Staging: netwave: delete the driver
[linux/fpc-iii.git] / drivers / net / wireless / iwlwifi / iwl-eeprom.c
blobfb5bb487f3bc9991bbfd63ecb645454fae161202
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
64 #include <linux/kernel.h>
65 #include <linux/module.h>
66 #include <linux/slab.h>
67 #include <linux/init.h>
69 #include <net/mac80211.h>
71 #include "iwl-commands.h"
72 #include "iwl-dev.h"
73 #include "iwl-core.h"
74 #include "iwl-debug.h"
75 #include "iwl-eeprom.h"
76 #include "iwl-io.h"
78 /************************** EEPROM BANDS ****************************
80 * The iwl_eeprom_band definitions below provide the mapping from the
81 * EEPROM contents to the specific channel number supported for each
82 * band.
84 * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
85 * definition below maps to physical channel 42 in the 5.2GHz spectrum.
86 * The specific geography and calibration information for that channel
87 * is contained in the eeprom map itself.
89 * During init, we copy the eeprom information and channel map
90 * information into priv->channel_info_24/52 and priv->channel_map_24/52
92 * channel_map_24/52 provides the index in the channel_info array for a
93 * given channel. We have to have two separate maps as there is channel
94 * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
95 * band_2
97 * A value of 0xff stored in the channel_map indicates that the channel
98 * is not supported by the hardware at all.
100 * A value of 0xfe in the channel_map indicates that the channel is not
101 * valid for Tx with the current hardware. This means that
102 * while the system can tune and receive on a given channel, it may not
103 * be able to associate or transmit any frames on that
104 * channel. There is no corresponding channel information for that
105 * entry.
107 *********************************************************************/
109 /* 2.4 GHz */
110 const u8 iwl_eeprom_band_1[14] = {
111 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
114 /* 5.2 GHz bands */
115 static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
116 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
119 static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
120 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
123 static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
124 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
127 static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
128 145, 149, 153, 157, 161, 165
131 static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
132 1, 2, 3, 4, 5, 6, 7
135 static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
136 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
140 * struct iwl_txpwr_section: eeprom section information
141 * @offset: indirect address into eeprom image
142 * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section
143 * @band: band type for the section
144 * @is_common - true: common section, false: channel section
145 * @is_cck - true: cck section, false: not cck section
146 * @is_ht_40 - true: all channel in the section are HT40 channel,
147 * false: legacy or HT 20 MHz
148 * ignore if it is common section
149 * @iwl_eeprom_section_channel: channel array in the section,
150 * ignore if common section
152 struct iwl_txpwr_section {
153 u32 offset;
154 u8 count;
155 enum ieee80211_band band;
156 bool is_common;
157 bool is_cck;
158 bool is_ht40;
159 u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS];
163 * section 1 - 3 are regulatory tx power apply to all channels based on
164 * modulation: CCK, OFDM
165 * Band: 2.4GHz, 5.2GHz
166 * section 4 - 10 are regulatory tx power apply to specified channels
167 * For example:
168 * 1L - Channel 1 Legacy
169 * 1HT - Channel 1 HT
170 * (1,+1) - Channel 1 HT40 "_above_"
172 * Section 1: all CCK channels
173 * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels
174 * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels
175 * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT
176 * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1)
177 * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT
178 * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1)
179 * Section 8: 2.4 GHz channel: 13L, 13HT
180 * Section 9: 2.4 GHz channel: 140L, 140HT
181 * Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1)
184 static const struct iwl_txpwr_section enhinfo[] = {
185 { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false },
186 { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false },
187 { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false },
188 { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ,
