Staging: netwave: delete the driver
[linux/fpc-iii.git] / drivers / platform / x86 / toshiba_acpi.c
blob37aa1479855136c10f2384edc814da5eda6dc6c9
1 /*
2 * toshiba_acpi.c - Toshiba Laptop ACPI Extras
5 * Copyright (C) 2002-2004 John Belmonte
6 * Copyright (C) 2008 Philip Langdale
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * The devolpment page for this driver is located at
24 * http://memebeam.org/toys/ToshibaAcpiDriver.
26 * Credits:
27 * Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse
28 * engineering the Windows drivers
29 * Yasushi Nagato - changes for linux kernel 2.4 -> 2.5
30 * Rob Miller - TV out and hotkeys help
33 * TODO
37 #define TOSHIBA_ACPI_VERSION "0.19"
38 #define PROC_INTERFACE_VERSION 1
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/init.h>
43 #include <linux/types.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/backlight.h>
47 #include <linux/platform_device.h>
48 #include <linux/rfkill.h>
49 #include <linux/input.h>
50 #include <linux/slab.h>
52 #include <asm/uaccess.h>
54 #include <acpi/acpi_drivers.h>
56 MODULE_AUTHOR("John Belmonte");
57 MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver");
58 MODULE_LICENSE("GPL");
60 #define MY_LOGPREFIX "toshiba_acpi: "
61 #define MY_ERR KERN_ERR MY_LOGPREFIX
62 #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX
63 #define MY_INFO KERN_INFO MY_LOGPREFIX
65 /* Toshiba ACPI method paths */
66 #define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM"
67 #define TOSH_INTERFACE_1 "\\_SB_.VALD"
68 #define TOSH_INTERFACE_2 "\\_SB_.VALZ"
69 #define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX"
70 #define GHCI_METHOD ".GHCI"
72 /* Toshiba HCI interface definitions
74 * HCI is Toshiba's "Hardware Control Interface" which is supposed to
75 * be uniform across all their models. Ideally we would just call
76 * dedicated ACPI methods instead of using this primitive interface.
77 * However the ACPI methods seem to be incomplete in some areas (for
78 * example they allow setting, but not reading, the LCD brightness value),
79 * so this is still useful.
82 #define HCI_WORDS 6
84 /* operations */
85 #define HCI_SET 0xff00
86 #define HCI_GET 0xfe00
88 /* return codes */
89 #define HCI_SUCCESS 0x0000
90 #define HCI_FAILURE 0x1000
91 #define HCI_NOT_SUPPORTED 0x8000
92 #define HCI_EMPTY 0x8c00
94 /* registers */
95 #define HCI_FAN 0x0004
96 #define HCI_SYSTEM_EVENT 0x0016
97 #define HCI_VIDEO_OUT 0x001c
98 #define HCI_HOTKEY_EVENT 0x001e
99 #define HCI_LCD_BRIGHTNESS 0x002a
100 #define HCI_WIRELESS 0x0056
102 /* field definitions */
103 #define HCI_LCD_BRIGHTNESS_BITS 3
104 #define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS)
105 #define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS)
106 #define HCI_VIDEO_OUT_LCD 0x1
107 #define HCI_VIDEO_OUT_CRT 0x2
108 #define HCI_VIDEO_OUT_TV 0x4
109 #define HCI_WIRELESS_KILL_SWITCH 0x01
110 #define HCI_WIRELESS_BT_PRESENT 0x0f
111 #define HCI_WIRELESS_BT_ATTACH 0x40
112 #define HCI_WIRELESS_BT_POWER 0x80
114 static const struct acpi_device_id toshiba_device_ids[] = {
115 {"TOS6200", 0},
116 {"TOS6208", 0},
117 {"TOS1900", 0},
118 {"", 0},
