1 /******************************************************************************
3 * Copyright(c) 2007 - 2010 Intel Corporation. All rights reserved.
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *****************************************************************************/
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
35 #include <net/mac80211.h>
37 #include "iwl-eeprom.h"
41 #include "iwl-commands.h"
42 #include "iwl-debug.h"
43 #include "iwl-power.h"
46 * Setting power level allows the card to go to sleep when not busy.
48 * We calculate a sleep command based on the required latency, which
49 * we get from mac80211. In order to handle thermal throttling, we can
50 * also use pre-defined power levels.
54 * For now, keep using power level 1 instead of automatically
57 bool no_sleep_autoadjust
= true;
58 module_param(no_sleep_autoadjust
, bool, S_IRUGO
);
59 MODULE_PARM_DESC(no_sleep_autoadjust
,
60 "don't automatically adjust sleep level "
61 "according to maximum network latency");
64 * This defines the old power levels. They are still used by default
65 * (level 1) and for thermal throttle (levels 3 through 5)
68 struct iwl_power_vec_entry
{
69 struct iwl_powertable_cmd cmd
;
70 u8 no_dtim
; /* number of skip dtim */
73 #define IWL_DTIM_RANGE_0_MAX 2
74 #define IWL_DTIM_RANGE_1_MAX 10
76 #define NOSLP cpu_to_le16(0), 0, 0
77 #define SLP IWL_POWER_DRIVER_ALLOW_SLEEP_MSK, 0, 0
78 #define TU_TO_USEC 1024
79 #define SLP_TOUT(T) cpu_to_le32((T) * TU_TO_USEC)
80 #define SLP_VEC(X0, X1, X2, X3, X4) {cpu_to_le32(X0), \
85 /* default power management (not Tx power) table values */
86 /* for DTIM period 0 through IWL_DTIM_RANGE_0_MAX */
88 static const struct iwl_power_vec_entry range_0
[IWL_POWER_NUM
] = {
89 {{SLP
, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 1, 2, 2, 0xFF)}, 0},
90 {{SLP
, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 2, 2, 0xFF)}, 0},
91 {{SLP
, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 2, 2, 2, 0xFF)}, 0},
92 {{SLP
, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 2, 4, 4, 0xFF)}, 1},
93 {{SLP
, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 2, 4, 6, 0xFF)}, 2}
97 /* for DTIM period IWL_DTIM_RANGE_0_MAX + 1 through IWL_DTIM_RANGE_1_MAX */
99 static const struct iwl_power_vec_entry range_1
[IWL_POWER_NUM
] = {
100 {{SLP
, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 4)}, 0},
101 {{SLP
, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 3, 4, 7)}, 0},
102 {{SLP
, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 4, 6, 7, 9)}, 0},
103 {{SLP
, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 4, 6, 9, 10)}, 1},
104 {{SLP
, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 4, 6, 10, 10)}, 2}
107 /* for DTIM period > IWL_DTIM_RANGE_1_MAX */
109 static const struct iwl_power_vec_entry range_2
[IWL_POWER_NUM
] = {
110 {{SLP
, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 0xFF)}, 0},
111 {{SLP
, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(2, 4, 6, 7, 0xFF)}, 0},
112 {{SLP
, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0},
113 {{SLP
, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0},
114 {{SLP
, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(4, 7, 10, 10, 0xFF)}, 0}
117 static void iwl_static_sleep_cmd(struct iwl_priv
*priv
,
118 struct iwl_powertable_cmd
*cmd
,
119 enum iwl_power_level lvl
, int period
)
121 const struct iwl_power_vec_entry
*table
;
122 int max_sleep
[IWL_POWER_VEC_SIZE
] = { 0 };
128 if (period
<= IWL_DTIM_RANGE_1_MAX
)
130 if (period
<= IWL_DTIM_RANGE_0_MAX
)
133 BUG_ON(lvl
< 0 || lvl
>= IWL_POWER_NUM
);
135 *cmd
= table
[lvl
].cmd
;
140 for (i
= 0; i
< IWL_POWER_VEC_SIZE
; i
++)
144 skip
= table
[lvl
].no_dtim
;
145 for (i
= 0; i
< IWL_POWER_VEC_SIZE
; i
++)
146 max_sleep
[i
] = le32_to_cpu(cmd
->sleep_interval
[i
]);
147 max_sleep
[IWL_POWER_VEC_SIZE
- 1] = skip
+ 1;
150 slp_itrvl
= le32_to_cpu(cmd
->sleep_interval
[IWL_POWER_VEC_SIZE
- 1]);
151 /* figure out the listen interval based on dtim period and skip */
