1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
68 #include "iwl-calib.h"
70 /*****************************************************************************
71 * INIT calibrations framework
72 *****************************************************************************/
74 struct statistics_general_data
{
75 u32 beacon_silence_rssi_a
;
76 u32 beacon_silence_rssi_b
;
77 u32 beacon_silence_rssi_c
;
83 int iwl_send_calib_results(struct iwl_priv
*priv
)
88 struct iwl_host_cmd hcmd
= {
89 .id
= REPLY_PHY_CALIBRATION_CMD
,
90 .flags
= CMD_SIZE_HUGE
,
93 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
94 if ((BIT(i
) & priv
->hw_params
.calib_init_cfg
) &&
95 priv
->calib_results
[i
].buf
) {
96 hcmd
.len
= priv
->calib_results
[i
].buf_len
;
97 hcmd
.data
= priv
->calib_results
[i
].buf
;
98 ret
= iwl_send_cmd_sync(priv
, &hcmd
);
106 IWL_ERR(priv
, "Error %d iteration %d\n", ret
, i
);
109 EXPORT_SYMBOL(iwl_send_calib_results
);
111 int iwl_calib_set(struct iwl_calib_result
*res
, const u8
*buf
, int len
)
113 if (res
->buf_len
!= len
) {
115 res
->buf
= kzalloc(len
, GFP_ATOMIC
);
117 if (unlikely(res
->buf
== NULL
))
121 memcpy(res
->buf
, buf
, len
);
124 EXPORT_SYMBOL(iwl_calib_set
);
126 void iwl_calib_free_results(struct iwl_priv
*priv
)
130 for (i
= 0; i
< IWL_CALIB_MAX
; i
++) {
131 kfree(priv
->calib_results
[i
].buf
);
132 priv
->calib_results
[i
].buf
= NULL
;
133 priv
->calib_results
[i
].buf_len
= 0;
136 EXPORT_SYMBOL(iwl_calib_free_results
);
138 /*****************************************************************************
139 * RUNTIME calibrations framework
140 *****************************************************************************/
142 /* "false alarms" are signals that our DSP tries to lock onto,
143 * but then determines that they are either noise, or transmissions
144 * from a distant wireless network (also "noise", really) that get
145 * "stepped on" by stronger transmissions within our own network.
146 * This algorithm attempts to set a sensitivity level that is high
147 * enough to receive all of our own network traffic, but not so
148 * high that our DSP gets too busy trying to lock onto non-network
150 static int iwl_sens_energy_cck(struct iwl_priv
*priv
,
153 struct statistics_general_data
*rx_info
)
157 u8 max_silence_rssi
= 0;
159 u8 silence_rssi_a
= 0;
160 u8 silence_rssi_b
= 0;
161 u8 silence_rssi_c
= 0;
164 /* "false_alarms" values below are cross-multiplications to assess the
165 * numbers of false alarms within the measured period of actual Rx
166 * (Rx is off when we're txing), vs the min/max expected false alarms
167 * (some should be expected if rx is sensitive enough) in a
168 * hypothetical listening period of 200 time units (TU), 204.8 msec:
170 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
173 u32 false_alarms
= norm_fa
* 200 * 1024;
174 u32 max_false_alarms
= MAX_FA_CCK
* rx_enable_time
;
175 u32 min_false_alarms
= MIN_FA_CCK
* rx_enable_time
;
176 struct iwl_sensitivity_data
*data
= NULL
;
177 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
179 data
= &(priv
->sensitivity_data
);
181 data
->nrg_auto_corr_silence_diff
= 0;
183 /* Find max silence rssi among all 3 receivers.
184 * This is background noise, which may include transmissions from other
185 * networks, measured during silence before our network's beacon */
186 silence_rssi_a
= (u8
)((rx_info
->beacon_silence_rssi_a
&
187 ALL_BAND_FILTER
) >> 8);
188 silence_rssi_b
= (u8
)((rx_info
->beacon_silence_rssi_b
&
189 ALL_BAND_FILTER
) >> 8);
190 silence_rssi_c
= (u8
)((rx_info
->beacon_silence_rssi_c
&
191 ALL_BAND_FILTER
) >> 8);
193 val
= max(silence_rssi_b
, silence_rssi_c
);
194 max_silence_rssi
= max(silence_rssi_a
, (u8
) val
);
196 /* Store silence rssi in 20-beacon history table */
197 data
->nrg_silence_rssi
[data
->nrg_silence_idx
] = max_silence_rssi
;
198 data
->nrg_silence_idx
++;
199 if (data
->nrg_silence_idx
>= NRG_NUM_PREV_STAT_L
)
200 data
->nrg_silence_idx
= 0;
202 /* Find max silence rssi across 20 beacon history */
203 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++) {
204 val
= data
->nrg_silence_rssi
[i
];
205 silence_ref
= max(silence_ref
, val
);
207 IWL_DEBUG_CALIB(priv
, "silence a %u, b %u, c %u, 20-bcn max %u\n",
208 silence_rssi_a
, silence_rssi_b
, silence_rssi_c
,
211 /* Find max rx energy (min value!) among all 3 receivers,
212 * measured during beacon frame.