120 MODULE_DEVICE_TABLE(acpi, toshiba_device_ids);
122 struct key_entry {
123 char type;
124 u16 code;
125 u16 keycode;
128 enum {KE_KEY, KE_END};
130 static struct key_entry toshiba_acpi_keymap[] = {
131 {KE_KEY, 0x101, KEY_MUTE},
132 {KE_KEY, 0x13b, KEY_COFFEE},
133 {KE_KEY, 0x13c, KEY_BATTERY},
134 {KE_KEY, 0x13d, KEY_SLEEP},
135 {KE_KEY, 0x13e, KEY_SUSPEND},
136 {KE_KEY, 0x13f, KEY_SWITCHVIDEOMODE},
137 {KE_KEY, 0x140, KEY_BRIGHTNESSDOWN},
138 {KE_KEY, 0x141, KEY_BRIGHTNESSUP},
139 {KE_KEY, 0x142, KEY_WLAN},
140 {KE_KEY, 0x143, KEY_PROG1},
141 {KE_KEY, 0xb05, KEY_PROG2},
142 {KE_KEY, 0xb06, KEY_WWW},
143 {KE_KEY, 0xb07, KEY_MAIL},
144 {KE_KEY, 0xb30, KEY_STOP},
145 {KE_KEY, 0xb31, KEY_PREVIOUSSONG},
146 {KE_KEY, 0xb32, KEY_NEXTSONG},
147 {KE_KEY, 0xb33, KEY_PLAYPAUSE},
148 {KE_KEY, 0xb5a, KEY_MEDIA},
149 {KE_END, 0, 0},
152 /* utility
155 static __inline__ void _set_bit(u32 * word, u32 mask, int value)
157 *word = (*word & ~mask) | (mask * value);
160 /* acpi interface wrappers
163 static int is_valid_acpi_path(const char *methodName)
165 acpi_handle handle;
166 acpi_status status;
168 status = acpi_get_handle(NULL, (char *)methodName, &handle);
169 return !ACPI_FAILURE(status);
172 static int write_acpi_int(const char *methodName, int val)
174 struct acpi_object_list params;
175 union acpi_object in_objs[1];
176 acpi_status status;
178 params.count = ARRAY_SIZE(in_objs);
179 params.pointer = in_objs;
180 in_objs[0].type = ACPI_TYPE_INTEGER;
181 in_objs[0].integer.value = val;
183 status = acpi_evaluate_object(NULL, (char *)methodName, &params, NULL);
184 return (status == AE_OK);
187 #if 0
188 static int read_acpi_int(const char *methodName, int *pVal)
190 struct acpi_buffer results;
191 union acpi_object out_objs[1];
192 acpi_status status;
194 results.length = sizeof(out_objs);
195 results.pointer = out_objs;
197 status = acpi_evaluate_object(0, (char *)methodName, 0, &results);
198 *pVal = out_objs[0].integer.value;
200 return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER);
202 #endif
204 static const char *method_hci /*= 0*/ ;
206 /* Perform a raw HCI call. Here we don't care about input or output buffer
207 * format.
209 static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS])
211 struct acpi_object_list params;
212 union acpi_object in_objs[HCI_WORDS];
213 struct acpi_buffer results;
214 union acpi_object out_objs[HCI_WORDS + 1];
215 acpi_status status;
216 int i;
218 params.count = HCI_WORDS;
219 params.pointer = in_objs;
220 for (i = 0; i < HCI_WORDS; ++i) {
221 in_objs[i].type = ACPI_TYPE_INTEGER;
222 in_objs[i].integer.value = in[i];
225 results.length = sizeof(out_objs);
226 results.pointer = out_objs;
228 status = acpi_evaluate_object(NULL, (char *)method_hci, &params,
229 &results);
230 if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) {
231 for (i = 0; i < out_objs->package.count; ++i) {
232 out[i] = out_objs->package.elements[i].integer.value;
236 return status;
239 /* common hci tasks (get or set one or two value)
241 * In addition to the ACPI status, the HCI system returns a result which
242 * may be useful (such as "not supported").
