2 * segment.c - NILFS segment constructor.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
48 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
50 #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
51 appended in collection retry loop */
53 /* Construction mode */
55 SC_LSEG_SR
= 1, /* Make a logical segment having a super root */
56 SC_LSEG_DSYNC
, /* Flush data blocks of a given file and make
57 a logical segment without a super root */
58 SC_FLUSH_FILE
, /* Flush data files, leads to segment writes without
59 creating a checkpoint */
60 SC_FLUSH_DAT
, /* Flush DAT file. This also creates segments without
64 /* Stage numbers of dirty block collection */
67 NILFS_ST_GC
, /* Collecting dirty blocks for GC */
73 NILFS_ST_SR
, /* Super root */
74 NILFS_ST_DSYNC
, /* Data sync blocks */
78 /* State flags of collection */
79 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
80 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
81 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
82 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
84 /* Operations depending on the construction mode and file type */
85 struct nilfs_sc_operations
{
86 int (*collect_data
)(struct nilfs_sc_info
*, struct buffer_head
*,
88 int (*collect_node
)(struct nilfs_sc_info
*, struct buffer_head
*,
90 int (*collect_bmap
)(struct nilfs_sc_info
*, struct buffer_head
*,
92 void (*write_data_binfo
)(struct nilfs_sc_info
*,
93 struct nilfs_segsum_pointer
*,
95 void (*write_node_binfo
)(struct nilfs_sc_info
*,
96 struct nilfs_segsum_pointer
*,
103 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*);
104 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*, int);
105 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*);
106 static void nilfs_dispose_list(struct nilfs_sb_info
*, struct list_head
*,
109 #define nilfs_cnt32_gt(a, b) \
110 (typecheck(__u32, a) && typecheck(__u32, b) && \
111 ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b) \
113 (typecheck(__u32, a) && typecheck(__u32, b) && \
114 ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
121 static struct kmem_cache
*nilfs_transaction_cachep
;
124 * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
126 * nilfs_init_transaction_cache() creates a slab cache for the struct
127 * nilfs_transaction_info.
129 * Return Value: On success, it returns 0. On error, one of the following
130 * negative error code is returned.
132 * %-ENOMEM - Insufficient memory available.
134 int nilfs_init_transaction_cache(void)
136 nilfs_transaction_cachep
=
137 kmem_cache_create("nilfs2_transaction_cache",
138 sizeof(struct nilfs_transaction_info
),
139 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
140 return (nilfs_transaction_cachep
== NULL
) ? -ENOMEM
: 0;
144 * nilfs_detroy_transaction_cache - destroy the cache for transaction info
146 * nilfs_destroy_transaction_cache() frees the slab cache for the struct
147 * nilfs_transaction_info.
149 void nilfs_destroy_transaction_cache(void)
151 kmem_cache_destroy(nilfs_transaction_cachep
);
154 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info
*ti
)
156 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
160 if (cur_ti
->ti_magic
== NILFS_TI_MAGIC
)
161 return ++cur_ti
->ti_count
;
164 * If journal_info field is occupied by other FS,
165 * it is saved and will be restored on
166 * nilfs_transaction_commit().
169 "NILFS warning: journal info from a different "
171 save
= current
->journal_info
;
175 ti
= kmem_cache_alloc(nilfs_transaction_cachep
, GFP_NOFS
);
178 ti
->ti_flags
= NILFS_TI_DYNAMIC_ALLOC
;
184 ti
->ti_magic
= NILFS_TI_MAGIC
;
185 current
->journal_info
= ti
;
190 * nilfs_transaction_begin - start indivisible file operations.
192 * @ti: nilfs_transaction_info
193 * @vacancy_check: flags for vacancy rate checks
195 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
196 * the segment semaphore, to make a segment construction and write tasks
197 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
198 * The region enclosed by these two functions can be nested. To avoid a
199 * deadlock, the semaphore is only acquired or released in the outermost call.
201 * This function allocates a nilfs_transaction_info struct to keep context
202 * information on it. It is initialized and hooked onto the current task in
203 * the outermost call. If a pre-allocated struct is given to @ti, it is used
204 * instead; othewise a new struct is assigned from a slab.
206 * When @vacancy_check flag is set, this function will check the amount of
207 * free space, and will wait for the GC to reclaim disk space if low capacity.
209 * Return Value: On success, 0 is returned. On error, one of the following
210 * negative error code is returned.
212 * %-ENOMEM - Insufficient memory available.
214 * %-ENOSPC - No space left on device
216 int nilfs_transaction_begin(struct super_block
*sb
,
217 struct nilfs_transaction_info
*ti
,
220 struct nilfs_sb_info
*sbi
;
221 struct the_nilfs
*nilfs
;
222 int ret
= nilfs_prepare_segment_lock(ti
);
224 if (unlikely(ret
< 0))
230 nilfs
= sbi
->s_nilfs
;
231 down_read(&nilfs
->ns_segctor_sem
);
232 if (vacancy_check
&& nilfs_near_disk_full(nilfs
)) {
233 up_read(&nilfs
->ns_segctor_sem
);
240 ti
= current
->journal_info
;
241 current
->journal_info
= ti
->ti_save
;
242 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
243 kmem_cache_free(nilfs_transaction_cachep
, ti
);
248 * nilfs_transaction_commit - commit indivisible file operations.
251 * nilfs_transaction_commit() releases the read semaphore which is
252 * acquired by nilfs_transaction_begin(). This is only performed
253 * in outermost call of this function. If a commit flag is set,
254 * nilfs_transaction_commit() sets a timer to start the segment
255 * constructor. If a sync flag is set, it starts construction
258 int nilfs_transaction_commit(struct super_block
*sb
)
260 struct nilfs_transaction_info
*ti
= current
->journal_info
;
261 struct nilfs_sb_info
*sbi
;
262 struct nilfs_sc_info
*sci
;
265 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
266 ti
->ti_flags
|= NILFS_TI_COMMIT
;
267 if (ti
->ti_count
> 0) {
274 if (ti
->ti_flags
& NILFS_TI_COMMIT
)
275 nilfs_segctor_start_timer(sci
);
276 if (atomic_read(&sbi
->s_nilfs
->ns_ndirtyblks
) >
278 nilfs_segctor_do_flush(sci
, 0);
280 up_read(&sbi
->s_nilfs
->ns_segctor_sem
);
281 current
->journal_info
= ti
->ti_save
;
283 if (ti
->ti_flags
& NILFS_TI_SYNC
)
284 err
= nilfs_construct_segment(sb
);
285 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
286 kmem_cache_free(nilfs_transaction_cachep
, ti
);
290 void nilfs_transaction_abort(struct super_block
*sb
)
292 struct nilfs_transaction_info
*ti
= current
->journal_info
;
294 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
295 if (ti
->ti_count
> 0) {
299 up_read(&NILFS_SB(sb
)->s_nilfs
->ns_segctor_sem
);
301 current
->journal_info
= ti
->ti_save
;
302 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
303 kmem_cache_free(nilfs_transaction_cachep
, ti
);
306 void nilfs_relax_pressure_in_lock(struct super_block
*sb
)
308 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
309 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
310 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
312 if (!sci
|| !sci
->sc_flush_request
)
315 set_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
316 up_read(&nilfs
->ns_segctor_sem
);
318 down_write(&nilfs
->ns_segctor_sem
);
319 if (sci
->sc_flush_request
&&
320 test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
)) {
321 struct nilfs_transaction_info
*ti
= current
->journal_info
;
323 ti
->ti_flags
|= NILFS_TI_WRITER
;
324 nilfs_segctor_do_immediate_flush(sci
);
325 ti
->ti_flags
&= ~NILFS_TI_WRITER
;
327 downgrade_write(&nilfs
->ns_segctor_sem
);
330 static void nilfs_transaction_lock(struct nilfs_sb_info
*sbi
,
331 struct nilfs_transaction_info
*ti
,
334 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
337 ti
->ti_flags
= NILFS_TI_WRITER
;
339 ti
->ti_save
= cur_ti
;
340 ti
->ti_magic
= NILFS_TI_MAGIC
;
341 INIT_LIST_HEAD(&ti
->ti_garbage
);
342 current
->journal_info
= ti
;
345 down_write(&sbi
->s_nilfs
->ns_segctor_sem
);
346 if (!test_bit(NILFS_SC_PRIOR_FLUSH
, &NILFS_SC(sbi
)->sc_flags
))
349 nilfs_segctor_do_immediate_flush(NILFS_SC(sbi
));
351 up_write(&sbi
->s_nilfs
->ns_segctor_sem
);
355 ti
->ti_flags
|= NILFS_TI_GC
;
358 static void nilfs_transaction_unlock(struct nilfs_sb_info
*sbi
)
360 struct nilfs_transaction_info
*ti
= current
->journal_info
;
362 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
363 BUG_ON(ti