213 * Save it in 10-beacon history table. */
214 i
= data
->nrg_energy_idx
;
215 val
= min(rx_info
->beacon_energy_b
, rx_info
->beacon_energy_c
);
216 data
->nrg_value
[i
] = min(rx_info
->beacon_energy_a
, val
);
218 data
->nrg_energy_idx
++;
219 if (data
->nrg_energy_idx
>= 10)
220 data
->nrg_energy_idx
= 0;
222 /* Find min rx energy (max value) across 10 beacon history.
223 * This is the minimum signal level that we want to receive well.
224 * Add backoff (margin so we don't miss slightly lower energy frames).
225 * This establishes an upper bound (min value) for energy threshold. */
226 max_nrg_cck
= data
->nrg_value
[0];
227 for (i
= 1; i
< 10; i
++)
228 max_nrg_cck
= (u32
) max(max_nrg_cck
, (data
->nrg_value
[i
]));
231 IWL_DEBUG_CALIB(priv
, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
232 rx_info
->beacon_energy_a
, rx_info
->beacon_energy_b
,
233 rx_info
->beacon_energy_c
, max_nrg_cck
- 6);
235 /* Count number of consecutive beacons with fewer-than-desired
237 if (false_alarms
< min_false_alarms
)
238 data
->num_in_cck_no_fa
++;
240 data
->num_in_cck_no_fa
= 0;
241 IWL_DEBUG_CALIB(priv
, "consecutive bcns with few false alarms = %u\n",
242 data
->num_in_cck_no_fa
);
244 /* If we got too many false alarms this time, reduce sensitivity */
245 if ((false_alarms
> max_false_alarms
) &&
246 (data
->auto_corr_cck
> AUTO_CORR_MAX_TH_CCK
)) {
247 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u\n",
248 false_alarms
, max_false_alarms
);
249 IWL_DEBUG_CALIB(priv
, "... reducing sensitivity\n");
250 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
251 /* Store for "fewer than desired" on later beacon */
252 data
->nrg_silence_ref
= silence_ref
;
254 /* increase energy threshold (reduce nrg value)
255 * to decrease sensitivity */
256 data
->nrg_th_cck
= data
->nrg_th_cck
- NRG_STEP_CCK
;
257 /* Else if we got fewer than desired, increase sensitivity */
258 } else if (false_alarms
< min_false_alarms
) {
259 data
->nrg_curr_state
= IWL_FA_TOO_FEW
;
261 /* Compare silence level with silence level for most recent
262 * healthy number or too many false alarms */
263 data
->nrg_auto_corr_silence_diff
= (s32
)data
->nrg_silence_ref
-
266 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u, silence diff %d\n",
267 false_alarms
, min_false_alarms
,
268 data
->nrg_auto_corr_silence_diff
);
270 /* Increase value to increase sensitivity, but only if:
271 * 1a) previous beacon did *not* have *too many* false alarms
272 * 1b) AND there's a significant difference in Rx levels
273 * from a previous beacon with too many, or healthy # FAs
274 * OR 2) We've seen a lot of beacons (100) with too few
276 if ((data
->nrg_prev_state
!= IWL_FA_TOO_MANY
) &&
277 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
278 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
280 IWL_DEBUG_CALIB(priv
, "... increasing sensitivity\n");
281 /* Increase nrg value to increase sensitivity */
282 val
= data
->nrg_th_cck
+ NRG_STEP_CCK
;
283 data
->nrg_th_cck
= min((u32
)ranges
->min_nrg_cck
, val
);
285 IWL_DEBUG_CALIB(priv
, "... but not changing sensitivity\n");
288 /* Else we got a healthy number of false alarms, keep status quo */
290 IWL_DEBUG_CALIB(priv
, " FA in safe zone\n");
291 data
->nrg_curr_state
= IWL_FA_GOOD_RANGE
;
293 /* Store for use in "fewer than desired" with later beacon */
294 data
->nrg_silence_ref
= silence_ref
;
296 /* If previous beacon had too many false alarms,
297 * give it some extra margin by reducing sensitivity again
298 * (but don't go below measured energy of desired Rx) */
299 if (IWL_FA_TOO_MANY
== data
->nrg_prev_state
) {
300 IWL_DEBUG_CALIB(priv
, "... increasing margin\n");
301 if (data
->nrg_th_cck
> (max_nrg_cck
+ NRG_MARGIN
))
302 data
->nrg_th_cck
-= NRG_MARGIN
;
304 data
->nrg_th_cck
= max_nrg_cck
;
308 /* Make sure the energy threshold does not go above the measured
309 * energy of the desired Rx signals (reduced by backoff margin),
310 * or else we might start missing Rx frames.
