1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/slab.h>
67 #include <linux/init.h>
69 #include <net/mac80211.h>
71 #include "iwl-commands.h"
74 #include "iwl-debug.h"
75 #include "iwl-eeprom.h"
78 /************************** EEPROM BANDS ****************************
80 * The iwl_eeprom_band definitions below provide the mapping from the
81 * EEPROM contents to the specific channel number supported for each
84 * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
85 * definition below maps to physical channel 42 in the 5.2GHz spectrum.
86 * The specific geography and calibration information for that channel
87 * is contained in the eeprom map itself.
89 * During init, we copy the eeprom information and channel map
90 * information into priv->channel_info_24/52 and priv->channel_map_24/52
92 * channel_map_24/52 provides the index in the channel_info array for a
93 * given channel. We have to have two separate maps as there is channel
94 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
97 * A value of 0xff stored in the channel_map indicates that the channel
98 * is not supported by the hardware at all.
100 * A value of 0xfe in the channel_map indicates that the channel is not
101 * valid for Tx with the current hardware. This means that
102 * while the system can tune and receive on a given channel, it may not
103 * be able to associate or transmit any frames on that
104 * channel. There is no corresponding channel information for that
107 *********************************************************************/
110 const u8 iwl_eeprom_band_1
[14] = {
111 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
115 static const u8 iwl_eeprom_band_2
[] = { /* 4915-5080MHz */
116 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
119 static const u8 iwl_eeprom_band_3
[] = { /* 5170-5320MHz */
120 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
123 static const u8 iwl_eeprom_band_4
[] = { /* 5500-5700MHz */
124 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
127 static const u8 iwl_eeprom_band_5
[] = { /* 5725-5825MHz */
128 145, 149, 153, 157, 161, 165
131 static const u8 iwl_eeprom_band_6
[] = { /* 2.4 ht40 channel */
135 static const u8 iwl_eeprom_band_7
[] = { /* 5.2 ht40 channel */
136 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
140 * struct iwl_txpwr_section: eeprom section information
141 * @offset: indirect address into eeprom image
142 * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
143 * @band: band type for the section
144 * @is_common - true: common section, false: channel section
145 * @is_cck - true: cck section, false: not cck section
146 * @is_ht_40 - true: all channel in the section are HT40 channel,
147 * false: legacy or HT 20 MHz
148 * ignore if it is common section
149 * @iwl_eeprom_section_channel: channel array in the section,
150 * ignore if common section
152 struct iwl_txpwr_section
{
155 enum ieee80211_band band
;
159 u8 iwl_eeprom_section_channel
[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS
];
163 * section 1 - 3 are regulatory tx power apply to all channels based on
164 * modulation: CCK, OFDM
165 * Band: 2.4GHz, 5.2GHz
166 * section 4 - 10 are regulatory tx power apply to specified channels
168 * 1L - Channel 1 Legacy
170 * (1,+1) - Channel 1 HT40 "_above_"
172 * Section 1: all CCK channels
173 * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
174 * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
175 * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
176 * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
177 * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
178 * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
179 * Section 8: 2.4 GHz channel: 13L, 13HT
180 * Section 9: 2.4 GHz channel: 140L, 140HT
181 * Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1)
184 static const struct iwl_txpwr_section enhinfo
[] = {
185 { EEPROM_LB_CCK_20_COMMON
, 1, IEEE80211_BAND_2GHZ
, true, true, false },
186 { EEPROM_LB_OFDM_COMMON
, 3, IEEE80211_BAND_2GHZ
, true, false, false },
187 { EEPROM_HB_OFDM_COMMON
, 3, IEEE80211_BAND_5GHZ
, true, false, false },