189 false, false, false,
190 {1, 1, 2, 2, 10, 10, 11, 11 } },
191 { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ,
192 false, false, true,
193 { 1, 2, 6, 7, 9 } },
194 { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ,
195 false, false, false,
196 { 36, 64, 100, 36, 64, 100 } },
197 { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ,
198 false, false, true,
199 { 36, 60, 100 } },
200 { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ,
201 false, false, false,
202 { 13, 13 } },
203 { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ,
204 false, false, false,
205 { 140, 140 } },
206 { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ,
207 false, false, true,
208 { 132, 44 } },
211 /******************************************************************************
213 * EEPROM related functions
215 ******************************************************************************/
217 int iwlcore_eeprom_verify_signature(struct iwl_priv *priv)
219 u32 gp = iwl_read32(priv, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
220 int ret = 0;
222 IWL_DEBUG_INFO(priv, "EEPROM signature=0x%08x\n", gp);
223 switch (gp) {
224 case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
225 if (priv->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
226 IWL_ERR(priv, "EEPROM with bad signature: 0x%08x\n",
227 gp);
228 ret = -ENOENT;
230 break;
231 case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
232 case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
233 if (priv->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
234 IWL_ERR(priv, "OTP with bad signature: 0x%08x\n", gp);
235 ret = -ENOENT;
237 break;
238 case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
239 default:
240 IWL_ERR(priv, "bad EEPROM/OTP signature, type=%s, "
241 "EEPROM_GP=0x%08x\n",
242 (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP)
243 ? "OTP" : "EEPROM", gp);
244 ret = -ENOENT;
245 break;
247 return ret;
249 EXPORT_SYMBOL(iwlcore_eeprom_verify_signature);
251 static void iwl_set_otp_access(struct iwl_priv *priv, enum iwl_access_mode mode)
253 u32 otpgp;
255 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
256 if (mode == IWL_OTP_ACCESS_ABSOLUTE)
257 iwl_clear_bit(priv, CSR_OTP_GP_REG,
258 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
259 else
260 iwl_set_bit(priv, CSR_OTP_GP_REG,
261 CSR_OTP_GP_REG_OTP_ACCESS_MODE);
264 static int iwlcore_get_nvm_type(struct iwl_priv *priv)
266 u32 otpgp;
267 int nvm_type;
269 /* OTP only valid for CP/PP and after */
270 switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) {
271 case CSR_HW_REV_TYPE_NONE:
272 IWL_ERR(priv, "Unknown hardware type\n");
273 return -ENOENT;
274 case CSR_HW_REV_TYPE_3945:
275 case CSR_HW_REV_TYPE_4965:
276 case CSR_HW_REV_TYPE_5300:
277 case CSR_HW_REV_TYPE_5350:
278 case CSR_HW_REV_TYPE_5100:
279 case CSR_HW_REV_TYPE_5150:
280 nvm_type = NVM_DEVICE_TYPE_EEPROM;
281 break;
282 default:
283 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
284 if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
285 nvm_type = NVM_DEVICE_TYPE_OTP;
286 else
287 nvm_type = NVM_DEVICE_TYPE_EEPROM;
288 break;
290 return nvm_type;
294 * The device's EEPROM semaphore prevents conflicts between driver and uCode
295 * when accessing the EEPROM; each access is a series of pulses to/from the
296 * EEPROM chip, not a single event, so even reads could conflict if they
297 * weren't arbitrated by the semaphore.
299 int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv)
301 u16 count;
302 int ret;
304 for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
305 /* Request semaphore */
306 iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
307 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
309 /* See if we got it */
310 ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG,
311 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
312 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
313 EEPROM_SEM_TIMEOUT);
314 if (ret >= 0) {
315 IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n",
316 count+1);
317 return ret;
321 return ret;
323 EXPORT_SYMBOL(iwlcore_eeprom_acquire_semaphore);
325 void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv)
327 iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
328 CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
331 EXPORT_SYMBOL(iwlcore_eeprom_release_semaphore);
333 const u8 *iwlcore_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
335 BUG_ON(offset >= priv->cfg->eeprom_size);
336 return &priv->eeprom[offset];
338 EXPORT_SYMBOL(iwlcore_eeprom_query_addr);
340 static int iwl_init_otp_access(struct iwl_priv *priv)
342 int ret;