311 * Lower value is higher energy, so we use max()!
313 data
->nrg_th_cck
= max(max_nrg_cck
, data
->nrg_th_cck
);
314 IWL_DEBUG_CALIB(priv
, "new nrg_th_cck %u\n", data
->nrg_th_cck
);
316 data
->nrg_prev_state
= data
->nrg_curr_state
;
318 /* Auto-correlation CCK algorithm */
319 if (false_alarms
> min_false_alarms
) {
321 /* increase auto_corr values to decrease sensitivity
322 * so the DSP won't be disturbed by the noise
324 if (data
->auto_corr_cck
< AUTO_CORR_MAX_TH_CCK
)
325 data
->auto_corr_cck
= AUTO_CORR_MAX_TH_CCK
+ 1;
327 val
= data
->auto_corr_cck
+ AUTO_CORR_STEP_CCK
;
328 data
->auto_corr_cck
=
329 min((u32
)ranges
->auto_corr_max_cck
, val
);
331 val
= data
->auto_corr_cck_mrc
+ AUTO_CORR_STEP_CCK
;
332 data
->auto_corr_cck_mrc
=
333 min((u32
)ranges
->auto_corr_max_cck_mrc
, val
);
334 } else if ((false_alarms
< min_false_alarms
) &&
335 ((data
->nrg_auto_corr_silence_diff
> NRG_DIFF
) ||
336 (data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
))) {
338 /* Decrease auto_corr values to increase sensitivity */
339 val
= data
->auto_corr_cck
- AUTO_CORR_STEP_CCK
;
340 data
->auto_corr_cck
=
341 max((u32
)ranges
->auto_corr_min_cck
, val
);
342 val
= data
->auto_corr_cck_mrc
- AUTO_CORR_STEP_CCK
;
343 data
->auto_corr_cck_mrc
=
344 max((u32
)ranges
->auto_corr_min_cck_mrc
, val
);
351 static int iwl_sens_auto_corr_ofdm(struct iwl_priv
*priv
,
356 u32 false_alarms
= norm_fa
* 200 * 1024;
357 u32 max_false_alarms
= MAX_FA_OFDM
* rx_enable_time
;
358 u32 min_false_alarms
= MIN_FA_OFDM
* rx_enable_time
;
359 struct iwl_sensitivity_data
*data
= NULL
;
360 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
362 data
= &(priv
->sensitivity_data
);
364 /* If we got too many false alarms this time, reduce sensitivity */
365 if (false_alarms
> max_false_alarms
) {
367 IWL_DEBUG_CALIB(priv
, "norm FA %u > max FA %u)\n",
368 false_alarms
, max_false_alarms
);
370 val
= data
->auto_corr_ofdm
+ AUTO_CORR_STEP_OFDM
;
371 data
->auto_corr_ofdm
=
372 min((u32
)ranges
->auto_corr_max_ofdm
, val
);
374 val
= data
->auto_corr_ofdm_mrc
+ AUTO_CORR_STEP_OFDM
;
375 data
->auto_corr_ofdm_mrc
=
376 min((u32
)ranges
->auto_corr_max_ofdm_mrc
, val
);
378 val
= data
->auto_corr_ofdm_x1
+ AUTO_CORR_STEP_OFDM
;
379 data
->auto_corr_ofdm_x1
=
380 min((u32
)ranges
->auto_corr_max_ofdm_x1
, val
);
382 val
= data
->auto_corr_ofdm_mrc_x1
+ AUTO_CORR_STEP_OFDM
;
383 data
->auto_corr_ofdm_mrc_x1
=
384 min((u32
)ranges
->auto_corr_max_ofdm_mrc_x1
, val
);
387 /* Else if we got fewer than desired, increase sensitivity */
388 else if (false_alarms
< min_false_alarms
) {
390 IWL_DEBUG_CALIB(priv
, "norm FA %u < min FA %u\n",
391 false_alarms
, min_false_alarms
);
393 val
= data
->auto_corr_ofdm
- AUTO_CORR_STEP_OFDM
;
394 data
->auto_corr_ofdm
=
395 max((u32
)ranges
->auto_corr_min_ofdm
, val
);
397 val
= data
->auto_corr_ofdm_mrc
- AUTO_CORR_STEP_OFDM
;
398 data
->auto_corr_ofdm_mrc
=
399 max((u32
)ranges
->auto_corr_min_ofdm_mrc
, val
);
401 val