152 if (slp_itrvl
== 0xFF)
153 cmd
->sleep_interval
[IWL_POWER_VEC_SIZE
- 1] =
154 cpu_to_le32(period
* (skip
+ 1));
156 slp_itrvl
= le32_to_cpu(cmd
->sleep_interval
[IWL_POWER_VEC_SIZE
- 1]);
157 if (slp_itrvl
> period
)
158 cmd
->sleep_interval
[IWL_POWER_VEC_SIZE
- 1] =
159 cpu_to_le32((slp_itrvl
/ period
) * period
);
162 cmd
->flags
|= IWL_POWER_SLEEP_OVER_DTIM_MSK
;
164 cmd
->flags
&= ~IWL_POWER_SLEEP_OVER_DTIM_MSK
;
166 slp_itrvl
= le32_to_cpu(cmd
->sleep_interval
[IWL_POWER_VEC_SIZE
- 1]);
167 if (slp_itrvl
> IWL_CONN_MAX_LISTEN_INTERVAL
)
168 cmd
->sleep_interval
[IWL_POWER_VEC_SIZE
- 1] =
169 cpu_to_le32(IWL_CONN_MAX_LISTEN_INTERVAL
);
171 /* enforce max sleep interval */
172 for (i
= IWL_POWER_VEC_SIZE
- 1; i
>= 0 ; i
--) {
173 if (le32_to_cpu(cmd
->sleep_interval
[i
]) >
174 (max_sleep
[i
] * period
))
175 cmd
->sleep_interval
[i
] =
176 cpu_to_le32(max_sleep
[i
] * period
);
177 if (i
!= (IWL_POWER_VEC_SIZE
- 1)) {
178 if (le32_to_cpu(cmd
->sleep_interval
[i
]) >
179 le32_to_cpu(cmd
->sleep_interval
[i
+1]))
180 cmd
->sleep_interval
[i
] =
181 cmd
->sleep_interval
[i
+1];
185 if (priv
->power_data
.pci_pm
)
186 cmd
->flags
|= IWL_POWER_PCI_PM_MSK
;
188 cmd
->flags
&= ~IWL_POWER_PCI_PM_MSK
;
190 IWL_DEBUG_POWER(priv
, "numSkipDtim = %u, dtimPeriod = %d\n",
192 IWL_DEBUG_POWER(priv
, "Sleep command for index %d\n", lvl
+ 1);
195 /* default Thermal Throttling transaction table
196 * Current state | Throttling Down | Throttling Up
197 *=============================================================================
198 * Condition Nxt State Condition Nxt State Condition Nxt State
199 *-----------------------------------------------------------------------------
200 * IWL_TI_0 T >= 114 CT_KILL 114>T>=105 TI_1 N/A N/A
201 * IWL_TI_1 T >= 114 CT_KILL 114>T>=110 TI_2 T<=95 TI_0
202 * IWL_TI_2 T >= 114 CT_KILL T<=100 TI_1
203 * IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0
204 *=============================================================================
206 static const struct iwl_tt_trans tt_range_0
[IWL_TI_STATE_MAX
- 1] = {
207 {IWL_TI_0
, IWL_ABSOLUTE_ZERO
, 104},
208 {IWL_TI_1
, 105, CT_KILL_THRESHOLD
- 1},
209 {IWL_TI_CT_KILL
, CT_KILL_THRESHOLD
, IWL_ABSOLUTE_MAX
}
211 static const struct iwl_tt_trans tt_range_1
[IWL_TI_STATE_MAX
- 1] = {
212 {IWL_TI_0
, IWL_ABSOLUTE_ZERO
, 95},
213 {IWL_TI_2
, 110, CT_KILL_THRESHOLD
- 1},
214 {IWL_TI_CT_KILL
, CT_KILL_THRESHOLD
, IWL_ABSOLUTE_MAX
}
216 static const struct iwl_tt_trans tt_range_2
[IWL_TI_STATE_MAX
- 1] = {
217 {IWL_TI_1
, IWL_ABSOLUTE_ZERO
, 100},
218 {IWL_TI_CT_KILL
, CT_KILL_THRESHOLD
, IWL_ABSOLUTE_MAX
},
219 {IWL_TI_CT_KILL
, CT_KILL_THRESHOLD
, IWL_ABSOLUTE_MAX
}
221 static const struct iwl_tt_trans tt_range_3
[IWL_TI_STATE_MAX
- 1] = {
222 {IWL_TI_0
, IWL_ABSOLUTE_ZERO
, CT_KILL_EXIT_THRESHOLD
},
223 {IWL_TI_CT_KILL
, CT_KILL_EXIT_THRESHOLD
+ 1, IWL_ABSOLUTE_MAX
},
224 {IWL_TI_CT_KILL
, CT_KILL_EXIT_THRESHOLD
+ 1, IWL_ABSOLUTE_MAX
}
227 /* Advance Thermal Throttling default restriction table */
228 static const struct iwl_tt_restriction restriction_range
[IWL_TI_STATE_MAX
] = {
229 {IWL_ANT_OK_MULTI
, IWL_ANT_OK_MULTI
, true },
230 {IWL_ANT_OK_SINGLE
, IWL_ANT_OK_MULTI
, true },
231 {IWL_ANT_OK_SINGLE
, IWL_ANT_OK_SINGLE
, false },
232 {IWL_ANT_OK_NONE
, IWL_ANT_OK_NONE
, false }
236 static void iwl_power_sleep_cam_cmd(struct iwl_priv
*priv
,
237 struct iwl_powertable_cmd
*cmd
)
239 memset(cmd
, 0, sizeof(*cmd
));
241 if (priv
->power_data
.pci_pm
)
242 cmd
->flags
|= IWL_POWER_PCI_PM_MSK
;
244 IWL_DEBUG_POWER(priv
, "Sleep command for CAM\n");
247 static void iwl_power_fill_sleep_cmd(struct iwl_priv
*priv
,
248 struct iwl_powertable_cmd
*cmd
,
249 int dynps_ms
, int wakeup_period
)
252 * These are the original power level 3 sleep successions. The
253 * device may behave better with such succession and was also
254 * only tested with that. Just like the original sleep commands,
255 * also adjust the succession here to the wakeup_period below.