->ti_count
> 0);
365 up_write(&sbi
->s_nilfs
->ns_segctor_sem
);
366 current
->journal_info
= ti
->ti_save
;
367 if (!list_empty(&ti
->ti_garbage
))
368 nilfs_dispose_list(sbi
, &ti
->ti_garbage
, 0);
371 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info
*sci
,
372 struct nilfs_segsum_pointer
*ssp
,
375 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
376 unsigned blocksize
= sci
->sc_super
->s_blocksize
;
379 if (unlikely(ssp
->offset
+ bytes
> blocksize
)) {
381 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp
->bh
,
382 &segbuf
->sb_segsum_buffers
));
383 ssp
->bh
= NILFS_SEGBUF_NEXT_BH(ssp
->bh
);
385 p
= ssp
->bh
->b_data
+ ssp
->offset
;
386 ssp
->offset
+= bytes
;
391 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
392 * @sci: nilfs_sc_info
394 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info
*sci
)
396 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
397 struct buffer_head
*sumbh
;
402 if (nilfs_doing_gc())
404 err
= nilfs_segbuf_reset(segbuf
, flags
, sci
->sc_seg_ctime
);
408 sumbh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
409 sumbytes
= segbuf
->sb_sum
.sumbytes
;
410 sci
->sc_finfo_ptr
.bh
= sumbh
; sci
->sc_finfo_ptr
.offset
= sumbytes
;
411 sci
->sc_binfo_ptr
.bh
= sumbh
; sci
->sc_binfo_ptr
.offset
= sumbytes
;
412 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
416 static int nilfs_segctor_feed_segment(struct nilfs_sc_info
*sci
)
418 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
419 if (NILFS_SEGBUF_IS_LAST(sci
->sc_curseg
, &sci
->sc_segbufs
))
420 return -E2BIG
; /* The current segment is filled up
422 sci
->sc_curseg
= NILFS_NEXT_SEGBUF(sci
->sc_curseg
);
423 return nilfs_segctor_reset_segment_buffer(sci
);
426 static int nilfs_segctor_add_super_root(struct nilfs_sc_info
*sci
)
428 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
431 if (segbuf
->sb_sum
.nblocks
>= segbuf
->sb_rest_blocks
) {
432 err
= nilfs_segctor_feed_segment(sci
);
435 segbuf
= sci
->sc_curseg
;
437 err
= nilfs_segbuf_extend_payload(segbuf
, &sci
->sc_super_root
);
439 segbuf
->sb_sum
.flags
|= NILFS_SS_SR
;
444 * Functions for making segment summary and payloads
446 static int nilfs_segctor_segsum_block_required(
447 struct nilfs_sc_info
*sci
, const struct nilfs_segsum_pointer
*ssp
,
450 unsigned blocksize
= sci
->sc_super
->s_blocksize
;
451 /* Size of finfo and binfo is enough small against blocksize */
453 return ssp
->offset
+ binfo_size
+
454 (!sci
->sc_blk_cnt
? sizeof(struct nilfs_finfo
) : 0) >
458 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info
*sci
,
461 sci
->sc_curseg
->sb_sum
.nfinfo
++;
462 sci
->sc_binfo_ptr
= sci
->sc_finfo_ptr
;
463 nilfs_segctor_map_segsum_entry(
464 sci
, &sci
->sc_binfo_ptr
, sizeof(struct nilfs_finfo
));
466 if (inode
->i_sb
&& !test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
467 set_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
471 static void nilfs_segctor_end_finfo(struct nilfs_sc_info
*sci
,
474 struct nilfs_finfo
*finfo
;
475 struct nilfs_inode_info
*ii
;
476 struct nilfs_segment_buffer
*segbuf
;
478 if (sci
->sc_blk_cnt
== 0)
482 finfo
= nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_finfo_ptr
,
484 finfo
->fi_ino
= cpu_to_le64(inode
->i_ino
);
485 finfo
->fi_nblocks
= cpu_to_le32(sci
->sc_blk_cnt
);
486 finfo
->fi_ndatablk
= cpu_to_le32(sci
->sc_datablk_cnt
);
487 finfo
->fi_cno
= cpu_to_le64(ii
->i_cno
);
489 segbuf
= sci
->sc_curseg
;
490 segbuf
->sb_sum
.sumbytes
= sci
->sc_binfo_ptr
.offset
+
491 sci
->sc_super
->s_blocksize
* (segbuf
->sb_sum
.nsumblk
- 1);
492 sci
->sc_finfo_ptr
= sci
->sc_binfo_ptr
;
493 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
496 static int nilfs_segctor_add_file_block(struct nilfs_sc_info
*sci
,
497 struct buffer_head
*bh
,
501 struct nilfs_segment_buffer
*segbuf
;
502 int required
, err
= 0;
505 segbuf
= sci
->sc_curseg
;
506 required
= nilfs_segctor_segsum_block_required(
507 sci
, &sci
->sc_binfo_ptr
, binfo_size
);
508 if (segbuf
->sb_sum
.nblocks
+ required
+ 1 > segbuf
->sb_rest_blocks
) {
509 nilfs_segctor_end_finfo(sci
, inode
);
510 err
= nilfs_segctor_feed_segment(sci
);
515 if (unlikely(required
)) {
516 err
= nilfs_segbuf_extend_segsum(segbuf
);
520 if (sci
->sc_blk_cnt
== 0)
521 nilfs_segctor_begin_finfo(sci
, inode
);
523 nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_binfo_ptr
, binfo_size
);
524 /* Substitution to vblocknr is delayed until update_blocknr() */
525 nilfs_segbuf_add_file_buffer(segbuf
, bh
);
531 static int nilfs_handle_bmap_error(int err
, const char *fname
,
532 struct inode
*inode
, struct super_block
*sb
)
534 if (err
== -EINVAL
) {
535 nilfs_error(sb
, fname
, "broken bmap (inode=%lu)\n",
543 * Callback functions that enumerate, mark, and collect dirty blocks
545 static int nilfs_collect_file_data(struct nilfs_sc_info
*sci
,
546 struct buffer_head
*bh
, struct inode
*inode
)
550 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
551 if (unlikely(err
< 0))
552 return nilfs_handle_bmap_error(err
, __func__
, inode
,
555 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
,
556 sizeof(struct nilfs_binfo_v
));
558 sci
->sc_datablk_cnt
++;
562 static int nilfs_collect_file_node(struct nilfs_sc_info
*sci
,
563 struct buffer_head
*bh
,
568 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
569 if (unlikely(err
< 0))
570 return nilfs_handle_bmap_error(err
, __func__
, inode
,
575 static int nilfs_collect_file_bmap(struct nilfs_sc_info
*sci
,
576 struct buffer_head
*bh
,
579 WARN_ON(!buffer_dirty(bh
));
580 return nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
583 static void nilfs_write_file_data_binfo(struct nilfs_sc_info
*sci
,
584 struct nilfs_segsum_pointer
*ssp
,
585 union nilfs_binfo
*binfo
)
587 struct nilfs_binfo_v
*binfo_v
= nilfs_segctor_map_segsum_entry(
588 sci
, ssp
, sizeof(*binfo_v
));
589 *binfo_v
= binfo
->bi_v
;
592 static void nilfs_write_file_node_binfo(struct nilfs_sc_info
*sci
,
593 struct nilfs_segsum_pointer
*ssp
,
594 union nilfs_binfo
*binfo
)
596 __le64
*vblocknr
= nilfs_segctor_map_segsum_entry(
597 sci
, ssp
, sizeof(*vblocknr
));
598 *vblocknr
= binfo
->bi_v
.bi_vblocknr
;
601 struct nilfs_sc_operations nilfs_sc_file_ops
= {
602 .collect_data
= nilfs_collect_file_data
,
603 .collect_node
= nilfs_collect_file_node
,
604 .collect_bmap
= nilfs_collect_file_bmap
,
605 .write_data_binfo
= nilfs_write_file_data_binfo
,
606 .write_node_binfo
= nilfs_write_file_node_binfo
,
609 static int nilfs_collect_dat_data(struct nilfs_sc_info
*sci
,
610 struct buffer_head
*bh
, struct inode
*inode
)
614 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
615 if (unlikely(err
< 0))
616 return nilfs_handle_bmap_error(err
, __func__
, inode
,
619 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
621 sci
->sc_datablk_cnt
++;
625 static int nilfs_collect_dat_bmap(struct nilfs_sc_info
*sci
,
626 struct buffer_head
*bh
, struct inode
*inode
)
628 WARN_ON(!buffer_dirty(bh
));
629 return nilfs_segctor_add_file_block(sci
, bh
, inode
,
630 sizeof(struct nilfs_binfo_dat
));
633 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info
*sci
,
634 struct nilfs_segsum_pointer
*ssp
,
635 union nilfs_binfo
*binfo
)
637 __le64
*blkoff
= nilfs_segctor_map_segsum_entry(sci
, ssp
,
639 *blkoff
= binfo
->bi_dat
.bi_blkoff
;
642 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info
*sci
,
643 struct nilfs_segsum_pointer
*ssp
,
644 union nilfs_binfo
*binfo
)
646 struct nilfs_binfo_dat
*binfo_dat
=
647 nilfs_segctor_map_segsum_entry(sci
, ssp
, sizeof(*binfo_dat
));
648 *binfo_dat
= binfo
->bi_dat
;
651 struct nilfs_sc_operations nilfs_sc_dat_ops
= {
652 .collect_data
= nilfs_collect_dat_data
,
653 .collect_node
= nilfs_collect_file_node
,
654 .collect_bmap
= nilfs_collect_dat_bmap
,
655 .write_data_binfo
= nilfs_write_dat_data_binfo
,
656 .write_node_binfo
= nilfs_write_dat_node_binfo
,
659 struct nilfs_sc_operations nilfs_sc_dsync_ops
= {
660 .collect_data
= nilfs_collect_file_data
,
661 .collect_node
= NULL
,
662 .collect_bmap
= NULL
,
663 .write_data_binfo
= nilfs_write_file_data_binfo
,
664 .write_node_binfo
= NULL
,
667 static size_t nilfs_lookup_dirty_data_buffers(struct inode
*inode
,
668 struct list_head
*listp
,
670 loff_t start
, loff_t end
)
672 struct address_space
*mapping
= inode
->i_mapping
;
674 pgoff_t index
= 0, last
= ULONG_MAX
;
678 if (unlikely(start
!= 0 || end
!= LLONG_MAX
)) {
680 * A valid range is given for sync-ing data pages. The
681 * range is rounded to per-page; extra dirty buffers
682 * may be included if blocksize < pagesize.