= data
->auto_corr_ofdm_x1
- AUTO_CORR_STEP_OFDM
;
402 data
->auto_corr_ofdm_x1
=
403 max((u32
)ranges
->auto_corr_min_ofdm_x1
, val
);
405 val
= data
->auto_corr_ofdm_mrc_x1
- AUTO_CORR_STEP_OFDM
;
406 data
->auto_corr_ofdm_mrc_x1
=
407 max((u32
)ranges
->auto_corr_min_ofdm_mrc_x1
, val
);
409 IWL_DEBUG_CALIB(priv
, "min FA %u < norm FA %u < max FA %u OK\n",
410 min_false_alarms
, false_alarms
, max_false_alarms
);
415 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
416 static int iwl_sensitivity_write(struct iwl_priv
*priv
)
418 struct iwl_sensitivity_cmd cmd
;
419 struct iwl_sensitivity_data
*data
= NULL
;
420 struct iwl_host_cmd cmd_out
= {
421 .id
= SENSITIVITY_CMD
,
422 .len
= sizeof(struct iwl_sensitivity_cmd
),
427 data
= &(priv
->sensitivity_data
);
429 memset(&cmd
, 0, sizeof(cmd
));
431 cmd
.table
[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX
] =
432 cpu_to_le16((u16
)data
->auto_corr_ofdm
);
433 cmd
.table
[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX
] =
434 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc
);
435 cmd
.table
[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX
] =
436 cpu_to_le16((u16
)data
->auto_corr_ofdm_x1
);
437 cmd
.table
[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX
] =
438 cpu_to_le16((u16
)data
->auto_corr_ofdm_mrc_x1
);
440 cmd
.table
[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX
] =
441 cpu_to_le16((u16
)data
->auto_corr_cck
);
442 cmd
.table
[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX
] =
443 cpu_to_le16((u16
)data
->auto_corr_cck_mrc
);
445 cmd
.table
[HD_MIN_ENERGY_CCK_DET_INDEX
] =
446 cpu_to_le16((u16
)data
->nrg_th_cck
);
447 cmd
.table
[HD_MIN_ENERGY_OFDM_DET_INDEX
] =
448 cpu_to_le16((u16
)data
->nrg_th_ofdm
);
450 cmd
.table
[HD_BARKER_CORR_TH_ADD_MIN_INDEX
] =
451 cpu_to_le16(data
->barker_corr_th_min
);
452 cmd
.table
[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX
] =
453 cpu_to_le16(data
->barker_corr_th_min_mrc
);
454 cmd
.table
[HD_OFDM_ENERGY_TH_IN_INDEX
] =
455 cpu_to_le16(data
->nrg_th_cca
);
457 IWL_DEBUG_CALIB(priv
, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
458 data
->auto_corr_ofdm
, data
->auto_corr_ofdm_mrc
,
459 data
->auto_corr_ofdm_x1
, data
->auto_corr_ofdm_mrc_x1
,
462 IWL_DEBUG_CALIB(priv
, "cck: ac %u mrc %u thresh %u\n",
463 data
->auto_corr_cck
, data
->auto_corr_cck_mrc
,
466 /* Update uCode's "work" table, and copy it to DSP */
467 cmd
.control
= SENSITIVITY_CMD_CONTROL_WORK_TABLE
;
469 /* Don't send command to uCode if nothing has changed */
470 if (!memcmp(&cmd
.table
[0], &(priv
->sensitivity_tbl
[0]),
471 sizeof(u16
)*HD_TABLE_SIZE
)) {
472 IWL_DEBUG_CALIB(priv
, "No change in SENSITIVITY_CMD\n");
476 /* Copy table for comparison next time */
477 memcpy(&(priv
->sensitivity_tbl
[0]), &(cmd
.table
[0]),
478 sizeof(u16
)*HD_TABLE_SIZE
);
480 return iwl_send_cmd(priv
, &cmd_out
);
483 void iwl_init_sensitivity(struct iwl_priv
*priv
)
487 struct iwl_sensitivity_data
*data