245 static acpi_status hci_write1(u32 reg, u32 in1, u32 * result)
247 u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 };
248 u32 out[HCI_WORDS];
249 acpi_status status = hci_raw(in, out);
250 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
251 return status;
254 static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result)
256 u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 };
257 u32 out[HCI_WORDS];
258 acpi_status status = hci_raw(in, out);
259 *out1 = out[2];
260 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
261 return status;
264 static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result)
266 u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 };
267 u32 out[HCI_WORDS];
268 acpi_status status = hci_raw(in, out);
269 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
270 return status;
273 static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result)
275 u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 };
276 u32 out[HCI_WORDS];
277 acpi_status status = hci_raw(in, out);
278 *out1 = out[2];
279 *out2 = out[3];
280 *result = (status == AE_OK) ? out[0] : HCI_FAILURE;
281 return status;
284 struct toshiba_acpi_dev {
285 struct platform_device *p_dev;
286 struct rfkill *bt_rfk;
287 struct input_dev *hotkey_dev;
288 acpi_handle handle;
290 const char *bt_name;
292 struct mutex mutex;
295 static struct toshiba_acpi_dev toshiba_acpi = {
296 .bt_name = "Toshiba Bluetooth",
299 /* Bluetooth rfkill handlers */
301 static u32 hci_get_bt_present(bool *present)
303 u32 hci_result;
304 u32 value, value2;
306 value = 0;
307 value2 = 0;
308 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
309 if (hci_result == HCI_SUCCESS)
310 *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false;
312 return hci_result;
315 static u32 hci_get_radio_state(bool *radio_state)
317 u32 hci_result;
318 u32 value, value2;
320 value = 0;
321 value2 = 0x0001;
322 hci_read2(HCI_WIRELESS, &value, &value2, &hci_result);
324 *radio_state = value & HCI_WIRELESS_KILL_SWITCH;
325 return hci_result;
328 static int bt_rfkill_set_block(void *data, bool blocked)
330 struct toshiba_acpi_dev *dev = data;
331 u32 result1, result2;
332 u32 value;
333 int err;
334 bool radio_state;
336 value = (blocked == false);
338 mutex_lock(&dev->mutex);
339 if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) {
340 err = -EBUSY;
341 goto out;
344 if (!radio_state) {
345 err = 0;
346 goto out;
349 hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1);
350 hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2);
352 if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS)
353 err = -EBUSY;
354 else
355 err = 0;
356 out:
357 mutex_unlock(&dev->mutex);
358 return err;
361 static void bt_rfkill_poll(struct rfkill *rfkill, void *data)
363 bool new_rfk_state;
364 bool value;
365 u32 hci_result;
366 struct toshiba_acpi_dev *dev = data;
368 mutex_lock(&dev->mutex);
370 hci_result = hci_get_radio_state(&value);
371 if (hci_result != HCI_SUCCESS) {
372 /* Can't do anything useful */
373 mutex_unlock(&dev->mutex);
374 return;
377 new_rfk_state = value;
379 mutex_unlock(&dev->mutex);
381 if (rfkill_set_hw_state(rfkill, !new_rfk_state))
382 bt_rfkill_set_block(data, true);
385 static const struct rfkill_ops toshiba_rfk_ops = {
386 .set_block = bt_rfkill_set_block,
387 .poll = bt_rfkill_poll,
390 static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ;
391 static struct backlight_device *toshiba_backlight_device;
392 static int force_fan;
393 static int last_key_event;
394 static int key_event_valid;
396 static int get_lcd(struct backlight_device *bd)
398 u32 hci_result;
399 u32 value;
401 hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result);
402 if (hci_result == HCI_SUCCESS) {
403 return (value >> HCI_LCD_BRIGHTNESS_SHIFT);
404 } else
405 return -EFAULT;
408 static int lcd_proc_show(struct seq_file *m, void *v)
410 int value = get_lcd(NULL);