188 { EEPROM_LB_OFDM_20_BAND
, 8, IEEE80211_BAND_2GHZ
,
190 {1, 1, 2, 2, 10, 10, 11, 11 } },
191 { EEPROM_LB_OFDM_HT40_BAND
, 5, IEEE80211_BAND_2GHZ
,
194 { EEPROM_HB_OFDM_20_BAND
, 6, IEEE80211_BAND_5GHZ
,
196 { 36, 64, 100, 36, 64, 100 } },
197 { EEPROM_HB_OFDM_HT40_BAND
, 3, IEEE80211_BAND_5GHZ
,
200 { EEPROM_LB_OFDM_20_CHANNEL_13
, 2, IEEE80211_BAND_2GHZ
,
203 { EEPROM_HB_OFDM_20_CHANNEL_140
, 2, IEEE80211_BAND_5GHZ
,
206 { EEPROM_HB_OFDM_HT40_BAND_1
, 2, IEEE80211_BAND_5GHZ
,
211 /******************************************************************************
213 * EEPROM related functions
215 ******************************************************************************/
217 int iwlcore_eeprom_verify_signature(struct iwl_priv
*priv
)
219 u32 gp
= iwl_read32(priv
, CSR_EEPROM_GP
) & CSR_EEPROM_GP_VALID_MSK
;
222 IWL_DEBUG_INFO(priv
, "EEPROM signature=0x%08x\n", gp
);
224 case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP
:
225 if (priv
->nvm_device_type
!= NVM_DEVICE_TYPE_OTP
) {
226 IWL_ERR(priv
, "EEPROM with bad signature: 0x%08x\n",
231 case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K
:
232 case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K
:
233 if (priv
->nvm_device_type
!= NVM_DEVICE_TYPE_EEPROM
) {
234 IWL_ERR(priv
, "OTP with bad signature: 0x%08x\n", gp
);
238 case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP
:
240 IWL_ERR(priv
, "bad EEPROM/OTP signature, type=%s, "
241 "EEPROM_GP=0x%08x\n",
242 (priv
->nvm_device_type
== NVM_DEVICE_TYPE_OTP
)
243 ? "OTP" : "EEPROM", gp
);
249 EXPORT_SYMBOL(iwlcore_eeprom_verify_signature
);
251 static void iwl_set_otp_access(struct iwl_priv
*priv
, enum iwl_access_mode mode
)
255 otpgp
= iwl_read32(priv
, CSR_OTP_GP_REG
);
256 if (mode
== IWL_OTP_ACCESS_ABSOLUTE
)
257 iwl_clear_bit(priv
, CSR_OTP_GP_REG
,
258 CSR_OTP_GP_REG_OTP_ACCESS_MODE
);
260 iwl_set_bit(priv
, CSR_OTP_GP_REG
,
261 CSR_OTP_GP_REG_OTP_ACCESS_MODE
);
264 static int iwlcore_get_nvm_type(struct iwl_priv
*priv
)
269 /* OTP only valid for CP/PP and after */
270 switch (priv
->hw_rev
& CSR_HW_REV_TYPE_MSK
) {
271 case CSR_HW_REV_TYPE_NONE
:
272 IWL_ERR(priv
, "Unknown hardware type\n");
274 case CSR_HW_REV_TYPE_3945
:
275 case CSR_HW_REV_TYPE_4965
:
276 case CSR_HW_REV_TYPE_5300
:
277 case CSR_HW_REV_TYPE_5350
:
278 case CSR_HW_REV_TYPE_5100
:
279 case CSR_HW_REV_TYPE_5150
:
280 nvm_type
= NVM_DEVICE_TYPE_EEPROM
;
283 otpgp
= iwl_read32(priv
, CSR_OTP_GP_REG
);
284 if (otpgp
& CSR_OTP_GP_REG_DEVICE_SELECT
)
285 nvm_type
= NVM_DEVICE_TYPE_OTP
;
287 nvm_type
= NVM_DEVICE_TYPE_EEPROM
;
294 * The device's EEPROM semaphore prevents conflicts between driver and uCode
295 * when accessing the EEPROM; each access is a series of pulses to/from the
296 * EEPROM chip, not a single event, so even reads could conflict if they
297 * weren't arbitrated by the semaphore.
299 int iwlcore_eeprom_acquire_semaphore(struct iwl_priv
*priv
)
304 for (count
= 0; count
< EEPROM_SEM_RETRY_LIMIT
; count
++) {
305 /* Request semaphore */
306 iwl_set_bit(priv
, CSR_HW_IF_CONFIG_REG
,
307 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM
);
309 /* See if we got it */
310 ret
= iwl_poll_bit(priv
, CSR_HW_IF_CONFIG_REG
,
311 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM
,
312 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM
,
315 IWL_DEBUG_IO(priv
, "Acquired semaphore after %d tries.\n",
323 EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore
);
325 void iwlcore_eeprom_release_semaphore(struct iwl_priv
*priv
)
327 iwl_clear_bit(priv
, CSR_HW_IF_CONFIG_REG
,
328 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM
);
331 EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore
);
333 const u8
*iwlcore_eeprom_query_addr(const struct iwl_priv
*priv
, size_t offset
)
335 BUG_ON(offset
>= priv
->cfg
->eeprom_size
);
336 return &priv
->eeprom
[offset
];
338 EXPORT_SYMBOL(iwlcore_eeprom_query_addr
);
340 static int iwl_init_otp_access(struct iwl_priv
*priv
)
344 /* Enable 40MHz radio clock */
345 _iwl_write32(priv
, CSR_GP_CNTRL
,
346 _iwl_read32(priv
, CSR_GP_CNTRL
) |