684 index
= start
>> PAGE_SHIFT
;
685 last
= end
>> PAGE_SHIFT
;
687 pagevec_init(&pvec
, 0);
689 if (unlikely(index
> last
) ||
690 !pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
691 min_t(pgoff_t
, last
- index
,
692 PAGEVEC_SIZE
- 1) + 1))
695 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
696 struct buffer_head
*bh
, *head
;
697 struct page
*page
= pvec
.pages
[i
];
699 if (unlikely(page
->index
> last
))
704 if (!page_has_buffers(page
))
705 create_empty_buffers(page
,
706 1 << inode
->i_blkbits
, 0);
710 bh
= head
= page_buffers(page
);
712 if (!buffer_dirty(bh
))
715 list_add_tail(&bh
->b_assoc_buffers
, listp
);
717 if (unlikely(ndirties
>= nlimit
)) {
718 pagevec_release(&pvec
);
722 } while (bh
= bh
->b_this_page
, bh
!= head
);
724 pagevec_release(&pvec
);
729 static void nilfs_lookup_dirty_node_buffers(struct inode
*inode
,
730 struct list_head
*listp
)
732 struct nilfs_inode_info
*ii
= NILFS_I(inode
);
733 struct address_space
*mapping
= &ii
->i_btnode_cache
;
735 struct buffer_head
*bh
, *head
;
739 pagevec_init(&pvec
, 0);
741 while (pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
743 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
744 bh
= head
= page_buffers(pvec
.pages
[i
]);
746 if (buffer_dirty(bh
)) {
748 list_add_tail(&bh
->b_assoc_buffers
,
751 bh
= bh
->b_this_page
;
752 } while (bh
!= head
);
754 pagevec_release(&pvec
);
759 static void nilfs_dispose_list(struct nilfs_sb_info
*sbi
,
760 struct list_head
*head
, int force
)
762 struct nilfs_inode_info
*ii
, *n
;
763 struct nilfs_inode_info
*ivec
[SC_N_INODEVEC
], **pii
;
766 while (!list_empty(head
)) {
767 spin_lock(&sbi
->s_inode_lock
);
768 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
769 list_del_init(&ii
->i_dirty
);
771 if (unlikely(ii
->i_bh
)) {
775 } else if (test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
776 set_bit(NILFS_I_QUEUED
, &ii
->i_state
);
777 list_add_tail(&ii
->i_dirty
,
778 &sbi
->s_dirty_files
);
782 if (nv
== SC_N_INODEVEC
)
785 spin_unlock(&sbi
->s_inode_lock
);
787 for (pii
= ivec
; nv
> 0; pii
++, nv
--)
788 iput(&(*pii
)->vfs_inode
);
792 static int nilfs_test_metadata_dirty(struct nilfs_sb_info
*sbi
)
794 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
797 if (nilfs_mdt_fetch_dirty(sbi
->s_ifile
))
799 if (nilfs_mdt_fetch_dirty(nilfs
->ns_cpfile
))
801 if (nilfs_mdt_fetch_dirty(nilfs
->ns_sufile
))
803 if (ret
|| nilfs_doing_gc())
804 if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs
)))
809 static int nilfs_segctor_clean(struct nilfs_sc_info
*sci
)
811 return list_empty(&sci
->sc_dirty_files
) &&
812 !test_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
) &&
813 sci
->sc_nfreesegs
== 0 &&
814 (!nilfs_doing_gc() || list_empty(&sci
->sc_gc_inodes
));
817 static int nilfs_segctor_confirm(struct nilfs_sc_info
*sci
)
819 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
822 if (nilfs_test_metadata_dirty(sbi
))
823 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
825 spin_lock(&sbi
->s_inode_lock
);
826 if (list_empty(&sbi
->s_dirty_files
) && nilfs_segctor_clean(sci
))
829 spin_unlock(&sbi
->s_inode_lock
);
833 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info
*sci
)
835 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
836 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
838 nilfs_mdt_clear_dirty(sbi
->s_ifile
);
839 nilfs_mdt_clear_dirty(nilfs
->ns_cpfile
);
840 nilfs_mdt_clear_dirty(nilfs
->ns_sufile
);
841 nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs
));
844 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info
*sci
)
846 struct the_nilfs
*nilfs
= sci
->sc_sbi
->s_nilfs
;
847 struct buffer_head
*bh_cp
;
848 struct nilfs_checkpoint
*raw_cp
;
851 /* XXX: this interface will be changed */
852 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 1,
855 /* The following code is duplicated with cpfile. But, it is
856 needed to collect the checkpoint even if it was not newly
858 nilfs_mdt_mark_buffer_dirty(bh_cp
);
859 nilfs_mdt_mark_dirty(nilfs
->ns_cpfile
);
860 nilfs_cpfile_put_checkpoint(
861 nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
863 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
868 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info
*sci
)
870 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
871 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
872 struct buffer_head
*bh_cp
;
873 struct nilfs_checkpoint
*raw_cp
;
876 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 0,
879 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
882 raw_cp
->cp_snapshot_list
.ssl_next
= 0;
883 raw_cp
->cp_snapshot_list
.ssl_prev
= 0;
884 raw_cp
->cp_inodes_count
=
885 cpu_to_le64(atomic_read(&sbi
->s_inodes_count
));
886 raw_cp
->cp_blocks_count
=
887 cpu_to_le64(atomic_read(&sbi
->s_blocks_count
));
888 raw_cp
->cp_nblk_inc
=
889 cpu_to_le64(sci
->sc_nblk_inc
+ sci
->sc_nblk_this_inc
);
890 raw_cp
->cp_create
= cpu_to_le64(sci
->sc_seg_ctime
);
891 raw_cp
->cp_cno
= cpu_to_le64(nilfs
->ns_cno
);
893 if (test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
894 nilfs_checkpoint_clear_minor(raw_cp
);
896 nilfs_checkpoint_set_minor(raw_cp
);
898 nilfs_write_inode_common(sbi
->s_ifile
, &raw_cp
->cp_ifile_inode
, 1);
899 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
906 static void nilfs_fill_in_file_bmap(struct inode
*ifile
,
907 struct nilfs_inode_info
*ii
)
910 struct buffer_head
*ibh
;
911 struct nilfs_inode
*raw_inode
;
913 if (test_bit(NILFS_I_BMAP
, &ii
->i_state
)) {
916 raw_inode
= nilfs_ifile_map_inode(ifile
, ii
->vfs_inode
.i_ino
,
918 nilfs_bmap_write(ii
->i_bmap
, raw_inode
);
919 nilfs_ifile_unmap_inode(ifile
, ii
->vfs_inode
.i_ino
, ibh
);
923 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info
*sci
,
926 struct nilfs_inode_info
*ii
;
928 list_for_each_entry(ii
, &sci
->sc_dirty_files
, i_dirty
) {
929 nilfs_fill_in_file_bmap(ifile
, ii
);
930 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
935 * CRC calculation routines
937 static void nilfs_fill_in_super_root_crc(struct buffer_head
*bh_sr
, u32 seed
)
939 struct nilfs_super_root
*raw_sr
=
940 (struct nilfs_super_root
*)bh_sr
->b_data
;
944 (unsigned char *)raw_sr
+ sizeof(raw_sr
->sr_sum
),
945 NILFS_SR_BYTES
- sizeof(raw_sr
->sr_sum
));
946 raw_sr
->sr_sum
= cpu_to_le32(crc
);
949 static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info
*sci
,
952 struct nilfs_segment_buffer
*segbuf
;
954 if (sci
->sc_super_root
)
955 nilfs_fill_in_super_root_crc(sci
->sc_super_root
, seed
);
957 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
958 nilfs_segbuf_fill_in_segsum_crc(segbuf
, seed
);
959 nilfs_segbuf_fill_in_data_crc(segbuf
, seed
);
963 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info
*sci
,
964 struct the_nilfs
*nilfs
)
966 struct buffer_head
*bh_sr
= sci
->sc_super_root
;
967 struct nilfs_super_root
*raw_sr
=
968 (struct nilfs_super_root
*)bh_sr
->b_data
;
969 unsigned isz
= nilfs
->ns_inode_size
;
971 raw_sr
->sr_bytes
= cpu_to_le16(NILFS_SR_BYTES
);
972 raw_sr
->sr_nongc_ctime
973 = cpu_to_le64(nilfs_doing_gc() ?
