2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 Abstract: rt73usb device specific routines.
24 Supported chipsets: rt2571W & rt2671.
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/slab.h>
34 #include <linux/usb.h>
37 #include "rt2x00usb.h"
41 * Allow hardware encryption to be disabled.
43 static int modparam_nohwcrypt
= 0;
44 module_param_named(nohwcrypt
, modparam_nohwcrypt
, bool, S_IRUGO
);
45 MODULE_PARM_DESC(nohwcrypt
, "Disable hardware encryption.");
49 * All access to the CSR registers will go through the methods
50 * rt2x00usb_register_read and rt2x00usb_register_write.
51 * BBP and RF register require indirect register access,
52 * and use the CSR registers BBPCSR and RFCSR to achieve this.
53 * These indirect registers work with busy bits,
54 * and we will try maximal REGISTER_BUSY_COUNT times to access
55 * the register while taking a REGISTER_BUSY_DELAY us delay
56 * between each attampt. When the busy bit is still set at that time,
57 * the access attempt is considered to have failed,
58 * and we will print an error.
59 * The _lock versions must be used if you already hold the csr_mutex
61 #define WAIT_FOR_BBP(__dev, __reg) \
62 rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
63 #define WAIT_FOR_RF(__dev, __reg) \
64 rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
66 static void rt73usb_bbp_write(struct rt2x00_dev
*rt2x00dev
,
67 const unsigned int word
, const u8 value
)
71 mutex_lock(&rt2x00dev
->csr_mutex
);
74 * Wait until the BBP becomes available, afterwards we
75 * can safely write the new data into the register.
77 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
79 rt2x00_set_field32(®
, PHY_CSR3_VALUE
, value
);
80 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
81 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
82 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 0);
84 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR3
, reg
);
87 mutex_unlock(&rt2x00dev
->csr_mutex
);
90 static void rt73usb_bbp_read(struct rt2x00_dev
*rt2x00dev
,
91 const unsigned int word
, u8
*value
)
95 mutex_lock(&rt2x00dev
->csr_mutex
);
98 * Wait until the BBP becomes available, afterwards we
99 * can safely write the read request into the register.
100 * After the data has been written, we wait until hardware
101 * returns the correct value, if at any time the register
102 * doesn't become available in time, reg will be 0xffffffff
103 * which means we return 0xff to the caller.
105 if (WAIT_FOR_BBP(rt2x00dev
, ®
)) {
107 rt2x00_set_field32(®
, PHY_CSR3_REGNUM
, word
);
108 rt2x00_set_field32(®
, PHY_CSR3_BUSY
, 1);
109 rt2x00_set_field32(®
, PHY_CSR3_READ_CONTROL
, 1);
111 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR3
, reg
);
113 WAIT_FOR_BBP(rt2x00dev
, ®
);
116 *value
= rt2x00_get_field32(reg
, PHY_CSR3_VALUE
);
118 mutex_unlock(&rt2x00dev
->csr_mutex
);
121 static void rt73usb_rf_write(struct rt2x00_dev
*rt2x00dev
,
122 const unsigned int word
, const u32 value
)
126 mutex_lock(&rt2x00dev
->csr_mutex
);
129 * Wait until the RF becomes available, afterwards we
130 * can safely write the new data into the register.
132 if (WAIT_FOR_RF(rt2x00dev
, ®
)) {
134 rt2x00_set_field32(®
, PHY_CSR4_VALUE
, value
);
136 * RF5225 and RF2527 contain 21 bits per RF register value,
137 * all others contain 20 bits.
139 rt2x00_set_field32(®
, PHY_CSR4_NUMBER_OF_BITS
,
140 20 + (rt2x00_rf(rt2x00dev
, RF5225
) ||
141 rt2x00_rf(rt2x00dev
, RF2527
)));
142 rt2x00_set_field32(®
, PHY_CSR4_IF_SELECT
, 0);
143 rt2x00_set_field32(®
, PHY_CSR4_BUSY
, 1);
145 rt2x00usb_register_write_lock(rt2x00dev
, PHY_CSR4
, reg
);
146 rt2x00_rf_write(rt2x00dev
, word
, value
);
149 mutex_unlock(&rt2x00dev
->csr_mutex
);
152 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
153 static const struct rt2x00debug rt73usb_rt2x00debug
= {
154 .owner
= THIS_MODULE
,
156 .read
= rt2x00usb_register_read
,
157 .write
= rt2x00usb_register_write
,
158 .flags
= RT2X00DEBUGFS_OFFSET
,
159 .word_base
= CSR_REG_BASE
,
160 .word_size
= sizeof(u32
),
161 .word_count
= CSR_REG_SIZE
/ sizeof(u32
),
164 .read
= rt2x00_eeprom_read
,
165 .write
= rt2x00_eeprom_write
,
166 .word_base
= EEPROM_BASE
,
167 .word_size
= sizeof(u16
),
168 .word_count
= EEPROM_SIZE
/ sizeof(u16
),
171 .read
= rt73usb_bbp_read
,
172 .write
= rt73usb_bbp_write
,
173 .word_base
= BBP_BASE
,
174 .word_size
= sizeof(u8
),
175 .word_count
= BBP_SIZE
/ sizeof(u8
),
178 .read
= rt2x00_rf_read
,
179 .write
= rt73usb_rf_write
,
180 .word_base
= RF_BASE
,
181 .word_size
= sizeof(u32
),
182 .word_count
= RF_SIZE
/ sizeof(u32
),
185 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
187 static int rt73usb_rfkill_poll(struct rt2x00_dev
*rt2x00dev
)
191 rt2x00usb_register_read(rt2x00dev
, MAC_CSR13
, ®
);
192 return rt2x00_get_field32(reg
, MAC_CSR13_BIT7
);
195 #ifdef CONFIG_RT2X00_LIB_LEDS
196 static void rt73usb_brightness_set(struct led_classdev
*led_cdev
,
197 enum led_brightness brightness
)
199 struct rt2x00_led
*led
=
200 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
201 unsigned int enabled
= brightness
!= LED_OFF
;
202 unsigned int a_mode
=
203 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
);
204 unsigned int bg_mode
=
205 (enabled
&& led
->rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
);
207 if (led
->type
== LED_TYPE_RADIO
) {
208 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
209 MCU_LEDCS_RADIO_STATUS
, enabled
);
211 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
212 0, led
->rt2x00dev
->led_mcu_reg
,
214 } else if (led
->type
== LED_TYPE_ASSOC
) {
215 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
216 MCU_LEDCS_LINK_BG_STATUS
, bg_mode
);
217 rt2x00_set_field16(&led
->rt2x00dev
->led_mcu_reg
,
218 MCU_LEDCS_LINK_A_STATUS
, a_mode
);
220 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
221 0, led
->rt2x00dev
->led_mcu_reg
,
223 } else if (led
->type
== LED_TYPE_QUALITY
) {
225 * The brightness is divided into 6 levels (0 - 5),
226 * this means we need to convert the brightness
227 * argument into the matching level within that range.
229 rt2x00usb_vendor_request_sw(led
->rt2x00dev
, USB_LED_CONTROL
,
230 brightness
/ (LED_FULL
/ 6),
231 led
->rt2x00dev
->led_mcu_reg
,
236 static int rt73usb_blink_set(struct led_classdev
*led_cdev
,
237 unsigned long *delay_on
,
238 unsigned long *delay_off
)
240 struct rt2x00_led
*led
=
241 container_of(led_cdev
, struct rt2x00_led
, led_dev
);
244 rt2x00usb_register_read(led
->rt2x00dev
, MAC_CSR14
, ®
);
245 rt2x00_set_field32(®
, MAC_CSR14_ON_PERIOD
, *delay_on
);
246 rt2x00_set_field32(®
, MAC_CSR14_OFF_PERIOD
, *delay_off
);
247 rt2x00usb_register_write(led
->rt2x00dev
, MAC_CSR14
, reg
);
252 static void rt73usb_init_led(struct rt2x00_dev
*rt2x00dev
,
253 struct rt2x00_led
*led
,
256 led
->rt2x00dev
= rt2x00dev
;
258 led
->led_dev
.brightness_set
= rt73usb_brightness_set
;
259 led
->led_dev
.blink_set
= rt73usb_blink_set
;
260 led
->flags
= LED_INITIALIZED
;
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
265 * Configuration handlers.
267 static int rt73usb_config_shared_key(struct rt2x00_dev
*rt2x00dev
,
268 struct rt2x00lib_crypto
*crypto
,
269 struct ieee80211_key_conf
*key
)
271 struct hw_key_entry key_entry
;
272 struct rt2x00_field32 field
;
277 if (crypto
->cmd
== SET_KEY
) {
279 * rt2x00lib can't determine the correct free
280 * key_idx for shared keys. We have 1 register
281 * with key valid bits. The goal is simple, read
282 * the register, if that is full we have no slots
284 * Note that each BSS is allowed to have up to 4
285 * shared keys, so put a mask over the allowed
288 mask
= (0xf << crypto
->bssidx
);
290 rt2x00usb_register_read(rt2x00dev
, SEC_CSR0
, ®
);
293 if (reg
&& reg
== mask
)
296 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
299 * Upload key to hardware
301 memcpy(key_entry
.key
, crypto
->key
,
302 sizeof(key_entry
.key
));
303 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
304 sizeof(key_entry
.tx_mic
));
305 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
306 sizeof(key_entry
.rx_mic
));
308 reg
= SHARED_KEY_ENTRY(key
->hw_key_idx
);
309 timeout
= REGISTER_TIMEOUT32(sizeof(key_entry
));
310 rt2x00usb_vendor_request_large_buff(rt2x00dev
, USB_MULTI_WRITE
,
311 USB_VENDOR_REQUEST_OUT
, reg
,
317 * The cipher types are stored over 2 registers.
318 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
319 * bssidx 1 and 2 keys are stored in SEC_CSR5.
320 * Using the correct defines correctly will cause overhead,
321 * so just calculate the correct offset.
323 if (key
->hw_key_idx
< 8) {
324 field
.bit_offset
= (3 * key
->hw_key_idx
);
325 field
.bit_mask
= 0x7 << field
.bit_offset
;
327 rt2x00usb_register_read(rt2x00dev
, SEC_CSR1
, ®
);
328 rt2x00_set_field32(®
, field
, crypto
->cipher
);
329 rt2x00usb_register_write(rt2x00dev
, SEC_CSR1
, reg
);
331 field
.bit_offset
= (3 * (key
->hw_key_idx
- 8));
332 field
.bit_mask
= 0x7 << field
.bit_offset
;
334 rt2x00usb_register_read(rt2x00dev
, SEC_CSR5
, ®
);
335 rt2x00_set_field32(®
, field
, crypto
->cipher
);
336 rt2x00usb_register_write(rt2x00dev
, SEC_CSR5
, reg
);
340 * The driver does not support the IV/EIV generation
341 * in hardware. However it doesn't support the IV/EIV
342 * inside the ieee80211 frame either, but requires it
343 * to be provided separately for the descriptor.
