Staging: netwave: delete the driver
[linux/fpc-iii.git] / drivers / net / wireless / iwlwifi / iwl-calib.c
blob8b516c5ff0bb5f2ba4ad8143aa159968478877bc
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
66 #include "iwl-dev.h"
67 #include "iwl-core.h"
68 #include "iwl-calib.h"
70 /*****************************************************************************
71 * INIT calibrations framework
72 *****************************************************************************/
74 struct statistics_general_data {
75 u32 beacon_silence_rssi_a;
76 u32 beacon_silence_rssi_b;
77 u32 beacon_silence_rssi_c;
78 u32 beacon_energy_a;
79 u32 beacon_energy_b;
80 u32 beacon_energy_c;
83 int iwl_send_calib_results(struct iwl_priv *priv)
85 int ret = 0;
86 int i = 0;
88 struct iwl_host_cmd hcmd = {
89 .id = REPLY_PHY_CALIBRATION_CMD,
90 .flags = CMD_SIZE_HUGE,
93 for (i = 0; i < IWL_CALIB_MAX; i++) {
94 if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
95 priv->calib_results[i].buf) {
96 hcmd.len = priv->calib_results[i].buf_len;
97 hcmd.data = priv->calib_results[i].buf;
98 ret = iwl_send_cmd_sync(priv, &hcmd);
99 if (ret)
100 goto err;
104 return 0;
105 err:
106 IWL_ERR(priv, "Error %d iteration %d\n", ret, i);
107 return ret;
109 EXPORT_SYMBOL(iwl_send_calib_results);
111 int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
113 if (res->buf_len != len) {
114 kfree(res->buf);
115 res->buf = kzalloc(len, GFP_ATOMIC);
117 if (unlikely(res->buf == NULL))
118 return -ENOMEM;
120 res->buf_len = len;
121 memcpy(res->buf, buf, len);
122 return 0;
124 EXPORT_SYMBOL(iwl_calib_set);
126 void iwl_calib_free_results(struct iwl_priv *priv)
128 int i;
130 for (i = 0; i < IWL_CALIB_MAX; i++) {
131 kfree(priv->calib_results[i].buf);
132 priv->calib_results[i].buf = NULL;
133 priv->calib_results[i].buf_len = 0;
136 EXPORT_SYMBOL(iwl_calib_free_results);
138 /*****************************************************************************
139 * RUNTIME calibrations framework
140 *****************************************************************************/
142 /* "false alarms" are signals that our DSP tries to lock onto,
143 * but then determines that they are either noise, or transmissions
144 * from a distant wireless network (also "noise", really) that get
145 * "stepped on" by stronger transmissions within our own network.
146 * This algorithm attempts to set a sensitivity level that is high
147 * enough to receive all of our own network traffic, but not so
148 * high that our DSP gets too busy trying to lock onto non-network
149 * activity/noise. */
150 static int iwl_sens_energy_cck(struct iwl_priv *priv,
151 u32 norm_fa,
152 u32 rx_enable_time,
153 struct statistics_general_data *rx_info)
155 u32 max_nrg_cck = 0;
156 int i = 0;
157 u8 max_silence_rssi = 0;
158 u32 silence_ref = 0;
159 u8 silence_rssi_a = 0;
160 u8 silence_rssi_b = 0;
161 u8 silence_rssi_c = 0;
162 u32 val;
164 /* "false_alarms" values below are cross-multiplications to assess the
165 * numbers of false alarms within the measured period of actual Rx
166 * (Rx is off when we're txing), vs the min/max expected false alarms
167 * (some should be expected if rx is sensitive enough) in a
168 * hypothetical listening period of 200 time units (TU), 204.8 msec:
170 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
172 * */
173 u32 false_alarms = norm_fa * 200 * 1024;
174 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
175 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
176 struct iwl_sensitivity_data *data = NULL;
177 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
179 data = &(priv->sensitivity_data);
181 data->nrg_auto_corr_silence_diff = 0;
183 /* Find max silence rssi among all 3 receivers.