= NULL
;
488 const struct iwl_sensitivity_ranges
*ranges
= priv
->hw_params
.sens
;
490 if (priv
->disable_sens_cal
)
493 IWL_DEBUG_CALIB(priv
, "Start iwl_init_sensitivity\n");
495 /* Clear driver's sensitivity algo data */
496 data
= &(priv
->sensitivity_data
);
501 memset(data
, 0, sizeof(struct iwl_sensitivity_data
));
503 data
->num_in_cck_no_fa
= 0;
504 data
->nrg_curr_state
= IWL_FA_TOO_MANY
;
505 data
->nrg_prev_state
= IWL_FA_TOO_MANY
;
506 data
->nrg_silence_ref
= 0;
507 data
->nrg_silence_idx
= 0;
508 data
->nrg_energy_idx
= 0;
510 for (i
= 0; i
< 10; i
++)
511 data
->nrg_value
[i
] = 0;
513 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++)
514 data
->nrg_silence_rssi
[i
] = 0;
516 data
->auto_corr_ofdm
= ranges
->auto_corr_min_ofdm
;
517 data
->auto_corr_ofdm_mrc
= ranges
->auto_corr_min_ofdm_mrc
;
518 data
->auto_corr_ofdm_x1
= ranges
->auto_corr_min_ofdm_x1
;
519 data
->auto_corr_ofdm_mrc_x1
= ranges
->auto_corr_min_ofdm_mrc_x1
;
520 data
->auto_corr_cck
= AUTO_CORR_CCK_MIN_VAL_DEF
;
521 data
->auto_corr_cck_mrc
= ranges
->auto_corr_min_cck_mrc
;
522 data
->nrg_th_cck
= ranges
->nrg_th_cck
;
523 data
->nrg_th_ofdm
= ranges
->nrg_th_ofdm
;
524 data
->barker_corr_th_min
= ranges
->barker_corr_th_min
;
525 data
->barker_corr_th_min_mrc
= ranges
->barker_corr_th_min_mrc
;
526 data
->nrg_th_cca
= ranges
->nrg_th_cca
;
528 data
->last_bad_plcp_cnt_ofdm
= 0;
529 data
->last_fa_cnt_ofdm
= 0;
530 data
->last_bad_plcp_cnt_cck
= 0;
531 data
->last_fa_cnt_cck
= 0;
533 ret
|= iwl_sensitivity_write(priv
);
534 IWL_DEBUG_CALIB(priv
, "<<return 0x%X\n", ret
);
536 EXPORT_SYMBOL(iwl_init_sensitivity
);
538 void iwl_sensitivity_calibration(struct iwl_priv
*priv
,
539 struct iwl_notif_statistics
*resp
)
548 struct iwl_sensitivity_data
*data
= NULL
;
549 struct statistics_rx_non_phy
*rx_info
= &(resp
->rx
.general
);
550 struct statistics_rx
*statistics
= &(resp
->rx
);
552 struct statistics_general_data statis
;
554 if (priv
->disable_sens_cal
)
557 data
= &(priv
->sensitivity_data
);
559 if (!iwl_is_associated(priv
)) {
560 IWL_DEBUG_CALIB(priv
, "<< - not associated\n");
564 spin_lock_irqsave(&priv
->lock
, flags
);
565 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
566 IWL_DEBUG_CALIB(priv
, "<< invalid data.\n");
567 spin_unlock_irqrestore(&priv
->lock
, flags
);
571 /* Extract Statistics: */
572 rx_enable_time
= le32_to_cpu(rx_info
->channel_load
);
573 fa_cck
= le32_to_cpu(statistics
->cck
.false_alarm_cnt
);
574 fa_ofdm
= le32_to_cpu(statistics
->ofdm
.false_alarm_cnt
);
575 bad_plcp_cck
= le32_to_cpu(statistics
->cck
.plcp_err
);
576 bad_plcp_ofdm
= le32_to_cpu(statistics
->ofdm
.plcp_err
);
578 statis
.beacon_silence_rssi_a
=
579 le32_to_cpu(statistics
->general
.beacon_silence_rssi_a
);
580 statis
.beacon_silence_rssi_b
=
581 le32_to_cpu(statistics
->general
.beacon_silence_rssi_b
);
582 statis
.beacon_silence_rssi_c
=
583 le32_to_cpu(statistics
->general
.beacon_silence_rssi_c
);
584 statis
.beacon_energy_a
=