344 * rt2x00lib will cut the IV/EIV data out of all frames
345 * given to us by mac80211, but we must tell mac80211
346 * to generate the IV/EIV data.
348 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
352 * SEC_CSR0 contains only single-bit fields to indicate
353 * a particular key is valid. Because using the FIELD32()
354 * defines directly will cause a lot of overhead we use
355 * a calculation to determine the correct bit directly.
357 mask
= 1 << key
->hw_key_idx
;
359 rt2x00usb_register_read(rt2x00dev
, SEC_CSR0
, ®
);
360 if (crypto
->cmd
== SET_KEY
)
362 else if (crypto
->cmd
== DISABLE_KEY
)
364 rt2x00usb_register_write(rt2x00dev
, SEC_CSR0
, reg
);
369 static int rt73usb_config_pairwise_key(struct rt2x00_dev
*rt2x00dev
,
370 struct rt2x00lib_crypto
*crypto
,
371 struct ieee80211_key_conf
*key
)
373 struct hw_pairwise_ta_entry addr_entry
;
374 struct hw_key_entry key_entry
;
379 if (crypto
->cmd
== SET_KEY
) {
381 * rt2x00lib can't determine the correct free
382 * key_idx for pairwise keys. We have 2 registers
383 * with key valid bits. The goal is simple, read
384 * the first register, if that is full move to
386 * When both registers are full, we drop the key,
387 * otherwise we use the first invalid entry.
389 rt2x00usb_register_read(rt2x00dev
, SEC_CSR2
, ®
);
390 if (reg
&& reg
== ~0) {
391 key
->hw_key_idx
= 32;
392 rt2x00usb_register_read(rt2x00dev
, SEC_CSR3
, ®
);
393 if (reg
&& reg
== ~0)
397 key
->hw_key_idx
+= reg
? ffz(reg
) : 0;
400 * Upload key to hardware
402 memcpy(key_entry
.key
, crypto
->key
,
403 sizeof(key_entry
.key
));
404 memcpy(key_entry
.tx_mic
, crypto
->tx_mic
,
405 sizeof(key_entry
.tx_mic
));
406 memcpy(key_entry
.rx_mic
, crypto
->rx_mic
,
407 sizeof(key_entry
.rx_mic
));
409 reg
= PAIRWISE_KEY_ENTRY(key
->hw_key_idx
);
410 timeout
= REGISTER_TIMEOUT32(sizeof(key_entry
));
411 rt2x00usb_vendor_request_large_buff(rt2x00dev
, USB_MULTI_WRITE
,
412 USB_VENDOR_REQUEST_OUT
, reg
,
418 * Send the address and cipher type to the hardware register.
419 * This data fits within the CSR cache size, so we can use
420 * rt2x00usb_register_multiwrite() directly.
422 memset(&addr_entry
, 0, sizeof(addr_entry
));
423 memcpy(&addr_entry
, crypto
->address
, ETH_ALEN
);
424 addr_entry
.cipher
= crypto
->cipher
;
426 reg
= PAIRWISE_TA_ENTRY(key
->hw_key_idx
);
427 rt2x00usb_register_multiwrite(rt2x00dev
, reg
,
428 &addr_entry
, sizeof(addr_entry
));
431 * Enable pairwise lookup table for given BSS idx,
432 * without this received frames will not be decrypted
435 rt2x00usb_register_read(rt2x00dev
, SEC_CSR4
, ®
);
436 reg
|= (1 << crypto
->bssidx
);
437 rt2x00usb_register_write(rt2x00dev
, SEC_CSR4
, reg
);
440 * The driver does not support the IV/EIV generation
441 * in hardware. However it doesn't support the IV/EIV
442 * inside the ieee80211 frame either, but requires it
443 * to be provided separately for the descriptor.
444 * rt2x00lib will cut the IV/EIV data out of all frames
445 * given to us by mac80211, but we must tell mac80211
446 * to generate the IV/EIV data.
448 key
->flags
|= IEEE80211_KEY_FLAG_GENERATE_IV
;
452 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
453 * a particular key is valid. Because using the FIELD32()
454 * defines directly will cause a lot of overhead we use
455 * a calculation to determine the correct bit directly.
457 if (key
->hw_key_idx
< 32) {
458 mask
= 1 << key
->hw_key_idx
;
460 rt2x00usb_register_read(rt2x00dev
, SEC_CSR2
, ®
);
461 if (crypto
->cmd
== SET_KEY
)
463 else if (crypto
->cmd
== DISABLE_KEY
)
465 rt2x00usb_register_write(rt2x00dev
, SEC_CSR2
, reg
);
467 mask
= 1 << (key
->hw_key_idx
- 32);
469 rt2x00usb_register_read(rt2x00dev
, SEC_CSR3
, ®
);
470 if (crypto
->cmd
== SET_KEY
)
472 else if (crypto
->cmd
== DISABLE_KEY
)
474 rt2x00usb_register_write(rt2x00dev
, SEC_CSR3
, reg
);
480 static void rt73usb_config_filter(struct rt2x00_dev
*rt2x00dev
,
481 const unsigned int filter_flags
)
486 * Start configuration steps.
487 * Note that the version error will always be dropped
488 * and broadcast frames will always be accepted since
489 * there is no filter for it at this time.
491 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
492 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CRC
,
493 !(filter_flags
& FIF_FCSFAIL
));
494 rt2x00_set_field32(®
, TXRX_CSR0_DROP_PHYSICAL
,
495 !(filter_flags
& FIF_PLCPFAIL
));
496 rt2x00_set_field32(®
, TXRX_CSR0_DROP_CONTROL
,
497 !(filter_flags
& (FIF_CONTROL
| FIF_PSPOLL
)));
498 rt2x00_set_field32(®
, TXRX_CSR0_DROP_NOT_TO_ME
,
499 !(filter_flags
& FIF_PROMISC_IN_BSS
));
500 rt2x00_set_field32(®
, TXRX_CSR0_DROP_TO_DS
,
501 !(filter_flags
& FIF_PROMISC_IN_BSS
) &&
502 !rt2x00dev
->intf_ap_count
);
503 rt2x00_set_field32(®
, TXRX_CSR0_DROP_VERSION_ERROR
, 1);
504 rt2x00_set_field32(®
, TXRX_CSR0_DROP_MULTICAST
,
505 !(filter_flags
& FIF_ALLMULTI
));
506 rt2x00_set_field32(®
, TXRX_CSR0_DROP_BROADCAST
, 0);
507 rt2x00_set_field32(®
, TXRX_CSR0_DROP_ACK_CTS
,
508 !(filter_flags
& FIF_CONTROL
));
509 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
512 static void rt73usb_config_intf(struct rt2x00_dev
*rt2x00dev
,
513 struct rt2x00_intf
*intf
,
514 struct rt2x00intf_conf
*conf
,
515 const unsigned int flags
)
517 unsigned int beacon_base
;
520 if (flags
& CONFIG_UPDATE_TYPE
) {
522 * Clear current synchronisation setup.
523 * For the Beacon base registers we only need to clear
524 * the first byte since that byte contains the VALID and OWNER
525 * bits which (when set to 0) will invalidate the entire beacon.
527 beacon_base
= HW_BEACON_OFFSET(intf
->beacon
->entry_idx
);
528 rt2x00usb_register_write(rt2x00dev
, beacon_base
, 0);
531 * Enable synchronisation.
533 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
534 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
535 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, conf
->sync
);
536 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
537 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
540 if (flags
& CONFIG_UPDATE_MAC
) {
541 reg
= le32_to_cpu(conf
->mac
[1]);
542 rt2x00_set_field32(®
, MAC_CSR3_UNICAST_TO_ME_MASK
, 0xff);
543 conf
->mac
[1] = cpu_to_le32(reg
);
545 rt2x00usb_register_multiwrite(rt2x00dev
, MAC_CSR2
,
546 conf
->mac
, sizeof(conf
->mac
));
549 if (flags
& CONFIG_UPDATE_BSSID
) {
550 reg
= le32_to_cpu(conf
->bssid
[1]);
551 rt2x00_set_field32(®
, MAC_CSR5_BSS_ID_MASK
, 3);
552 conf
->bssid
[1] = cpu_to_le32(reg
);
554 rt2x00usb_register_multiwrite(rt2x00dev
, MAC_CSR4
,
555 conf
->bssid
, sizeof(conf
->bssid
));
559 static void rt73usb_config_erp(struct rt2x00_dev
*rt2x00dev
,
560 struct rt2x00lib_erp
*erp
)
564 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
565 rt2x00_set_field32(®
, TXRX_CSR0_RX_ACK_TIMEOUT
, 0x32);
566 rt2x00_set_field32(®
, TXRX_CSR0_TSF_OFFSET
, IEEE80211_HEADER
);
567 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
569 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
570 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_ENABLE
, 1);
571 rt2x00_set_field32(®
, TXRX_CSR4_AUTORESPOND_PREAMBLE
,
572 !!erp
->short_preamble
);
573 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
575 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR5
, erp
->basic_rates
);
577 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
578 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
,
579 erp
->beacon_int
* 16);
580 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
582 rt2x00usb_register_read(rt2x00dev
, MAC_CSR9
, ®
);
583 rt2x00_set_field32(®
, MAC_CSR9_SLOT_TIME
, erp
->slot_time
);
584 rt2x00usb_register_write(rt2x00dev
, MAC_CSR9
, reg
);
586 rt2x00usb_register_read(rt2x00dev
, MAC_CSR8
, ®
);
587 rt2x00_set_field32(®
, MAC_CSR8_SIFS
, erp
->sifs
);
588 rt2x00_set_field32(®
, MAC_CSR8_SIFS_AFTER_RX_OFDM
, 3);
589 rt2x00_set_field32(®
, MAC_CSR8_EIFS
, erp
->eifs
);
590 rt2x00usb_register_write(rt2x00dev
, MAC_CSR8
, reg
);
593 static void rt73usb_config_antenna_5x(struct rt2x00_dev
*rt2x00dev
,
594 struct antenna_setup
*ant
)
601 rt73usb_bbp_read(rt2x00dev
, 3, &r3
);
602 rt73usb_bbp_read(rt2x00dev
, 4, &r4
);
603 rt73usb_bbp_read(rt2x00dev
, 77, &r77
);
605 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, 0);
608 * Configure the RX antenna.
611 case ANTENNA_HW_DIVERSITY
:
612 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
613 temp
= !test_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
)
614 && (rt2x00dev
->curr_band
!= IEEE80211_BAND_5GHZ
);
615 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, temp
);
618 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
619 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
620 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
621 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
623 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
627 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
628 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
, 0);
629 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
)
630 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
632 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
636 rt73usb_bbp_write(rt2x00dev
, 77, r77
);
637 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
638 rt73usb_bbp_write(rt2x00dev
, 4, r4
);
641 static void rt73usb_config_antenna_2x(struct rt2x00_dev
*rt2x00dev
,
642 struct antenna_setup
*ant
)
648 rt73usb_bbp_read(rt2x00dev
, 3, &r3
);
649 rt73usb_bbp_read(rt2x00dev
, 4, &r4
);
650 rt73usb_bbp_read(rt2x00dev
, 77, &r77
);
652 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, 0);
653 rt2x00_set_field8(&r4
, BBP_R4_RX_FRAME_END
,
654 !test_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
));
657 * Configure the RX antenna.