256 * The ranges are the same as for the sleep commands, 0-2, 3-9
257 * and >10, which is selected based on the DTIM interval for
258 * the sleep index but here we use the wakeup period since that
259 * is what we need to do for the latency requirements.
261 static const u8 slp_succ_r0
[IWL_POWER_VEC_SIZE
] = { 2, 2, 2, 2, 2 };
262 static const u8 slp_succ_r1
[IWL_POWER_VEC_SIZE
] = { 2, 4, 6, 7, 9 };
263 static const u8 slp_succ_r2
[IWL_POWER_VEC_SIZE
] = { 2, 7, 9, 9, 0xFF };
264 const u8
*slp_succ
= slp_succ_r0
;
267 if (wakeup_period
> IWL_DTIM_RANGE_0_MAX
)
268 slp_succ
= slp_succ_r1
;
269 if (wakeup_period
> IWL_DTIM_RANGE_1_MAX
)
270 slp_succ
= slp_succ_r2
;
272 memset(cmd
, 0, sizeof(*cmd
));
274 cmd
->flags
= IWL_POWER_DRIVER_ALLOW_SLEEP_MSK
|
275 IWL_POWER_FAST_PD
; /* no use seeing frames for others */
277 if (priv
->power_data
.pci_pm
)
278 cmd
->flags
|= IWL_POWER_PCI_PM_MSK
;
280 cmd
->rx_data_timeout
= cpu_to_le32(1000 * dynps_ms
);
281 cmd
->tx_data_timeout
= cpu_to_le32(1000 * dynps_ms
);
283 for (i
= 0; i
< IWL_POWER_VEC_SIZE
; i
++)
284 cmd
->sleep_interval
[i
] =
285 cpu_to_le32(min_t(int, slp_succ
[i
], wakeup_period
));
287 IWL_DEBUG_POWER(priv
, "Automatic sleep command\n");
290 static int iwl_set_power(struct iwl_priv
*priv
, struct iwl_powertable_cmd
*cmd
)
292 IWL_DEBUG_POWER(priv
, "Sending power/sleep command\n");
293 IWL_DEBUG_POWER(priv
, "Flags value = 0x%08X\n", cmd
->flags
);
294 IWL_DEBUG_POWER(priv
, "Tx timeout = %u\n", le32_to_cpu(cmd
->tx_data_timeout
));
295 IWL_DEBUG_POWER(priv
, "Rx timeout = %u\n", le32_to_cpu(cmd
->rx_data_timeout
));
296 IWL_DEBUG_POWER(priv
, "Sleep interval vector = { %d , %d , %d , %d , %d }\n",
297 le32_to_cpu(cmd
->sleep_interval
[0]),
298 le32_to_cpu(cmd
->sleep_interval
[1]),
299 le32_to_cpu(cmd
->sleep_interval
[2]),
300 le32_to_cpu(cmd
->sleep_interval
[3]),
301 le32_to_cpu(cmd
->sleep_interval
[4]));
303 return iwl_send_cmd_pdu(priv
, POWER_TABLE_CMD
,
304 sizeof(struct iwl_powertable_cmd
), cmd
);
307 /* priv->mutex must be held */
308 int iwl_power_update_mode(struct iwl_priv
*priv
, bool force
)
311 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
312 bool enabled
= priv
->hw
->conf
.flags
& IEEE80211_CONF_PS
;
314 struct iwl_powertable_cmd cmd
;
317 /* Don't update the RX chain when chain noise calibration is running */
318 update_chains
= priv
->chain_noise_data
.state
== IWL_CHAIN_NOISE_DONE
||
319 priv
->chain_noise_data
.state
== IWL_CHAIN_NOISE_ALIVE
;
322 dtimper
= priv
->hw
->conf
.ps_dtim_period
;
326 if (priv
->cfg
->broken_powersave
)
327 iwl_power_sleep_cam_cmd(priv
, &cmd
);
328 else if (priv
->cfg
->supports_idle
&&
329 priv
->hw
->conf
.flags
& IEEE80211_CONF_IDLE
)
330 iwl_static_sleep_cmd(priv
, &cmd
, IWL_POWER_INDEX_5
, 20);
331 else if (tt
->state
>= IWL_TI_1
)
332 iwl_static_sleep_cmd(priv
, &cmd
, tt
->tt_power_mode
, dtimper
);
334 iwl_power_sleep_cam_cmd(priv
, &cmd
);
335 else if (priv
->power_data
.debug_sleep_level_override
>= 0)
336 iwl_static_sleep_cmd(priv
, &cmd
,
337 priv
->power_data
.debug_sleep_level_override
,
339 else if (no_sleep_autoadjust
)
340 iwl_static_sleep_cmd(priv
, &cmd
, IWL_POWER_INDEX_1
, dtimper
);
342 iwl_power_fill_sleep_cmd(priv
, &cmd
,
343 priv
->hw
->conf
.dynamic_ps_timeout
,
344 priv
->hw
->conf
.max_sleep_period
);
346 if (iwl_is_ready_rf(priv
) &&
347 (memcmp(&priv
->power_data
.sleep_cmd
, &cmd
, sizeof(cmd
)) || force
)) {
348 if (cmd
.flags
& IWL_POWER_DRIVER_ALLOW_SLEEP_MSK
)
349 set_bit(STATUS_POWER_PMI
, &priv
->status
);
351 ret
= iwl_set_power(priv
, &cmd
);
353 if (!(cmd
.flags
& IWL_POWER_DRIVER_ALLOW_SLEEP_MSK
))
354 clear_bit(STATUS_POWER_PMI
, &priv
->status
);