347 CSR_GP_CNTRL_REG_FLAG_INIT_DONE
);
349 /* wait for clock to be ready */
350 ret
= iwl_poll_bit(priv
, CSR_GP_CNTRL
,
351 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY
,
352 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY
,
355 IWL_ERR(priv
, "Time out access OTP\n");
357 iwl_set_bits_prph(priv
, APMG_PS_CTRL_REG
,
358 APMG_PS_CTRL_VAL_RESET_REQ
);
360 iwl_clear_bits_prph(priv
, APMG_PS_CTRL_REG
,
361 APMG_PS_CTRL_VAL_RESET_REQ
);
364 * CSR auto clock gate disable bit -
365 * this is only applicable for HW with OTP shadow RAM
367 if (priv
->cfg
->shadow_ram_support
)
368 iwl_set_bit(priv
, CSR_DBG_LINK_PWR_MGMT_REG
,
369 CSR_RESET_LINK_PWR_MGMT_DISABLED
);
374 static int iwl_read_otp_word(struct iwl_priv
*priv
, u16 addr
, __le16
*eeprom_data
)
380 _iwl_write32(priv
, CSR_EEPROM_REG
,
381 CSR_EEPROM_REG_MSK_ADDR
& (addr
<< 1));
382 ret
= iwl_poll_bit(priv
, CSR_EEPROM_REG
,
383 CSR_EEPROM_REG_READ_VALID_MSK
,
384 CSR_EEPROM_REG_READ_VALID_MSK
,
385 IWL_EEPROM_ACCESS_TIMEOUT
);
387 IWL_ERR(priv
, "Time out reading OTP[%d]\n", addr
);
390 r
= _iwl_read_direct32(priv
, CSR_EEPROM_REG
);
391 /* check for ECC errors: */
392 otpgp
= iwl_read32(priv
, CSR_OTP_GP_REG
);
393 if (otpgp
& CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK
) {
394 /* stop in this case */
395 /* set the uncorrectable OTP ECC bit for acknowledgement */
396 iwl_set_bit(priv
, CSR_OTP_GP_REG
,
397 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK
);
398 IWL_ERR(priv
, "Uncorrectable OTP ECC error, abort OTP read\n");
401 if (otpgp
& CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK
) {
402 /* continue in this case */
403 /* set the correctable OTP ECC bit for acknowledgement */
404 iwl_set_bit(priv
, CSR_OTP_GP_REG
,
405 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK
);
406 IWL_ERR(priv
, "Correctable OTP ECC error, continue read\n");
408 *eeprom_data
= cpu_to_le16(r
>> 16);
413 * iwl_is_otp_empty: check for empty OTP
415 static bool iwl_is_otp_empty(struct iwl_priv
*priv
)
417 u16 next_link_addr
= 0;
419 bool is_empty
= false;
421 /* locate the beginning of OTP link list */
422 if (!iwl_read_otp_word(priv
, next_link_addr
, &link_value
)) {
424 IWL_ERR(priv
, "OTP is empty\n");
428 IWL_ERR(priv
, "Unable to read first block of OTP list.\n");
437 * iwl_find_otp_image: find EEPROM image in OTP
438 * finding the OTP block that contains the EEPROM image.
439 * the last valid block on the link list (the block _before_ the last block)
440 * is the block we should read and used to configure the device.
441 * If all the available OTP blocks are full, the last block will be the block
442 * we should read and used to configure the device.
443 * only perform this operation if shadow RAM is disabled
445 static int iwl_find_otp_image(struct iwl_priv
*priv
,
448 u16 next_link_addr
= 0, valid_addr
;
449 __le16 link_value
= 0;
452 /* set addressing mode to absolute to traverse the link list */
453 iwl_set_otp_access(priv
, IWL_OTP_ACCESS_ABSOLUTE
);
455 /* checking for empty OTP or error */
456 if (iwl_is_otp_empty(priv
))
460 * start traverse link list
461 * until reach the max number of OTP blocks
462 * different devices have different number of OTP blocks
465 /* save current valid block address
466 * check for more block on the link list
468 valid_addr
= next_link_addr
;
469 next_link_addr
= le16_to_cpu(link_value
) * sizeof(u16
);
470 IWL_DEBUG_INFO(priv
, "OTP blocks %d addr 0x%x\n",
471 usedblocks
, next_link_addr
);
472 if (iwl_read_otp_word(priv
, next_link_addr
, &link_value
))
476 * reach the end of link list, return success and
477 * set address point to the starting address
480 *validblockaddr
= valid_addr
;
481 /* skip first 2 bytes (link list pointer) */
482 *validblockaddr
+= 2;
485 /* more in the link list, continue */
487 } while (usedblocks
<= priv
->cfg
->max_ll_items
);
489 /* OTP has no valid blocks */
490 IWL_DEBUG_INFO(priv
, "OTP has no valid blocks\n");
495 * iwl_eeprom_init - read EEPROM contents
497 * Load the EEPROM contents from adapter into priv->eeprom
499 * NOTE: This routine uses the non-debug IO access functions.