585 le32_to_cpu(statistics
->general
.beacon_energy_a
);
586 statis
.beacon_energy_b
=
587 le32_to_cpu(statistics
->general
.beacon_energy_b
);
588 statis
.beacon_energy_c
=
589 le32_to_cpu(statistics
->general
.beacon_energy_c
);
591 spin_unlock_irqrestore(&priv
->lock
, flags
);
593 IWL_DEBUG_CALIB(priv
, "rx_enable_time = %u usecs\n", rx_enable_time
);
595 if (!rx_enable_time
) {
596 IWL_DEBUG_CALIB(priv
, "<< RX Enable Time == 0! \n");
600 /* These statistics increase monotonically, and do not reset
601 * at each beacon. Calculate difference from last value, or just
602 * use the new statistics value if it has reset or wrapped around. */
603 if (data
->last_bad_plcp_cnt_cck
> bad_plcp_cck
)
604 data
->last_bad_plcp_cnt_cck
= bad_plcp_cck
;
606 bad_plcp_cck
-= data
->last_bad_plcp_cnt_cck
;
607 data
->last_bad_plcp_cnt_cck
+= bad_plcp_cck
;
610 if (data
->last_bad_plcp_cnt_ofdm
> bad_plcp_ofdm
)
611 data
->last_bad_plcp_cnt_ofdm
= bad_plcp_ofdm
;
613 bad_plcp_ofdm
-= data
->last_bad_plcp_cnt_ofdm
;
614 data
->last_bad_plcp_cnt_ofdm
+= bad_plcp_ofdm
;
617 if (data
->last_fa_cnt_ofdm
> fa_ofdm
)
618 data
->last_fa_cnt_ofdm
= fa_ofdm
;
620 fa_ofdm
-= data
->last_fa_cnt_ofdm
;
621 data
->last_fa_cnt_ofdm
+= fa_ofdm
;
624 if (data
->last_fa_cnt_cck
> fa_cck
)
625 data
->last_fa_cnt_cck
= fa_cck
;
627 fa_cck
-= data
->last_fa_cnt_cck
;
628 data
->last_fa_cnt_cck
+= fa_cck
;
631 /* Total aborted signal locks */
632 norm_fa_ofdm
= fa_ofdm
+ bad_plcp_ofdm
;
633 norm_fa_cck
= fa_cck
+ bad_plcp_cck
;
635 IWL_DEBUG_CALIB(priv
, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck
,
636 bad_plcp_cck
, fa_ofdm
, bad_plcp_ofdm
);
638 iwl_sens_auto_corr_ofdm(priv
, norm_fa_ofdm
, rx_enable_time
);
639 iwl_sens_energy_cck(priv
, norm_fa_cck
, rx_enable_time
, &statis
);
640 iwl_sensitivity_write(priv
);
644 EXPORT_SYMBOL(iwl_sensitivity_calibration
);
646 static inline u8
find_first_chain(u8 mask
)
656 * Accumulate 20 beacons of signal and noise statistics for each of
657 * 3 receivers/antennas/rx-chains, then figure out:
658 * 1) Which antennas are connected.
659 * 2) Differential rx gain settings to balance the 3 receivers.
661 void iwl_chain_noise_calibration(struct iwl_priv
*priv
,
662 struct iwl_notif_statistics
*stat_resp
)
664 struct iwl_chain_noise_data
*data
= NULL
;
672 u32 average_sig
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
673 u32 average_noise
[NUM_RX_CHAINS
] = {INITIALIZATION_VALUE
};
675 u16 max_average_sig_antenna_i
;
676 u32 min_average_noise
= MIN_AVERAGE_NOISE_MAX_VALUE
;
677 u16 min_average_noise_antenna_i
= INITIALIZATION_VALUE
;
679 u16 rxon_chnum
= INITIALIZATION_VALUE
;
680 u16 stat_chnum
= INITIALIZATION_VALUE
;
683 u32 active_chains
= 0;
686 struct statistics_rx_non_phy
*rx_info
= &(stat_resp
->rx
.general
);
689 if (priv
->disable_chain_noise_cal
)
692 data
= &(priv
->chain_noise_data
);
695 * Accumulate just the first "chain_noise_num_beacons" after
696 * the first association, then we're done forever.