356 if (priv
->cfg
->ops
->lib
->update_chain_flags
&&
358 priv
->cfg
->ops
->lib
->update_chain_flags(priv
);
359 else if (priv
->cfg
->ops
->lib
->update_chain_flags
)
360 IWL_DEBUG_POWER(priv
,
361 "Cannot update the power, chain noise "
362 "calibration running: %d\n",
363 priv
->chain_noise_data
.state
);
364 memcpy(&priv
->power_data
.sleep_cmd
, &cmd
, sizeof(cmd
));
366 IWL_ERR(priv
, "set power fail, ret = %d", ret
);
371 EXPORT_SYMBOL(iwl_power_update_mode
);
373 bool iwl_ht_enabled(struct iwl_priv
*priv
)
375 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
376 struct iwl_tt_restriction
*restriction
;
378 if (!priv
->thermal_throttle
.advanced_tt
)
380 restriction
= tt
->restriction
+ tt
->state
;
381 return restriction
->is_ht
;
383 EXPORT_SYMBOL(iwl_ht_enabled
);
385 bool iwl_within_ct_kill_margin(struct iwl_priv
*priv
)
387 s32 temp
= priv
->temperature
; /* degrees CELSIUS except 4965 */
388 bool within_margin
= false;
390 if ((priv
->hw_rev
& CSR_HW_REV_TYPE_MSK
) == CSR_HW_REV_TYPE_4965
)
391 temp
= KELVIN_TO_CELSIUS(priv
->temperature
);
393 if (!priv
->thermal_throttle
.advanced_tt
)
394 within_margin
= ((temp
+ IWL_TT_CT_KILL_MARGIN
) >=
395 CT_KILL_THRESHOLD_LEGACY
) ? true : false;
397 within_margin
= ((temp
+ IWL_TT_CT_KILL_MARGIN
) >=
398 CT_KILL_THRESHOLD
) ? true : false;
399 return within_margin
;
402 enum iwl_antenna_ok
iwl_tx_ant_restriction(struct iwl_priv
*priv
)
404 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
405 struct iwl_tt_restriction
*restriction
;
407 if (!priv
->thermal_throttle
.advanced_tt
)
408 return IWL_ANT_OK_MULTI
;
409 restriction
= tt
->restriction
+ tt
->state
;
410 return restriction
->tx_stream
;
412 EXPORT_SYMBOL(iwl_tx_ant_restriction
);
414 enum iwl_antenna_ok
iwl_rx_ant_restriction(struct iwl_priv
*priv
)
416 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
417 struct iwl_tt_restriction
*restriction
;
419 if (!priv
->thermal_throttle
.advanced_tt
)
420 return IWL_ANT_OK_MULTI
;
421 restriction
= tt
->restriction
+ tt
->state
;
422 return restriction
->rx_stream
;
425 #define CT_KILL_EXIT_DURATION (5) /* 5 seconds duration */
426 #define CT_KILL_WAITING_DURATION (300) /* 300ms duration */
429 * toggle the bit to wake up uCode and check the temperature
430 * if the temperature is below CT, uCode will stay awake and send card
431 * state notification with CT_KILL bit clear to inform Thermal Throttling
432 * Management to change state. Otherwise, uCode will go back to sleep
433 * without doing anything, driver should continue the 5 seconds timer
434 * to wake up uCode for temperature check until temperature drop below CT
436 static void iwl_tt_check_exit_ct_kill(unsigned long data
)
438 struct iwl_priv
*priv
= (struct iwl_priv
*)data
;
439 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
442 if (test_bit(STATUS_EXIT_PENDING
, &priv
->status
))
445 if (tt
->state
== IWL_TI_CT_KILL
) {
446 if (priv
->thermal_throttle
.ct_kill_toggle
) {
447 iwl_write32(priv
, CSR_UCODE_DRV_GP1_CLR
,
448 CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT
);
449 priv
->thermal_throttle
.ct_kill_toggle
= false;
451 iwl_write32(priv
, CSR_UCODE_DRV_GP1_SET
,
452 CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT
);
453 priv
->thermal_throttle
.ct_kill_toggle
= true;
455 iwl_read32(priv
, CSR_UCODE_DRV_GP1
);
456 spin_lock_irqsave(&priv
->reg_lock
, flags
);
457 if (!iwl_grab_nic_access(priv
))
458 iwl_release_nic_access(priv
);
459 spin_unlock_irqrestore(&priv
->reg_lock
, flags
);
461 /* Reschedule the ct_kill timer to occur in
462 * CT_KILL_EXIT_DURATION seconds to ensure we get a
464 IWL_DEBUG_POWER(priv
, "schedule ct_kill exit timer\n");
465 mod_timer(&priv