660 case ANTENNA_HW_DIVERSITY
:
661 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 2);
664 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 3);
665 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
669 rt2x00_set_field8(&r77
, BBP_R77_RX_ANTENNA
, 0);
670 rt2x00_set_field8(&r4
, BBP_R4_RX_ANTENNA_CONTROL
, 1);
674 rt73usb_bbp_write(rt2x00dev
, 77, r77
);
675 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
676 rt73usb_bbp_write(rt2x00dev
, 4, r4
);
682 * value[0] -> non-LNA
688 static const struct antenna_sel antenna_sel_a
[] = {
689 { 96, { 0x58, 0x78 } },
690 { 104, { 0x38, 0x48 } },
691 { 75, { 0xfe, 0x80 } },
692 { 86, { 0xfe, 0x80 } },
693 { 88, { 0xfe, 0x80 } },
694 { 35, { 0x60, 0x60 } },
695 { 97, { 0x58, 0x58 } },
696 { 98, { 0x58, 0x58 } },
699 static const struct antenna_sel antenna_sel_bg
[] = {
700 { 96, { 0x48, 0x68 } },
701 { 104, { 0x2c, 0x3c } },
702 { 75, { 0xfe, 0x80 } },
703 { 86, { 0xfe, 0x80 } },
704 { 88, { 0xfe, 0x80 } },
705 { 35, { 0x50, 0x50 } },
706 { 97, { 0x48, 0x48 } },
707 { 98, { 0x48, 0x48 } },
710 static void rt73usb_config_ant(struct rt2x00_dev
*rt2x00dev
,
711 struct antenna_setup
*ant
)
713 const struct antenna_sel
*sel
;
719 * We should never come here because rt2x00lib is supposed
720 * to catch this and send us the correct antenna explicitely.
722 BUG_ON(ant
->rx
== ANTENNA_SW_DIVERSITY
||
723 ant
->tx
== ANTENNA_SW_DIVERSITY
);
725 if (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
) {
727 lna
= test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
729 sel
= antenna_sel_bg
;
730 lna
= test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
733 for (i
= 0; i
< ARRAY_SIZE(antenna_sel_a
); i
++)
734 rt73usb_bbp_write(rt2x00dev
, sel
[i
].word
, sel
[i
].value
[lna
]);
736 rt2x00usb_register_read(rt2x00dev
, PHY_CSR0
, ®
);
738 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_BG
,
739 (rt2x00dev
->curr_band
== IEEE80211_BAND_2GHZ
));
740 rt2x00_set_field32(®
, PHY_CSR0_PA_PE_A
,
741 (rt2x00dev
->curr_band
== IEEE80211_BAND_5GHZ
));
743 rt2x00usb_register_write(rt2x00dev
, PHY_CSR0
, reg
);
745 if (rt2x00_rf(rt2x00dev
, RF5226
) || rt2x00_rf(rt2x00dev
, RF5225
))
746 rt73usb_config_antenna_5x(rt2x00dev
, ant
);
747 else if (rt2x00_rf(rt2x00dev
, RF2528
) || rt2x00_rf(rt2x00dev
, RF2527
))
748 rt73usb_config_antenna_2x(rt2x00dev
, ant
);
751 static void rt73usb_config_lna_gain(struct rt2x00_dev
*rt2x00dev
,
752 struct rt2x00lib_conf
*libconf
)
757 if (libconf
->conf
->channel
->band
== IEEE80211_BAND_2GHZ
) {
758 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
))
761 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &eeprom
);
762 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_BG_1
);
764 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &eeprom
);
765 lna_gain
-= rt2x00_get_field16(eeprom
, EEPROM_RSSI_OFFSET_A_1
);
768 rt2x00dev
->lna_gain
= lna_gain
;
771 static void rt73usb_config_channel(struct rt2x00_dev
*rt2x00dev
,
772 struct rf_channel
*rf
, const int txpower
)
778 rt2x00_set_field32(&rf
->rf3
, RF3_TXPOWER
, TXPOWER_TO_DEV(txpower
));
779 rt2x00_set_field32(&rf
->rf4
, RF4_FREQ_OFFSET
, rt2x00dev
->freq_offset
);
781 smart
= !(rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
));
783 rt73usb_bbp_read(rt2x00dev
, 3, &r3
);
784 rt2x00_set_field8(&r3
, BBP_R3_SMART_MODE
, smart
);
785 rt73usb_bbp_write(rt2x00dev
, 3, r3
);
788 if (txpower
> MAX_TXPOWER
&& txpower
<= (MAX_TXPOWER
+ r94
))
789 r94
+= txpower
- MAX_TXPOWER
;
790 else if (txpower
< MIN_TXPOWER
&& txpower
>= (MIN_TXPOWER
- r94
))
792 rt73usb_bbp_write(rt2x00dev
, 94, r94
);
794 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
795 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
796 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
797 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
799 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
800 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
801 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
| 0x00000004);
802 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
804 rt73usb_rf_write(rt2x00dev
, 1, rf
->rf1
);
805 rt73usb_rf_write(rt2x00dev
, 2, rf
->rf2
);
806 rt73usb_rf_write(rt2x00dev
, 3, rf
->rf3
& ~0x00000004);
807 rt73usb_rf_write(rt2x00dev
, 4, rf
->rf4
);
812 static void rt73usb_config_txpower(struct rt2x00_dev
*rt2x00dev
,
815 struct rf_channel rf
;
817 rt2x00_rf_read(rt2x00dev
, 1, &rf
.rf1
);
818 rt2x00_rf_read(rt2x00dev
, 2, &rf
.rf2
);
819 rt2x00_rf_read(rt2x00dev
, 3, &rf
.rf3
);
820 rt2x00_rf_read(rt2x00dev
, 4, &rf
.rf4
);
822 rt73usb_config_channel(rt2x00dev
, &rf
, txpower
);
825 static void rt73usb_config_retry_limit(struct rt2x00_dev
*rt2x00dev
,
826 struct rt2x00lib_conf
*libconf
)
830 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR4
, ®
);
831 rt2x00_set_field32(®
, TXRX_CSR4_LONG_RETRY_LIMIT
,
832 libconf
->conf
->long_frame_max_tx_count
);
833 rt2x00_set_field32(®
, TXRX_CSR4_SHORT_RETRY_LIMIT
,
834 libconf
->conf
->short_frame_max_tx_count
);
835 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR4
, reg
);
838 static void rt73usb_config_ps(struct rt2x00_dev
*rt2x00dev
,
839 struct rt2x00lib_conf
*libconf
)
841 enum dev_state state
=
842 (libconf
->conf
->flags
& IEEE80211_CONF_PS
) ?
843 STATE_SLEEP
: STATE_AWAKE
;
846 if (state
== STATE_SLEEP
) {
847 rt2x00usb_register_read(rt2x00dev
, MAC_CSR11
, ®
);
848 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
,
849 rt2x00dev
->beacon_int
- 10);
850 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
,
851 libconf
->conf
->listen_interval
- 1);
852 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 5);
854 /* We must first disable autowake before it can be enabled */
855 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
856 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
858 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 1);
859 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
861 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0,
862 USB_MODE_SLEEP
, REGISTER_TIMEOUT
);
864 rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
, 0,
865 USB_MODE_WAKEUP
, REGISTER_TIMEOUT
);
867 rt2x00usb_register_read(rt2x00dev
, MAC_CSR11
, ®
);
868 rt2x00_set_field32(®
, MAC_CSR11_DELAY_AFTER_TBCN
, 0);
869 rt2x00_set_field32(®
, MAC_CSR11_TBCN_BEFORE_WAKEUP
, 0);
870 rt2x00_set_field32(®
, MAC_CSR11_AUTOWAKE
, 0);
871 rt2x00_set_field32(®
, MAC_CSR11_WAKEUP_LATENCY
, 0);
872 rt2x00usb_register_write(rt2x00dev
, MAC_CSR11
, reg
);
876 static void rt73usb_config(struct rt2x00_dev
*rt2x00dev
,
877 struct rt2x00lib_conf
*libconf
,
878 const unsigned int flags
)
880 /* Always recalculate LNA gain before changing configuration */
881 rt73usb_config_lna_gain(rt2x00dev
, libconf
);
883 if (flags
& IEEE80211_CONF_CHANGE_CHANNEL
)
884 rt73usb_config_channel(rt2x00dev
, &libconf
->rf
,
885 libconf
->conf
->power_level
);
886 if ((flags
& IEEE80211_CONF_CHANGE_POWER
) &&
887 !(flags
& IEEE80211_CONF_CHANGE_CHANNEL
))
888 rt73usb_config_txpower(rt2x00dev
, libconf
->conf
->power_level
);
889 if (flags
& IEEE80211_CONF_CHANGE_RETRY_LIMITS
)
890 rt73usb_config_retry_limit(rt2x00dev
, libconf
);
891 if (flags
& IEEE80211_CONF_CHANGE_PS
)
892 rt73usb_config_ps(rt2x00dev
, libconf
);
898 static void rt73usb_link_stats(struct rt2x00_dev
*rt2x00dev
,
899 struct link_qual
*qual
)
904 * Update FCS error count from register.
906 rt2x00usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
907 qual
->rx_failed
= rt2x00_get_field32(reg
, STA_CSR0_FCS_ERROR
);
910 * Update False CCA count from register.
912 rt2x00usb_register_read(rt2x00dev
, STA_CSR1
, ®
);
913 qual
->false_cca
= rt2x00_get_field32(reg
, STA_CSR1_FALSE_CCA_ERROR
);
916 static inline void rt73usb_set_vgc(struct rt2x00_dev
*rt2x00dev
,
917 struct link_qual
*qual
, u8 vgc_level
)
919 if (qual
->vgc_level
!= vgc_level
) {
920 rt73usb_bbp_write(rt2x00dev
, 17, vgc_level
);
921 qual
->vgc_level
= vgc_level
;
922 qual
->vgc_level_reg
= vgc_level
;
926 static void rt73usb_reset_tuner(struct rt2x00_dev
*rt2x00dev
,
927 struct link_qual
*qual
)
929 rt73usb_set_vgc(rt2x00dev
, qual
, 0x20);
932 static void rt73usb_link_tuner(struct rt2x00_dev
*rt2x00dev
,
933 struct link_qual
*qual
, const u32 count
)
939 * Determine r17 bounds.
941 if (rt2x00dev
->rx_status
.band
== IEEE80211_BAND_5GHZ
) {
945 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
)) {
950 if (qual
->rssi
> -82) {
953 } else if (qual
->rssi
> -84) {
961 if (test_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
)) {
968 * If we are not associated, we should go straight to the
969 * dynamic CCA tuning.