974 nilfs
->ns_nongc_ctime
: sci
->sc_seg_ctime
);
975 raw_sr
->sr_flags
= 0;
977 nilfs_mdt_write_inode_direct(
978 nilfs_dat_inode(nilfs
), bh_sr
, NILFS_SR_DAT_OFFSET(isz
));
979 nilfs_mdt_write_inode_direct(
980 nilfs
->ns_cpfile
, bh_sr
, NILFS_SR_CPFILE_OFFSET(isz
));
981 nilfs_mdt_write_inode_direct(
982 nilfs
->ns_sufile
, bh_sr
, NILFS_SR_SUFILE_OFFSET(isz
));
985 static void nilfs_redirty_inodes(struct list_head
*head
)
987 struct nilfs_inode_info
*ii
;
989 list_for_each_entry(ii
, head
, i_dirty
) {
990 if (test_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
991 clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
995 static void nilfs_drop_collected_inodes(struct list_head
*head
)
997 struct nilfs_inode_info
*ii
;
999 list_for_each_entry(ii
, head
, i_dirty
) {
1000 if (!test_and_clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
1003 clear_bit(NILFS_I_INODE_DIRTY
, &ii
->i_state
);
1004 set_bit(NILFS_I_UPDATED
, &ii
->i_state
);
1008 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info
*sci
,
1009 struct inode
*inode
,
1010 struct list_head
*listp
,
1011 int (*collect
)(struct nilfs_sc_info
*,
1012 struct buffer_head
*,
1015 struct buffer_head
*bh
, *n
;
1019 list_for_each_entry_safe(bh
, n
, listp
, b_assoc_buffers
) {
1020 list_del_init(&bh
->b_assoc_buffers
);
1021 err
= collect(sci
, bh
, inode
);
1024 goto dispose_buffers
;
1030 while (!list_empty(listp
)) {
1031 bh
= list_entry(listp
->next
, struct buffer_head
,
1033 list_del_init(&bh
->b_assoc_buffers
);
1039 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info
*sci
)
1041 /* Remaining number of blocks within segment buffer */
1042 return sci
->sc_segbuf_nblocks
-
1043 (sci
->sc_nblk_this_inc
+ sci
->sc_curseg
->sb_sum
.nblocks
);
1046 static int nilfs_segctor_scan_file(struct nilfs_sc_info
*sci
,
1047 struct inode
*inode
,
1048 struct nilfs_sc_operations
*sc_ops
)
1050 LIST_HEAD(data_buffers
);
1051 LIST_HEAD(node_buffers
);
1054 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1055 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1057 n
= nilfs_lookup_dirty_data_buffers(
1058 inode
, &data_buffers
, rest
+ 1, 0, LLONG_MAX
);
1060 err
= nilfs_segctor_apply_buffers(
1061 sci
, inode
, &data_buffers
,
1062 sc_ops
->collect_data
);
1063 BUG_ON(!err
); /* always receive -E2BIG or true error */
1067 nilfs_lookup_dirty_node_buffers(inode
, &node_buffers
);
1069 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1070 err
= nilfs_segctor_apply_buffers(
1071 sci
, inode
, &data_buffers
, sc_ops
->collect_data
);
1072 if (unlikely(err
)) {
1073 /* dispose node list */
1074 nilfs_segctor_apply_buffers(
1075 sci
, inode
, &node_buffers
, NULL
);
1078 sci
->sc_stage
.flags
|= NILFS_CF_NODE
;
1081 err
= nilfs_segctor_apply_buffers(
1082 sci
, inode
, &node_buffers
, sc_ops
->collect_node
);
1086 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode
)->i_bmap
, &node_buffers
);
1087 err
= nilfs_segctor_apply_buffers(
1088 sci
, inode
, &node_buffers
, sc_ops
->collect_bmap
);
1092 nilfs_segctor_end_finfo(sci
, inode
);
1093 sci
->sc_stage
.flags
&= ~NILFS_CF_NODE
;
1099 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info
*sci
,
1100 struct inode
*inode
)
1102 LIST_HEAD(data_buffers
);
1103 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1106 n
= nilfs_lookup_dirty_data_buffers(inode
, &data_buffers
, rest
+ 1,
1107 sci
->sc_dsync_start
,
1110 err
= nilfs_segctor_apply_buffers(sci
, inode
, &data_buffers
,
1111 nilfs_collect_file_data
);
1113 nilfs_segctor_end_finfo(sci
, inode
);
1115 /* always receive -E2BIG or true error if n > rest */
1120 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info
*sci
, int mode
)
1122 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
1123 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
1124 struct list_head
*head
;
1125 struct nilfs_inode_info
*ii
;
1129 switch (sci
->sc_stage
.scnt
) {
1132 sci
->sc_stage
.flags
= 0;
1134 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
)) {
1135 sci
->sc_nblk_inc
= 0;
1136 sci
->sc_curseg
->sb_sum
.flags
= NILFS_SS_LOGBGN
;
1137 if (mode
== SC_LSEG_DSYNC
) {
1138 sci
->sc_stage
.scnt
= NILFS_ST_DSYNC
;
1143 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1144 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1145 if (mode
== SC_FLUSH_DAT
) {
1146 sci
->sc_stage
.scnt
= NILFS_ST_DAT
;
1149 sci
->sc_stage
.scnt
++; /* Fall through */
1151 if (nilfs_doing_gc()) {
1152 head
= &sci
->sc_gc_inodes
;
1153 ii
= list_prepare_entry(sci
->sc_stage
.gc_inode_ptr
,
1155 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1156 err
= nilfs_segctor_scan_file(
1157 sci
, &ii
->vfs_inode
,
1158 &nilfs_sc_file_ops
);
1159 if (unlikely(err
)) {
1160 sci
->sc_stage
.gc_inode_ptr
= list_entry(
1162 struct nilfs_inode_info
,
1166 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
1168 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1170 sci
->sc_stage
.scnt
++; /* Fall through */
1172 head
= &sci
->sc_dirty_files
;
1173 ii
= list_prepare_entry(sci
->sc_stage
.dirty_file_ptr
, head
,
1175 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1176 clear_bit(NILFS_I_DIRTY
, &ii
->i_state
);
1178 err
= nilfs_segctor_scan_file(sci
, &ii
->vfs_inode
,
1179 &nilfs_sc_file_ops
);
1180 if (unlikely(err
)) {
1181 sci
->sc_stage
.dirty_file_ptr
=
1182 list_entry(ii
->i_dirty
.prev
,
1183 struct nilfs_inode_info
,
1187 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1188 /* XXX: required ? */
1190 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1191 if (mode
== SC_FLUSH_FILE
) {
1192 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1195 sci
->sc_stage
.scnt
++;
1196 sci
->sc_stage
.flags
|= NILFS_CF_IFILE_STARTED
;
1198 case NILFS_ST_IFILE
:
1199 err
= nilfs_segctor_scan_file(sci
, sbi
->s_ifile
,
1200 &nilfs_sc_file_ops
);
1203 sci
->sc_stage
.scnt
++;
1204 /* Creating a checkpoint */
1205 err
= nilfs_segctor_create_checkpoint(sci
);
1209 case NILFS_ST_CPFILE
:
1210 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_cpfile
,
1211 &nilfs_sc_file_ops
);
1214 sci
->sc_stage
.scnt
++; /* Fall through */
1215 case NILFS_ST_SUFILE
:
1216 err
= nilfs_sufile_freev(nilfs
->ns_sufile
, sci
->sc_freesegs
,
1217 sci
->sc_nfreesegs
, &ndone
);
1218 if (unlikely(err
)) {
1219 nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1220 sci
->sc_freesegs
, ndone
,
1224 sci
->sc_stage
.flags
|= NILFS_CF_SUFREED
;
1226 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_sufile
,
1227 &nilfs_sc_file_ops
);
1230 sci
->sc_stage
.scnt
++; /* Fall through */
1233 err
= nilfs_segctor_scan_file(sci
, nilfs_dat_inode(nilfs
),
1237 if (mode
== SC_FLUSH_DAT
) {
1238 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1241 sci
->sc_stage
.scnt
++; /* Fall through */
1243 if (mode
== SC_LSEG_SR
) {
1244 /* Appending a super root */
1245 err
= nilfs_segctor_add_super_root(sci
);
1249 /* End of a logical segment */
1250 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1251 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1253 case NILFS_ST_DSYNC
:
1255 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_SYNDT
;
1256 ii
= sci
->sc_dsync_inode
;
1257 if (!test_bit(NILFS_I_BUSY
, &ii
->i_state
))
1260 err
= nilfs_segctor_scan_file_dsync(sci
, &ii
->vfs_inode
);
1263 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1264 sci
->sc_stage
.scnt
= NILFS_ST_DONE
;
1276 static int nilfs_touch_segusage(struct inode
*sufile
, __u64 segnum
)
1278 struct buffer_head
*bh_su
;
1279 struct nilfs_segment_usage
*raw_su
;
1282 err
= nilfs_sufile_get_segment_usage(sufile
, segnum
, &raw_su
, &bh_su
);
1285 nilfs_mdt_mark_buffer_dirty(bh_su
);
1286 nilfs_mdt_mark_dirty(sufile
);
1287 nilfs_sufile_put_segment_usage(sufile
, segnum
, bh_su
);
1291 static int nilfs_segctor_begin_construction(struct nilfs_sc_info
*sci
,
1292 struct the_nilfs
*nilfs
)
1294 struct nilfs_segment_buffer
*segbuf
, *n
;
1298 if (list_empty(&sci
->sc_segbufs
)) {
1299 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1300 if (unlikely(!segbuf
))
1302 list_add(&segbuf
->sb_list
, &sci
->sc_segbufs
);
1304 segbuf
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1306 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
, nilfs
->ns_pseg_offset
,
1309 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1310 nilfs_shift_to_next_segment(nilfs
);
1311 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
, 0, nilfs
);
1313 sci
->sc_segbuf_nblocks
= segbuf
->sb_rest_blocks
;
1315 err
= nilfs_touch_segusage(nilfs
->ns_sufile
, segbuf
->sb_segnum
);
1319 if (nilfs
->ns_segnum
== nilfs
->ns_nextnum
) {
1320 /* Start from the head of a new full segment */
1321 err
= nilfs_sufile_alloc(nilfs
->ns_sufile
, &nextnum
);
1325 nextnum
= nilfs
->ns_nextnum
;
1327 segbuf
->sb_sum
.seg_seq
= nilfs
->ns_seg_seq
;
1328 nilfs_segbuf_set_next_segnum(segbuf
, nextnum
, nilfs
);
1330 /* truncating segment buffers */
1331 list_for_each_entry_safe_continue(segbuf
, n
, &sci
->sc_segbufs
,
1333 list_del_init(&segbuf
->sb_list
);
1334 nilfs_segbuf_free(segbuf
);
1339 static int nilfs_segctor_extend_segments(struct nilfs_sc_info
*sci
,
1340 struct the_nilfs
*nilfs
, int nadd
)
1342 struct nilfs_segment_buffer
*segbuf
, *prev
, *n
;
1343 struct inode
*sufile
= nilfs
->ns_sufile
;
1348 prev
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
);
1350 * Since the segment specified with nextnum might be allocated during
1351 * the previous construction, the buffer including its segusage may
1352 * not be dirty. The following call ensures that the buffer is dirty
1353 * and will pin the buffer on memory until the sufile is written.