412 if (value >= 0) {
413 seq_printf(m, "brightness: %d\n", value);
414 seq_printf(m, "brightness_levels: %d\n",
415 HCI_LCD_BRIGHTNESS_LEVELS);
416 } else {
417 printk(MY_ERR "Error reading LCD brightness\n");
420 return 0;
423 static int lcd_proc_open(struct inode *inode, struct file *file)
425 return single_open(file, lcd_proc_show, NULL);
428 static int set_lcd(int value)
430 u32 hci_result;
432 value = value << HCI_LCD_BRIGHTNESS_SHIFT;
433 hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result);
434 if (hci_result != HCI_SUCCESS)
435 return -EFAULT;
437 return 0;
440 static int set_lcd_status(struct backlight_device *bd)
442 return set_lcd(bd->props.brightness);
445 static ssize_t lcd_proc_write(struct file *file, const char __user *buf,
446 size_t count, loff_t *pos)
448 char cmd[42];
449 size_t len;
450 int value;
451 int ret;
453 len = min(count, sizeof(cmd) - 1);
454 if (copy_from_user(cmd, buf, len))
455 return -EFAULT;
456 cmd[len] = '\0';
458 if (sscanf(cmd, " brightness : %i", &value) == 1 &&
459 value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) {
460 ret = set_lcd(value);
461 if (ret == 0)
462 ret = count;
463 } else {
464 ret = -EINVAL;
466 return ret;
469 static const struct file_operations lcd_proc_fops = {
470 .owner = THIS_MODULE,
471 .open = lcd_proc_open,
472 .read = seq_read,
473 .llseek = seq_lseek,
474 .release = single_release,
475 .write = lcd_proc_write,
478 static int video_proc_show(struct seq_file *m, void *v)
480 u32 hci_result;
481 u32 value;
483 hci_read1(HCI_VIDEO_OUT, &value, &hci_result);
484 if (hci_result == HCI_SUCCESS) {
485 int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0;
486 int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0;
487 int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0;
488 seq_printf(m, "lcd_out: %d\n", is_lcd);
489 seq_printf(m, "crt_out: %d\n", is_crt);
490 seq_printf(m, "tv_out: %d\n", is_tv);
491 } else {
492 printk(MY_ERR "Error reading video out status\n");
495 return 0;
498 static int video_proc_open(struct inode *inode, struct file *file)
500 return single_open(file, video_proc_show, NULL);
503 static ssize_t video_proc_write(struct file *file, const char __user *buf,
504 size_t count, loff_t *pos)
506 char *cmd, *buffer;
507 int value;
508 int remain = count;
509 int lcd_out = -1;
510 int crt_out = -1;
511 int tv_out = -1;
512 u32 hci_result;
513 u32 video_out;
515 cmd = kmalloc(count + 1, GFP_KERNEL);
516 if (!cmd)
517 return -ENOMEM;
518 if (copy_from_user(cmd, buf, count)) {
519 kfree(cmd);
520 return -EFAULT;
522 cmd[count] = '\0';
524 buffer = cmd;
526 /* scan expression. Multiple expressions may be delimited with ;
528 * NOTE: to keep scanning simple, invalid fields are ignored
530 while (remain) {
531 if (sscanf(buffer, " lcd_out : %i", &value) == 1)
532 lcd_out = value & 1;
533 else if (sscanf(buffer, " crt_out : %i", &value) == 1)
534 crt_out = value & 1;
535 else if (sscanf(buffer, " tv_out : %i", &value) == 1)
536 tv_out = value & 1;
537 /* advance to one character past the next ; */
538 do {
539 ++buffer;
540 --remain;
542 while (remain && *(buffer - 1) != ';');
545 kfree(cmd);
547 hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result);
548 if (hci_result == HCI_SUCCESS) {
549 unsigned int new_video_out = video_out;
550 if (lcd_out != -1)
551 _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out);
552 if (crt_out != -1)
553 _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out);
554 if (tv_out != -1)
555 _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out);
556 /* To avoid unnecessary video disruption, only write the new
557 * video setting if something changed. */
558 if (new_video_out != video_out)
559 write_acpi_int(METHOD_VIDEO_OUT, new_video_out);
560 } else {
561 return -EFAULT;
564 return count;
567 static const struct file_operations video_proc_fops = {
568 .owner = THIS_MODULE,