->thermal_throttle
.ct_kill_exit_tm
, jiffies
+
466 CT_KILL_EXIT_DURATION
* HZ
);
470 static void iwl_perform_ct_kill_task(struct iwl_priv
*priv
,
474 IWL_DEBUG_POWER(priv
, "Stop all queues\n");
475 if (priv
->mac80211_registered
)
476 ieee80211_stop_queues(priv
->hw
);
477 IWL_DEBUG_POWER(priv
,
478 "Schedule 5 seconds CT_KILL Timer\n");
479 mod_timer(&priv
->thermal_throttle
.ct_kill_exit_tm
, jiffies
+
480 CT_KILL_EXIT_DURATION
* HZ
);
482 IWL_DEBUG_POWER(priv
, "Wake all queues\n");
483 if (priv
->mac80211_registered
)
484 ieee80211_wake_queues(priv
->hw
);
488 static void iwl_tt_ready_for_ct_kill(unsigned long data
)
490 struct iwl_priv
*priv
= (struct iwl_priv
*)data
;
491 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
493 if (test_bit(STATUS_EXIT_PENDING
, &priv
->status
))
496 /* temperature timer expired, ready to go into CT_KILL state */
497 if (tt
->state
!= IWL_TI_CT_KILL
) {
498 IWL_DEBUG_POWER(priv
, "entering CT_KILL state when temperature timer expired\n");
499 tt
->state
= IWL_TI_CT_KILL
;
500 set_bit(STATUS_CT_KILL
, &priv
->status
);
501 iwl_perform_ct_kill_task(priv
, true);
505 static void iwl_prepare_ct_kill_task(struct iwl_priv
*priv
)
507 IWL_DEBUG_POWER(priv
, "Prepare to enter IWL_TI_CT_KILL\n");
508 /* make request to retrieve statistics information */
509 iwl_send_statistics_request(priv
, CMD_SYNC
, false);
510 /* Reschedule the ct_kill wait timer */
511 mod_timer(&priv
->thermal_throttle
.ct_kill_waiting_tm
,
512 jiffies
+ msecs_to_jiffies(CT_KILL_WAITING_DURATION
));
515 #define IWL_MINIMAL_POWER_THRESHOLD (CT_KILL_THRESHOLD_LEGACY)
516 #define IWL_REDUCED_PERFORMANCE_THRESHOLD_2 (100)
517 #define IWL_REDUCED_PERFORMANCE_THRESHOLD_1 (90)
520 * Legacy thermal throttling
521 * 1) Avoid NIC destruction due to high temperatures
522 * Chip will identify dangerously high temperatures that can
523 * harm the device and will power down
524 * 2) Avoid the NIC power down due to high temperature
525 * Throttle early enough to lower the power consumption before
526 * drastic steps are needed
528 static void iwl_legacy_tt_handler(struct iwl_priv
*priv
, s32 temp
, bool force
)
530 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
531 enum iwl_tt_state old_state
;
533 #ifdef CONFIG_IWLWIFI_DEBUG
534 if ((tt
->tt_previous_temp
) &&
535 (temp
> tt
->tt_previous_temp
) &&
536 ((temp
- tt
->tt_previous_temp
) >
537 IWL_TT_INCREASE_MARGIN
)) {
538 IWL_DEBUG_POWER(priv
,
539 "Temperature increase %d degree Celsius\n",
540 (temp
- tt
->tt_previous_temp
));
543 old_state
= tt
->state
;
545 if (temp
>= IWL_MINIMAL_POWER_THRESHOLD
)
546 tt
->state
= IWL_TI_CT_KILL
;
547 else if (temp
>= IWL_REDUCED_PERFORMANCE_THRESHOLD_2
)
548 tt
->state
= IWL_TI_2
;
549 else if (temp
>= IWL_REDUCED_PERFORMANCE_THRESHOLD_1
)
550 tt
->state
= IWL_TI_1
;
552 tt
->state
= IWL_TI_0
;
554 #ifdef CONFIG_IWLWIFI_DEBUG
555 tt
->tt_previous_temp
= temp
;
557 /* stop ct_kill_waiting_tm timer */
558 del_timer_sync(&priv
->thermal_throttle
.ct_kill_waiting_tm
);
559 if (tt
->state
!= old_state
) {
563 * When the system is ready to go back to IWL_TI_0
564 * we only have to call iwl_power_update_mode() to
569 tt
->tt_power_mode
= IWL_POWER_INDEX_3
;
572 tt
->tt_power_mode
= IWL_POWER_INDEX_4
;
575 tt
->tt_power_mode
= IWL_POWER_INDEX_5
;
578 mutex_lock(&priv
->mutex
);
579 if (old_state
== IWL_TI_CT_KILL
)
580 clear_bit(STATUS_CT_KILL
, &priv
->status
);
581 if (tt
->state
!= IWL_TI_CT_KILL
&&
582 iwl_power_update_mode(priv
, true)) {
583 /* TT state not updated
584 * try again during next temperature read
586 if (old_state
== IWL_TI_CT_KILL
)
587 set_bit(STATUS_CT_KILL
, &priv
->status
);
588 tt
->state
= old_state
;