971 if (!rt2x00dev
->intf_associated
)
972 goto dynamic_cca_tune
;
975 * Special big-R17 for very short distance
977 if (qual
->rssi
> -35) {
978 rt73usb_set_vgc(rt2x00dev
, qual
, 0x60);
983 * Special big-R17 for short distance
985 if (qual
->rssi
>= -58) {
986 rt73usb_set_vgc(rt2x00dev
, qual
, up_bound
);
991 * Special big-R17 for middle-short distance
993 if (qual
->rssi
>= -66) {
994 rt73usb_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x10);
999 * Special mid-R17 for middle distance
1001 if (qual
->rssi
>= -74) {
1002 rt73usb_set_vgc(rt2x00dev
, qual
, low_bound
+ 0x08);
1007 * Special case: Change up_bound based on the rssi.
1008 * Lower up_bound when rssi is weaker then -74 dBm.
1010 up_bound
-= 2 * (-74 - qual
->rssi
);
1011 if (low_bound
> up_bound
)
1012 up_bound
= low_bound
;
1014 if (qual
->vgc_level
> up_bound
) {
1015 rt73usb_set_vgc(rt2x00dev
, qual
, up_bound
);
1022 * r17 does not yet exceed upper limit, continue and base
1023 * the r17 tuning on the false CCA count.
1025 if ((qual
->false_cca
> 512) && (qual
->vgc_level
< up_bound
))
1026 rt73usb_set_vgc(rt2x00dev
, qual
,
1027 min_t(u8
, qual
->vgc_level
+ 4, up_bound
));
1028 else if ((qual
->false_cca
< 100) && (qual
->vgc_level
> low_bound
))
1029 rt73usb_set_vgc(rt2x00dev
, qual
,
1030 max_t(u8
, qual
->vgc_level
- 4, low_bound
));
1034 * Firmware functions
1036 static char *rt73usb_get_firmware_name(struct rt2x00_dev
*rt2x00dev
)
1038 return FIRMWARE_RT2571
;
1041 static int rt73usb_check_firmware(struct rt2x00_dev
*rt2x00dev
,
1042 const u8
*data
, const size_t len
)
1048 * Only support 2kb firmware files.
1051 return FW_BAD_LENGTH
;
1054 * The last 2 bytes in the firmware array are the crc checksum itself,
1055 * this means that we should never pass those 2 bytes to the crc
1058 fw_crc
= (data
[len
- 2] << 8 | data
[len
- 1]);
1061 * Use the crc itu-t algorithm.
1063 crc
= crc_itu_t(0, data
, len
- 2);
1064 crc
= crc_itu_t_byte(crc
, 0);
1065 crc
= crc_itu_t_byte(crc
, 0);
1067 return (fw_crc
== crc
) ? FW_OK
: FW_BAD_CRC
;
1070 static int rt73usb_load_firmware(struct rt2x00_dev
*rt2x00dev
,
1071 const u8
*data
, const size_t len
)
1078 * Wait for stable hardware.
1080 for (i
= 0; i
< 100; i
++) {
1081 rt2x00usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1088 ERROR(rt2x00dev
, "Unstable hardware.\n");
1093 * Write firmware to device.
1095 rt2x00usb_vendor_request_large_buff(rt2x00dev
, USB_MULTI_WRITE
,
1096 USB_VENDOR_REQUEST_OUT
,
1097 FIRMWARE_IMAGE_BASE
,
1099 REGISTER_TIMEOUT32(len
));
1102 * Send firmware request to device to load firmware,
1103 * we need to specify a long timeout time.
1105 status
= rt2x00usb_vendor_request_sw(rt2x00dev
, USB_DEVICE_MODE
,
1106 0, USB_MODE_FIRMWARE
,
1107 REGISTER_TIMEOUT_FIRMWARE
);
1109 ERROR(rt2x00dev
, "Failed to write Firmware to device.\n");
1117 * Initialization functions.
1119 static int rt73usb_init_registers(struct rt2x00_dev
*rt2x00dev
)
1123 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1124 rt2x00_set_field32(®
, TXRX_CSR0_AUTO_TX_SEQ
, 1);
1125 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
, 0);
1126 rt2x00_set_field32(®
, TXRX_CSR0_TX_WITHOUT_WAITING
, 0);
1127 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1129 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR1
, ®
);
1130 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0
, 47); /* CCK Signal */
1131 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID0_VALID
, 1);
1132 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1
, 30); /* Rssi */
1133 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID1_VALID
, 1);
1134 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2
, 42); /* OFDM Rate */
1135 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID2_VALID
, 1);
1136 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3
, 30); /* Rssi */
1137 rt2x00_set_field32(®
, TXRX_CSR1_BBP_ID3_VALID
, 1);
1138 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR1
, reg
);
1141 * CCK TXD BBP registers
1143 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR2
, ®
);
1144 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0
, 13);
1145 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID0_VALID
, 1);
1146 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1
, 12);
1147 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID1_VALID
, 1);
1148 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2
, 11);
1149 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID2_VALID
, 1);
1150 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3
, 10);
1151 rt2x00_set_field32(®
, TXRX_CSR2_BBP_ID3_VALID
, 1);
1152 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR2
, reg
);
1155 * OFDM TXD BBP registers
1157 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR3
, ®
);
1158 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0
, 7);
1159 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID0_VALID
, 1);
1160 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1
, 6);
1161 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID1_VALID
, 1);
1162 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2
, 5);
1163 rt2x00_set_field32(®
, TXRX_CSR3_BBP_ID2_VALID
, 1);
1164 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR3
, reg
);
1166 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR7
, ®
);
1167 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_6MBS
, 59);
1168 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_9MBS
, 53);
1169 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_12MBS
, 49);
1170 rt2x00_set_field32(®
, TXRX_CSR7_ACK_CTS_18MBS
, 46);
1171 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR7
, reg
);
1173 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR8
, ®
);
1174 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_24MBS
, 44);
1175 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_36MBS
, 42);
1176 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_48MBS
, 42);
1177 rt2x00_set_field32(®
, TXRX_CSR8_ACK_CTS_54MBS
, 42);
1178 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR8
, reg
);
1180 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1181 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_INTERVAL
, 0);
1182 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 0);
1183 rt2x00_set_field32(®
, TXRX_CSR9_TSF_SYNC
, 0);
1184 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 0);
1185 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1186 rt2x00_set_field32(®
, TXRX_CSR9_TIMESTAMP_COMPENSATE
, 0);
1187 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1189 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR15
, 0x0000000f);
1191 rt2x00usb_register_read(rt2x00dev
, MAC_CSR6
, ®
);
1192 rt2x00_set_field32(®
, MAC_CSR6_MAX_FRAME_UNIT
, 0xfff);
1193 rt2x00usb_register_write(rt2x00dev
, MAC_CSR6
, reg
);
1195 rt2x00usb_register_write(rt2x00dev
, MAC_CSR10
, 0x00000718);
1197 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
1200 rt2x00usb_register_write(rt2x00dev
, MAC_CSR13
, 0x00007f00);
1203 * Invalidate all Shared Keys (SEC_CSR0),
1204 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1206 rt2x00usb_register_write(rt2x00dev
, SEC_CSR0
, 0x00000000);
1207 rt2x00usb_register_write(rt2x00dev
, SEC_CSR1
, 0x00000000);
1208 rt2x00usb_register_write(rt2x00dev
, SEC_CSR5
, 0x00000000);
1211 if (rt2x00_rf(rt2x00dev
, RF5225
) || rt2x00_rf(rt2x00dev
, RF2527
))
1212 rt2x00_set_field32(®
, PHY_CSR1_RF_RPI
, 1);
1213 rt2x00usb_register_write(rt2x00dev
, PHY_CSR1
, reg
);
1215 rt2x00usb_register_write(rt2x00dev
, PHY_CSR5
, 0x00040a06);
1216 rt2x00usb_register_write(rt2x00dev
, PHY_CSR6
, 0x00080606);
1217 rt2x00usb_register_write(rt2x00dev
, PHY_CSR7
, 0x00000408);
1219 rt2x00usb_register_read(rt2x00dev
, MAC_CSR9
, ®
);
1220 rt2x00_set_field32(®
, MAC_CSR9_CW_SELECT
, 0);
1221 rt2x00usb_register_write(rt2x00dev
, MAC_CSR9
, reg
);
1225 * For the Beacon base registers we only need to clear
1226 * the first byte since that byte contains the VALID and OWNER
1227 * bits which (when set to 0) will invalidate the entire beacon.
1229 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE0
, 0);
1230 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE1
, 0);
1231 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE2
, 0);
1232 rt2x00usb_register_write(rt2x00dev
, HW_BEACON_BASE3
, 0);
1235 * We must clear the error counters.
1236 * These registers are cleared on read,
1237 * so we may pass a useless variable to store the value.
1239 rt2x00usb_register_read(rt2x00dev
, STA_CSR0
, ®
);
1240 rt2x00usb_register_read(rt2x00dev
, STA_CSR1
, ®
);
1241 rt2x00usb_register_read(rt2x00dev
, STA_CSR2
, ®
);
1244 * Reset MAC and BBP registers.
1246 rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1247 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 1);
1248 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 1);
1249 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1251 rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1252 rt2x00_set_field32(®
, MAC_CSR1_SOFT_RESET
, 0);
1253 rt2x00_set_field32(®
, MAC_CSR1_BBP_RESET
, 0);
1254 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1256 rt2x00usb_register_read(rt2x00dev
, MAC_CSR1
, ®
);
1257 rt2x00_set_field32(®
, MAC_CSR1_HOST_READY
, 1);
1258 rt2x00usb_register_write(rt2x00dev
, MAC_CSR1
, reg
);
1263 static int rt73usb_wait_bbp_ready(struct rt2x00_dev
*rt2x00dev
)
1268 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1269 rt73usb_bbp_read(rt2x00dev
, 0, &value
);
1270 if ((value
!= 0xff) && (value
!= 0x00))
1272 udelay(REGISTER_BUSY_DELAY
);
1275 ERROR(rt2x00dev
, "BBP register access failed, aborting.\n");
1279 static int rt73usb_init_bbp(struct rt2x00_dev
*rt2x00dev
)
1286 if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev
)))
1289 rt73usb_bbp_write(rt2x00dev
, 3, 0x80);
1290 rt73usb_bbp_write(rt2x00dev
, 15, 0x30);
1291 rt73usb_bbp_write(rt2x00dev
, 21, 0xc8);
1292 rt73usb_bbp_write(rt2x00dev
, 22, 0x38);
1293 rt73usb_bbp_write(rt2x00dev
, 23, 0x06);
1294 rt73usb_bbp_write(rt2x00dev
, 24, 0xfe);
1295 rt73usb_bbp_write(rt2x00dev
, 25, 0x0a);
1296 rt73usb_bbp_write(rt2x00dev
, 26, 0x0d);
1297 rt73usb_bbp_write(rt2x00dev
, 32, 0x0b);
1298 rt73usb_bbp_write(rt2x00dev
, 34, 0x12);
1299 rt73usb_bbp_write(rt2x00dev
, 37, 0x07);
1300 rt73usb_bbp_write(rt2x00dev
, 39, 0xf8);
1301 rt73usb_bbp_write(rt2x00dev
, 41, 0x60);
1302 rt73usb_bbp_write(rt2x00dev
, 53, 0x10);
1303 rt73usb_bbp_write(rt2x00dev
, 54, 0x18);
1304 rt73usb_bbp_write(rt2x00dev
, 60, 0x10);
1305 rt73usb_bbp_write(rt2x00dev
, 61, 0x04);
1306 rt73usb_bbp_write(rt2x00dev
, 62, 0x04);
1307 rt73usb_bbp_write(rt2x00dev
, 75, 0xfe);
1308 rt73usb_bbp_write(rt2x00dev
, 86, 0xfe);
1309 rt73usb_bbp_write(rt2x00dev
, 88, 0xfe);
1310 rt73usb_bbp_write(rt2x00dev
, 90, 0x0f);
1311 rt73usb_bbp_write(rt2x00dev
, 99, 0x00);
1312 rt73usb_bbp_write(rt2x00dev
, 102, 0x16);
1313 rt73usb_bbp_write(rt2x00dev
, 107, 0x04);
1315 for (i
= 0; i
< EEPROM_BBP_SIZE
; i
++) {
1316 rt2x00_eeprom_read(rt2x00dev
, EEPROM_BBP_START
+ i
, &eeprom
);
1318 if (eeprom
!= 0xffff && eeprom
!= 0x0000) {
1319 reg_id
= rt2x00_get_field16(eeprom
, EEPROM_BBP_REG_ID
);
1320 value
= rt2x00_get_field16(eeprom
, EEPROM_BBP_VALUE
);
1321 rt73usb_bbp_write(rt2x00dev
, reg_id
, value
);
1329 * Device state switch handlers.