344 /* Enable 40MHz radio clock */
345 _iwl_write32(priv, CSR_GP_CNTRL,
346 _iwl_read32(priv, CSR_GP_CNTRL) |
347 CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
349 /* wait for clock to be ready */
350 ret = iwl_poll_bit(priv, CSR_GP_CNTRL,
351 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
352 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
353 25000);
354 if (ret < 0)
355 IWL_ERR(priv, "Time out access OTP\n");
356 else {
357 iwl_set_bits_prph(priv, APMG_PS_CTRL_REG,
358 APMG_PS_CTRL_VAL_RESET_REQ);
359 udelay(5);
360 iwl_clear_bits_prph(priv, APMG_PS_CTRL_REG,
361 APMG_PS_CTRL_VAL_RESET_REQ);
364 * CSR auto clock gate disable bit -
365 * this is only applicable for HW with OTP shadow RAM
367 if (priv->cfg->shadow_ram_support)
368 iwl_set_bit(priv, CSR_DBG_LINK_PWR_MGMT_REG,
369 CSR_RESET_LINK_PWR_MGMT_DISABLED);
371 return ret;
374 static int iwl_read_otp_word(struct iwl_priv *priv, u16 addr, __le16 *eeprom_data)
376 int ret = 0;
377 u32 r;
378 u32 otpgp;
380 _iwl_write32(priv, CSR_EEPROM_REG,
381 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
382 ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
383 CSR_EEPROM_REG_READ_VALID_MSK,
384 CSR_EEPROM_REG_READ_VALID_MSK,
385 IWL_EEPROM_ACCESS_TIMEOUT);
386 if (ret < 0) {
387 IWL_ERR(priv, "Time out reading OTP[%d]\n", addr);
388 return ret;
390 r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
391 /* check for ECC errors: */
392 otpgp = iwl_read32(priv, CSR_OTP_GP_REG);
393 if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
394 /* stop in this case */
395 /* set the uncorrectable OTP ECC bit for acknowledgement */
396 iwl_set_bit(priv, CSR_OTP_GP_REG,
397 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
398 IWL_ERR(priv, "Uncorrectable OTP ECC error, abort OTP read\n");
399 return -EINVAL;
401 if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
402 /* continue in this case */
403 /* set the correctable OTP ECC bit for acknowledgement */
404 iwl_set_bit(priv, CSR_OTP_GP_REG,
405 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
406 IWL_ERR(priv, "Correctable OTP ECC error, continue read\n");
408 *eeprom_data = cpu_to_le16(r >> 16);
409 return 0;
413 * iwl_is_otp_empty: check for empty OTP
415 static bool iwl_is_otp_empty(struct iwl_priv *priv)
417 u16 next_link_addr = 0;
418 __le16 link_value;
419 bool is_empty = false;
421 /* locate the beginning of OTP link list */
422 if (!iwl_read_otp_word(priv, next_link_addr, &link_value)) {
423 if (!link_value) {
424 IWL_ERR(priv, "OTP is empty\n");
425 is_empty = true;
427 } else {
428 IWL_ERR(priv, "Unable to read first block of OTP list.\n");
429 is_empty = true;
432 return is_empty;
437 * iwl_find_otp_image: find EEPROM image in OTP
438 * finding the OTP block that contains the EEPROM image.
439 * the last valid block on the link list (the block _before_ the last block)
440 * is the block we should read and used to configure the device.
441 * If all the available OTP blocks are full, the last block will be the block
442 * we should read and used to configure the device.
443 * only perform this operation if shadow RAM is disabled
445 static int iwl_find_otp_image(struct iwl_priv *priv,
446 u16 *validblockaddr)
448 u16 next_link_addr = 0, valid_addr;
449 __le16 link_value = 0;
450 int usedblocks = 0;
452 /* set addressing mode to absolute to traverse the link list */
453 iwl_set_otp_access(priv, IWL_OTP_ACCESS_ABSOLUTE);
455 /* checking for empty OTP or error */
456 if (iwl_is_otp_empty(priv))
457 return -EINVAL;
460 * start traverse link list
461 * until reach the max number of OTP blocks
462 * different devices have different number of OTP blocks
464 do {
465 /* save current valid block address
466 * check for more block on the link list
468 valid_addr = next_link_addr;
469 next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
470 IWL_DEBUG_INFO(priv, "OTP blocks %d addr 0x%x\n",
471 usedblocks, next_link_addr);
472 if (iwl_read_otp_word(priv, next_link_addr, &link_value))
473 return -EINVAL;
474 if (!link_value) {
476 * reach the end of link list, return success and
477 * set address point to the starting address
478 * of the image
480 *validblockaddr = valid_addr;
481 /* skip first 2 bytes (link list pointer) */
482 *validblockaddr += 2;
483 return 0;
485 /* more in the link list, continue */
486 usedblocks++;
487 } while (usedblocks <= priv->cfg->max_ll_items);
489 /* OTP has no valid blocks */
490 IWL_DEBUG_INFO(priv, "OTP has no valid blocks\n");
491 return -EINVAL;
495 * iwl_eeprom_init - read EEPROM contents
497 * Load the EEPROM contents from adapter into priv->eeprom
499 * NOTE: This routine uses the non-debug IO access functions.