698 if (data
->state
!= IWL_CHAIN_NOISE_ACCUMULATE
) {
699 if (data
->state
== IWL_CHAIN_NOISE_ALIVE
)
700 IWL_DEBUG_CALIB(priv
, "Wait for noise calib reset\n");
704 spin_lock_irqsave(&priv
->lock
, flags
);
705 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
706 IWL_DEBUG_CALIB(priv
, " << Interference data unavailable\n");
707 spin_unlock_irqrestore(&priv
->lock
, flags
);
711 rxon_band24
= !!(priv
->staging_rxon
.flags
& RXON_FLG_BAND_24G_MSK
);
712 rxon_chnum
= le16_to_cpu(priv
->staging_rxon
.channel
);
713 stat_band24
= !!(stat_resp
->flag
& STATISTICS_REPLY_FLG_BAND_24G_MSK
);
714 stat_chnum
= le32_to_cpu(stat_resp
->flag
) >> 16;
716 /* Make sure we accumulate data for just the associated channel
717 * (even if scanning). */
718 if ((rxon_chnum
!= stat_chnum
) || (rxon_band24
!= stat_band24
)) {
719 IWL_DEBUG_CALIB(priv
, "Stats not from chan=%d, band24=%d\n",
720 rxon_chnum
, rxon_band24
);
721 spin_unlock_irqrestore(&priv
->lock
, flags
);
726 * Accumulate beacon statistics values across
727 * "chain_noise_num_beacons"
729 chain_noise_a
= le32_to_cpu(rx_info
->beacon_silence_rssi_a
) &
731 chain_noise_b
= le32_to_cpu(rx_info
->beacon_silence_rssi_b
) &
733 chain_noise_c
= le32_to_cpu(rx_info
->beacon_silence_rssi_c
) &
736 chain_sig_a
= le32_to_cpu(rx_info
->beacon_rssi_a
) & IN_BAND_FILTER
;
737 chain_sig_b
= le32_to_cpu(rx_info
->beacon_rssi_b
) & IN_BAND_FILTER
;
738 chain_sig_c
= le32_to_cpu(rx_info
->beacon_rssi_c
) & IN_BAND_FILTER
;
740 spin_unlock_irqrestore(&priv
->lock
, flags
);
742 data
->beacon_count
++;
744 data
->chain_noise_a
= (chain_noise_a
+ data
->chain_noise_a
);
745 data
->chain_noise_b
= (chain_noise_b
+ data
->chain_noise_b
);
746 data
->chain_noise_c
= (chain_noise_c
+ data
->chain_noise_c
);
748 data
->chain_signal_a
= (chain_sig_a
+ data
->chain_signal_a
);
749 data
->chain_signal_b
= (chain_sig_b
+ data
->chain_signal_b
);
750 data
->chain_signal_c
= (chain_sig_c
+ data
->chain_signal_c
);
752 IWL_DEBUG_CALIB(priv
, "chan=%d, band24=%d, beacon=%d\n",
753 rxon_chnum
, rxon_band24
, data
->beacon_count
);
754 IWL_DEBUG_CALIB(priv
, "chain_sig: a %d b %d c %d\n",
755 chain_sig_a
, chain_sig_b
, chain_sig_c
);
756 IWL_DEBUG_CALIB(priv
, "chain_noise: a %d b %d c %d\n",
757 chain_noise_a
, chain_noise_b
, chain_noise_c
);
759 /* If this is the "chain_noise_num_beacons", determine:
760 * 1) Disconnected antennas (using signal strengths)
761 * 2) Differential gain (using silence noise) to balance receivers */
762 if (data
->beacon_count
!= priv
->cfg
->chain_noise_num_beacons
)
765 /* Analyze signal for disconnected antenna */
767 (data
->chain_signal_a
) / priv
->cfg
->chain_noise_num_beacons
;
769 (data
->chain_signal_b
) / priv
->cfg
->chain_noise_num_beacons
;
771 (data
->chain_signal_c
) / priv
->cfg
->chain_noise_num_beacons
;
773 if (average_sig
[0] >= average_sig
[1]) {
774 max_average_sig
= average_sig
[0];
775 max_average_sig_antenna_i
= 0;
776 active_chains
= (1 << max_average_sig_antenna_i
);
778 max_average_sig
= average_sig
[1];
779 max_average_sig_antenna_i
= 1;
780 active_chains
= (1 << max_average_sig_antenna_i
);
783 if (average_sig
[2] >= max_average_sig
) {
784 max_average_sig
= average_sig
[2];
785 max_average_sig_antenna_i
= 2;
786 active_chains
= (1 << max_average_sig_antenna_i
);
789 IWL_DEBUG_CALIB(priv
, "average_sig: a %d b %d c %d\n",
790 average_sig
[0], average_sig
[1], average_sig
[2]);
791 IWL_DEBUG_CALIB(priv
, "max_average_sig = %d, antenna %d\n",
792 max_average_sig
, max_average_sig_antenna_i
);
794 /* Compare signal strengths for all 3 receivers. */
795 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
796 if (i
!= max_average_sig_antenna_i
) {
797 s32 rssi_delta
= (max_average_sig
- average_sig
[i
]);
799 /* If signal is very weak, compared with
800 * strongest, mark it as disconnected. */
801 if (rssi_delta
> MAXIMUM_ALLOWED_PATHLOSS
)
802 data
->disconn_array
[i
] = 1;
804 active_chains
|= (1 << i
);
805 IWL_DEBUG_CALIB(priv
, "i = %d rssiDelta = %d "
806 "disconn_array[i] = %d\n",
807 i
, rssi_delta
, data
->disconn_array
[i
]);
812 * The above algorithm sometimes fails when the ucode
813 * reports 0 for all chains. It's not clear why that
814 * happens to start with, but it is then causing trouble
815 * because this can make us enable more chains than the
816 * hardware really has.