1331 static void rt73usb_toggle_rx(struct rt2x00_dev
*rt2x00dev
,
1332 enum dev_state state
)
1336 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR0
, ®
);
1337 rt2x00_set_field32(®
, TXRX_CSR0_DISABLE_RX
,
1338 (state
== STATE_RADIO_RX_OFF
) ||
1339 (state
== STATE_RADIO_RX_OFF_LINK
));
1340 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR0
, reg
);
1343 static int rt73usb_enable_radio(struct rt2x00_dev
*rt2x00dev
)
1346 * Initialize all registers.
1348 if (unlikely(rt73usb_init_registers(rt2x00dev
) ||
1349 rt73usb_init_bbp(rt2x00dev
)))
1355 static void rt73usb_disable_radio(struct rt2x00_dev
*rt2x00dev
)
1357 rt2x00usb_register_write(rt2x00dev
, MAC_CSR10
, 0x00001818);
1360 * Disable synchronisation.
1362 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, 0);
1364 rt2x00usb_disable_radio(rt2x00dev
);
1367 static int rt73usb_set_state(struct rt2x00_dev
*rt2x00dev
, enum dev_state state
)
1373 put_to_sleep
= (state
!= STATE_AWAKE
);
1375 rt2x00usb_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1376 rt2x00_set_field32(®
, MAC_CSR12_FORCE_WAKEUP
, !put_to_sleep
);
1377 rt2x00_set_field32(®
, MAC_CSR12_PUT_TO_SLEEP
, put_to_sleep
);
1378 rt2x00usb_register_write(rt2x00dev
, MAC_CSR12
, reg
);
1381 * Device is not guaranteed to be in the requested state yet.
1382 * We must wait until the register indicates that the
1383 * device has entered the correct state.
1385 for (i
= 0; i
< REGISTER_BUSY_COUNT
; i
++) {
1386 rt2x00usb_register_read(rt2x00dev
, MAC_CSR12
, ®
);
1387 state
= rt2x00_get_field32(reg
, MAC_CSR12_BBP_CURRENT_STATE
);
1388 if (state
== !put_to_sleep
)
1396 static int rt73usb_set_device_state(struct rt2x00_dev
*rt2x00dev
,
1397 enum dev_state state
)
1402 case STATE_RADIO_ON
:
1403 retval
= rt73usb_enable_radio(rt2x00dev
);
1405 case STATE_RADIO_OFF
:
1406 rt73usb_disable_radio(rt2x00dev
);
1408 case STATE_RADIO_RX_ON
:
1409 case STATE_RADIO_RX_ON_LINK
:
1410 case STATE_RADIO_RX_OFF
:
1411 case STATE_RADIO_RX_OFF_LINK
:
1412 rt73usb_toggle_rx(rt2x00dev
, state
);
1414 case STATE_RADIO_IRQ_ON
:
1415 case STATE_RADIO_IRQ_OFF
:
1416 /* No support, but no error either */
1418 case STATE_DEEP_SLEEP
:
1422 retval
= rt73usb_set_state(rt2x00dev
, state
);
1429 if (unlikely(retval
))
1430 ERROR(rt2x00dev
, "Device failed to enter state %d (%d).\n",
1437 * TX descriptor initialization
1439 static void rt73usb_write_tx_desc(struct rt2x00_dev
*rt2x00dev
,
1440 struct sk_buff
*skb
,
1441 struct txentry_desc
*txdesc
)
1443 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(skb
);
1444 __le32
*txd
= skbdesc
->desc
;
1448 * Start writing the descriptor words.
1450 rt2x00_desc_read(txd
, 1, &word
);
1451 rt2x00_set_field32(&word
, TXD_W1_HOST_Q_ID
, txdesc
->queue
);
1452 rt2x00_set_field32(&word
, TXD_W1_AIFSN
, txdesc
->aifs
);
1453 rt2x00_set_field32(&word
, TXD_W1_CWMIN
, txdesc
->cw_min
);
1454 rt2x00_set_field32(&word
, TXD_W1_CWMAX
, txdesc
->cw_max
);
1455 rt2x00_set_field32(&word
, TXD_W1_IV_OFFSET
, txdesc
->iv_offset
);
1456 rt2x00_set_field32(&word
, TXD_W1_HW_SEQUENCE
,
1457 test_bit(ENTRY_TXD_GENERATE_SEQ
, &txdesc
->flags
));
1458 rt2x00_desc_write(txd
, 1, word
);
1460 rt2x00_desc_read(txd
, 2, &word
);
1461 rt2x00_set_field32(&word
, TXD_W2_PLCP_SIGNAL
, txdesc
->signal
);
1462 rt2x00_set_field32(&word
, TXD_W2_PLCP_SERVICE
, txdesc
->service
);
1463 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_LOW
, txdesc
->length_low
);
1464 rt2x00_set_field32(&word
, TXD_W2_PLCP_LENGTH_HIGH
, txdesc
->length_high
);
1465 rt2x00_desc_write(txd
, 2, word
);
1467 if (test_bit(ENTRY_TXD_ENCRYPT
, &txdesc
->flags
)) {
1468 _rt2x00_desc_write(txd
, 3, skbdesc
->iv
[0]);
1469 _rt2x00_desc_write(txd
, 4, skbdesc
->iv
[1]);
1472 rt2x00_desc_read(txd
, 5, &word
);
1473 rt2x00_set_field32(&word
, TXD_W5_TX_POWER
,
1474 TXPOWER_TO_DEV(rt2x00dev
->tx_power
));
1475 rt2x00_set_field32(&word
, TXD_W5_WAITING_DMA_DONE_INT
, 1);
1476 rt2x00_desc_write(txd
, 5, word
);
1478 rt2x00_desc_read(txd
, 0, &word
);
1479 rt2x00_set_field32(&word
, TXD_W0_BURST
,
1480 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1481 rt2x00_set_field32(&word
, TXD_W0_VALID
, 1);
1482 rt2x00_set_field32(&word
, TXD_W0_MORE_FRAG
,
1483 test_bit(ENTRY_TXD_MORE_FRAG
, &txdesc
->flags
));
1484 rt2x00_set_field32(&word
, TXD_W0_ACK
,
1485 test_bit(ENTRY_TXD_ACK
, &txdesc
->flags
));
1486 rt2x00_set_field32(&word
, TXD_W0_TIMESTAMP
,
1487 test_bit(ENTRY_TXD_REQ_TIMESTAMP
, &txdesc
->flags
));
1488 rt2x00_set_field32(&word
, TXD_W0_OFDM
,
1489 (txdesc
->rate_mode
== RATE_MODE_OFDM
));
1490 rt2x00_set_field32(&word
, TXD_W0_IFS
, txdesc
->ifs
);
1491 rt2x00_set_field32(&word
, TXD_W0_RETRY_MODE
,
1492 test_bit(ENTRY_TXD_RETRY_MODE
, &txdesc
->flags
));
1493 rt2x00_set_field32(&word
, TXD_W0_TKIP_MIC
,
1494 test_bit(ENTRY_TXD_ENCRYPT_MMIC
, &txdesc
->flags
));
1495 rt2x00_set_field32(&word
, TXD_W0_KEY_TABLE
,
1496 test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE
, &txdesc
->flags
));
1497 rt2x00_set_field32(&word
, TXD_W0_KEY_INDEX
, txdesc
->key_idx
);
1498 rt2x00_set_field32(&word
, TXD_W0_DATABYTE_COUNT
, skb
->len
);
1499 rt2x00_set_field32(&word
, TXD_W0_BURST2
,
1500 test_bit(ENTRY_TXD_BURST
, &txdesc
->flags
));
1501 rt2x00_set_field32(&word
, TXD_W0_CIPHER_ALG
, txdesc
->cipher
);
1502 rt2x00_desc_write(txd
, 0, word
);
1506 * TX data initialization
1508 static void rt73usb_write_beacon(struct queue_entry
*entry
)
1510 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1511 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1512 unsigned int beacon_base
;
1516 * Add the descriptor in front of the skb.
1518 skb_push(entry
->skb
, entry
->queue
->desc_size
);
1519 memcpy(entry
->skb
->data
, skbdesc
->desc
, skbdesc
->desc_len
);
1520 skbdesc
->desc
= entry
->skb
->data
;
1523 * Disable beaconing while we are reloading the beacon data,
1524 * otherwise we might be sending out invalid data.
1526 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1527 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 0);
1528 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1531 * Write entire beacon with descriptor to register.
1533 beacon_base
= HW_BEACON_OFFSET(entry
->entry_idx
);
1534 rt2x00usb_vendor_request_large_buff(rt2x00dev
, USB_MULTI_WRITE
,
1535 USB_VENDOR_REQUEST_OUT
, beacon_base
,
1536 entry
->skb
->data
, entry
->skb
->len
,
1537 REGISTER_TIMEOUT32(entry
->skb
->len
));
1540 * Clean up the beacon skb.
1542 dev_kfree_skb(entry
->skb
);
1546 static int rt73usb_get_tx_data_len(struct queue_entry
*entry
)
1551 * The length _must_ be a multiple of 4,
1552 * but it must _not_ be a multiple of the USB packet size.