184 * This is background noise, which may include transmissions from other
185 * networks, measured during silence before our network's beacon */
186 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
187 ALL_BAND_FILTER) >> 8);
188 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
189 ALL_BAND_FILTER) >> 8);
190 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
191 ALL_BAND_FILTER) >> 8);
193 val = max(silence_rssi_b, silence_rssi_c);
194 max_silence_rssi = max(silence_rssi_a, (u8) val);
196 /* Store silence rssi in 20-beacon history table */
197 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
198 data->nrg_silence_idx++;
199 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
200 data->nrg_silence_idx = 0;
202 /* Find max silence rssi across 20 beacon history */
203 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
204 val = data->nrg_silence_rssi[i];
205 silence_ref = max(silence_ref, val);
207 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
208 silence_rssi_a, silence_rssi_b, silence_rssi_c,
209 silence_ref);
211 /* Find max rx energy (min value!) among all 3 receivers,
212 * measured during beacon frame.
213 * Save it in 10-beacon history table. */
214 i = data->nrg_energy_idx;
215 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
216 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
218 data->nrg_energy_idx++;
219 if (data->nrg_energy_idx >= 10)
220 data->nrg_energy_idx = 0;
222 /* Find min rx energy (max value) across 10 beacon history.
223 * This is the minimum signal level that we want to receive well.
224 * Add backoff (margin so we don't miss slightly lower energy frames).
225 * This establishes an upper bound (min value) for energy threshold. */
226 max_nrg_cck = data->nrg_value[0];
227 for (i = 1; i < 10; i++)
228 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
229 max_nrg_cck += 6;
231 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
232 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
233 rx_info->beacon_energy_c, max_nrg_cck - 6);
235 /* Count number of consecutive beacons with fewer-than-desired
236 * false alarms. */
237 if (false_alarms < min_false_alarms)
238 data->num_in_cck_no_fa++;
239 else
240 data->num_in_cck_no_fa = 0;
241 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
242 data->num_in_cck_no_fa);
244 /* If we got too many false alarms this time, reduce sensitivity */
245 if ((false_alarms > max_false_alarms) &&
246 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
247 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
248 false_alarms, max_false_alarms);
249 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
250 data->nrg_curr_state = IWL_FA_TOO_MANY;
251 /* Store for "fewer than desired" on later beacon */
252 data->nrg_silence_ref = silence_ref;
254 /* increase energy threshold (reduce nrg value)
255 * to decrease sensitivity */
256 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
257 /* Else if we got fewer than desired, increase sensitivity */
258 } else if (false_alarms < min_false_alarms) {
259 data->nrg_curr_state = IWL_FA_TOO_FEW;
261 /* Compare silence level with silence level for most recent
262 * healthy number or too many false alarms */
263 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
264 (s32)silence_ref;
266 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
267 false_alarms, min_false_alarms,
268 data->nrg_auto_corr_silence_diff);
270 /* Increase value to increase sensitivity, but only if:
271 * 1a) previous beacon did *not* have *too many* false alarms
272 * 1b) AND there's a significant difference in Rx levels
273 * from a previous beacon with too many, or healthy # FAs
274 * OR 2) We've seen a lot of beacons (100) with too few
275 * false alarms */
276 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
277 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
278 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
280 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
281 /* Increase nrg value to increase sensitivity */
282 val = data->nrg_th_cck + NRG_STEP_CCK;
283 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
284 } else {
285 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
288 /* Else we got a healthy number of false alarms, keep status quo */
289 } else {
290 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
291 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
293 /* Store for use in "fewer than desired" with later beacon */
294 data->nrg_silence_ref = silence_ref;
296 /* If previous beacon had too many false alarms,
297 * give it some extra margin by reducing sensitivity again
298 * (but don't go below measured energy of desired Rx) */
299 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
300 IWL_DEBUG_CALIB(priv, "... increasing margin\n");
301 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
302 data->nrg_th_cck -= NRG_MARGIN;
303 else
304 data->nrg_th_cck = max_nrg_cck;
308 /* Make sure the energy threshold does not go above the measured
309 * energy of the desired Rx signals (reduced by backoff margin),
310 * or else we might start missing Rx frames.
311 * Lower value is higher energy, so we use max()!