589 IWL_ERR(priv
, "Cannot update power mode, "
590 "TT state not updated\n");
592 if (tt
->state
== IWL_TI_CT_KILL
) {
594 set_bit(STATUS_CT_KILL
, &priv
->status
);
595 iwl_perform_ct_kill_task(priv
, true);
597 iwl_prepare_ct_kill_task(priv
);
598 tt
->state
= old_state
;
600 } else if (old_state
== IWL_TI_CT_KILL
&&
601 tt
->state
!= IWL_TI_CT_KILL
)
602 iwl_perform_ct_kill_task(priv
, false);
603 IWL_DEBUG_POWER(priv
, "Temperature state changed %u\n",
605 IWL_DEBUG_POWER(priv
, "Power Index change to %u\n",
608 mutex_unlock(&priv
->mutex
);
613 * Advance thermal throttling
614 * 1) Avoid NIC destruction due to high temperatures
615 * Chip will identify dangerously high temperatures that can
616 * harm the device and will power down
617 * 2) Avoid the NIC power down due to high temperature
618 * Throttle early enough to lower the power consumption before
619 * drastic steps are needed
620 * Actions include relaxing the power down sleep thresholds and
621 * decreasing the number of TX streams
622 * 3) Avoid throughput performance impact as much as possible
624 *=============================================================================
625 * Condition Nxt State Condition Nxt State Condition Nxt State
626 *-----------------------------------------------------------------------------
627 * IWL_TI_0 T >= 114 CT_KILL 114>T>=105 TI_1 N/A N/A
628 * IWL_TI_1 T >= 114 CT_KILL 114>T>=110 TI_2 T<=95 TI_0
629 * IWL_TI_2 T >= 114 CT_KILL T<=100 TI_1
630 * IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0
631 *=============================================================================
633 static void iwl_advance_tt_handler(struct iwl_priv
*priv
, s32 temp
, bool force
)
635 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
637 bool changed
= false;
638 enum iwl_tt_state old_state
;
639 struct iwl_tt_trans
*transaction
;
641 old_state
= tt
->state
;
642 for (i
= 0; i
< IWL_TI_STATE_MAX
- 1; i
++) {
643 /* based on the current TT state,
644 * find the curresponding transaction table
645 * each table has (IWL_TI_STATE_MAX - 1) entries
646 * tt->transaction + ((old_state * (IWL_TI_STATE_MAX - 1))
647 * will advance to the correct table.
648 * then based on the current temperature
649 * find the next state need to transaction to
650 * go through all the possible (IWL_TI_STATE_MAX - 1) entries
651 * in the current table to see if transaction is needed
653 transaction
= tt
->transaction
+
654 ((old_state
* (IWL_TI_STATE_MAX
- 1)) + i
);
655 if (temp
>= transaction
->tt_low
&&
656 temp
<= transaction
->tt_high
) {
657 #ifdef CONFIG_IWLWIFI_DEBUG
658 if ((tt
->tt_previous_temp
) &&
659 (temp
> tt
->tt_previous_temp
) &&
660 ((temp
- tt
->tt_previous_temp
) >
661 IWL_TT_INCREASE_MARGIN
)) {
662 IWL_DEBUG_POWER(priv
,
663 "Temperature increase %d "
665 (temp
- tt
->tt_previous_temp
));
667 tt
->tt_previous_temp
= temp
;
670 transaction
->next_state
) {
673 transaction
->next_state
;
678 /* stop ct_kill_waiting_tm timer */
679 del_timer_sync(&priv
->thermal_throttle
.ct_kill_waiting_tm
);
681 struct iwl_rxon_cmd
*rxon
= &priv
->staging_rxon
;
683 if (tt
->state
>= IWL_TI_1
) {
684 /* force PI = IWL_POWER_INDEX_5 in the case of TI > 0 */
685 tt
->tt_power_mode
= IWL_POWER_INDEX_5
;
686 if (!iwl_ht_enabled(priv
))
688 rxon
->flags
&= ~(RXON_FLG_CHANNEL_MODE_MSK
|
689 RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK
|
690 RXON_FLG_HT40_PROT_MSK
|
691 RXON_FLG_HT_PROT_MSK
);
693 /* check HT capability and set
694 * according to the system HT capability
695 * in case get disabled before */
696 iwl_set_rxon_ht(priv
, &priv
->current_ht_config
);
701 * restore system power setting -- it will be
702 * recalculated automatically.