1554 length
= roundup(entry
->skb
->len
, 4);
1555 length
+= (4 * !(length
% entry
->queue
->usb_maxpacket
));
1560 static void rt73usb_kick_tx_queue(struct rt2x00_dev
*rt2x00dev
,
1561 const enum data_queue_qid queue
)
1565 if (queue
!= QID_BEACON
) {
1566 rt2x00usb_kick_tx_queue(rt2x00dev
, queue
);
1571 * For Wi-Fi faily generated beacons between participating stations.
1572 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1574 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR10
, 0x00001008);
1576 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR9
, ®
);
1577 if (!rt2x00_get_field32(reg
, TXRX_CSR9_BEACON_GEN
)) {
1578 rt2x00_set_field32(®
, TXRX_CSR9_TSF_TICKING
, 1);
1579 rt2x00_set_field32(®
, TXRX_CSR9_TBTT_ENABLE
, 1);
1580 rt2x00_set_field32(®
, TXRX_CSR9_BEACON_GEN
, 1);
1581 rt2x00usb_register_write(rt2x00dev
, TXRX_CSR9
, reg
);
1586 * RX control handlers
1588 static int rt73usb_agc_to_rssi(struct rt2x00_dev
*rt2x00dev
, int rxd_w1
)
1590 u8 offset
= rt2x00dev
->lna_gain
;
1593 lna
= rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_LNA
);
1608 if (rt2x00dev
->rx_status
.band
== IEEE80211_BAND_5GHZ
) {
1609 if (test_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
)) {
1610 if (lna
== 3 || lna
== 2)
1620 return rt2x00_get_field32(rxd_w1
, RXD_W1_RSSI_AGC
) * 2 - offset
;
1623 static void rt73usb_fill_rxdone(struct queue_entry
*entry
,
1624 struct rxdone_entry_desc
*rxdesc
)
1626 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
1627 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
1628 __le32
*rxd
= (__le32
*)entry
->skb
->data
;
1633 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1634 * frame data in rt2x00usb.
1636 memcpy(skbdesc
->desc
, rxd
, skbdesc
->desc_len
);
1637 rxd
= (__le32
*)skbdesc
->desc
;
1640 * It is now safe to read the descriptor on all architectures.
1642 rt2x00_desc_read(rxd
, 0, &word0
);
1643 rt2x00_desc_read(rxd
, 1, &word1
);
1645 if (rt2x00_get_field32(word0
, RXD_W0_CRC_ERROR
))
1646 rxdesc
->flags
|= RX_FLAG_FAILED_FCS_CRC
;
1648 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
)) {
1650 rt2x00_get_field32(word0
, RXD_W0_CIPHER_ALG
);
1651 rxdesc
->cipher_status
=
1652 rt2x00_get_field32(word0
, RXD_W0_CIPHER_ERROR
);
1655 if (rxdesc
->cipher
!= CIPHER_NONE
) {
1656 _rt2x00_desc_read(rxd
, 2, &rxdesc
->iv
[0]);
1657 _rt2x00_desc_read(rxd
, 3, &rxdesc
->iv
[1]);
1658 rxdesc
->dev_flags
|= RXDONE_CRYPTO_IV
;
1660 _rt2x00_desc_read(rxd
, 4, &rxdesc
->icv
);
1661 rxdesc
->dev_flags
|= RXDONE_CRYPTO_ICV
;
1664 * Hardware has stripped IV/EIV data from 802.11 frame during
1665 * decryption. It has provided the data separately but rt2x00lib
1666 * should decide if it should be reinserted.
1668 rxdesc
->flags
|= RX_FLAG_IV_STRIPPED
;
1671 * FIXME: Legacy driver indicates that the frame does
1672 * contain the Michael Mic. Unfortunately, in rt2x00
1673 * the MIC seems to be missing completely...
1675 rxdesc
->flags
|= RX_FLAG_MMIC_STRIPPED
;
1677 if (rxdesc
->cipher_status
== RX_CRYPTO_SUCCESS
)
1678 rxdesc
->flags
|= RX_FLAG_DECRYPTED
;
1679 else if (rxdesc
->cipher_status
== RX_CRYPTO_FAIL_MIC
)
1680 rxdesc
->flags
|= RX_FLAG_MMIC_ERROR
;
1684 * Obtain the status about this packet.
1685 * When frame was received with an OFDM bitrate,
1686 * the signal is the PLCP value. If it was received with
1687 * a CCK bitrate the signal is the rate in 100kbit/s.
1689 rxdesc
->signal
= rt2x00_get_field32(word1
, RXD_W1_SIGNAL
);
1690 rxdesc
->rssi
= rt73usb_agc_to_rssi(rt2x00dev
, word1
);
1691 rxdesc
->size
= rt2x00_get_field32(word0
, RXD_W0_DATABYTE_COUNT
);
1693 if (rt2x00_get_field32(word0
, RXD_W0_OFDM
))
1694 rxdesc
->dev_flags
|= RXDONE_SIGNAL_PLCP
;
1696 rxdesc
->dev_flags
|= RXDONE_SIGNAL_BITRATE
;
1697 if (rt2x00_get_field32(word0
, RXD_W0_MY_BSS
))
1698 rxdesc
->dev_flags
|= RXDONE_MY_BSS
;
1701 * Set skb pointers, and update frame information.
1703 skb_pull(entry
->skb
, entry
->queue
->desc_size
);
1704 skb_trim(entry
->skb
, rxdesc
->size
);
1708 * Device probe functions.
1710 static int rt73usb_validate_eeprom(struct rt2x00_dev
*rt2x00dev
)
1716 rt2x00usb_eeprom_read(rt2x00dev
, rt2x00dev
->eeprom
, EEPROM_SIZE
);
1719 * Start validation of the data that has been read.
1721 mac
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_MAC_ADDR_0
);
1722 if (!is_valid_ether_addr(mac
)) {
1723 random_ether_addr(mac
);
1724 EEPROM(rt2x00dev
, "MAC: %pM\n", mac
);
1727 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &word
);
1728 if (word
== 0xffff) {
1729 rt2x00_set_field16(&word
, EEPROM_ANTENNA_NUM
, 2);
1730 rt2x00_set_field16(&word
, EEPROM_ANTENNA_TX_DEFAULT
,
1732 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RX_DEFAULT
,
1734 rt2x00_set_field16(&word
, EEPROM_ANTENNA_FRAME_TYPE
, 0);
1735 rt2x00_set_field16(&word
, EEPROM_ANTENNA_DYN_TXAGC
, 0);
1736 rt2x00_set_field16(&word
, EEPROM_ANTENNA_HARDWARE_RADIO
, 0);
1737 rt2x00_set_field16(&word
, EEPROM_ANTENNA_RF_TYPE
, RF5226
);
1738 rt2x00_eeprom_write(rt2x00dev
, EEPROM_ANTENNA
, word
);
1739 EEPROM(rt2x00dev
, "Antenna: 0x%04x\n", word
);
1742 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &word
);
1743 if (word
== 0xffff) {
1744 rt2x00_set_field16(&word
, EEPROM_NIC_EXTERNAL_LNA
, 0);
1745 rt2x00_eeprom_write(rt2x00dev
, EEPROM_NIC
, word
);
1746 EEPROM(rt2x00dev
, "NIC: 0x%04x\n", word
);
1749 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &word
);
1750 if (word
== 0xffff) {
1751 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_RDY_G
, 0);
1752 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_RDY_A
, 0);
1753 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_ACT
, 0);
1754 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_0
, 0);
1755 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_1
, 0);
1756 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_2
, 0);
1757 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_3
, 0);
1758 rt2x00_set_field16(&word
, EEPROM_LED_POLARITY_GPIO_4
, 0);
1759 rt2x00_set_field16(&word
, EEPROM_LED_LED_MODE
,
1761 rt2x00_eeprom_write(rt2x00dev
, EEPROM_LED
, word
);
1762 EEPROM(rt2x00dev
, "Led: 0x%04x\n", word
);
1765 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &word
);
1766 if (word
== 0xffff) {
1767 rt2x00_set_field16(&word
, EEPROM_FREQ_OFFSET
, 0);
1768 rt2x00_set_field16(&word
, EEPROM_FREQ_SEQ
, 0);
1769 rt2x00_eeprom_write(rt2x00dev
, EEPROM_FREQ
, word
);
1770 EEPROM(rt2x00dev
, "Freq: 0x%04x\n", word
);
1773 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, &word
);
1774 if (word
== 0xffff) {
1775 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1776 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1777 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1778 EEPROM(rt2x00dev
, "RSSI OFFSET BG: 0x%04x\n", word
);
1780 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_1
);
1781 if (value
< -10 || value
> 10)
1782 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_1
, 0);
1783 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_BG_2
);
1784 if (value
< -10 || value
> 10)
1785 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_BG_2
, 0);
1786 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_BG
, word
);
1789 rt2x00_eeprom_read(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, &word
);
1790 if (word
== 0xffff) {
1791 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1792 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1793 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1794 EEPROM(rt2x00dev
, "RSSI OFFSET A: 0x%04x\n", word
);
1796 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_1
);
1797 if (value
< -10 || value
> 10)
1798 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_1
, 0);
1799 value
= rt2x00_get_field16(word
, EEPROM_RSSI_OFFSET_A_2
);
1800 if (value
< -10 || value
> 10)
1801 rt2x00_set_field16(&word
, EEPROM_RSSI_OFFSET_A_2
, 0);
1802 rt2x00_eeprom_write(rt2x00dev
, EEPROM_RSSI_OFFSET_A
, word
);
1808 static int rt73usb_init_eeprom(struct rt2x00_dev
*rt2x00dev
)
1815 * Read EEPROM word for configuration.
1817 rt2x00_eeprom_read(rt2x00dev
, EEPROM_ANTENNA
, &eeprom
);
1820 * Identify RF chipset.
1822 value
= rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RF_TYPE
);
1823 rt2x00usb_register_read(rt2x00dev
, MAC_CSR0
, ®
);
1824 rt2x00_set_chip(rt2x00dev
, rt2x00_get_field32(reg
, MAC_CSR0_CHIPSET
),
1825 value
, rt2x00_get_field32(reg
, MAC_CSR0_REVISION
));
1827 if (!rt2x00_rt(rt2x00dev
, RT2573
) || (rt2x00_rev(rt2x00dev
) == 0)) {
1828 ERROR(rt2x00dev
, "Invalid RT chipset detected.\n");
1832 if (!rt2x00_rf(rt2x00dev
, RF5226
) &&
1833 !rt2x00_rf(rt2x00dev
, RF2528
) &&
1834 !rt2x00_rf(rt2x00dev
, RF5225
) &&
1835 !rt2x00_rf(rt2x00dev
, RF2527
)) {
1836 ERROR(rt2x00dev
, "Invalid RF chipset detected.\n");
1841 * Identify default antenna configuration.
1843 rt2x00dev
->default_ant
.tx
=
1844 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_TX_DEFAULT
);
1845 rt2x00dev
->default_ant
.rx
=
1846 rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_RX_DEFAULT
);
1849 * Read the Frame type.