313 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
314 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
316 data->nrg_prev_state = data->nrg_curr_state;
318 /* Auto-correlation CCK algorithm */
319 if (false_alarms > min_false_alarms) {
321 /* increase auto_corr values to decrease sensitivity
322 * so the DSP won't be disturbed by the noise
324 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
325 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
326 else {
327 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
328 data->auto_corr_cck =
329 min((u32)ranges->auto_corr_max_cck, val);
331 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
332 data->auto_corr_cck_mrc =
333 min((u32)ranges->auto_corr_max_cck_mrc, val);
334 } else if ((false_alarms < min_false_alarms) &&
335 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
336 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
338 /* Decrease auto_corr values to increase sensitivity */
339 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
340 data->auto_corr_cck =
341 max((u32)ranges->auto_corr_min_cck, val);
342 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
343 data->auto_corr_cck_mrc =
344 max((u32)ranges->auto_corr_min_cck_mrc, val);
347 return 0;
351 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
352 u32 norm_fa,
353 u32 rx_enable_time)
355 u32 val;
356 u32 false_alarms = norm_fa * 200 * 1024;
357 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
358 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
359 struct iwl_sensitivity_data *data = NULL;
360 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
362 data = &(priv->sensitivity_data);
364 /* If we got too many false alarms this time, reduce sensitivity */
365 if (false_alarms > max_false_alarms) {
367 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
368 false_alarms, max_false_alarms);
370 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
371 data->auto_corr_ofdm =
372 min((u32)ranges->auto_corr_max_ofdm, val);
374 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
375 data->auto_corr_ofdm_mrc =
376 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
378 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
379 data->auto_corr_ofdm_x1 =
380 min((u32)ranges->auto_corr_max_ofdm_x1, val);
382 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
383 data->auto_corr_ofdm_mrc_x1 =
384 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
387 /* Else if we got fewer than desired, increase sensitivity */
388 else if (false_alarms < min_false_alarms) {
390 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
391 false_alarms, min_false_alarms);
393 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
394 data->auto_corr_ofdm =
395 max((u32)ranges->auto_corr_min_ofdm, val);
397 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
398 data->auto_corr_ofdm_mrc =
399 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
401 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
402 data->auto_corr_ofdm_x1 =
403 max((u32)ranges->auto_corr_min_ofdm_x1, val);
405 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
406 data->auto_corr_ofdm_mrc_x1 =
407 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
408 } else {
409 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
410 min_false_alarms, false_alarms, max_false_alarms);
412 return 0;
415 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
416 static int iwl_sensitivity_write(struct iwl_priv *priv)
418 struct iwl_sensitivity_cmd cmd ;
419 struct iwl_sensitivity_data *data = NULL;
420 struct iwl_host_cmd cmd_out = {
421 .id = SENSITIVITY_CMD,
422 .len = sizeof(struct iwl_sensitivity_cmd),
423 .flags = CMD_ASYNC,
424 .data = &cmd,
427 data = &(priv->sensitivity_data);
429 memset(&cmd, 0, sizeof(cmd));
431 cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
432 cpu_to_le16((u16)data->auto_corr_ofdm);
433 cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
434 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
435 cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
436 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
437 cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
438 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
440 cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
441 cpu_to_le16((u16)data->auto_corr_cck);
442 cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
443 cpu_to_le16((u16)data->auto_corr_cck_mrc);
445 cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
446 cpu_to_le16((u16)data->nrg_th_cck);
447 cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
448 cpu_to_le16((u16)data->nrg_th_ofdm);
450 cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
451 cpu_to_le16(data->barker_corr_th_min);
452 cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
453 cpu_to_le16(data->barker_corr_th_min_mrc);
454 cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
455 cpu_to_le16(data->nrg_th_cca);
457 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
458 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
459 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
460 data->nrg_th_ofdm);
462 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
463 data->auto_corr_cck, data->auto_corr_cck_mrc,
464 data->nrg_th_cck);
466 /* Update uCode's "work" table, and copy it to DSP */
467 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
469 /* Don't send command to uCode if nothing has changed */
470 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
471 sizeof(u16)*HD_TABLE_SIZE)) {
472 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
473 return 0;