501 int iwl_eeprom_init(struct iwl_priv *priv)
503 __le16 *e;
504 u32 gp = iwl_read32(priv, CSR_EEPROM_GP);
505 int sz;
506 int ret;
507 u16 addr;
508 u16 validblockaddr = 0;
509 u16 cache_addr = 0;
511 priv->nvm_device_type = iwlcore_get_nvm_type(priv);
512 if (priv->nvm_device_type == -ENOENT)
513 return -ENOENT;
514 /* allocate eeprom */
515 IWL_DEBUG_INFO(priv, "NVM size = %d\n", priv->cfg->eeprom_size);
516 sz = priv->cfg->eeprom_size;
517 priv->eeprom = kzalloc(sz, GFP_KERNEL);
518 if (!priv->eeprom) {
519 ret = -ENOMEM;
520 goto alloc_err;
522 e = (__le16 *)priv->eeprom;
524 priv->cfg->ops->lib->apm_ops.init(priv);
526 ret = priv->cfg->ops->lib->eeprom_ops.verify_signature(priv);
527 if (ret < 0) {
528 IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
529 ret = -ENOENT;
530 goto err;
533 /* Make sure driver (instead of uCode) is allowed to read EEPROM */
534 ret = priv->cfg->ops->lib->eeprom_ops.acquire_semaphore(priv);
535 if (ret < 0) {
536 IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n");
537 ret = -ENOENT;
538 goto err;
541 if (priv->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
543 ret = iwl_init_otp_access(priv);
544 if (ret) {
545 IWL_ERR(priv, "Failed to initialize OTP access.\n");
546 ret = -ENOENT;
547 goto done;
549 _iwl_write32(priv, CSR_EEPROM_GP,
550 iwl_read32(priv, CSR_EEPROM_GP) &
551 ~CSR_EEPROM_GP_IF_OWNER_MSK);
553 iwl_set_bit(priv, CSR_OTP_GP_REG,
554 CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
555 CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
556 /* traversing the linked list if no shadow ram supported */
557 if (!priv->cfg->shadow_ram_support) {
558 if (iwl_find_otp_image(priv, &validblockaddr)) {
559 ret = -ENOENT;
560 goto done;
563 for (addr = validblockaddr; addr < validblockaddr + sz;
564 addr += sizeof(u16)) {
565 __le16 eeprom_data;
567 ret = iwl_read_otp_word(priv, addr, &eeprom_data);
568 if (ret)
569 goto done;
570 e[cache_addr / 2] = eeprom_data;
571 cache_addr += sizeof(u16);
573 } else {
574 /* eeprom is an array of 16bit values */
575 for (addr = 0; addr < sz; addr += sizeof(u16)) {
576 u32 r;
578 _iwl_write32(priv, CSR_EEPROM_REG,
579 CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
581 ret = iwl_poll_bit(priv, CSR_EEPROM_REG,
582 CSR_EEPROM_REG_READ_VALID_MSK,
583 CSR_EEPROM_REG_READ_VALID_MSK,
584 IWL_EEPROM_ACCESS_TIMEOUT);
585 if (ret < 0) {
586 IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr);
587 goto done;
589 r = _iwl_read_direct32(priv, CSR_EEPROM_REG);
590 e[addr / 2] = cpu_to_le16(r >> 16);
593 ret = 0;
594 done:
595 priv->cfg->ops->lib->eeprom_ops.release_semaphore(priv);
596 err:
597 if (ret)
598 iwl_eeprom_free(priv);
599 /* Reset chip to save power until we load uCode during "up". */
600 priv->cfg->ops->lib->apm_ops.stop(priv);
601 alloc_err:
602 return ret;
604 EXPORT_SYMBOL(iwl_eeprom_init);
606 void iwl_eeprom_free(struct iwl_priv *priv)
608 kfree(priv->eeprom);
609 priv->eeprom = NULL;
611 EXPORT_SYMBOL(iwl_eeprom_free);
613 int iwl_eeprom_check_version(struct iwl_priv *priv)
615 u16 eeprom_ver;
616 u16 calib_ver;
618 eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION);
619 calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv);
621 if (eeprom_ver < priv->cfg->eeprom_ver ||
622 calib_ver < priv->cfg->eeprom_calib_ver)
623 goto err;
625 return 0;
626 err:
627 IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
628 eeprom_ver, priv->cfg->eeprom_ver,
629 calib_ver, priv->cfg->eeprom_calib_ver);
630 return -EINVAL;
633 EXPORT_SYMBOL(iwl_eeprom_check_version);
635 const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
637 return priv->cfg->ops->lib->eeprom_ops.query_addr(priv, offset);
639 EXPORT_SYMBOL(iwl_eeprom_query_addr);
641 u16 iwl_eeprom_query16(const struct iwl_priv *priv, size_t offset)