1851 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_FRAME_TYPE
))
1852 __set_bit(CONFIG_FRAME_TYPE
, &rt2x00dev
->flags
);
1855 * Detect if this device has an hardware controlled radio.
1857 if (rt2x00_get_field16(eeprom
, EEPROM_ANTENNA_HARDWARE_RADIO
))
1858 __set_bit(CONFIG_SUPPORT_HW_BUTTON
, &rt2x00dev
->flags
);
1861 * Read frequency offset.
1863 rt2x00_eeprom_read(rt2x00dev
, EEPROM_FREQ
, &eeprom
);
1864 rt2x00dev
->freq_offset
= rt2x00_get_field16(eeprom
, EEPROM_FREQ_OFFSET
);
1867 * Read external LNA informations.
1869 rt2x00_eeprom_read(rt2x00dev
, EEPROM_NIC
, &eeprom
);
1871 if (rt2x00_get_field16(eeprom
, EEPROM_NIC_EXTERNAL_LNA
)) {
1872 __set_bit(CONFIG_EXTERNAL_LNA_A
, &rt2x00dev
->flags
);
1873 __set_bit(CONFIG_EXTERNAL_LNA_BG
, &rt2x00dev
->flags
);
1877 * Store led settings, for correct led behaviour.
1879 #ifdef CONFIG_RT2X00_LIB_LEDS
1880 rt2x00_eeprom_read(rt2x00dev
, EEPROM_LED
, &eeprom
);
1882 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_radio
, LED_TYPE_RADIO
);
1883 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_assoc
, LED_TYPE_ASSOC
);
1884 if (value
== LED_MODE_SIGNAL_STRENGTH
)
1885 rt73usb_init_led(rt2x00dev
, &rt2x00dev
->led_qual
,
1888 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_LED_MODE
, value
);
1889 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_0
,
1890 rt2x00_get_field16(eeprom
,
1891 EEPROM_LED_POLARITY_GPIO_0
));
1892 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_1
,
1893 rt2x00_get_field16(eeprom
,
1894 EEPROM_LED_POLARITY_GPIO_1
));
1895 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_2
,
1896 rt2x00_get_field16(eeprom
,
1897 EEPROM_LED_POLARITY_GPIO_2
));
1898 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_3
,
1899 rt2x00_get_field16(eeprom
,
1900 EEPROM_LED_POLARITY_GPIO_3
));
1901 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_GPIO_4
,
1902 rt2x00_get_field16(eeprom
,
1903 EEPROM_LED_POLARITY_GPIO_4
));
1904 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_ACT
,
1905 rt2x00_get_field16(eeprom
, EEPROM_LED_POLARITY_ACT
));
1906 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_BG
,
1907 rt2x00_get_field16(eeprom
,
1908 EEPROM_LED_POLARITY_RDY_G
));
1909 rt2x00_set_field16(&rt2x00dev
->led_mcu_reg
, MCU_LEDCS_POLARITY_READY_A
,
1910 rt2x00_get_field16(eeprom
,
1911 EEPROM_LED_POLARITY_RDY_A
));
1912 #endif /* CONFIG_RT2X00_LIB_LEDS */
1918 * RF value list for RF2528
1921 static const struct rf_channel rf_vals_bg_2528
[] = {
1922 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1923 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1924 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1925 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1926 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1927 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1928 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1929 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1930 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1931 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1932 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1933 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1934 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1935 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1939 * RF value list for RF5226
1940 * Supports: 2.4 GHz & 5.2 GHz
1942 static const struct rf_channel rf_vals_5226
[] = {
1943 { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1944 { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1945 { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1946 { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1947 { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1948 { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1949 { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1950 { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1951 { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1952 { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1953 { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1954 { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1955 { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1956 { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1958 /* 802.11 UNI / HyperLan 2 */
1959 { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1960 { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1961 { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1962 { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1963 { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1964 { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1965 { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1966 { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1968 /* 802.11 HyperLan 2 */
1969 { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
1970 { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
1971 { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
1972 { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
1973 { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
1974 { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
1975 { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
1976 { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
1977 { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
1978 { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
1981 { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
1982 { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
1983 { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
1984 { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
1985 { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
1986 { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
1988 /* MMAC(Japan)J52 ch 34,38,42,46 */
1989 { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
1990 { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
1991 { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
1992 { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
1996 * RF value list for RF5225 & RF2527
1997 * Supports: 2.4 GHz & 5.2 GHz
1999 static const struct rf_channel rf_vals_5225_2527
[] = {
2000 { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2001 { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2002 { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2003 { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2004 { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2005 { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2006 { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2007 { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2008 { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2009 { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2010 { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2011 { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2012 { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2013 { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2015 /* 802.11 UNI / HyperLan 2 */
2016 { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2017 { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2018 { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2019 { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2020 { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2021 { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2022 { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2023 { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2025 /* 802.11 HyperLan 2 */
2026 { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2027 { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2028 { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2029 { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2030 { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2031 { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2032 { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2033 { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2034 { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2035 { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2038 { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2039 { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2040 { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2041 { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2042 { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2043 { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2045 /* MMAC(Japan)J52 ch 34,38,42,46 */
2046 { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2047 { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2048 { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2049 { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2053 static int rt73usb_probe_hw_mode(struct rt2x00_dev
*rt2x00dev
)
2055 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
2056 struct channel_info
*info
;
2061 * Initialize all hw fields.
2063 rt2x00dev
->hw
->flags
=
2064 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING
|
2065 IEEE80211_HW_SIGNAL_DBM
|
2066 IEEE80211_HW_SUPPORTS_PS
|
2067 IEEE80211_HW_PS_NULLFUNC_STACK
;
2069 SET_IEEE80211_DEV(rt2x00dev
->hw
, rt2x00dev
->dev
);
2070 SET_IEEE80211_PERM_ADDR(rt2x00dev
->hw
,
2071 rt2x00_eeprom_addr(rt2x00dev
,
2072 EEPROM_MAC_ADDR_0
));
2075 * Initialize hw_mode information.
2077 spec
->supported_bands
= SUPPORT_BAND_2GHZ
;
2078 spec
->supported_rates
= SUPPORT_RATE_CCK
| SUPPORT_RATE_OFDM
;
2080 if (rt2x00_rf(rt2x00dev
, RF2528
)) {
2081 spec
->num_channels
= ARRAY_SIZE(rf_vals_bg_2528
);
2082 spec
->channels
= rf_vals_bg_2528
;
2083 } else if (rt2x00_rf(rt2x00dev
, RF5226
)) {
2084 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2085 spec
->num_channels
= ARRAY_SIZE(rf_vals_5226
);
2086 spec
->channels
= rf_vals_5226
;
2087 } else if (rt2x00_rf(rt2x00dev
, RF2527
)) {
2088 spec
->num_channels
= 14;
2089 spec
->channels
= rf_vals_5225_2527
;
2090 } else if (rt2x00_rf(rt2x00dev
, RF5225
)) {
2091 spec
->supported_bands
|= SUPPORT_BAND_5GHZ
;
2092 spec
->num_channels
= ARRAY_SIZE(rf_vals_5225_2527
);
2093 spec
->channels
= rf_vals_5225_2527
;
2097 * Create channel information array
2099 info
= kzalloc(spec
->num_channels
* sizeof(*info
), GFP_KERNEL
);
2103 spec
->channels_info
= info
;
2105 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_G_START
);
2106 for (i
= 0; i
< 14; i
++)
2107 info
[i
].tx_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2109 if (spec
->num_channels
> 14) {
2110 tx_power
= rt2x00_eeprom_addr(rt2x00dev
, EEPROM_TXPOWER_A_START
);
2111 for (i
= 14; i
< spec
->num_channels
; i
++)
2112 info
[i
].tx_power1
= TXPOWER_FROM_DEV(tx_power
[i
]);
2118 static int rt73usb_probe_hw(struct rt2x00_dev
*rt2x00dev
)
2123 * Allocate eeprom data.
2125 retval
= rt73usb_validate_eeprom(rt2x00dev
);
2129 retval
= rt73usb_init_eeprom(rt2x00dev
);
2134 * Initialize hw specifications.
2136 retval
= rt73usb_probe_hw_mode(rt2x00dev
);
2141 * This device has multiple filters for control frames,
2142 * but has no a separate filter for PS Poll frames.
2144 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS
, &rt2x00dev
->flags
);
2147 * This device requires firmware.
2149 __set_bit(DRIVER_REQUIRE_FIRMWARE
, &rt2x00dev
->flags
);
2150 if (!modparam_nohwcrypt
)
2151 __set_bit(CONFIG_SUPPORT_HW_CRYPTO
, &rt2x00dev
->flags
);
2154 * Set the rssi offset.
2156 rt2x00dev
->rssi_offset
= DEFAULT_RSSI_OFFSET
;
2162 * IEEE80211 stack callback functions.
2164 static int rt73usb_conf_tx(struct ieee80211_hw
*hw
, u16 queue_idx
,
2165 const struct ieee80211_tx_queue_params
*params
)
2167 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2168 struct data_queue
*queue
;
2169 struct rt2x00_field32 field
;
2175 * First pass the configuration through rt2x00lib, that will
2176 * update the queue settings and validate the input. After that
2177 * we are free to update the registers based on the value
2178 * in the queue parameter.