1355 err
= nilfs_touch_segusage(sufile
, prev
->sb_nextnum
);
1359 for (i
= 0; i
< nadd
; i
++) {
1360 /* extend segment info */
1362 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1363 if (unlikely(!segbuf
))
1366 /* map this buffer to region of segment on-disk */
1367 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1368 sci
->sc_segbuf_nblocks
+= segbuf
->sb_rest_blocks
;
1370 /* allocate the next next full segment */
1371 err
= nilfs_sufile_alloc(sufile
, &nextnextnum
);
1375 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
+ 1;
1376 nilfs_segbuf_set_next_segnum(segbuf
, nextnextnum
, nilfs
);
1378 list_add_tail(&segbuf
->sb_list
, &list
);
1381 list_splice(&list
, sci
->sc_segbufs
.prev
);
1385 nilfs_segbuf_free(segbuf
);
1387 list_for_each_entry_safe(segbuf
, n
, &list
, sb_list
) {
1388 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1389 WARN_ON(ret
); /* never fails */
1390 list_del_init(&segbuf
->sb_list
);
1391 nilfs_segbuf_free(segbuf
);
1396 static void nilfs_segctor_free_incomplete_segments(struct nilfs_sc_info
*sci
,
1397 struct the_nilfs
*nilfs
)
1399 struct nilfs_segment_buffer
*segbuf
;
1402 segbuf
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1403 if (nilfs
->ns_nextnum
!= segbuf
->sb_nextnum
) {
1404 ret
= nilfs_sufile_free(nilfs
->ns_sufile
, segbuf
->sb_nextnum
);
1405 WARN_ON(ret
); /* never fails */
1407 if (segbuf
->sb_io_error
) {
1408 /* Case 1: The first segment failed */
1409 if (segbuf
->sb_pseg_start
!= segbuf
->sb_fseg_start
)
1410 /* Case 1a: Partial segment appended into an existing
1412 nilfs_terminate_segment(nilfs
, segbuf
->sb_fseg_start
,
1413 segbuf
->sb_fseg_end
);
1414 else /* Case 1b: New full segment */
1415 set_nilfs_discontinued(nilfs
);
1419 list_for_each_entry_continue(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1420 ret
= nilfs_sufile_free(nilfs
->ns_sufile
, segbuf
->sb_nextnum
);
1421 WARN_ON(ret
); /* never fails */
1422 if (!done
&& segbuf
->sb_io_error
) {
1423 if (segbuf
->sb_segnum
!= nilfs
->ns_nextnum
)
1424 /* Case 2: extended segment (!= next) failed */
1425 nilfs_sufile_set_error(nilfs
->ns_sufile
,
1432 static void nilfs_segctor_clear_segment_buffers(struct nilfs_sc_info
*sci
)
1434 struct nilfs_segment_buffer
*segbuf
;
1436 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
)
1437 nilfs_segbuf_clear(segbuf
);
1438 sci
->sc_super_root
= NULL
;
1441 static void nilfs_segctor_destroy_segment_buffers(struct nilfs_sc_info
*sci
)
1443 struct nilfs_segment_buffer
*segbuf
;
1445 while (!list_empty(&sci
->sc_segbufs
)) {
1446 segbuf
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1447 list_del_init(&segbuf
->sb_list
);
1448 nilfs_segbuf_free(segbuf
);
1450 /* sci->sc_curseg = NULL; */
1453 static void nilfs_segctor_end_construction(struct nilfs_sc_info
*sci
,
1454 struct the_nilfs
*nilfs
, int err
)
1456 if (unlikely(err
)) {
1457 nilfs_segctor_free_incomplete_segments(sci
, nilfs
);
1458 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1461 ret
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1465 WARN_ON(ret
); /* do not happen */
1468 nilfs_segctor_clear_segment_buffers(sci
);
1471 static void nilfs_segctor_update_segusage(struct nilfs_sc_info
*sci
,
1472 struct inode
*sufile
)
1474 struct nilfs_segment_buffer
*segbuf
;
1475 struct buffer_head
*bh_su
;
1476 struct nilfs_segment_usage
*raw_su
;
1477 unsigned long live_blocks
;
1480 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1481 ret
= nilfs_sufile_get_segment_usage(sufile
, segbuf
->sb_segnum
,
1483 WARN_ON(ret
); /* always succeed because bh_su is dirty */
1484 live_blocks
= segbuf
->sb_sum
.nblocks
+
1485 (segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
);
1486 raw_su
->su_lastmod
= cpu_to_le64(sci
->sc_seg_ctime
);
1487 raw_su
->su_nblocks
= cpu_to_le32(live_blocks
);
1488 nilfs_sufile_put_segment_usage(sufile
, segbuf
->sb_segnum
,
1493 static void nilfs_segctor_cancel_segusage(struct nilfs_sc_info
*sci
,
1494 struct inode
*sufile
)
1496 struct nilfs_segment_buffer
*segbuf
;
1497 struct buffer_head
*bh_su
;
1498 struct nilfs_segment_usage
*raw_su
;
1501 segbuf
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1502 ret
= nilfs_sufile_get_segment_usage(sufile
, segbuf
->sb_segnum
,
1504 WARN_ON(ret
); /* always succeed because bh_su is dirty */
1505 raw_su
->su_nblocks
= cpu_to_le32(segbuf
->sb_pseg_start
-
1506 segbuf
->sb_fseg_start
);
1507 nilfs_sufile_put_segment_usage(sufile
, segbuf
->sb_segnum
, bh_su
);
1509 list_for_each_entry_continue(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1510 ret
= nilfs_sufile_get_segment_usage(sufile
, segbuf
->sb_segnum
,
1512 WARN_ON(ret
); /* always succeed */
1513 raw_su
->su_nblocks
= 0;
1514 nilfs_sufile_put_segment_usage(sufile
, segbuf
->sb_segnum
,
1519 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info
*sci
,
1520 struct nilfs_segment_buffer
*last
,
1521 struct inode
*sufile
)
1523 struct nilfs_segment_buffer
*segbuf
= last
, *n
;
1526 list_for_each_entry_safe_continue(segbuf
, n
, &sci
->sc_segbufs
,
1528 list_del_init(&segbuf
->sb_list
);
1529 sci
->sc_segbuf_nblocks
-= segbuf
->sb_rest_blocks
;
1530 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1532 nilfs_segbuf_free(segbuf
);
1537 static int nilfs_segctor_collect(struct nilfs_sc_info
*sci
,
1538 struct the_nilfs
*nilfs
, int mode
)
1540 struct nilfs_cstage prev_stage
= sci
->sc_stage
;
1543 /* Collection retry loop */
1545 sci
->sc_super_root
= NULL
;
1546 sci
->sc_nblk_this_inc
= 0;
1547 sci
->sc_curseg
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1549 err
= nilfs_segctor_reset_segment_buffer(sci
);
1553 err
= nilfs_segctor_collect_blocks(sci
, mode
);
1554 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
1558 if (unlikely(err
!= -E2BIG
))
1561 /* The current segment is filled up */
1562 if (mode
!= SC_LSEG_SR
|| sci
->sc_stage
.scnt
< NILFS_ST_CPFILE
)
1565 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1566 err
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1570 WARN_ON(err
); /* do not happen */
1572 nilfs_segctor_clear_segment_buffers(sci
);
1574 err
= nilfs_segctor_extend_segments(sci
, nilfs
, nadd
);
1578 nadd
= min_t(int, nadd
<< 1, SC_MAX_SEGDELTA
);
1579 sci
->sc_stage
= prev_stage
;
1581 nilfs_segctor_truncate_segments(sci
, sci
->sc_curseg
, nilfs
->ns_sufile
);
1588 static void nilfs_list_replace_buffer(struct buffer_head
*old_bh
,
1589 struct buffer_head
*new_bh
)
1591 BUG_ON(!list_empty(&new_bh
->b_assoc_buffers
));
1593 list_replace_init(&old_bh
->b_assoc_buffers
, &new_bh
->b_assoc_buffers
);
1594 /* The caller must release old_bh */
1598 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info
*sci
,
1599 struct nilfs_segment_buffer
*segbuf
,
1602 struct inode
*inode
= NULL
;
1604 unsigned long nfinfo
= segbuf
->sb_sum
.nfinfo
;
1605 unsigned long nblocks
= 0, ndatablk
= 0;
1606 struct nilfs_sc_operations
*sc_op
= NULL
;
1607 struct nilfs_segsum_pointer ssp
;
1608 struct nilfs_finfo
*finfo
= NULL
;
1609 union nilfs_binfo binfo
;
1610 struct buffer_head
*bh
, *bh_org
;
1617 blocknr
= segbuf
->sb_pseg_start
+ segbuf
->sb_sum
.nsumblk
;
1618 ssp
.bh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
1619 ssp
.offset
= sizeof(struct nilfs_segment_summary
);
1621 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
, b_assoc_buffers
) {
1622 if (bh
== sci
->sc_super_root
)
1625 finfo
= nilfs_segctor_map_segsum_entry(
1626 sci
, &ssp
, sizeof(*finfo
));
1627 ino
= le64_to_cpu(finfo
->fi_ino
);
1628 nblocks
= le32_to_cpu(finfo
->fi_nblocks
);
1629 ndatablk
= le32_to_cpu(finfo
->fi_ndatablk
);
1631 if (buffer_nilfs_node(bh
))
1632 inode
= NILFS_BTNC_I(bh
->b_page
->mapping
);
1634 inode
= NILFS_AS_I(bh
->b_page
->mapping
);
1636 if (mode
== SC_LSEG_DSYNC
)
1637 sc_op
= &nilfs_sc_dsync_ops
;
1638 else if (ino
== NILFS_DAT_INO
)
1639 sc_op
= &nilfs_sc_dat_ops
;
1640 else /* file blocks */
1641 sc_op
= &nilfs_sc_file_ops
;
1645 err
= nilfs_bmap_assign(NILFS_I(inode