643 if (!priv->eeprom)
644 return 0;
645 return (u16)priv->eeprom[offset] | ((u16)priv->eeprom[offset + 1] << 8);
647 EXPORT_SYMBOL(iwl_eeprom_query16);
649 void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac)
651 const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv,
652 EEPROM_MAC_ADDRESS);
653 memcpy(mac, addr, ETH_ALEN);
655 EXPORT_SYMBOL(iwl_eeprom_get_mac);
657 static void iwl_init_band_reference(const struct iwl_priv *priv,
658 int eep_band, int *eeprom_ch_count,
659 const struct iwl_eeprom_channel **eeprom_ch_info,
660 const u8 **eeprom_ch_index)
662 u32 offset = priv->cfg->ops->lib->
663 eeprom_ops.regulatory_bands[eep_band - 1];
664 switch (eep_band) {
665 case 1: /* 2.4GHz band */
666 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
667 *eeprom_ch_info = (struct iwl_eeprom_channel *)
668 iwl_eeprom_query_addr(priv, offset);
669 *eeprom_ch_index = iwl_eeprom_band_1;
670 break;
671 case 2: /* 4.9GHz band */
672 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
673 *eeprom_ch_info = (struct iwl_eeprom_channel *)
674 iwl_eeprom_query_addr(priv, offset);
675 *eeprom_ch_index = iwl_eeprom_band_2;
676 break;
677 case 3: /* 5.2GHz band */
678 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
679 *eeprom_ch_info = (struct iwl_eeprom_channel *)
680 iwl_eeprom_query_addr(priv, offset);
681 *eeprom_ch_index = iwl_eeprom_band_3;
682 break;
683 case 4: /* 5.5GHz band */
684 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
685 *eeprom_ch_info = (struct iwl_eeprom_channel *)
686 iwl_eeprom_query_addr(priv, offset);
687 *eeprom_ch_index = iwl_eeprom_band_4;
688 break;
689 case 5: /* 5.7GHz band */
690 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
691 *eeprom_ch_info = (struct iwl_eeprom_channel *)
692 iwl_eeprom_query_addr(priv, offset);
693 *eeprom_ch_index = iwl_eeprom_band_5;
694 break;
695 case 6: /* 2.4GHz ht40 channels */
696 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
697 *eeprom_ch_info = (struct iwl_eeprom_channel *)
698 iwl_eeprom_query_addr(priv, offset);
699 *eeprom_ch_index = iwl_eeprom_band_6;
700 break;
701 case 7: /* 5 GHz ht40 channels */
702 *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
703 *eeprom_ch_info = (struct iwl_eeprom_channel *)
704 iwl_eeprom_query_addr(priv, offset);
705 *eeprom_ch_index = iwl_eeprom_band_7;
706 break;
707 default:
708 BUG();
709 return;
713 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
714 ? # x " " : "")
717 * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
719 * Does not set up a command, or touch hardware.
721 static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
722 enum ieee80211_band band, u16 channel,
723 const struct iwl_eeprom_channel *eeprom_ch,
724 u8 clear_ht40_extension_channel)
726 struct iwl_channel_info *ch_info;
728 ch_info = (struct iwl_channel_info *)
729 iwl_get_channel_info(priv, band, channel);
731 if (!is_channel_valid(ch_info))
732 return -1;
734 IWL_DEBUG_INFO(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
735 " Ad-Hoc %ssupported\n",
736 ch_info->channel,
737 is_channel_a_band(ch_info) ?
738 "5.2" : "2.4",
739 CHECK_AND_PRINT(IBSS),
740 CHECK_AND_PRINT(ACTIVE),
741 CHECK_AND_PRINT(RADAR),
742 CHECK_AND_PRINT(WIDE),
743 CHECK_AND_PRINT(DFS),
744 eeprom_ch->flags,
745 eeprom_ch->max_power_avg,
746 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
747 && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
748 "" : "not ");
750 ch_info->ht40_eeprom = *eeprom_ch;
751 ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
752 ch_info->ht40_flags = eeprom_ch->flags;
753 if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
754 ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
756 return 0;
760 * iwl_get_max_txpower_avg - get the highest tx power from all chains.