2180 retval
= rt2x00mac_conf_tx(hw
, queue_idx
, params
);
2185 * We only need to perform additional register initialization
2191 queue
= rt2x00queue_get_queue(rt2x00dev
, queue_idx
);
2193 /* Update WMM TXOP register */
2194 offset
= AC_TXOP_CSR0
+ (sizeof(u32
) * (!!(queue_idx
& 2)));
2195 field
.bit_offset
= (queue_idx
& 1) * 16;
2196 field
.bit_mask
= 0xffff << field
.bit_offset
;
2198 rt2x00usb_register_read(rt2x00dev
, offset
, ®
);
2199 rt2x00_set_field32(®
, field
, queue
->txop
);
2200 rt2x00usb_register_write(rt2x00dev
, offset
, reg
);
2202 /* Update WMM registers */
2203 field
.bit_offset
= queue_idx
* 4;
2204 field
.bit_mask
= 0xf << field
.bit_offset
;
2206 rt2x00usb_register_read(rt2x00dev
, AIFSN_CSR
, ®
);
2207 rt2x00_set_field32(®
, field
, queue
->aifs
);
2208 rt2x00usb_register_write(rt2x00dev
, AIFSN_CSR
, reg
);
2210 rt2x00usb_register_read(rt2x00dev
, CWMIN_CSR
, ®
);
2211 rt2x00_set_field32(®
, field
, queue
->cw_min
);
2212 rt2x00usb_register_write(rt2x00dev
, CWMIN_CSR
, reg
);
2214 rt2x00usb_register_read(rt2x00dev
, CWMAX_CSR
, ®
);
2215 rt2x00_set_field32(®
, field
, queue
->cw_max
);
2216 rt2x00usb_register_write(rt2x00dev
, CWMAX_CSR
, reg
);
2221 static u64
rt73usb_get_tsf(struct ieee80211_hw
*hw
)
2223 struct rt2x00_dev
*rt2x00dev
= hw
->priv
;
2227 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR13
, ®
);
2228 tsf
= (u64
) rt2x00_get_field32(reg
, TXRX_CSR13_HIGH_TSFTIMER
) << 32;
2229 rt2x00usb_register_read(rt2x00dev
, TXRX_CSR12
, ®
);
2230 tsf
|= rt2x00_get_field32(reg
, TXRX_CSR12_LOW_TSFTIMER
);
2235 static const struct ieee80211_ops rt73usb_mac80211_ops
= {
2237 .start
= rt2x00mac_start
,
2238 .stop
= rt2x00mac_stop
,
2239 .add_interface
= rt2x00mac_add_interface
,
2240 .remove_interface
= rt2x00mac_remove_interface
,
2241 .config
= rt2x00mac_config
,
2242 .configure_filter
= rt2x00mac_configure_filter
,
2243 .set_tim
= rt2x00mac_set_tim
,
2244 .set_key
= rt2x00mac_set_key
,
2245 .get_stats
= rt2x00mac_get_stats
,
2246 .bss_info_changed
= rt2x00mac_bss_info_changed
,
2247 .conf_tx
= rt73usb_conf_tx
,
2248 .get_tsf
= rt73usb_get_tsf
,
2249 .rfkill_poll
= rt2x00mac_rfkill_poll
,
2252 static const struct rt2x00lib_ops rt73usb_rt2x00_ops
= {
2253 .probe_hw
= rt73usb_probe_hw
,
2254 .get_firmware_name
= rt73usb_get_firmware_name
,
2255 .check_firmware
= rt73usb_check_firmware
,
2256 .load_firmware
= rt73usb_load_firmware
,
2257 .initialize
= rt2x00usb_initialize
,
2258 .uninitialize
= rt2x00usb_uninitialize
,
2259 .clear_entry
= rt2x00usb_clear_entry
,
2260 .set_device_state
= rt73usb_set_device_state
,
2261 .rfkill_poll
= rt73usb_rfkill_poll
,
2262 .link_stats
= rt73usb_link_stats
,
2263 .reset_tuner
= rt73usb_reset_tuner
,
2264 .link_tuner
= rt73usb_link_tuner
,
2265 .write_tx_desc
= rt73usb_write_tx_desc
,
2266 .write_tx_data
= rt2x00usb_write_tx_data
,
2267 .write_beacon
= rt73usb_write_beacon
,
2268 .get_tx_data_len
= rt73usb_get_tx_data_len
,
2269 .kick_tx_queue
= rt73usb_kick_tx_queue
,
2270 .kill_tx_queue
= rt2x00usb_kill_tx_queue
,
2271 .fill_rxdone
= rt73usb_fill_rxdone
,
2272 .config_shared_key
= rt73usb_config_shared_key
,
2273 .config_pairwise_key
= rt73usb_config_pairwise_key
,
2274 .config_filter
= rt73usb_config_filter
,
2275 .config_intf
= rt73usb_config_intf
,
2276 .config_erp
= rt73usb_config_erp
,
2277 .config_ant
= rt73usb_config_ant
,
2278 .config
= rt73usb_config
,
2281 static const struct data_queue_desc rt73usb_queue_rx
= {
2282 .entry_num
= RX_ENTRIES
,
2283 .data_size
= DATA_FRAME_SIZE
,
2284 .desc_size
= RXD_DESC_SIZE
,
2285 .priv_size
= sizeof(struct queue_entry_priv_usb
),
2288 static const struct data_queue_desc rt73usb_queue_tx
= {
2289 .entry_num
= TX_ENTRIES
,
2290 .data_size
= DATA_FRAME_SIZE
,
2291 .desc_size
= TXD_DESC_SIZE
,
2292 .priv_size
= sizeof(struct queue_entry_priv_usb
),
2295 static const struct data_queue_desc rt73usb_queue_bcn
= {
2296 .entry_num
= 4 * BEACON_ENTRIES
,
2297 .data_size
= MGMT_FRAME_SIZE
,
2298 .desc_size
= TXINFO_SIZE
,
2299 .priv_size
= sizeof(struct queue_entry_priv_usb
),
2302 static const struct rt2x00_ops rt73usb_ops
= {
2303 .name
= KBUILD_MODNAME
,
2306 .eeprom_size
= EEPROM_SIZE
,
2308 .tx_queues
= NUM_TX_QUEUES
,
2309 .extra_tx_headroom
= TXD_DESC_SIZE
,
2310 .rx
= &rt73usb_queue_rx
,
2311 .tx
= &rt73usb_queue_tx
,
2312 .bcn
= &rt73usb_queue_bcn
,
2313 .lib
= &rt73usb_rt2x00_ops
,
2314 .hw
= &rt73usb_mac80211_ops
,
2315 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2316 .debugfs
= &rt73usb_rt2x00debug
,
2317 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2321 * rt73usb module information.
2323 static struct usb_device_id rt73usb_device_table
[] = {
2325 { USB_DEVICE(0x07b8, 0xb21b), USB_DEVICE_DATA(&rt73usb_ops
) },
2326 { USB_DEVICE(0x07b8, 0xb21c), USB_DEVICE_DATA(&rt73usb_ops
) },
2327 { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops
) },
2328 { USB_DEVICE(0x07b8, 0xb21e), USB_DEVICE_DATA(&rt73usb_ops
) },
2329 { USB_DEVICE(0x07b8, 0xb21f), USB_DEVICE_DATA(&rt73usb_ops
) },
2331 { USB_DEVICE(0x14b2, 0x3c10), USB_DEVICE_DATA(&rt73usb_ops
) },
2333 { USB_DEVICE(0x148f, 0x9021), USB_DEVICE_DATA(&rt73usb_ops
) },
2334 { USB_DEVICE(0x0eb0, 0x9021), USB_DEVICE_DATA(&rt73usb_ops
) },
2336 { USB_DEVICE(0x18c5, 0x0002), USB_DEVICE_DATA(&rt73usb_ops
) },
2338 { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops
) },
2340 { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops
) },
2341 { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops
) },
2343 { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops
) },
2344 { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops
) },
2345 { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops
) },
2346 { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops
) },
2348 { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops
) },
2349 { USB_DEVICE(0x08dd, 0x0120), USB_DEVICE_DATA(&rt73usb_ops
) },
2351 { USB_DEVICE(0x0411, 0x00d8), USB_DEVICE_DATA(&rt73usb_ops
) },
2352 { USB_DEVICE(0x0411, 0x00d9), USB_DEVICE_DATA(&rt73usb_ops
) },
2353 { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops
) },
2354 { USB_DEVICE(0x0411, 0x0116), USB_DEVICE_DATA(&rt73usb_ops
) },
2355 { USB_DEVICE(0x0411, 0x0119), USB_DEVICE_DATA(&rt73usb_ops
) },
2357 { USB_DEVICE(0x178d, 0x02be), USB_DEVICE_DATA(&rt73usb_ops
) },
2359 { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops
) },
2360 { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops
) },
2362 { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops
) },
2364 { USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops
) },
2366 { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops
) },
2367 { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops
) },
2368 { USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops
) },
2369 { USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops
) },
2371 { USB_DEVICE(0x7392, 0x7318), USB_DEVICE_DATA(&rt73usb_ops
) },
2372 { USB_DEVICE(0x7392, 0x7618), USB_DEVICE_DATA(&rt73usb_ops
) },
2374 { USB_DEVICE(0x1740, 0x3701), USB_DEVICE_DATA(&rt73usb_ops
) },
2376 { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops
) },
2378 { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops
) },
2379 { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops
) },
2381 { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops
) },
2383 { USB_DEVICE(0x06f8, 0xe002), USB_DEVICE_DATA(&rt73usb_ops
) },
2384 { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops
) },
2385 { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops
) },
2387 { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops
) },
2388 { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops
) },
2389 { USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops
) },
2391 { USB_DEVICE(0x0db0, 0x4600), USB_DEVICE_DATA(&rt73usb_ops
) },
2392 { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops
) },
2393 { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops
) },
2394 { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops
) },
2395 { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops
) },
2397 { USB_DEVICE(0x1b75, 0x7318), USB_DEVICE_DATA(&rt73usb_ops
) },
2399 { USB_DEVICE(0x04bb, 0x093d), USB_DEVICE_DATA(&rt73usb_ops
) },
2400 { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops
) },
2401 { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops
) },
2403 { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops
) },
2404 { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops
) },
2405 { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops
) },
2407 { USB_DEVICE(0x04e8, 0x4471), USB_DEVICE_DATA(&rt73usb_ops
) },
2409 { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops
) },
2411 { USB_DEVICE(0x0df6, 0x0024), USB_DEVICE_DATA(&rt73usb_ops
) },
2412 { USB_DEVICE(0x0df6, 0x0027), USB_DEVICE_DATA(&rt73usb_ops
) },
2413 { USB_DEVICE(0x0df6, 0x002f), USB_DEVICE_DATA(&rt73usb_ops
) },
2414 { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops
) },
2415 { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops
) },
2417 { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops
) },
2419 { USB_DEVICE(0x6933, 0x5001), USB_DEVICE_DATA(&rt73usb_ops
) },
2421 { USB_DEVICE(0x0471, 0x200a), USB_DEVICE_DATA(&rt73usb_ops
) },
2423 { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops
) },
2424 { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops
) },
2426 { USB_DEVICE(0x7167, 0x3840), USB_DEVICE_DATA(&rt73usb_ops
) },
2428 { USB_DEVICE(0x0cde, 0x001c), USB_DEVICE_DATA(&rt73usb_ops
) },
2430 { USB_DEVICE(0x0586, 0x3415), USB_DEVICE_DATA(&rt73usb_ops
) },
2434 MODULE_AUTHOR(DRV_PROJECT
);
2435 MODULE_VERSION(DRV_VERSION
);
2436 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2437 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2438 MODULE_DEVICE_TABLE(usb
, rt73usb_device_table
);
2439 MODULE_FIRMWARE(FIRMWARE_RT2571
);
2440 MODULE_LICENSE("GPL");
2442 static struct usb_driver rt73usb_driver
= {
2443 .name
= KBUILD_MODNAME
,
2444 .id_table
= rt73usb_device_table
,
2445 .probe
= rt2x00usb_probe
,
2446 .disconnect
= rt2x00usb_disconnect
,
2447 .suspend
= rt2x00usb_suspend
,
2448 .resume
= rt2x00usb_resume
,
2451 static int __init
rt73usb_init(void)
2453 return usb_register(&rt73usb_driver
);
2456 static void __exit
rt73usb_exit(void)
2458 usb_deregister(&rt73usb_driver
);
2461 module_init(rt73usb_init
);
2462 module_exit(rt73usb_exit
);