)->i_bmap
, &bh
, blocknr
,
1648 nilfs_list_replace_buffer(bh_org
, bh
);
1654 sc_op
->write_data_binfo(sci
, &ssp
, &binfo
);
1656 sc_op
->write_node_binfo(sci
, &ssp
, &binfo
);
1659 if (--nblocks
== 0) {
1663 } else if (ndatablk
> 0)
1670 err
= nilfs_handle_bmap_error(err
, __func__
, inode
, sci
->sc_super
);
1674 static int nilfs_segctor_assign(struct nilfs_sc_info
*sci
, int mode
)
1676 struct nilfs_segment_buffer
*segbuf
;
1679 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1680 err
= nilfs_segctor_update_payload_blocknr(sci
, segbuf
, mode
);
1683 nilfs_segbuf_fill_in_segsum(segbuf
);
1689 nilfs_copy_replace_page_buffers(struct page
*page
, struct list_head
*out
)
1691 struct page
*clone_page
;
1692 struct buffer_head
*bh
, *head
, *bh2
;
1695 bh
= head
= page_buffers(page
);
1697 clone_page
= nilfs_alloc_private_page(bh
->b_bdev
, bh
->b_size
, 0);
1698 if (unlikely(!clone_page
))
1701 bh2
= page_buffers(clone_page
);
1702 kaddr
= kmap_atomic(page
, KM_USER0
);
1704 if (list_empty(&bh
->b_assoc_buffers
))
1707 page_cache_get(clone_page
); /* for each bh */
1708 memcpy(bh2
->b_data
, kaddr
+ bh_offset(bh
), bh2
->b_size
);
1709 bh2
->b_blocknr
= bh
->b_blocknr
;
1710 list_replace(&bh
->b_assoc_buffers
, &bh2
->b_assoc_buffers
);
1711 list_add_tail(&bh
->b_assoc_buffers
, out
);
1712 } while (bh
= bh
->b_this_page
, bh2
= bh2
->b_this_page
, bh
!= head
);
1713 kunmap_atomic(kaddr
, KM_USER0
);
1715 if (!TestSetPageWriteback(clone_page
))
1716 inc_zone_page_state(clone_page
, NR_WRITEBACK
);
1717 unlock_page(clone_page
);
1722 static int nilfs_test_page_to_be_frozen(struct page
*page
)
1724 struct address_space
*mapping
= page
->mapping
;
1726 if (!mapping
|| !mapping
->host
|| S_ISDIR(mapping
->host
->i_mode
))
1729 if (page_mapped(page
)) {
1730 ClearPageChecked(page
);
1733 return PageChecked(page
);
1736 static int nilfs_begin_page_io(struct page
*page
, struct list_head
*out
)
1738 if (!page
|| PageWriteback(page
))
1739 /* For split b-tree node pages, this function may be called
1740 twice. We ignore the 2nd or later calls by this check. */
1744 clear_page_dirty_for_io(page
);
1745 set_page_writeback(page
);
1748 if (nilfs_test_page_to_be_frozen(page
)) {
1749 int err
= nilfs_copy_replace_page_buffers(page
, out
);
1756 static int nilfs_segctor_prepare_write(struct nilfs_sc_info
*sci
,
1757 struct page
**failed_page
)
1759 struct nilfs_segment_buffer
*segbuf
;
1760 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1761 struct list_head
*list
= &sci
->sc_copied_buffers
;
1764 *failed_page
= NULL
;
1765 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1766 struct buffer_head
*bh
;
1768 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1770 if (bh
->b_page
!= bd_page
) {
1773 clear_page_dirty_for_io(bd_page
);
1774 set_page_writeback(bd_page
);
1775 unlock_page(bd_page
);
1777 bd_page
= bh
->b_page
;
1781 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1783 if (bh
== sci
->sc_super_root
) {
1784 if (bh
->b_page
!= bd_page
) {
1786 clear_page_dirty_for_io(bd_page
);
1787 set_page_writeback(bd_page
);
1788 unlock_page(bd_page
);
1789 bd_page
= bh
->b_page
;
1793 if (bh
->b_page
!= fs_page
) {
1794 err
= nilfs_begin_page_io(fs_page
, list
);
1795 if (unlikely(err
)) {
1796 *failed_page
= fs_page
;
1799 fs_page
= bh
->b_page
;
1805 clear_page_dirty_for_io(bd_page
);
1806 set_page_writeback(bd_page
);
1807 unlock_page(bd_page
);
1809 err
= nilfs_begin_page_io(fs_page
, list
);
1811 *failed_page
= fs_page
;
1816 static int nilfs_segctor_write(struct nilfs_sc_info
*sci
,
1817 struct backing_dev_info
*bdi
)
1819 struct nilfs_segment_buffer
*segbuf
;
1820 struct nilfs_write_info wi
;
1823 wi
.sb
= sci
->sc_super
;
1824 wi
.bh_sr
= sci
->sc_super_root
;
1827 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1828 nilfs_segbuf_prepare_write(segbuf
, &wi
);
1829 err
= nilfs_segbuf_write(segbuf
, &wi
);
1831 res
= nilfs_segbuf_wait(segbuf
, &wi
);
1832 err
= unlikely(err
) ? : res
;
1839 static int nilfs_page_has_uncleared_buffer(struct page
*page
)
1841 struct buffer_head
*head
, *bh
;
1843 head
= bh
= page_buffers(page
);
1845 if (buffer_dirty(bh
) && !list_empty(&bh
->b_assoc_buffers
))
1847 bh
= bh
->b_this_page
;
1848 } while (bh
!= head
);
1852 static void __nilfs_end_page_io(struct page
*page
, int err
)
1855 if (!nilfs_page_buffers_clean(page
))
1856 __set_page_dirty_nobuffers(page
);
1857 ClearPageError(page
);
1859 __set_page_dirty_nobuffers(page
);
1863 if (buffer_nilfs_allocated(page_buffers(page
))) {
1864 if (TestClearPageWriteback(page
))
1865 dec_zone_page_state(page
, NR_WRITEBACK
);
1867 end_page_writeback(page
);
1870 static void nilfs_end_page_io(struct page
*page
, int err
)
1875 if (buffer_nilfs_node(page_buffers(page
)) &&
1876 nilfs_page_has_uncleared_buffer(page
))
1877 /* For b-tree node pages, this function may be called twice
1878 or more because they might be split in a segment.
1879 This check assures that cleanup has been done for all
1880 buffers in a split btnode page. */
1883 __nilfs_end_page_io(page
, err
);
1886 static void nilfs_clear_copied_buffers(struct list_head
*list
, int err
)
1888 struct buffer_head
*bh
, *head
;
1891 while (!list_empty(list
)) {
1892 bh
= list_entry(list
->next
, struct buffer_head
,
1895 page_cache_get(page
);
1896 head
= bh
= page_buffers(page
);
1898 if (!list_empty(&bh
->b_assoc_buffers
)) {
1899 list_del_init(&bh
->b_assoc_buffers
);
1901 set_buffer_uptodate(bh
);
1902 clear_buffer_dirty(bh
);
1903 clear_buffer_nilfs_volatile(bh
);
1905 brelse(bh
); /* for b_assoc_buffers */
1907 } while ((bh
= bh
->b_this_page
) != head
);
1909 __nilfs_end_page_io(page
, err
);
1910 page_cache_release(page
);
1914 static void nilfs_segctor_abort_write(struct nilfs_sc_info
*sci
,
1915 struct page
*failed_page
, int err
)
1917 struct nilfs_segment_buffer
*segbuf
;
1918 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1920 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1921 struct buffer_head
*bh
;
1923 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1925 if (bh
->b_page
!= bd_page
) {
1927 end_page_writeback(bd_page
);
1928 bd_page
= bh
->b_page
;
1932 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1934 if (bh
== sci
->sc_super_root
) {
1935 if (bh
->b_page
!= bd_page
) {
1936 end_page_writeback(bd_page
);
1937 bd_page
= bh
->b_page
;
1941 if (bh
->b_page
!= fs_page
) {
1942 nilfs_end_page_io(fs_page
, err
);
1943 if (unlikely(fs_page
== failed_page
))
1945 fs_page
= bh
->b_page
;
1950 end_page_writeback(bd_page
);
1952 nilfs_end_page_io(fs_page
, err
);
1954 nilfs_clear_copied_buffers(&sci
->sc_copied_buffers
, err
);
1957 static void nilfs_set_next_segment(struct the_nilfs
*nilfs
,
1958 struct nilfs_segment_buffer
*segbuf
)
1960 nilfs
->ns_segnum
= segbuf
->sb_segnum
;
1961 nilfs
->ns_nextnum
= segbuf
->sb_nextnum
;
1962 nilfs
->ns_pseg_offset
= segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
1963 + segbuf
->sb_sum
.nblocks
;
1964 nilfs
->ns_seg_seq
= segbuf
->sb_sum
.seg_seq
;
1965 nilfs
->ns_ctime
= segbuf
->sb_sum
.ctime
;
1968 static void nilfs_segctor_complete_write(struct nilfs_sc_info
*sci
)
1970 struct nilfs_segment_buffer
*segbuf
;
1971 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1972 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
1973 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
1974 int update_sr
= (sci
->sc_super_root
!= NULL
);
1976 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1977 struct buffer_head
*bh
;
1979 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1981 set_buffer_uptodate(bh
);
1982 clear_buffer_dirty(bh
);
1983 if (bh
->b_page
!= bd_page
) {
1985 end_page_writeback(bd_page
);
1986 bd_page
= bh
->b_page
;
1990 * We assume that the buffers which belong to the same page
1991 * continue over the buffer list.
1992 * Under this assumption, the last BHs of pages is
1993 * identifiable by the discontinuity of bh->b_page
1994 * (page != fs_page).