818 * To be safe, simply mask out any chains that we know
819 * are not on the device.
821 active_chains
&= priv
->hw_params
.valid_rx_ant
;
824 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
825 /* loops on all the bits of
826 * priv->hw_setting.valid_tx_ant */
827 u8 ant_msk
= (1 << i
);
828 if (!(priv
->hw_params
.valid_tx_ant
& ant_msk
))
832 if (data
->disconn_array
[i
] == 0)
833 /* there is a Tx antenna connected */
835 if (num_tx_chains
== priv
->hw_params
.tx_chains_num
&&
836 data
->disconn_array
[i
]) {
838 * If all chains are disconnected
839 * connect the first valid tx chain
842 find_first_chain(priv
->cfg
->valid_tx_ant
);
843 data
->disconn_array
[first_chain
] = 0;
844 active_chains
|= BIT(first_chain
);
845 IWL_DEBUG_CALIB(priv
, "All Tx chains are disconnected W/A - declare %d as connected\n",
851 /* Save for use within RXON, TX, SCAN commands, etc. */
852 priv
->chain_noise_data
.active_chains
= active_chains
;
853 IWL_DEBUG_CALIB(priv
, "active_chains (bitwise) = 0x%x\n",
856 /* Analyze noise for rx balance */
858 ((data
->chain_noise_a
) / priv
->cfg
->chain_noise_num_beacons
);
860 ((data
->chain_noise_b
) / priv
->cfg
->chain_noise_num_beacons
);
862 ((data
->chain_noise_c
) / priv
->cfg
->chain_noise_num_beacons
);
864 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
865 if (!(data
->disconn_array
[i
]) &&
866 (average_noise
[i
] <= min_average_noise
)) {
867 /* This means that chain i is active and has
868 * lower noise values so far: */
869 min_average_noise
= average_noise
[i
];
870 min_average_noise_antenna_i
= i
;
874 IWL_DEBUG_CALIB(priv
, "average_noise: a %d b %d c %d\n",
875 average_noise
[0], average_noise
[1],
878 IWL_DEBUG_CALIB(priv
, "min_average_noise = %d, antenna %d\n",
879 min_average_noise
, min_average_noise_antenna_i
);
881 if (priv
->cfg
->ops
->utils
->gain_computation
)
882 priv
->cfg
->ops
->utils
->gain_computation(priv
, average_noise
,
883 min_average_noise_antenna_i
, min_average_noise
,
884 find_first_chain(priv
->cfg
->valid_rx_ant
));
886 /* Some power changes may have been made during the calibration.
887 * Update and commit the RXON
889 if (priv
->cfg
->ops
->lib
->update_chain_flags
)
890 priv
->cfg
->ops
->lib
->update_chain_flags(priv
);
892 data
->state
= IWL_CHAIN_NOISE_DONE
;
893 iwl_power_update_mode(priv
, false);
895 EXPORT_SYMBOL(iwl_chain_noise_calibration
);
898 void iwl_reset_run_time_calib(struct iwl_priv
*priv
)
901 memset(&(priv
->sensitivity_data
), 0,
902 sizeof(struct iwl_sensitivity_data
));
903 memset(&(priv
->chain_noise_data
), 0,
904 sizeof(struct iwl_chain_noise_data
));
905 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
906 priv
->chain_noise_data
.delta_gain_code
[i
] =
907 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
;
909 /* Ask for statistics now, the uCode will send notification
910 * periodically after association */
911 iwl_send_statistics_request(priv
, CMD_ASYNC
, true);
913 EXPORT_SYMBOL(iwl_reset_run_time_calib
);