569 .open = video_proc_open,
570 .read = seq_read,
571 .llseek = seq_lseek,
572 .release = single_release,
573 .write = video_proc_write,
576 static int fan_proc_show(struct seq_file *m, void *v)
578 u32 hci_result;
579 u32 value;
581 hci_read1(HCI_FAN, &value, &hci_result);
582 if (hci_result == HCI_SUCCESS) {
583 seq_printf(m, "running: %d\n", (value > 0));
584 seq_printf(m, "force_on: %d\n", force_fan);
585 } else {
586 printk(MY_ERR "Error reading fan status\n");
589 return 0;
592 static int fan_proc_open(struct inode *inode, struct file *file)
594 return single_open(file, fan_proc_show, NULL);
597 static ssize_t fan_proc_write(struct file *file, const char __user *buf,
598 size_t count, loff_t *pos)
600 char cmd[42];
601 size_t len;
602 int value;
603 u32 hci_result;
605 len = min(count, sizeof(cmd) - 1);
606 if (copy_from_user(cmd, buf, len))
607 return -EFAULT;
608 cmd[len] = '\0';
610 if (sscanf(cmd, " force_on : %i", &value) == 1 &&
611 value >= 0 && value <= 1) {
612 hci_write1(HCI_FAN, value, &hci_result);
613 if (hci_result != HCI_SUCCESS)
614 return -EFAULT;
615 else
616 force_fan = value;
617 } else {
618 return -EINVAL;
621 return count;
624 static const struct file_operations fan_proc_fops = {
625 .owner = THIS_MODULE,
626 .open = fan_proc_open,
627 .read = seq_read,
628 .llseek = seq_lseek,
629 .release = single_release,
630 .write = fan_proc_write,
633 static int keys_proc_show(struct seq_file *m, void *v)
635 u32 hci_result;
636 u32 value;
638 if (!key_event_valid) {
639 hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
640 if (hci_result == HCI_SUCCESS) {
641 key_event_valid = 1;
642 last_key_event = value;
643 } else if (hci_result == HCI_EMPTY) {
644 /* better luck next time */
645 } else if (hci_result == HCI_NOT_SUPPORTED) {
646 /* This is a workaround for an unresolved issue on
647 * some machines where system events sporadically
648 * become disabled. */
649 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
650 printk(MY_NOTICE "Re-enabled hotkeys\n");
651 } else {
652 printk(MY_ERR "Error reading hotkey status\n");
653 goto end;
657 seq_printf(m, "hotkey_ready: %d\n", key_event_valid);
658 seq_printf(m, "hotkey: 0x%04x\n", last_key_event);
659 end:
660 return 0;
663 static int keys_proc_open(struct inode *inode, struct file *file)
665 return single_open(file, keys_proc_show, NULL);
668 static ssize_t keys_proc_write(struct file *file, const char __user *buf,
669 size_t count, loff_t *pos)
671 char cmd[42];
672 size_t len;
673 int value;
675 len = min(count, sizeof(cmd) - 1);
676 if (copy_from_user(cmd, buf, len))
677 return -EFAULT;
678 cmd[len] = '\0';
680 if (sscanf(cmd, " hotkey_ready : %i", &value) == 1 && value == 0) {
681 key_event_valid = 0;
682 } else {
683 return -EINVAL;
686 return count;
689 static const struct file_operations keys_proc_fops = {
690 .owner = THIS_MODULE,
691 .open = keys_proc_open,
692 .read = seq_read,
693 .llseek = seq_lseek,
694 .release = single_release,
695 .write = keys_proc_write,
698 static int version_proc_show(struct seq_file *m, void *v)
700 seq_printf(m, "driver: %s\n", TOSHIBA_ACPI_VERSION);
701 seq_printf(m, "proc_interface: %d\n", PROC_INTERFACE_VERSION);
702 return 0;
705 static int version_proc_open(struct inode *inode, struct file *file)
707 return single_open(file, version_proc_show, PDE(inode)->data);
710 static const struct file_operations version_proc_fops = {
711 .owner = THIS_MODULE,
712 .open = version_proc_open,
713 .read = seq_read,
714 .llseek = seq_lseek,
715 .release = single_release,
718 /* proc and module init
721 #define PROC_TOSHIBA "toshiba"
723 static acpi_status __init add_device(void)
725 proc_create("lcd", S_IRUGO | S_IWUSR, toshiba_proc_dir, &lcd_proc_fops);
726 proc_create("video", S_IRUGO | S_IWUSR, toshiba_proc_dir, &video_proc_fops);
727 proc_create("fan", S_IRUGO | S_IWUSR, toshiba_proc_dir, &fan_proc_fops);
728 proc_create("keys", S_IRUGO | S_IWUSR, toshiba_proc_dir, &keys_proc_fops);