476 /* Copy table for comparison next time */
477 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
478 sizeof(u16)*HD_TABLE_SIZE);
480 return iwl_send_cmd(priv, &cmd_out);
483 void iwl_init_sensitivity(struct iwl_priv *priv)
485 int ret = 0;
486 int i;
487 struct iwl_sensitivity_data *data = NULL;
488 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
490 if (priv->disable_sens_cal)
491 return;
493 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
495 /* Clear driver's sensitivity algo data */
496 data = &(priv->sensitivity_data);
498 if (ranges == NULL)
499 return;
501 memset(data, 0, sizeof(struct iwl_sensitivity_data));
503 data->num_in_cck_no_fa = 0;
504 data->nrg_curr_state = IWL_FA_TOO_MANY;
505 data->nrg_prev_state = IWL_FA_TOO_MANY;
506 data->nrg_silence_ref = 0;
507 data->nrg_silence_idx = 0;
508 data->nrg_energy_idx = 0;
510 for (i = 0; i < 10; i++)
511 data->nrg_value[i] = 0;
513 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
514 data->nrg_silence_rssi[i] = 0;
516 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
517 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
518 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
519 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
520 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
521 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
522 data->nrg_th_cck = ranges->nrg_th_cck;
523 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
524 data->barker_corr_th_min = ranges->barker_corr_th_min;
525 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
526 data->nrg_th_cca = ranges->nrg_th_cca;
528 data->last_bad_plcp_cnt_ofdm = 0;
529 data->last_fa_cnt_ofdm = 0;
530 data->last_bad_plcp_cnt_cck = 0;
531 data->last_fa_cnt_cck = 0;
533 ret |= iwl_sensitivity_write(priv);
534 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
536 EXPORT_SYMBOL(iwl_init_sensitivity);
538 void iwl_sensitivity_calibration(struct iwl_priv *priv,
539 struct iwl_notif_statistics *resp)
541 u32 rx_enable_time;
542 u32 fa_cck;
543 u32 fa_ofdm;
544 u32 bad_plcp_cck;
545 u32 bad_plcp_ofdm;
546 u32 norm_fa_ofdm;
547 u32 norm_fa_cck;
548 struct iwl_sensitivity_data *data = NULL;
549 struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
550 struct statistics_rx *statistics = &(resp->rx);
551 unsigned long flags;
552 struct statistics_general_data statis;
554 if (priv->disable_sens_cal)
555 return;
557 data = &(priv->sensitivity_data);
559 if (!iwl_is_associated(priv)) {
560 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
561 return;
564 spin_lock_irqsave(&priv->lock, flags);
565 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
566 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
567 spin_unlock_irqrestore(&priv->lock, flags);
568 return;
571 /* Extract Statistics: */
572 rx_enable_time = le32_to_cpu(rx_info->channel_load);
573 fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
574 fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
575 bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
576 bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
578 statis.beacon_silence_rssi_a =
579 le32_to_cpu(statistics->general.beacon_silence_rssi_a);
580 statis.beacon_silence_rssi_b =
581 le32_to_cpu(statistics->general.beacon_silence_rssi_b);
582 statis.beacon_silence_rssi_c =
583 le32_to_cpu(statistics->general.beacon_silence_rssi_c);
584 statis.beacon_energy_a =
585 le32_to_cpu(statistics->general.beacon_energy_a);
586 statis.beacon_energy_b =
587 le32_to_cpu(statistics->general.beacon_energy_b);
588 statis.beacon_energy_c =
589 le32_to_cpu(statistics->general.beacon_energy_c);
591 spin_unlock_irqrestore(&priv->lock, flags);
593 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
595 if (!rx_enable_time) {
596 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0! \n");
597 return;
600 /* These statistics increase monotonically, and do not reset
601 * at each beacon. Calculate difference from last value, or just
602 * use the new statistics value if it has reset or wrapped around. */
603 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
604 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
605 else {
606 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
607 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
610 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
611 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
612 else {
613 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
614 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
617 if (data->last_fa_cnt_ofdm > fa_ofdm)
618 data->last_fa_cnt_ofdm = fa_ofdm;
619 else {
620 fa_ofdm -= data->last_fa_cnt_ofdm;
621 data->last_fa_cnt_ofdm += fa_ofdm;
624 if (data->last_fa_cnt_cck > fa_cck)
625 data->last_fa_cnt_cck = fa_cck;
626 else {
627 fa_cck -= data->last_fa_cnt_cck;
628 data->last_fa_cnt_cck += fa_cck;
631 /* Total aborted signal locks */
632 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
633 norm_fa_cck = fa_cck + bad_plcp_cck;
635 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
636 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
638 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
639 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
640 iwl_sensitivity_write(priv);
642 return;
644 EXPORT_SYMBOL(iwl_sensitivity_calibration);
646 static inline u8 find_first_chain(u8 mask)
648 if (mask & ANT_A)
649 return CHAIN_A;
650 if (mask & ANT_B)
651 return CHAIN_B;
652 return CHAIN_C;
656 * Accumulate 20 beacons of signal and noise statistics for each of
657 * 3 receivers/antennas/rx-chains, then figure out:
658 * 1) Which antennas are connected.