501 int iwl_eeprom_init(struct iwl_priv
*priv
)
504 u32 gp
= iwl_read32(priv
, CSR_EEPROM_GP
);
508 u16 validblockaddr
= 0;
511 priv
->nvm_device_type
= iwlcore_get_nvm_type(priv
);
512 if (priv
->nvm_device_type
== -ENOENT
)
514 /* allocate eeprom */
515 IWL_DEBUG_INFO(priv
, "NVM size = %d\n", priv
->cfg
->eeprom_size
);
516 sz
= priv
->cfg
->eeprom_size
;
517 priv
->eeprom
= kzalloc(sz
, GFP_KERNEL
);
522 e
= (__le16
*)priv
->eeprom
;
524 priv
->cfg
->ops
->lib
->apm_ops
.init(priv
);
526 ret
= priv
->cfg
->ops
->lib
->eeprom_ops
.verify_signature(priv
);
528 IWL_ERR(priv
, "EEPROM not found, EEPROM_GP=0x%08x\n", gp
);
533 /* Make sure driver (instead of uCode) is allowed to read EEPROM */
534 ret
= priv
->cfg
->ops
->lib
->eeprom_ops
.acquire_semaphore(priv
);
536 IWL_ERR(priv
, "Failed to acquire EEPROM semaphore.\n");
541 if (priv
->nvm_device_type
== NVM_DEVICE_TYPE_OTP
) {
543 ret
= iwl_init_otp_access(priv
);
545 IWL_ERR(priv
, "Failed to initialize OTP access.\n");
549 _iwl_write32(priv
, CSR_EEPROM_GP
,
550 iwl_read32(priv
, CSR_EEPROM_GP
) &
551 ~CSR_EEPROM_GP_IF_OWNER_MSK
);
553 iwl_set_bit(priv
, CSR_OTP_GP_REG
,
554 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK
|
555 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK
);
556 /* traversing the linked list if no shadow ram supported */
557 if (!priv
->cfg
->shadow_ram_support
) {
558 if (iwl_find_otp_image(priv
, &validblockaddr
)) {
563 for (addr
= validblockaddr
; addr
< validblockaddr
+ sz
;
564 addr
+= sizeof(u16
)) {
567 ret
= iwl_read_otp_word(priv
, addr
, &eeprom_data
);
570 e
[cache_addr
/ 2] = eeprom_data
;
571 cache_addr
+= sizeof(u16
);
574 /* eeprom is an array of 16bit values */
575 for (addr
= 0; addr
< sz
; addr
+= sizeof(u16
)) {
578 _iwl_write32(priv
, CSR_EEPROM_REG
,
579 CSR_EEPROM_REG_MSK_ADDR
& (addr
<< 1));
581 ret
= iwl_poll_bit(priv
, CSR_EEPROM_REG
,
582 CSR_EEPROM_REG_READ_VALID_MSK
,
583 CSR_EEPROM_REG_READ_VALID_MSK
,
584 IWL_EEPROM_ACCESS_TIMEOUT
);
586 IWL_ERR(priv
, "Time out reading EEPROM[%d]\n", addr
);
589 r
= _iwl_read_direct32(priv
, CSR_EEPROM_REG
);
590 e
[addr
/ 2] = cpu_to_le16(r
>> 16);
595 priv
->cfg
->ops
->lib
->eeprom_ops
.release_semaphore(priv
);
598 iwl_eeprom_free(priv
);
599 /* Reset chip to save power until we load uCode during "up". */
600 priv
->cfg
->ops
->lib
->apm_ops
.stop(priv
);
604 EXPORT_SYMBOL(iwl_eeprom_init
);
606 void iwl_eeprom_free(struct iwl_priv
*priv
)
611 EXPORT_SYMBOL(iwl_eeprom_free
);
613 int iwl_eeprom_check_version(struct iwl_priv
*priv
)
618 eeprom_ver
= iwl_eeprom_query16(priv
, EEPROM_VERSION
);
619 calib_ver
= priv
->cfg
->ops
->lib
->eeprom_ops
.calib_version(priv
);
621 if (eeprom_ver
< priv
->cfg
->eeprom_ver
||
622 calib_ver
< priv
->cfg
->eeprom_calib_ver
)
627 IWL_ERR(priv
, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
628 eeprom_ver
, priv
->cfg
->eeprom_ver
,
629 calib_ver
, priv
->cfg
->eeprom_calib_ver
);
633 EXPORT_SYMBOL(iwl_eeprom_check_version
);
635 const u8
*iwl_eeprom_query_addr(const struct iwl_priv
*priv
, size_t offset
)
637 return priv
->cfg
->ops
->lib
->eeprom_ops
.query_addr(priv
, offset
);
639 EXPORT_SYMBOL(iwl_eeprom_query_addr
);
641 u16
iwl_eeprom_query16(const struct iwl_priv
*priv
, size_t offset
)
645 return (u16
)priv
->eeprom
[offset
] | ((u16
)priv
->eeprom
[offset
+ 1] << 8);
647 EXPORT_SYMBOL(iwl_eeprom_query16
);
649 void iwl_eeprom_get_mac(const struct iwl_priv