729 proc_create("version", S_IRUGO, toshiba_proc_dir, &version_proc_fops);
731 return AE_OK;
734 static acpi_status remove_device(void)
736 remove_proc_entry("lcd", toshiba_proc_dir);
737 remove_proc_entry("video", toshiba_proc_dir);
738 remove_proc_entry("fan", toshiba_proc_dir);
739 remove_proc_entry("keys", toshiba_proc_dir);
740 remove_proc_entry("version", toshiba_proc_dir);
741 return AE_OK;
744 static struct backlight_ops toshiba_backlight_data = {
745 .get_brightness = get_lcd,
746 .update_status = set_lcd_status,
749 static struct key_entry *toshiba_acpi_get_entry_by_scancode(unsigned int code)
751 struct key_entry *key;
753 for (key = toshiba_acpi_keymap; key->type != KE_END; key++)
754 if (code == key->code)
755 return key;
757 return NULL;
760 static struct key_entry *toshiba_acpi_get_entry_by_keycode(unsigned int code)
762 struct key_entry *key;
764 for (key = toshiba_acpi_keymap; key->type != KE_END; key++)
765 if (code == key->keycode && key->type == KE_KEY)
766 return key;
768 return NULL;
771 static int toshiba_acpi_getkeycode(struct input_dev *dev,
772 unsigned int scancode, unsigned int *keycode)
774 struct key_entry *key = toshiba_acpi_get_entry_by_scancode(scancode);
776 if (key && key->type == KE_KEY) {
777 *keycode = key->keycode;
778 return 0;
781 return -EINVAL;
784 static int toshiba_acpi_setkeycode(struct input_dev *dev,
785 unsigned int scancode, unsigned int keycode)
787 struct key_entry *key;
788 unsigned int old_keycode;
790 key = toshiba_acpi_get_entry_by_scancode(scancode);
791 if (key && key->type == KE_KEY) {
792 old_keycode = key->keycode;
793 key->keycode = keycode;
794 set_bit(keycode, dev->keybit);
795 if (!toshiba_acpi_get_entry_by_keycode(old_keycode))
796 clear_bit(old_keycode, dev->keybit);
797 return 0;
800 return -EINVAL;
803 static void toshiba_acpi_notify(acpi_handle handle, u32 event, void *context)
805 u32 hci_result, value;
806 struct key_entry *key;
808 if (event != 0x80)
809 return;
810 do {
811 hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result);
812 if (hci_result == HCI_SUCCESS) {
813 if (value == 0x100)
814 continue;
815 /* act on key press; ignore key release */
816 if (value & 0x80)
817 continue;
819 key = toshiba_acpi_get_entry_by_scancode
820 (value);
821 if (!key) {
822 printk(MY_INFO "Unknown key %x\n",
823 value);
824 continue;
826 input_report_key(toshiba_acpi.hotkey_dev,
827 key->keycode, 1);
828 input_sync(toshiba_acpi.hotkey_dev);
829 input_report_key(toshiba_acpi.hotkey_dev,
830 key->keycode, 0);
831 input_sync(toshiba_acpi.hotkey_dev);
832 } else if (hci_result == HCI_NOT_SUPPORTED) {
833 /* This is a workaround for an unresolved issue on
834 * some machines where system events sporadically
835 * become disabled. */
836 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
837 printk(MY_NOTICE "Re-enabled hotkeys\n");
839 } while (hci_result != HCI_EMPTY);
842 static int toshiba_acpi_setup_keyboard(char *device)
844 acpi_status status;
845 acpi_handle handle;
846 int result;
847 const struct key_entry *key;
849 status = acpi_get_handle(NULL, device, &handle);
850 if (ACPI_FAILURE(status)) {
851 printk(MY_INFO "Unable to get notification device\n");
852 return -ENODEV;
855 toshiba_acpi.handle = handle;
857 status = acpi_evaluate_object(handle, "ENAB", NULL, NULL);
858 if (ACPI_FAILURE(status)) {
859 printk(MY_INFO "Unable to enable hotkeys\n");
860 return -ENODEV;
863 status = acpi_install_notify_handler(handle, ACPI_DEVICE_NOTIFY,
864 toshiba_acpi_notify, NULL);
865 if (ACPI_FAILURE(status)) {
866 printk(MY_INFO "Unable to install hotkey notification\n");
867 return -ENODEV;
870 toshiba_acpi.hotkey_dev = input_allocate_device();
871 if (!toshiba_acpi.hotkey_dev) {
872 printk(MY_INFO "Unable to register input device\n");
873 return -ENOMEM;
876 toshiba_acpi.hotkey_dev->name = "Toshiba input device";
877 toshiba_acpi.hotkey_dev->phys = device;