659 * 2) Differential rx gain settings to balance the 3 receivers.
661 void iwl_chain_noise_calibration(struct iwl_priv *priv,
662 struct iwl_notif_statistics *stat_resp)
664 struct iwl_chain_noise_data *data = NULL;
666 u32 chain_noise_a;
667 u32 chain_noise_b;
668 u32 chain_noise_c;
669 u32 chain_sig_a;
670 u32 chain_sig_b;
671 u32 chain_sig_c;
672 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
673 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
674 u32 max_average_sig;
675 u16 max_average_sig_antenna_i;
676 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
677 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
678 u16 i = 0;
679 u16 rxon_chnum = INITIALIZATION_VALUE;
680 u16 stat_chnum = INITIALIZATION_VALUE;
681 u8 rxon_band24;
682 u8 stat_band24;
683 u32 active_chains = 0;
684 u8 num_tx_chains;
685 unsigned long flags;
686 struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
687 u8 first_chain;
689 if (priv->disable_chain_noise_cal)
690 return;
692 data = &(priv->chain_noise_data);
695 * Accumulate just the first "chain_noise_num_beacons" after
696 * the first association, then we're done forever.
698 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
699 if (data->state == IWL_CHAIN_NOISE_ALIVE)
700 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
701 return;
704 spin_lock_irqsave(&priv->lock, flags);
705 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
706 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
707 spin_unlock_irqrestore(&priv->lock, flags);
708 return;
711 rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
712 rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
713 stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
714 stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;
716 /* Make sure we accumulate data for just the associated channel
717 * (even if scanning). */
718 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
719 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
720 rxon_chnum, rxon_band24);
721 spin_unlock_irqrestore(&priv->lock, flags);
722 return;
726 * Accumulate beacon statistics values across
727 * "chain_noise_num_beacons"
729 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
730 IN_BAND_FILTER;
731 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
732 IN_BAND_FILTER;
733 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
734 IN_BAND_FILTER;
736 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
737 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
738 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
740 spin_unlock_irqrestore(&priv->lock, flags);
742 data->beacon_count++;
744 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
745 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
746 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
748 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
749 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
750 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
752 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
753 rxon_chnum, rxon_band24, data->beacon_count);
754 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
755 chain_sig_a, chain_sig_b, chain_sig_c);
756 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
757 chain_noise_a, chain_noise_b, chain_noise_c);
759 /* If this is the "chain_noise_num_beacons", determine:
760 * 1) Disconnected antennas (using signal strengths)
761 * 2) Differential gain (using silence noise) to balance receivers */
762 if (data->beacon_count != priv->cfg->chain_noise_num_beacons)
763 return;
765 /* Analyze signal for disconnected antenna */
766 average_sig[0] =
767 (data->chain_signal_a) / priv->cfg->chain_noise_num_beacons;
768 average_sig[1] =
769 (data->chain_signal_b) / priv->cfg->chain_noise_num_beacons;
770 average_sig[2] =
771 (data->chain_signal_c) / priv->cfg->chain_noise_num_beacons;
773 if (average_sig[0] >= average_sig[1]) {
774 max_average_sig = average_sig[0];
775 max_average_sig_antenna_i = 0;
776 active_chains = (1 << max_average_sig_antenna_i);
777 } else {
778 max_average_sig = average_sig[1];
779 max_average_sig_antenna_i = 1;
780 active_chains = (1 << max_average_sig_antenna_i);
783 if (average_sig[2] >= max_average_sig) {
784 max_average_sig = average_sig[2];
785 max_average_sig_antenna_i = 2;
786 active_chains = (1 << max_average_sig_antenna_i);
789 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
790 average_sig[0], average_sig[1], average_sig[2]);
791 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
792 max_average_sig, max_average_sig_antenna_i);
794 /* Compare signal strengths for all 3 receivers. */
795 for (i = 0; i < NUM_RX_CHAINS; i++) {
796 if (i != max_average_sig_antenna_i) {
797 s32 rssi_delta = (max_average_sig - average_sig[i]);
799 /* If signal is very weak, compared with
800 * strongest, mark it as disconnected. */
801 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
802 data->disconn_array[i] = 1;
803 else
804 active_chains |= (1 << i);
805 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
806 "disconn_array[i] = %d\n",
807 i, rssi_delta, data->disconn_array[i]);
812 * The above algorithm sometimes fails when the ucode
813 * reports 0 for all chains. It's not clear why that
814 * happens to start with, but it is then causing trouble
815 * because this can make us enable more chains than the
816 * hardware really has.