705 /* check HT capability and set
706 * according to the system HT capability
707 * in case get disabled before */
708 iwl_set_rxon_ht(priv
, &priv
->current_ht_config
);
710 mutex_lock(&priv
->mutex
);
711 if (old_state
== IWL_TI_CT_KILL
)
712 clear_bit(STATUS_CT_KILL
, &priv
->status
);
713 if (tt
->state
!= IWL_TI_CT_KILL
&&
714 iwl_power_update_mode(priv
, true)) {
715 /* TT state not updated
716 * try again during next temperature read
718 IWL_ERR(priv
, "Cannot update power mode, "
719 "TT state not updated\n");
720 if (old_state
== IWL_TI_CT_KILL
)
721 set_bit(STATUS_CT_KILL
, &priv
->status
);
722 tt
->state
= old_state
;
724 IWL_DEBUG_POWER(priv
,
725 "Thermal Throttling to new state: %u\n",
727 if (old_state
!= IWL_TI_CT_KILL
&&
728 tt
->state
== IWL_TI_CT_KILL
) {
730 IWL_DEBUG_POWER(priv
,
731 "Enter IWL_TI_CT_KILL\n");
732 set_bit(STATUS_CT_KILL
, &priv
->status
);
733 iwl_perform_ct_kill_task(priv
, true);
735 iwl_prepare_ct_kill_task(priv
);
736 tt
->state
= old_state
;
738 } else if (old_state
== IWL_TI_CT_KILL
&&
739 tt
->state
!= IWL_TI_CT_KILL
) {
740 IWL_DEBUG_POWER(priv
, "Exit IWL_TI_CT_KILL\n");
741 iwl_perform_ct_kill_task(priv
, false);
744 mutex_unlock(&priv
->mutex
);
748 /* Card State Notification indicated reach critical temperature
749 * if PSP not enable, no Thermal Throttling function will be performed
750 * just set the GP1 bit to acknowledge the event
751 * otherwise, go into IWL_TI_CT_KILL state
752 * since Card State Notification will not provide any temperature reading
754 * so just pass the CT_KILL temperature to iwl_legacy_tt_handler()
756 * pass CT_KILL_THRESHOLD+1 to make sure move into IWL_TI_CT_KILL state
758 static void iwl_bg_ct_enter(struct work_struct
*work
)
760 struct iwl_priv
*priv
= container_of(work
, struct iwl_priv
, ct_enter
);
761 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
763 if (test_bit(STATUS_EXIT_PENDING
, &priv
->status
))
766 if (!iwl_is_ready(priv
))
769 if (tt
->state
!= IWL_TI_CT_KILL
) {
770 IWL_ERR(priv
, "Device reached critical temperature "
771 "- ucode going to sleep!\n");
772 if (!priv
->thermal_throttle
.advanced_tt
)
773 iwl_legacy_tt_handler(priv
,
774 IWL_MINIMAL_POWER_THRESHOLD
,
777 iwl_advance_tt_handler(priv
,
778 CT_KILL_THRESHOLD
+ 1, true);
782 /* Card State Notification indicated out of critical temperature
783 * since Card State Notification will not provide any temperature reading
784 * so pass the IWL_REDUCED_PERFORMANCE_THRESHOLD_2 temperature
785 * to iwl_legacy_tt_handler() to get out of IWL_CT_KILL state
787 static void iwl_bg_ct_exit(struct work_struct
*work
)
789 struct iwl_priv
*priv
= container_of(work
, struct iwl_priv
, ct_exit
);
790 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
792 if (test_bit(STATUS_EXIT_PENDING
, &priv
->status
))
795 if (!iwl_is_ready(priv
))
798 /* stop ct_kill_exit_tm timer */
799 del_timer_sync(&priv
->thermal_throttle
.ct_kill_exit_tm
);
801 if (tt
->state
== IWL_TI_CT_KILL
) {
803 "Device temperature below critical"
806 * exit from CT_KILL state
807 * reset the current temperature reading
809 priv
->temperature
= 0;
810 if (!priv
->thermal_throttle
.advanced_tt
)
811 iwl_legacy_tt_handler(priv
,
812 IWL_REDUCED_PERFORMANCE_THRESHOLD_2
,
815 iwl_advance_tt_handler(priv
, CT_KILL_EXIT_THRESHOLD
,
820 void iwl_tt_enter_ct_kill(struct iwl_priv
*priv
)
822 if (test_bit(STATUS_EXIT_PENDING
, &priv
->status
))
825 IWL_DEBUG_POWER(priv
, "Queueing critical temperature enter.\n");
826 queue_work(priv
->workqueue
, &priv
->ct_enter
);
828 EXPORT_SYMBOL(iwl_tt_enter_ct_kill
);
830 void iwl_tt_exit_ct_kill(struct iwl_priv
*priv
)
832 if (test_bit(STATUS_EXIT_PENDING
, &priv
->status
))
835 IWL_DEBUG_POWER(priv
, "Queueing critical temperature exit.\n");
836 queue_work(priv
->workqueue
, &priv
->ct_exit
);
838 EXPORT_SYMBOL(iwl_tt_exit_ct_kill
);
840 static void iwl_bg_tt_work(struct work_struct
*work
)
842 struct iwl_priv
*priv
= container_of(work
, struct iwl_priv
, tt_work
);
843 s32 temp
= priv
->temperature
; /* degrees CELSIUS except 4965 */
845 if (test_bit(STATUS_EXIT_PENDING
, &priv
->status
))
848 if ((priv
->hw_rev
& CSR_HW_REV_TYPE_MSK
) == CSR_HW_REV_TYPE_4965
)
849 temp
= KELVIN_TO_CELSIUS(priv