878 toshiba_acpi.hotkey_dev->id.bustype = BUS_HOST;
879 toshiba_acpi.hotkey_dev->getkeycode = toshiba_acpi_getkeycode;
880 toshiba_acpi.hotkey_dev->setkeycode = toshiba_acpi_setkeycode;
882 for (key = toshiba_acpi_keymap; key->type != KE_END; key++) {
883 set_bit(EV_KEY, toshiba_acpi.hotkey_dev->evbit);
884 set_bit(key->keycode, toshiba_acpi.hotkey_dev->keybit);
887 result = input_register_device(toshiba_acpi.hotkey_dev);
888 if (result) {
889 printk(MY_INFO "Unable to register input device\n");
890 return result;
893 return 0;
896 static void toshiba_acpi_exit(void)
898 if (toshiba_acpi.hotkey_dev)
899 input_unregister_device(toshiba_acpi.hotkey_dev);
901 if (toshiba_acpi.bt_rfk) {
902 rfkill_unregister(toshiba_acpi.bt_rfk);
903 rfkill_destroy(toshiba_acpi.bt_rfk);
906 if (toshiba_backlight_device)
907 backlight_device_unregister(toshiba_backlight_device);
909 remove_device();
911 if (toshiba_proc_dir)
912 remove_proc_entry(PROC_TOSHIBA, acpi_root_dir);
914 acpi_remove_notify_handler(toshiba_acpi.handle, ACPI_DEVICE_NOTIFY,
915 toshiba_acpi_notify);
917 platform_device_unregister(toshiba_acpi.p_dev);
919 return;
922 static int __init toshiba_acpi_init(void)
924 acpi_status status = AE_OK;
925 u32 hci_result;
926 bool bt_present;
927 int ret = 0;
928 struct backlight_properties props;
930 if (acpi_disabled)
931 return -ENODEV;
933 /* simple device detection: look for HCI method */
934 if (is_valid_acpi_path(TOSH_INTERFACE_1 GHCI_METHOD)) {
935 method_hci = TOSH_INTERFACE_1 GHCI_METHOD;
936 if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_1))
937 printk(MY_INFO "Unable to activate hotkeys\n");
938 } else if (is_valid_acpi_path(TOSH_INTERFACE_2 GHCI_METHOD)) {
939 method_hci = TOSH_INTERFACE_2 GHCI_METHOD;
940 if (toshiba_acpi_setup_keyboard(TOSH_INTERFACE_2))
941 printk(MY_INFO "Unable to activate hotkeys\n");
942 } else
943 return -ENODEV;
945 printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n",
946 TOSHIBA_ACPI_VERSION);
947 printk(MY_INFO " HCI method: %s\n", method_hci);
949 mutex_init(&toshiba_acpi.mutex);
951 toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi",
952 -1, NULL, 0);
953 if (IS_ERR(toshiba_acpi.p_dev)) {
954 ret = PTR_ERR(toshiba_acpi.p_dev);
955 printk(MY_ERR "unable to register platform device\n");
956 toshiba_acpi.p_dev = NULL;
957 toshiba_acpi_exit();
958 return ret;
961 force_fan = 0;
962 key_event_valid = 0;
964 /* enable event fifo */
965 hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result);
967 toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir);
968 if (!toshiba_proc_dir) {
969 toshiba_acpi_exit();
970 return -ENODEV;
971 } else {
972 status = add_device();
973 if (ACPI_FAILURE(status)) {
974 toshiba_acpi_exit();
975 return -ENODEV;
979 props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1;
980 toshiba_backlight_device = backlight_device_register("toshiba",
981 &toshiba_acpi.p_dev->dev,
982 NULL,
983 &toshiba_backlight_data,
984 &props);
985 if (IS_ERR(toshiba_backlight_device)) {
986 ret = PTR_ERR(toshiba_backlight_device);
988 printk(KERN_ERR "Could not register toshiba backlight device\n");
989 toshiba_backlight_device = NULL;
990 toshiba_acpi_exit();
991 return ret;
994 /* Register rfkill switch for Bluetooth */
995 if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) {
996 toshiba_acpi.bt_rfk = rfkill_alloc(toshiba_acpi.bt_name,
997 &toshiba_acpi.p_dev->dev,
998 RFKILL_TYPE_BLUETOOTH,
999 &toshiba_rfk_ops,
1000 &toshiba_acpi);
1001 if (!toshiba_acpi.bt_rfk) {
1002 printk(MY_ERR "unable to allocate rfkill device\n");
1003 toshiba_acpi_exit();
1004 return -ENOMEM;
1007 ret = rfkill_register(toshiba_acpi.bt_rfk);
1008 if (ret) {
1009 printk(MY_ERR "unable to register rfkill device\n");
1010 rfkill_destroy(toshiba_acpi.bt_rfk);
1011 toshiba_acpi_exit();
1012 return ret;
1016 return 0;
1019 module_init(toshiba_acpi_init);
1020 module_exit(toshiba_acpi_exit);