818 * To be safe, simply mask out any chains that we know
819 * are not on the device.
821 active_chains &= priv->hw_params.valid_rx_ant;
823 num_tx_chains = 0;
824 for (i = 0; i < NUM_RX_CHAINS; i++) {
825 /* loops on all the bits of
826 * priv->hw_setting.valid_tx_ant */
827 u8 ant_msk = (1 << i);
828 if (!(priv->hw_params.valid_tx_ant & ant_msk))
829 continue;
831 num_tx_chains++;
832 if (data->disconn_array[i] == 0)
833 /* there is a Tx antenna connected */
834 break;
835 if (num_tx_chains == priv->hw_params.tx_chains_num &&
836 data->disconn_array[i]) {
838 * If all chains are disconnected
839 * connect the first valid tx chain
841 first_chain =
842 find_first_chain(priv->cfg->valid_tx_ant);
843 data->disconn_array[first_chain] = 0;
844 active_chains |= BIT(first_chain);
845 IWL_DEBUG_CALIB(priv, "All Tx chains are disconnected W/A - declare %d as connected\n",
846 first_chain);
847 break;
851 /* Save for use within RXON, TX, SCAN commands, etc. */
852 priv->chain_noise_data.active_chains = active_chains;
853 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
854 active_chains);
856 /* Analyze noise for rx balance */
857 average_noise[0] =
858 ((data->chain_noise_a) / priv->cfg->chain_noise_num_beacons);
859 average_noise[1] =
860 ((data->chain_noise_b) / priv->cfg->chain_noise_num_beacons);
861 average_noise[2] =
862 ((data->chain_noise_c) / priv->cfg->chain_noise_num_beacons);
864 for (i = 0; i < NUM_RX_CHAINS; i++) {
865 if (!(data->disconn_array[i]) &&
866 (average_noise[i] <= min_average_noise)) {
867 /* This means that chain i is active and has
868 * lower noise values so far: */
869 min_average_noise = average_noise[i];
870 min_average_noise_antenna_i = i;
874 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
875 average_noise[0], average_noise[1],
876 average_noise[2]);
878 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
879 min_average_noise, min_average_noise_antenna_i);
881 if (priv->cfg->ops->utils->gain_computation)
882 priv->cfg->ops->utils->gain_computation(priv, average_noise,
883 min_average_noise_antenna_i, min_average_noise,
884 find_first_chain(priv->cfg->valid_rx_ant));
886 /* Some power changes may have been made during the calibration.
887 * Update and commit the RXON
889 if (priv->cfg->ops->lib->update_chain_flags)
890 priv->cfg->ops->lib->update_chain_flags(priv);
892 data->state = IWL_CHAIN_NOISE_DONE;
893 iwl_power_update_mode(priv, false);
895 EXPORT_SYMBOL(iwl_chain_noise_calibration);
898 void iwl_reset_run_time_calib(struct iwl_priv *priv)
900 int i;
901 memset(&(priv->sensitivity_data), 0,
902 sizeof(struct iwl_sensitivity_data));
903 memset(&(priv->chain_noise_data), 0,
904 sizeof(struct iwl_chain_noise_data));
905 for (i = 0; i < NUM_RX_CHAINS; i++)
906 priv->chain_noise_data.delta_gain_code[i] =
907 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
909 /* Ask for statistics now, the uCode will send notification
910 * periodically after association */
911 iwl_send_statistics_request(priv, CMD_ASYNC, true);
913 EXPORT_SYMBOL(iwl_reset_run_time_calib);