*priv
, u8
*mac
)
651 const u8
*addr
= priv
->cfg
->ops
->lib
->eeprom_ops
.query_addr(priv
,
653 memcpy(mac
, addr
, ETH_ALEN
);
655 EXPORT_SYMBOL(iwl_eeprom_get_mac
);
657 static void iwl_init_band_reference(const struct iwl_priv
*priv
,
658 int eep_band
, int *eeprom_ch_count
,
659 const struct iwl_eeprom_channel
**eeprom_ch_info
,
660 const u8
**eeprom_ch_index
)
662 u32 offset
= priv
->cfg
->ops
->lib
->
663 eeprom_ops
.regulatory_bands
[eep_band
- 1];
665 case 1: /* 2.4GHz band */
666 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_1
);
667 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
668 iwl_eeprom_query_addr(priv
, offset
);
669 *eeprom_ch_index
= iwl_eeprom_band_1
;
671 case 2: /* 4.9GHz band */
672 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_2
);
673 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
674 iwl_eeprom_query_addr(priv
, offset
);
675 *eeprom_ch_index
= iwl_eeprom_band_2
;
677 case 3: /* 5.2GHz band */
678 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_3
);
679 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
680 iwl_eeprom_query_addr(priv
, offset
);
681 *eeprom_ch_index
= iwl_eeprom_band_3
;
683 case 4: /* 5.5GHz band */
684 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_4
);
685 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
686 iwl_eeprom_query_addr(priv
, offset
);
687 *eeprom_ch_index
= iwl_eeprom_band_4
;
689 case 5: /* 5.7GHz band */
690 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_5
);
691 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
692 iwl_eeprom_query_addr(priv
, offset
);
693 *eeprom_ch_index
= iwl_eeprom_band_5
;
695 case 6: /* 2.4GHz ht40 channels */
696 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_6
);
697 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
698 iwl_eeprom_query_addr(priv
, offset
);
699 *eeprom_ch_index
= iwl_eeprom_band_6
;
701 case 7: /* 5 GHz ht40 channels */
702 *eeprom_ch_count
= ARRAY_SIZE(iwl_eeprom_band_7
);
703 *eeprom_ch_info
= (struct iwl_eeprom_channel
*)
704 iwl_eeprom_query_addr(priv
, offset
);
705 *eeprom_ch_index
= iwl_eeprom_band_7
;
713 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
717 * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
719 * Does not set up a command, or touch hardware.
721 static int iwl_mod_ht40_chan_info(struct iwl_priv
*priv
,
722 enum ieee80211_band band
, u16 channel
,
723 const struct iwl_eeprom_channel
*eeprom_ch
,
724 u8 clear_ht40_extension_channel
)
726 struct iwl_channel_info
*ch_info
;
728 ch_info
= (struct iwl_channel_info
*)
729 iwl_get_channel_info(priv
, band
, channel
);
731 if (!is_channel_valid(ch_info
))
734 IWL_DEBUG_INFO(priv
, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
735 " Ad-Hoc %ssupported\n",
737 is_channel_a_band(ch_info
) ?
739 CHECK_AND_PRINT(IBSS
),
740 CHECK_AND_PRINT(ACTIVE
),
741 CHECK_AND_PRINT(RADAR
),
742 CHECK_AND_PRINT(WIDE
),
743 CHECK_AND_PRINT(DFS
),
745 eeprom_ch
->max_power_avg
,
746 ((eeprom_ch
->flags
& EEPROM_CHANNEL_IBSS
)
747 && !(eeprom_ch
->flags
& EEPROM_CHANNEL_RADAR
)) ?
750 ch_info
->ht40_eeprom
= *eeprom_ch
;
751 ch_info
->ht40_max_power_avg
= eeprom_ch
->max_power_avg
;
752 ch_info
->ht40_flags
= eeprom_ch
->flags
;
753 if (eeprom_ch
->flags
& EEPROM_CHANNEL_VALID
)
754 ch_info
->ht40_extension_channel
&= ~clear_ht40_extension_channel
;
760 * iwl_get_max_txpower_avg - get the highest tx power from all chains.