1996 * For B-tree node blocks, however, this assumption is not
1997 * guaranteed. The cleanup code of B-tree node pages needs
2000 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
2002 set_buffer_uptodate(bh
);
2003 clear_buffer_dirty(bh
);
2004 clear_buffer_nilfs_volatile(bh
);
2005 if (bh
== sci
->sc_super_root
) {
2006 if (bh
->b_page
!= bd_page
) {
2007 end_page_writeback(bd_page
);
2008 bd_page
= bh
->b_page
;
2012 if (bh
->b_page
!= fs_page
) {
2013 nilfs_end_page_io(fs_page
, 0);
2014 fs_page
= bh
->b_page
;
2018 if (!NILFS_SEG_SIMPLEX(&segbuf
->sb_sum
)) {
2019 if (NILFS_SEG_LOGBGN(&segbuf
->sb_sum
)) {
2020 set_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
2021 sci
->sc_lseg_stime
= jiffies
;
2023 if (NILFS_SEG_LOGEND(&segbuf
->sb_sum
))
2024 clear_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
2028 * Since pages may continue over multiple segment buffers,
2029 * end of the last page must be checked outside of the loop.
2032 end_page_writeback(bd_page
);
2034 nilfs_end_page_io(fs_page
, 0);
2036 nilfs_clear_copied_buffers(&sci
->sc_copied_buffers
, 0);
2038 nilfs_drop_collected_inodes(&sci
->sc_dirty_files
);
2040 if (nilfs_doing_gc()) {
2041 nilfs_drop_collected_inodes(&sci
->sc_gc_inodes
);
2043 nilfs_commit_gcdat_inode(nilfs
);
2045 nilfs
->ns_nongc_ctime
= sci
->sc_seg_ctime
;
2047 sci
->sc_nblk_inc
+= sci
->sc_nblk_this_inc
;
2049 segbuf
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
);
2050 nilfs_set_next_segment(nilfs
, segbuf
);
2053 nilfs_set_last_segment(nilfs
, segbuf
->sb_pseg_start
,
2054 segbuf
->sb_sum
.seg_seq
, nilfs
->ns_cno
++);
2055 sbi
->s_super
->s_dirt
= 1;
2057 clear_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
2058 clear_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2059 set_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
2061 clear_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
2064 static int nilfs_segctor_check_in_files(struct nilfs_sc_info
*sci
,
2065 struct nilfs_sb_info
*sbi
)
2067 struct nilfs_inode_info
*ii
, *n
;
2068 __u64 cno
= sbi
->s_nilfs
->ns_cno
;
2070 spin_lock(&sbi
->s_inode_lock
);
2072 list_for_each_entry_safe(ii
, n
, &sbi
->s_dirty_files
, i_dirty
) {
2074 struct buffer_head
*ibh
;
2077 spin_unlock(&sbi
->s_inode_lock
);
2078 err
= nilfs_ifile_get_inode_block(
2079 sbi
->s_ifile
, ii
->vfs_inode
.i_ino
, &ibh
);
2080 if (unlikely(err
)) {
2081 nilfs_warning(sbi
->s_super
, __func__
,
2082 "failed to get inode block.\n");
2085 nilfs_mdt_mark_buffer_dirty(ibh
);
2086 nilfs_mdt_mark_dirty(sbi
->s_ifile
);
2087 spin_lock(&sbi
->s_inode_lock
);
2088 if (likely(!ii
->i_bh
))
2096 clear_bit(NILFS_I_QUEUED
, &ii
->i_state
);
2097 set_bit(NILFS_I_BUSY
, &ii
->i_state
);
2098 list_del(&ii
->i_dirty
);
2099 list_add_tail(&ii
->i_dirty
, &sci
->sc_dirty_files
);
2101 spin_unlock(&sbi
->s_inode_lock
);
2103 NILFS_I(sbi
->s_ifile
)->i_cno
= cno
;
2108 static void nilfs_segctor_check_out_files(struct nilfs_sc_info
*sci
,
2109 struct nilfs_sb_info
*sbi
)
2111 struct nilfs_transaction_info
*ti
= current
->journal_info
;
2112 struct nilfs_inode_info
*ii
, *n
;
2113 __u64 cno
= sbi
->s_nilfs
->ns_cno
;
2115 spin_lock(&sbi
->s_inode_lock
);
2116 list_for_each_entry_safe(ii
, n
, &sci
->sc_dirty_files
, i_dirty
) {
2117 if (!test_and_clear_bit(NILFS_I_UPDATED
, &ii
->i_state
) ||
2118 test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
2119 /* The current checkpoint number (=nilfs->ns_cno) is
2120 changed between check-in and check-out only if the
2121 super root is written out. So, we can update i_cno
2122 for the inodes that remain in the dirty list. */
2126 clear_bit(NILFS_I_BUSY
, &ii
->i_state
);
2129 list_del(&ii
->i_dirty
);
2130 list_add_tail(&ii
->i_dirty
, &ti
->ti_garbage
);
2132 spin_unlock(&sbi
->s_inode_lock
);
2136 * Main procedure of segment constructor
2138 static int nilfs_segctor_do_construct(struct nilfs_sc_info
*sci
, int mode
)
2140 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2141 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2142 struct page
*failed_page
;
2143 int err
, has_sr
= 0;
2145 sci
->sc_stage
.scnt
= NILFS_ST_INIT
;
2147 err
= nilfs_segctor_check_in_files(sci
, sbi
);
2151 if (nilfs_test_metadata_dirty(sbi
))
2152 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2154 if (nilfs_segctor_clean(sci
))
2158 sci
->sc_stage
.flags
&= ~NILFS_CF_HISTORY_MASK
;
2160 err
= nilfs_segctor_begin_construction(sci
, nilfs
);
2164 /* Update time stamp */
2165 sci
->sc_seg_ctime
= get_seconds();
2167 err
= nilfs_segctor_collect(sci
, nilfs
, mode
);
2171 has_sr
= (sci
->sc_super_root
!= NULL
);
2173 /* Avoid empty segment */
2174 if (sci
->sc_stage
.scnt
== NILFS_ST_DONE
&&
2175 NILFS_SEG_EMPTY(&sci
->sc_curseg
->sb_sum
)) {
2176 nilfs_segctor_end_construction(sci
, nilfs
, 1);
2180 err
= nilfs_segctor_assign(sci
, mode
);
2184 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2185 nilfs_segctor_fill_in_file_bmap(sci
, sbi
->s_ifile
);
2188 err
= nilfs_segctor_fill_in_checkpoint(sci
);
2190 goto failed_to_make_up
;
2192 nilfs_segctor_fill_in_super_root(sci
, nilfs
);
2194 nilfs_segctor_update_segusage(sci
, nilfs
->ns_sufile
);
2196 /* Write partial segments */
2197 err
= nilfs_segctor_prepare_write(sci
, &failed_page
);
2199 goto failed_to_write
;
2201 nilfs_segctor_fill_in_checksums(sci
, nilfs
->ns_crc_seed
);
2203 err
= nilfs_segctor_write(sci
, nilfs
->ns_bdi
);
2205 goto failed_to_write
;
2207 nilfs_segctor_complete_write(sci
);
2209 /* Commit segments */
2211 nilfs_segctor_clear_metadata_dirty(sci
);
2213 nilfs_segctor_end_construction(sci
, nilfs
, 0);
2215 } while (sci
->sc_stage
.scnt
!= NILFS_ST_DONE
);
2218 nilfs_segctor_destroy_segment_buffers(sci
);
2219 nilfs_segctor_check_out_files(sci
, sbi
);
2223 nilfs_segctor_abort_write(sci
, failed_page
, err
);
2224 nilfs_segctor_cancel_segusage(sci
, nilfs
->ns_sufile
);
2227 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2228 nilfs_redirty_inodes(&sci
->sc_dirty_files
);
2231 if (nilfs_doing_gc())
2232 nilfs_redirty_inodes(&sci
->sc_gc_inodes
);
2233 nilfs_segctor_end_construction(sci
, nilfs
, err
);
2238 * nilfs_secgtor_start_timer - set timer of background write
2239 * @sci: nilfs_sc_info
2241 * If the timer has already been set, it ignores the new request.
2242 * This function MUST be called within a section locking the segment
2245 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*sci
)
2247 spin_lock(&sci
->sc_state_lock
);
2248 if (sci
->sc_timer
&& !(sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)) {
2249 sci
->sc_timer
->expires
= jiffies
+ sci
->sc_interval
;
2250 add_timer(sci
->sc_timer
);
2251 sci
->sc_state
|= NILFS_SEGCTOR_COMMIT
;
2253 spin_unlock(&sci
->sc_state_lock
);
2256 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*sci
, int bn
)
2258 spin_lock(&sci
->sc_state_lock
);
2259 if (!(sci
->sc_flush_request
& (1 << bn
))) {
2260 unsigned long prev_req
= sci
->sc_flush_request
;
2262 sci
->sc_flush_request
|= (1 << bn
);
2264 wake_up(&sci
->sc_wait_daemon
);
2266 spin_unlock(&sci
->sc_state_lock
);
2270 * nilfs_flush_segment - trigger a segment construction for resource control
2272 * @ino: inode number of the file to be flushed out.