->temperature
);
851 if (!priv
->thermal_throttle
.advanced_tt
)
852 iwl_legacy_tt_handler(priv
, temp
, false);
854 iwl_advance_tt_handler(priv
, temp
, false);
857 void iwl_tt_handler(struct iwl_priv
*priv
)
859 if (test_bit(STATUS_EXIT_PENDING
, &priv
->status
))
862 IWL_DEBUG_POWER(priv
, "Queueing thermal throttling work.\n");
863 queue_work(priv
->workqueue
, &priv
->tt_work
);
865 EXPORT_SYMBOL(iwl_tt_handler
);
867 /* Thermal throttling initialization
868 * For advance thermal throttling:
869 * Initialize Thermal Index and temperature threshold table
870 * Initialize thermal throttling restriction table
872 void iwl_tt_initialize(struct iwl_priv
*priv
)
874 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
875 int size
= sizeof(struct iwl_tt_trans
) * (IWL_TI_STATE_MAX
- 1);
876 struct iwl_tt_trans
*transaction
;
878 IWL_DEBUG_POWER(priv
, "Initialize Thermal Throttling \n");
880 memset(tt
, 0, sizeof(struct iwl_tt_mgmt
));
882 tt
->state
= IWL_TI_0
;
883 init_timer(&priv
->thermal_throttle
.ct_kill_exit_tm
);
884 priv
->thermal_throttle
.ct_kill_exit_tm
.data
= (unsigned long)priv
;
885 priv
->thermal_throttle
.ct_kill_exit_tm
.function
=
886 iwl_tt_check_exit_ct_kill
;
887 init_timer(&priv
->thermal_throttle
.ct_kill_waiting_tm
);
888 priv
->thermal_throttle
.ct_kill_waiting_tm
.data
= (unsigned long)priv
;
889 priv
->thermal_throttle
.ct_kill_waiting_tm
.function
=
890 iwl_tt_ready_for_ct_kill
;
891 /* setup deferred ct kill work */
892 INIT_WORK(&priv
->tt_work
, iwl_bg_tt_work
);
893 INIT_WORK(&priv
->ct_enter
, iwl_bg_ct_enter
);
894 INIT_WORK(&priv
->ct_exit
, iwl_bg_ct_exit
);
896 if (priv
->cfg
->adv_thermal_throttle
) {
897 IWL_DEBUG_POWER(priv
, "Advanced Thermal Throttling\n");
898 tt
->restriction
= kzalloc(sizeof(struct iwl_tt_restriction
) *
899 IWL_TI_STATE_MAX
, GFP_KERNEL
);
900 tt
->transaction
= kzalloc(sizeof(struct iwl_tt_trans
) *
901 IWL_TI_STATE_MAX
* (IWL_TI_STATE_MAX
- 1),
903 if (!tt
->restriction
|| !tt
->transaction
) {
904 IWL_ERR(priv
, "Fallback to Legacy Throttling\n");
905 priv
->thermal_throttle
.advanced_tt
= false;
906 kfree(tt
->restriction
);
907 tt
->restriction
= NULL
;
908 kfree(tt
->transaction
);
909 tt
->transaction
= NULL
;
911 transaction
= tt
->transaction
+
912 (IWL_TI_0
* (IWL_TI_STATE_MAX
- 1));
913 memcpy(transaction
, &tt_range_0
[0], size
);
914 transaction
= tt
->transaction
+
915 (IWL_TI_1
* (IWL_TI_STATE_MAX
- 1));
916 memcpy(transaction
, &tt_range_1
[0], size
);
917 transaction
= tt
->transaction
+
918 (IWL_TI_2
* (IWL_TI_STATE_MAX
- 1));
919 memcpy(transaction
, &tt_range_2
[0], size
);
920 transaction
= tt
->transaction
+
921 (IWL_TI_CT_KILL
* (IWL_TI_STATE_MAX
- 1));
922 memcpy(transaction
, &tt_range_3
[0], size
);
923 size
= sizeof(struct iwl_tt_restriction
) *
925 memcpy(tt
->restriction
,
926 &restriction_range
[0], size
);
927 priv
->thermal_throttle
.advanced_tt
= true;
930 IWL_DEBUG_POWER(priv
, "Legacy Thermal Throttling\n");
931 priv
->thermal_throttle
.advanced_tt
= false;
934 EXPORT_SYMBOL(iwl_tt_initialize
);
936 /* cleanup thermal throttling management related memory and timer */
937 void iwl_tt_exit(struct iwl_priv
*priv
)
939 struct iwl_tt_mgmt
*tt
= &priv
->thermal_throttle
;
941 /* stop ct_kill_exit_tm timer if activated */
942 del_timer_sync(&priv
->thermal_throttle
.ct_kill_exit_tm
);
943 /* stop ct_kill_waiting_tm timer if activated */
944 del_timer_sync(&priv
->thermal_throttle
.ct_kill_waiting_tm
);
945 cancel_work_sync(&priv
->tt_work
);
946 cancel_work_sync(&priv
->ct_enter
);
947 cancel_work_sync(&priv
->ct_exit
);
949 if (priv
->thermal_throttle
.advanced_tt
) {
950 /* free advance thermal throttling memory */
951 kfree(tt
->restriction
);
952 tt
->restriction
= NULL
;
953 kfree(tt
->transaction
);
954 tt
->transaction
= NULL
;
957 EXPORT_SYMBOL(iwl_tt_exit
);
959 /* initialize to default */
960 void iwl_power_initialize(struct iwl_priv
*priv
)
962 u16 lctl
= iwl_pcie_link_ctl(priv
);
964 priv
->power_data
.pci_pm
= !(lctl
& PCI_CFG_LINK_CTRL_VAL_L0S_EN
);
966 priv
->power_data
.debug_sleep_level_override
= -1;
968 memset(&priv
->power_data
.sleep_cmd
, 0,
969 sizeof(priv
->power_data
.sleep_cmd
));
971 EXPORT_SYMBOL(iwl_power_initialize
);