761 * find the highest tx power from all chains for the channel
763 static s8
iwl_get_max_txpower_avg(struct iwl_priv
*priv
,
764 struct iwl_eeprom_enhanced_txpwr
*enhanced_txpower
,
765 int element
, s8
*max_txpower_in_half_dbm
)
767 s8 max_txpower_avg
= 0; /* (dBm) */
769 IWL_DEBUG_INFO(priv
, "%d - "
770 "chain_a: %d dB chain_b: %d dB "
771 "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
773 enhanced_txpower
[element
].chain_a_max
>> 1,
774 enhanced_txpower
[element
].chain_b_max
>> 1,
775 enhanced_txpower
[element
].chain_c_max
>> 1,
776 enhanced_txpower
[element
].mimo2_max
>> 1,
777 enhanced_txpower
[element
].mimo3_max
>> 1);
778 /* Take the highest tx power from any valid chains */
779 if ((priv
->cfg
->valid_tx_ant
& ANT_A
) &&
780 (enhanced_txpower
[element
].chain_a_max
> max_txpower_avg
))
781 max_txpower_avg
= enhanced_txpower
[element
].chain_a_max
;
782 if ((priv
->cfg
->valid_tx_ant
& ANT_B
) &&
783 (enhanced_txpower
[element
].chain_b_max
> max_txpower_avg
))
784 max_txpower_avg
= enhanced_txpower
[element
].chain_b_max
;
785 if ((priv
->cfg
->valid_tx_ant
& ANT_C
) &&
786 (enhanced_txpower
[element
].chain_c_max
> max_txpower_avg
))
787 max_txpower_avg
= enhanced_txpower
[element
].chain_c_max
;
788 if (((priv
->cfg
->valid_tx_ant
== ANT_AB
) |
789 (priv
->cfg
->valid_tx_ant
== ANT_BC
) |
790 (priv
->cfg
->valid_tx_ant
== ANT_AC
)) &&
791 (enhanced_txpower
[element
].mimo2_max
> max_txpower_avg
))
792 max_txpower_avg
= enhanced_txpower
[element
].mimo2_max
;
793 if ((priv
->cfg
->valid_tx_ant
== ANT_ABC
) &&
794 (enhanced_txpower
[element
].mimo3_max
> max_txpower_avg
))
795 max_txpower_avg
= enhanced_txpower
[element
].mimo3_max
;
798 * max. tx power in EEPROM is in 1/2 dBm format
799 * convert from 1/2 dBm to dBm (round-up convert)
800 * but we also do not want to loss 1/2 dBm resolution which
801 * will impact performance
803 *max_txpower_in_half_dbm
= max_txpower_avg
;
804 return (max_txpower_avg
& 0x01) + (max_txpower_avg
>> 1);
808 * iwl_update_common_txpower: update channel tx power
809 * update tx power per band based on EEPROM enhanced tx power info.
811 static s8
iwl_update_common_txpower(struct iwl_priv
*priv
,
812 struct iwl_eeprom_enhanced_txpwr
*enhanced_txpower
,
813 int section
, int element
, s8
*max_txpower_in_half_dbm
)
815 struct iwl_channel_info
*ch_info
;
817 bool is_ht40
= false;
818 s8 max_txpower_avg
; /* (dBm) */
820 /* it is common section, contain all type (Legacy, HT and HT40)
821 * based on the element in the section to determine
824 if (element
== EEPROM_TXPOWER_COMMON_HT40_INDEX
)
827 iwl_get_max_txpower_avg(priv
, enhanced_txpower
,
828 element
, max_txpower_in_half_dbm
);
830 ch_info
= priv
->channel_info
;
832 for (ch
= 0; ch
< priv
->channel_count
; ch
++) {
833 /* find matching band and update tx power if needed */
834 if ((ch_info
->band
== enhinfo
[section
].band
) &&
835 (ch_info
->max_power_avg
< max_txpower_avg
) &&
837 /* Update regulatory-based run-time data */
838 ch_info
->max_power_avg
= ch_info
->curr_txpow
=
840 ch_info
->scan_power
= max_txpower_avg
;
842 if ((ch_info
->band
== enhinfo
[section
].band
) && is_ht40
&&
843 (ch_info
->ht40_max_power_avg
< max_txpower_avg
)) {
844 /* Update regulatory-based run-time data */
845 ch_info
->ht40_max_power_avg
= max_txpower_avg
;
849 return max_txpower_avg
;
853 * iwl_update_channel_txpower: update channel tx power
854 * update channel tx power based on EEPROM enhanced tx power info.