761 * find the highest tx power from all chains for the channel
763 static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv,
764 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
765 int element, s8 *max_txpower_in_half_dbm)
767 s8 max_txpower_avg = 0; /* (dBm) */
769 IWL_DEBUG_INFO(priv, "%d - "
770 "chain_a: %d dB chain_b: %d dB "
771 "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n",
772 element,
773 enhanced_txpower[element].chain_a_max >> 1,
774 enhanced_txpower[element].chain_b_max >> 1,
775 enhanced_txpower[element].chain_c_max >> 1,
776 enhanced_txpower[element].mimo2_max >> 1,
777 enhanced_txpower[element].mimo3_max >> 1);
778 /* Take the highest tx power from any valid chains */
779 if ((priv->cfg->valid_tx_ant & ANT_A) &&
780 (enhanced_txpower[element].chain_a_max > max_txpower_avg))
781 max_txpower_avg = enhanced_txpower[element].chain_a_max;
782 if ((priv->cfg->valid_tx_ant & ANT_B) &&
783 (enhanced_txpower[element].chain_b_max > max_txpower_avg))
784 max_txpower_avg = enhanced_txpower[element].chain_b_max;
785 if ((priv->cfg->valid_tx_ant & ANT_C) &&
786 (enhanced_txpower[element].chain_c_max > max_txpower_avg))
787 max_txpower_avg = enhanced_txpower[element].chain_c_max;
788 if (((priv->cfg->valid_tx_ant == ANT_AB) |
789 (priv->cfg->valid_tx_ant == ANT_BC) |
790 (priv->cfg->valid_tx_ant == ANT_AC)) &&
791 (enhanced_txpower[element].mimo2_max > max_txpower_avg))
792 max_txpower_avg = enhanced_txpower[element].mimo2_max;
793 if ((priv->cfg->valid_tx_ant == ANT_ABC) &&
794 (enhanced_txpower[element].mimo3_max > max_txpower_avg))
795 max_txpower_avg = enhanced_txpower[element].mimo3_max;
798 * max. tx power in EEPROM is in 1/2 dBm format
799 * convert from 1/2 dBm to dBm (round-up convert)
800 * but we also do not want to loss 1/2 dBm resolution which
801 * will impact performance
803 *max_txpower_in_half_dbm = max_txpower_avg;
804 return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
808 * iwl_update_common_txpower: update channel tx power
809 * update tx power per band based on EEPROM enhanced tx power info.
811 static s8 iwl_update_common_txpower(struct iwl_priv *priv,
812 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
813 int section, int element, s8 *max_txpower_in_half_dbm)
815 struct iwl_channel_info *ch_info;
816 int ch;
817 bool is_ht40 = false;
818 s8 max_txpower_avg; /* (dBm) */
820 /* it is common section, contain all type (Legacy, HT and HT40)
821 * based on the element in the section to determine
822 * is it HT 40 or not
824 if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX)
825 is_ht40 = true;
826 max_txpower_avg =
827 iwl_get_max_txpower_avg(priv, enhanced_txpower,
828 element, max_txpower_in_half_dbm);
830 ch_info = priv->channel_info;
832 for (ch = 0; ch < priv->channel_count; ch++) {
833 /* find matching band and update tx power if needed */
834 if ((ch_info->band == enhinfo[section].band) &&
835 (ch_info->max_power_avg < max_txpower_avg) &&
836 (!is_ht40)) {
837 /* Update regulatory-based run-time data */
838 ch_info->max_power_avg = ch_info->curr_txpow =
839 max_txpower_avg;
840 ch_info->scan_power = max_txpower_avg;
842 if ((ch_info->band == enhinfo[section].band) && is_ht40 &&
843 (ch_info->ht40_max_power_avg < max_txpower_avg)) {
844 /* Update regulatory-based run-time data */
845 ch_info->ht40_max_power_avg = max_txpower_avg;
847 ch_info++;
849 return max_txpower_avg;
853 * iwl_update_channel_txpower: update channel tx power
854 * update channel tx power based on EEPROM enhanced tx power info.
