMILY_TXP
: FST_FAMILY_TXU
;
2516 if ((ent
->driver_data
== FST_TYPE_T1U
) ||
2517 (ent
->driver_data
== FST_TYPE_TE1
))
2520 card
->nports
= ((ent
->driver_data
== FST_TYPE_T2P
) ||
2521 (ent
->driver_data
== FST_TYPE_T2U
)) ? 2 : 4;
2523 card
->state
= FST_UNINIT
;
2524 spin_lock_init ( &card
->card_lock
);
2526 for ( i
= 0 ; i
< card
->nports
; i
++ ) {
2527 struct net_device
*dev
= alloc_hdlcdev(&card
->ports
[i
]);
2531 free_netdev(card
->ports
[i
].dev
);
2532 printk_err ("FarSync: out of memory\n");
2533 free_irq(card
->irq
, card
);
2534 pci_release_regions(pdev
);
2535 pci_disable_device(pdev
);
2536 iounmap(card
->ctlmem
);
2541 card
->ports
[i
].dev
= dev
;
2542 card
->ports
[i
].card
= card
;
2543 card
->ports
[i
].index
= i
;
2544 card
->ports
[i
].run
= 0;
2546 hdlc
= dev_to_hdlc(dev
);
2548 /* Fill in the net device info */
2549 /* Since this is a PCI setup this is purely
2550 * informational. Give them the buffer addresses
2551 * and basic card I/O.
2553 dev
->mem_start
= card
->phys_mem
2554 + BUF_OFFSET ( txBuffer
[i
][0][0]);
2555 dev
->mem_end
= card
->phys_mem
2556 + BUF_OFFSET ( txBuffer
[i
][NUM_TX_BUFFER
][0]);
2557 dev
->base_addr
= card
->pci_conf
;
2558 dev
->irq
= card
->irq
;
2560 dev
->netdev_ops
= &fst_ops
;
2561 dev
->tx_queue_len
= FST_TX_QUEUE_LEN
;
2562 dev
->watchdog_timeo
= FST_TX_TIMEOUT
;
2563 hdlc
->attach
= fst_attach
;
2564 hdlc
->xmit
= fst_start_xmit
;
2567 card
->device
= pdev
;
2569 dbg(DBG_PCI
, "type %d nports %d irq %d\n", card
->type
,
2570 card
->nports
, card
->irq
);
2571 dbg(DBG_PCI
, "conf %04x mem %08x ctlmem %08x\n",
2572 card
->pci_conf
, card
->phys_mem
, card
->phys_ctlmem
);
2574 /* Reset the card's processor */
2576 card
->state
= FST_RESET
;
2578 /* Initialise DMA (if required) */
2581 /* Record driver data for later use */
2582 pci_set_drvdata(pdev
, card
);
2584 /* Remainder of card setup */
2585 fst_card_array
[no_of_cards_added
] = card
;
2586 card
->card_no
= no_of_cards_added
++; /* Record instance and bump it */
2587 fst_init_card(card
);
2588 if (card
->family
== FST_FAMILY_TXU
) {
2590 * Allocate a dma buffer for transmit and receives
2592 card
->rx_dma_handle_host
=
2593 pci_alloc_consistent(card
->device
, FST_MAX_MTU
,
2594 &card
->rx_dma_handle_card
);
2595 if (card
->rx_dma_handle_host
== NULL
) {
2596 printk_err("Could not allocate rx dma buffer\n");
2597 fst_disable_intr(card
);
2598 pci_release_regions(pdev
);
2599 pci_disable_device(pdev
);
2600 iounmap(card
->ctlmem
);
2605 card
->tx_dma_handle_host
=
2606 pci_alloc_consistent(card
->device
, FST_MAX_MTU
,
2607 &card
->tx_dma_handle_card
);
2608 if (card
->tx_dma_handle_host
== NULL
) {
2609 printk_err("Could not allocate tx dma buffer\n");
2610 fst_disable_intr(card
);
2611 pci_release_regions(pdev
);
2612 pci_disable_device(pdev
);
2613 iounmap(card
->ctlmem
);
2619 return 0; /* Success */
2623 * Cleanup and close down a card
2625 static void __devexit
2626 fst_remove_one(struct pci_dev
*pdev
)
2628 struct fst_card_info
*card
;
2631 card
= pci_get_drvdata(pdev
);
2633 for (i
= 0; i
< card
->nports
; i
++) {
2634 struct net_device
*dev
= port_to_dev(&card
->ports
[i
]);
2635 unregister_hdlc_device(dev
);
2638 fst_disable_intr(card
);
2639 free_irq(card
->irq
, card
);
2641 iounmap(card
->ctlmem
);
2643 pci_release_regions(pdev
);
2644 if (card
->family
== FST_FAMILY_TXU
) {
2648 pci_free_consistent(card
->device
, FST_MAX_MTU
,
2649 card
->rx_dma_handle_host
,
2650 card
->rx_dma_handle_card
);
2651 pci_free_consistent(card
->device
, FST_MAX_MTU
,
2652 card
->tx_dma_handle_host
,
2653 card
->tx_dma_handle_card
);
2655 fst_card_array
[card
->card_no
] = NULL
;
2658 static struct pci_driver fst_driver
= {
2660 .id_table
= fst_pci_dev_id
,
2661 .probe
= fst_add_one
,
2662 .remove
= __devexit_p(fst_remove_one
),
2672 for (i
= 0; i
< FST_MAX_CARDS
; i
++)
2673 fst_card_array
[i
] = NULL
;
2674 spin_lock_init(&fst_work_q_lock
);
2675 return pci_register_driver(&fst_driver
);
2679 fst_cleanup_module(void)
2681 printk_info("FarSync WAN driver unloading\n");
2682 pci_unregister_driver(&fst_driver
);
2685 module_init(fst_init
);
2686 module_exit(fst_cleanup_module
);