856 static s8
iwl_update_channel_txpower(struct iwl_priv
*priv
,
857 struct iwl_eeprom_enhanced_txpwr
*enhanced_txpower
,
858 int section
, int element
, s8
*max_txpower_in_half_dbm
)
860 struct iwl_channel_info
*ch_info
;
863 s8 max_txpower_avg
; /* (dBm) */
865 channel
= enhinfo
[section
].iwl_eeprom_section_channel
[element
];
867 iwl_get_max_txpower_avg(priv
, enhanced_txpower
,
868 element
, max_txpower_in_half_dbm
);
870 ch_info
= priv
->channel_info
;
871 for (ch
= 0; ch
< priv
->channel_count
; ch
++) {
872 /* find matching channel and update tx power if needed */
873 if (ch_info
->channel
== channel
) {
874 if ((ch_info
->max_power_avg
< max_txpower_avg
) &&
875 (!enhinfo
[section
].is_ht40
)) {
876 /* Update regulatory-based run-time data */
877 ch_info
->max_power_avg
= max_txpower_avg
;
878 ch_info
->curr_txpow
= max_txpower_avg
;
879 ch_info
->scan_power
= max_txpower_avg
;
881 if ((enhinfo
[section
].is_ht40
) &&
882 (ch_info
->ht40_max_power_avg
< max_txpower_avg
)) {
883 /* Update regulatory-based run-time data */
884 ch_info
->ht40_max_power_avg
= max_txpower_avg
;
890 return max_txpower_avg
;
894 * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
896 void iwlcore_eeprom_enhanced_txpower(struct iwl_priv
*priv
)
898 int eeprom_section_count
= 0;
899 int section
, element
;
900 struct iwl_eeprom_enhanced_txpwr
*enhanced_txpower
;
902 s8 max_txpower_avg
; /* (dBm) */
903 s8 max_txpower_in_half_dbm
; /* (half-dBm) */
905 /* Loop through all the sections
906 * adjust bands and channel's max tx power
907 * Set the tx_power_user_lmt to the highest power
908 * supported by any channels and chains
910 for (section
= 0; section
< ARRAY_SIZE(enhinfo
); section
++) {
911 eeprom_section_count
= enhinfo
[section
].count
;
912 offset
= enhinfo
[section
].offset
;
913 enhanced_txpower
= (struct iwl_eeprom_enhanced_txpwr
*)
914 iwl_eeprom_query_addr(priv
, offset
);
917 * check for valid entry -
918 * different version of EEPROM might contain different set
919 * of enhanced tx power table
920 * always check for valid entry before process
923 if (!enhanced_txpower
->common
|| enhanced_txpower
->reserved
)
926 for (element
= 0; element
< eeprom_section_count
; element
++) {
927 if (enhinfo
[section
].is_common
)
929 iwl_update_common_txpower(priv
,
930 enhanced_txpower
, section
,
932 &max_txpower_in_half_dbm
);
935 iwl_update_channel_txpower(priv
,
936 enhanced_txpower
, section
,
938 &max_txpower_in_half_dbm
);
940 /* Update the tx_power_user_lmt to the highest power
941 * supported by any channel */
942 if (max_txpower_avg
> priv
->tx_power_user_lmt
)
943 priv
->tx_power_user_lmt
= max_txpower_avg
;
946 * Update the tx_power_lmt_in_half_dbm to
947 * the highest power supported by any channel
949 if (max_txpower_in_half_dbm
>
950 priv
->tx_power_lmt_in_half_dbm
)
951 priv
->tx_power_lmt_in_half_dbm
=
952 max_txpower_in_half_dbm
;
956 EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower
);
958 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
962 * iwl_init_channel_map - Set up driver's info for all possible channels
964 int iwl_init_channel_map(struct iwl_priv
*priv
)
966 int eeprom_ch_count
= 0;
967 const u8
*eeprom_ch_index
= NULL
;
968 const struct iwl_eeprom_channel
*eeprom_ch_info
= NULL
;
970 struct iwl_channel_info
*ch_info
;
972 if (priv
->channel_count
) {
973 IWL_DEBUG_INFO(priv
, "Channel map already initialized.\n");
977 IWL_DEBUG_INFO(priv
, "Initializing regulatory info from EEPROM\n");
979 priv
->channel_count
=
980 ARRAY_SIZE(iwl_eeprom_band_1
) +
981 ARRAY_SIZE(iwl_eeprom_band_2
) +
982 ARRAY_SIZE(iwl_eeprom_band_3
) +
983 ARRAY_SIZE(iwl_eeprom_band_4
) +
984 ARRAY_SIZE(iwl_eeprom_band_5
);
986 IWL_DEBUG_INFO(priv
, "Parsing data for %d channels.\n", priv
->channel_count
);
988 priv
->channel_info
= kzalloc(sizeof(struct iwl_channel_info
) *
989 priv
->channel_count
, GFP_KERNEL
);
990 if (!priv
->channel_info
) {
991 IWL_ERR(priv
, "Could not allocate channel_info\n");
992 priv
->channel_count
= 0;
996 ch_info
= priv
->channel_info
;
998 /* Loop through the 5 EEPROM bands adding them in order to the
999 * channel map we maintain (that contains additional information than
1000 * what just in the EEPROM) */
1001 for (band
= 1; band
<= 5; band
++) {
1003 iwl_init_band_reference(priv
, band
, &eeprom_ch_count
,
1004 &eeprom_ch_info
, &eeprom_ch_index
);
1006 /* Loop through each band adding each of the channels */
1007 for (ch
= 0; ch
< eeprom_ch_count
; ch
++) {
1008 ch_info
->channel
= eeprom_ch_index
[ch
];
1009 ch_info
->band
= (band
== 1) ? IEEE80211_BAND_2GHZ
:
1010 IEEE80211_BAND_5GHZ
;
1012 /* permanently store EEPROM's channel regulatory flags
1013 * and max power in channel info database. */
1014 ch_info
->eeprom
= eeprom_ch_info
[ch
];
1016 /* Copy the run-time flags so they are there even on
1017 * invalid channels */
1018 ch_info
->flags
= eeprom_ch_info
[ch
].flags
;
1019 /* First write that ht40 is not enabled, and then enable
1021 ch_info
->ht40_extension_channel
=
1022 IEEE80211_CHAN_NO_HT40
;
1024 if (!(is_channel_valid(ch_info
))) {
1025 IWL_DEBUG_INFO(priv
, "Ch. %d Flags %x [%sGHz] - "
1029 is_channel_a_band(ch_info
) ?