856 static s8 iwl_update_channel_txpower(struct iwl_priv *priv,
857 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
858 int section, int element, s8 *max_txpower_in_half_dbm)
860 struct iwl_channel_info *ch_info;
861 int ch;
862 u8 channel;
863 s8 max_txpower_avg; /* (dBm) */
865 channel = enhinfo[section].iwl_eeprom_section_channel[element];
866 max_txpower_avg =
867 iwl_get_max_txpower_avg(priv, enhanced_txpower,
868 element, max_txpower_in_half_dbm);
870 ch_info = priv->channel_info;
871 for (ch = 0; ch < priv->channel_count; ch++) {
872 /* find matching channel and update tx power if needed */
873 if (ch_info->channel == channel) {
874 if ((ch_info->max_power_avg < max_txpower_avg) &&
875 (!enhinfo[section].is_ht40)) {
876 /* Update regulatory-based run-time data */
877 ch_info->max_power_avg = max_txpower_avg;
878 ch_info->curr_txpow = max_txpower_avg;
879 ch_info->scan_power = max_txpower_avg;
881 if ((enhinfo[section].is_ht40) &&
882 (ch_info->ht40_max_power_avg < max_txpower_avg)) {
883 /* Update regulatory-based run-time data */
884 ch_info->ht40_max_power_avg = max_txpower_avg;
886 break;
888 ch_info++;
890 return max_txpower_avg;
894 * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info
896 void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv)
898 int eeprom_section_count = 0;
899 int section, element;
900 struct iwl_eeprom_enhanced_txpwr *enhanced_txpower;
901 u32 offset;
902 s8 max_txpower_avg; /* (dBm) */
903 s8 max_txpower_in_half_dbm; /* (half-dBm) */
905 /* Loop through all the sections
906 * adjust bands and channel's max tx power
907 * Set the tx_power_user_lmt to the highest power
908 * supported by any channels and chains
910 for (section = 0; section < ARRAY_SIZE(enhinfo); section++) {
911 eeprom_section_count = enhinfo[section].count;
912 offset = enhinfo[section].offset;
913 enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *)
914 iwl_eeprom_query_addr(priv, offset);
917 * check for valid entry -
918 * different version of EEPROM might contain different set
919 * of enhanced tx power table
920 * always check for valid entry before process
921 * the information
923 if (!enhanced_txpower->common || enhanced_txpower->reserved)
924 continue;
926 for (element = 0; element < eeprom_section_count; element++) {
927 if (enhinfo[section].is_common)
928 max_txpower_avg =
929 iwl_update_common_txpower(priv,
930 enhanced_txpower, section,
931 element,
932 &max_txpower_in_half_dbm);
933 else
934 max_txpower_avg =
935 iwl_update_channel_txpower(priv,
936 enhanced_txpower, section,
937 element,
938 &max_txpower_in_half_dbm);
940 /* Update the tx_power_user_lmt to the highest power
941 * supported by any channel */
942 if (max_txpower_avg > priv->tx_power_user_lmt)
943 priv->tx_power_user_lmt = max_txpower_avg;
946 * Update the tx_power_lmt_in_half_dbm to
947 * the highest power supported by any channel
949 if (max_txpower_in_half_dbm >
950 priv->tx_power_lmt_in_half_dbm)
951 priv->tx_power_lmt_in_half_dbm =
952 max_txpower_in_half_dbm;
956 EXPORT_SYMBOL(iwlcore_eeprom_enhanced_txpower);
958 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
959 ? # x " " : "")
962 * iwl_init_channel_map - Set up driver's info for all possible channels
964 int iwl_init_channel_map(struct iwl_priv *priv)
966 int eeprom_ch_count = 0;
967 const u8 *eeprom_ch_index = NULL;
968 const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
969 int band, ch;
970 struct iwl_channel_info *ch_info;
972 if (priv->channel_count) {
973 IWL_DEBUG_INFO(priv, "Channel map already initialized.\n");
974 return 0;
977 IWL_DEBUG_INFO(priv, "Initializing regulatory info from EEPROM\n");
979 priv->channel_count =
980 ARRAY_SIZE(iwl_eeprom_band_1) +
981 ARRAY_SIZE(iwl_eeprom_band_2) +
982 ARRAY_SIZE(iwl_eeprom_band_3) +
983 ARRAY_SIZE(iwl_eeprom_band_4) +
984 ARRAY_SIZE(iwl_eeprom_band_5);
986 IWL_DEBUG_INFO(priv, "Parsing data for %d channels.\n", priv->channel_count);
988 priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) *
989 priv->channel_count, GFP_KERNEL);
990 if (!priv->channel_info) {
991 IWL_ERR(priv, "Could not allocate channel_info\n");
992 priv->channel_count = 0;
993 return -ENOMEM;
996 ch_info = priv->channel_info;
998 /* Loop through the 5 EEPROM bands adding them in order to the
999 * channel map we maintain (that contains additional information than
1000 * what just in the EEPROM) */
1001 for (band = 1; band <= 5; band++) {
1003 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1004 &eeprom_ch_info, &eeprom_ch_index);
1006 /* Loop through each band adding each of the channels */
1007 for (ch = 0; ch < eeprom_ch_count; ch++) {
1008 ch_info->channel = eeprom_ch_index[ch];
1009 ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
1010 IEEE80211_BAND_5GHZ;
1012 /* permanently store EEPROM's channel regulatory flags
1013 * and max power in channel info database. */
1014 ch_info->eeprom = eeprom_ch_info[ch];
1016 /* Copy the run-time flags so they are there even on
1017 * invalid channels */
1018 ch_info->flags = eeprom_ch_info[ch].flags;
1019 /* First write that ht40 is not enabled, and then enable
1020 * one by one */
1021 ch_info->ht40_extension_channel =
1022 IEEE80211_CHAN_NO_HT40;
1024 if (!(is_channel_valid(ch_info))) {
1025 IWL_DEBUG_INFO(priv, "Ch. %d Flags %x [%sGHz] - "
1026 "No traffic\n",
1027 ch_info->channel,
1028 ch_info->flags,
1029 is_channel_a_band(ch_info) ?