1035 /* Initialize regulatory-based run-time data */
1036 ch_info
->max_power_avg
= ch_info
->curr_txpow
=
1037 eeprom_ch_info
[ch
].max_power_avg
;
1038 ch_info
->scan_power
= eeprom_ch_info
[ch
].max_power_avg
;
1039 ch_info
->min_power
= 0;
1041 IWL_DEBUG_INFO(priv
, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
1042 " Ad-Hoc %ssupported\n",
1044 is_channel_a_band(ch_info
) ?
1046 CHECK_AND_PRINT_I(VALID
),
1047 CHECK_AND_PRINT_I(IBSS
),
1048 CHECK_AND_PRINT_I(ACTIVE
),
1049 CHECK_AND_PRINT_I(RADAR
),
1050 CHECK_AND_PRINT_I(WIDE
),
1051 CHECK_AND_PRINT_I(DFS
),
1052 eeprom_ch_info
[ch
].flags
,
1053 eeprom_ch_info
[ch
].max_power_avg
,
1054 ((eeprom_ch_info
[ch
].
1055 flags
& EEPROM_CHANNEL_IBSS
)
1056 && !(eeprom_ch_info
[ch
].
1057 flags
& EEPROM_CHANNEL_RADAR
))
1060 /* Set the tx_power_user_lmt to the highest power
1061 * supported by any channel */
1062 if (eeprom_ch_info
[ch
].max_power_avg
>
1063 priv
->tx_power_user_lmt
)
1064 priv
->tx_power_user_lmt
=
1065 eeprom_ch_info
[ch
].max_power_avg
;
1071 /* Check if we do have HT40 channels */
1072 if (priv
->cfg
->ops
->lib
->eeprom_ops
.regulatory_bands
[5] ==
1073 EEPROM_REGULATORY_BAND_NO_HT40
&&
1074 priv
->cfg
->ops
->lib
->eeprom_ops
.regulatory_bands
[6] ==
1075 EEPROM_REGULATORY_BAND_NO_HT40
)
1078 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1079 for (band
= 6; band
<= 7; band
++) {
1080 enum ieee80211_band ieeeband
;
1082 iwl_init_band_reference(priv
, band
, &eeprom_ch_count
,
1083 &eeprom_ch_info
, &eeprom_ch_index
);
1085 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1087 (band
== 6) ? IEEE80211_BAND_2GHZ
: IEEE80211_BAND_5GHZ
;
1089 /* Loop through each band adding each of the channels */
1090 for (ch
= 0; ch
< eeprom_ch_count
; ch
++) {
1091 /* Set up driver's info for lower half */
1092 iwl_mod_ht40_chan_info(priv
, ieeeband
,
1093 eeprom_ch_index
[ch
],
1094 &eeprom_ch_info
[ch
],
1095 IEEE80211_CHAN_NO_HT40PLUS
);
1097 /* Set up driver's info for upper half */
1098 iwl_mod_ht40_chan_info(priv
, ieeeband
,
1099 eeprom_ch_index
[ch
] + 4,
1100 &eeprom_ch_info
[ch
],
1101 IEEE80211_CHAN_NO_HT40MINUS
);
1105 /* for newer device (6000 series and up)
1106 * EEPROM contain enhanced tx power information
1107 * driver need to process addition information
1108 * to determine the max channel tx power limits
1110 if (priv
->cfg
->ops
->lib
->eeprom_ops
.update_enhanced_txpower
)
1111 priv
->cfg
->ops
->lib
->eeprom_ops
.update_enhanced_txpower(priv
);
1115 EXPORT_SYMBOL(iwl_init_channel_map
);
1118 * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1120 void iwl_free_channel_map(struct iwl_priv
*priv
)
1122 kfree(priv
->channel_info
);
1123 priv
->channel_count
= 0;
1125 EXPORT_SYMBOL(iwl_free_channel_map
);
1128 * iwl_get_channel_info - Find driver's private channel info
1130 * Based on band and channel number.
1132 const struct iwl_channel_info
*iwl_get_channel_info(const struct iwl_priv
*priv
,
1133 enum ieee80211_band band
, u16 channel
)
1138 case IEEE80211_BAND_5GHZ
:
1139 for (i
= 14; i
< priv
->channel_count
; i
++) {
1140 if (priv
->channel_info
[i
].channel
== channel
)
1141 return &priv
->channel_info
[i
];
1144 case IEEE80211_BAND_2GHZ
:
1145 if (channel
>= 1 && channel
<= 14)
1146 return &priv
->channel_info
[channel
- 1];
1154 EXPORT_SYMBOL(iwl_get_channel_info
);