1030 "5.2" : "2.4");
1031 ch_info++;
1032 continue;
1035 /* Initialize regulatory-based run-time data */
1036 ch_info->max_power_avg = ch_info->curr_txpow =
1037 eeprom_ch_info[ch].max_power_avg;
1038 ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
1039 ch_info->min_power = 0;
1041 IWL_DEBUG_INFO(priv, "Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x %ddBm):"
1042 " Ad-Hoc %ssupported\n",
1043 ch_info->channel,
1044 is_channel_a_band(ch_info) ?
1045 "5.2" : "2.4",
1046 CHECK_AND_PRINT_I(VALID),
1047 CHECK_AND_PRINT_I(IBSS),
1048 CHECK_AND_PRINT_I(ACTIVE),
1049 CHECK_AND_PRINT_I(RADAR),
1050 CHECK_AND_PRINT_I(WIDE),
1051 CHECK_AND_PRINT_I(DFS),
1052 eeprom_ch_info[ch].flags,
1053 eeprom_ch_info[ch].max_power_avg,
1054 ((eeprom_ch_info[ch].
1055 flags & EEPROM_CHANNEL_IBSS)
1056 && !(eeprom_ch_info[ch].
1057 flags & EEPROM_CHANNEL_RADAR))
1058 ? "" : "not ");
1060 /* Set the tx_power_user_lmt to the highest power
1061 * supported by any channel */
1062 if (eeprom_ch_info[ch].max_power_avg >
1063 priv->tx_power_user_lmt)
1064 priv->tx_power_user_lmt =
1065 eeprom_ch_info[ch].max_power_avg;
1067 ch_info++;
1071 /* Check if we do have HT40 channels */
1072 if (priv->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
1073 EEPROM_REGULATORY_BAND_NO_HT40 &&
1074 priv->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
1075 EEPROM_REGULATORY_BAND_NO_HT40)
1076 return 0;
1078 /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
1079 for (band = 6; band <= 7; band++) {
1080 enum ieee80211_band ieeeband;
1082 iwl_init_band_reference(priv, band, &eeprom_ch_count,
1083 &eeprom_ch_info, &eeprom_ch_index);
1085 /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
1086 ieeeband =
1087 (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
1089 /* Loop through each band adding each of the channels */
1090 for (ch = 0; ch < eeprom_ch_count; ch++) {
1091 /* Set up driver's info for lower half */
1092 iwl_mod_ht40_chan_info(priv, ieeeband,
1093 eeprom_ch_index[ch],
1094 &eeprom_ch_info[ch],
1095 IEEE80211_CHAN_NO_HT40PLUS);
1097 /* Set up driver's info for upper half */
1098 iwl_mod_ht40_chan_info(priv, ieeeband,
1099 eeprom_ch_index[ch] + 4,
1100 &eeprom_ch_info[ch],
1101 IEEE80211_CHAN_NO_HT40MINUS);
1105 /* for newer device (6000 series and up)
1106 * EEPROM contain enhanced tx power information
1107 * driver need to process addition information
1108 * to determine the max channel tx power limits
1110 if (priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower)
1111 priv->cfg->ops->lib->eeprom_ops.update_enhanced_txpower(priv);
1113 return 0;
1115 EXPORT_SYMBOL(iwl_init_channel_map);
1118 * iwl_free_channel_map - undo allocations in iwl_init_channel_map
1120 void iwl_free_channel_map(struct iwl_priv *priv)
1122 kfree(priv->channel_info);
1123 priv->channel_count = 0;
1125 EXPORT_SYMBOL(iwl_free_channel_map);
1128 * iwl_get_channel_info - Find driver's private channel info
1130 * Based on band and channel number.
1132 const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
1133 enum ieee80211_band band, u16 channel)
1135 int i;
1137 switch (band) {
1138 case IEEE80211_BAND_5GHZ:
1139 for (i = 14; i < priv->channel_count; i++) {
1140 if (priv->channel_info[i].channel == channel)
1141 return &priv->channel_info[i];
1143 break;
1144 case IEEE80211_BAND_2GHZ:
1145 if (channel >= 1 && channel <= 14)
1146 return &priv->channel_info[channel - 1];
1147 break;
1148 default:
1149 BUG();
1152 return NULL;
1154 EXPORT_SYMBOL(iwl_get_channel_info);