2274 void nilfs_flush_segment(struct super_block
*sb
, ino_t ino
)
2276 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2277 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2279 if (!sci
|| nilfs_doing_construction())
2281 nilfs_segctor_do_flush(sci
, NILFS_MDT_INODE(sb
, ino
) ? ino
: 0);
2282 /* assign bit 0 to data files */
2285 struct nilfs_segctor_wait_request
{
2292 static int nilfs_segctor_sync(struct nilfs_sc_info
*sci
)
2294 struct nilfs_segctor_wait_request wait_req
;
2297 spin_lock(&sci
->sc_state_lock
);
2298 init_wait(&wait_req
.wq
);
2300 atomic_set(&wait_req
.done
, 0);
2301 wait_req
.seq
= ++sci
->sc_seq_request
;
2302 spin_unlock(&sci
->sc_state_lock
);
2304 init_waitqueue_entry(&wait_req
.wq
, current
);
2305 add_wait_queue(&sci
->sc_wait_request
, &wait_req
.wq
);
2306 set_current_state(TASK_INTERRUPTIBLE
);
2307 wake_up(&sci
->sc_wait_daemon
);
2310 if (atomic_read(&wait_req
.done
)) {
2314 if (!signal_pending(current
)) {
2321 finish_wait(&sci
->sc_wait_request
, &wait_req
.wq
);
2325 static void nilfs_segctor_wakeup(struct nilfs_sc_info
*sci
, int err
)
2327 struct nilfs_segctor_wait_request
*wrq
, *n
;
2328 unsigned long flags
;
2330 spin_lock_irqsave(&sci
->sc_wait_request
.lock
, flags
);
2331 list_for_each_entry_safe(wrq
, n
, &sci
->sc_wait_request
.task_list
,
2333 if (!atomic_read(&wrq
->done
) &&
2334 nilfs_cnt32_ge(sci
->sc_seq_done
, wrq
->seq
)) {
2336 atomic_set(&wrq
->done
, 1);
2338 if (atomic_read(&wrq
->done
)) {
2339 wrq
->wq
.func(&wrq
->wq
,
2340 TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
2344 spin_unlock_irqrestore(&sci
->sc_wait_request
.lock
, flags
);
2348 * nilfs_construct_segment - construct a logical segment
2351 * Return Value: On success, 0 is retured. On errors, one of the following
2352 * negative error code is returned.
2354 * %-EROFS - Read only filesystem.
2358 * %-ENOSPC - No space left on device (only in a panic state).
2360 * %-ERESTARTSYS - Interrupted.
2362 * %-ENOMEM - Insufficient memory available.
2364 int nilfs_construct_segment(struct super_block
*sb
)
2366 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2367 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2368 struct nilfs_transaction_info
*ti
;
2374 /* A call inside transactions causes a deadlock. */
2375 BUG_ON((ti
= current
->journal_info
) && ti
->ti_magic
== NILFS_TI_MAGIC
);
2377 err
= nilfs_segctor_sync(sci
);
2382 * nilfs_construct_dsync_segment - construct a data-only logical segment
2384 * @inode: inode whose data blocks should be written out
2385 * @start: start byte offset
2386 * @end: end byte offset (inclusive)
2388 * Return Value: On success, 0 is retured. On errors, one of the following
2389 * negative error code is returned.
2391 * %-EROFS - Read only filesystem.
2395 * %-ENOSPC - No space left on device (only in a panic state).
2397 * %-ERESTARTSYS - Interrupted.
2399 * %-ENOMEM - Insufficient memory available.
2401 int nilfs_construct_dsync_segment(struct super_block
*sb
, struct inode
*inode
,
2402 loff_t start
, loff_t end
)
2404 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2405 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2406 struct nilfs_inode_info
*ii
;
2407 struct nilfs_transaction_info ti
;
2413 nilfs_transaction_lock(sbi
, &ti
, 0);
2415 ii
= NILFS_I(inode
);
2416 if (test_bit(NILFS_I_INODE_DIRTY
, &ii
->i_state
) ||
2417 nilfs_test_opt(sbi
, STRICT_ORDER
) ||
2418 test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2419 nilfs_discontinued(sbi
->s_nilfs
)) {
2420 nilfs_transaction_unlock(sbi
);
2421 err
= nilfs_segctor_sync(sci
);
2425 spin_lock(&sbi
->s_inode_lock
);
2426 if (!test_bit(NILFS_I_QUEUED
, &ii
->i_state
) &&
2427 !test_bit(NILFS_I_BUSY
, &ii
->i_state
)) {
2428 spin_unlock(&sbi
->s_inode_lock
);
2429 nilfs_transaction_unlock(sbi
);
2432 spin_unlock(&sbi
->s_inode_lock
);
2433 sci
->sc_dsync_inode
= ii
;
2434 sci
->sc_dsync_start
= start
;
2435 sci
->sc_dsync_end
= end
;
2437 err
= nilfs_segctor_do_construct(sci
, SC_LSEG_DSYNC
);
2439 nilfs_transaction_unlock(sbi
);
2443 struct nilfs_segctor_req
{
2446 int sc_err
; /* construction failure */
2447 int sb_err
; /* super block writeback failure */
2450 #define FLUSH_FILE_BIT (0x1) /* data file only */
2451 #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
2453 static void nilfs_segctor_accept(struct nilfs_sc_info
*sci
,
2454 struct nilfs_segctor_req
*req
)
2456 req
->sc_err
= req
->sb_err
= 0;
2457 spin_lock(&sci
->sc_state_lock
);
2458 req
->seq_accepted
= sci
->sc_seq_request
;
2459 spin_unlock(&sci
->sc_state_lock
);
2462 del_timer_sync(sci
->sc_timer
);
2465 static void nilfs_segctor_notify(struct nilfs_sc_info
*sci
,
2466 struct nilfs_segctor_req
*req
)
2468 /* Clear requests (even when the construction failed) */
2469 spin_lock(&sci
->sc_state_lock
);
2471 sci
->sc_state
&= ~NILFS_SEGCTOR_COMMIT
;
2473 if (req
->mode
== SC_LSEG_SR
) {
2474 sci
->sc_seq_done
= req
->seq_accepted
;
2475 nilfs_segctor_wakeup(sci
, req
->sc_err
? : req
->sb_err
);
2476 sci
->sc_flush_request
= 0;
2477 } else if (req
->mode
== SC_FLUSH_FILE
)
2478 sci
->sc_flush_request
&= ~FLUSH_FILE_BIT
;
2479 else if (req
->mode
== SC_FLUSH_DAT
)
2480 sci
->sc_flush_request
&= ~FLUSH_DAT_BIT
;
2482 spin_unlock(&sci
->sc_state_lock
);
2485 static int nilfs_segctor_construct(struct nilfs_sc_info
*sci
,
2486 struct nilfs_segctor_req
*req
)
2488 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2489 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2492 if (nilfs_discontinued(nilfs
))
2493 req
->mode
= SC_LSEG_SR
;
2494 if (!nilfs_segctor_confirm(sci
)) {
2495 err
= nilfs_segctor_do_construct(sci
, req
->mode
);
2499 if (req
->mode
!= SC_FLUSH_DAT
)
2500 atomic_set(&nilfs
->ns_ndirtyblks
, 0);
2501 if (test_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
) &&
2502 nilfs_discontinued(nilfs
)) {
2503 down_write(&nilfs
->ns_sem
);
2504 req
->sb_err
= nilfs_commit_super(sbi
, 0);
2505 up_write(&nilfs
->ns_sem
);
2511 static void nilfs_construction_timeout(unsigned long data
)
2513 struct task_struct
*p
= (struct task_struct
*)data
;
2518 nilfs_remove_written_gcinodes(struct the_nilfs
*nilfs
, struct list_head
*head
)
2520 struct nilfs_inode_info
*ii
, *n
;
2522 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
2523 if (!test_bit(NILFS_I_UPDATED
, &ii
->i_state
))
2525 hlist_del_init(&ii
->vfs_inode
.i_hash
);
2526 list_del_init(&ii
->i_dirty
);
2527 nilfs_clear_gcinode(&ii
->vfs_inode
);
2531 int nilfs_clean_segments(struct super_block
*sb
, struct nilfs_argv
*argv
,
2534 struct nilfs_sb_info
*sbi
= NILFS_SB(sb
);
2535 struct nilfs_sc_info
*sci
= NILFS_SC(sbi
);
2536 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2537 struct nilfs_transaction_info ti
;
2538 struct nilfs_segctor_req req
= { .mode
= SC_LSEG_SR
};
2544 nilfs_transaction_lock(sbi
, &ti
, 1);
2546 err
= nilfs_init_gcdat_inode(nilfs
);
2550 err
= nilfs_ioctl_prepare_clean_segments(nilfs
, argv
, kbufs
);
2554 sci
->sc_freesegs
= kbufs
[4];
2555 sci
->sc_nfreesegs
= argv
[4].v_nmembs
;
2556 list_splice_init(&nilfs
->ns_gc_inodes
, sci
->sc_gc_inodes
.prev
);
2559 nilfs_segctor_accept(sci
, &req
);
2560 err
= nilfs_segctor_construct(sci
, &req
);
2561 nilfs_remove_written_gcinodes(nilfs
, &sci
->sc_gc_inodes
);
2562 nilfs_segctor_notify(sci
, &req
);
2567 nilfs_warning(sb
, __func__
,
2568 "segment construction failed. (err=%d)", err
);
2569 set_current_state(TASK_INTERRUPTIBLE
);
2570 schedule_timeout(sci
->sc_interval
);
2574 sci
->sc_freesegs
= NULL
;
2575 sci
->sc_nfreesegs
= 0;
2576 nilfs_clear_gcdat_inode(nilfs
);
2577 nilfs_transaction_unlock(sbi
);
2581 static void nilfs_segctor_thread_construct(struct nilfs_sc_info
*sci
, int mode
)
2583 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2584 struct nilfs_transaction_info ti
;
2585 struct nilfs_segctor_req req
= { .mode
= mode
};
2587 nilfs_transaction_lock(sbi
, &ti
, 0);
2589 nilfs_segctor_accept(sci
, &req
);
2590 nilfs_segctor_construct(sci
, &req
);
2591 nilfs_segctor_notify(sci
, &req
);
2594 * Unclosed segment should be retried. We do this using sc_timer.
2595 * Timeout of sc_timer will invoke complete construction which leads
2596 * to close the current logical segment.
2598 if (test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
))
2599 nilfs_segctor_start_timer(sci
);
2601 nilfs_transaction_unlock(sbi
);
2604 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*sci
)
2609 spin_lock(&sci
->sc_state_lock
);
2610 mode
= (sci
->sc_flush_request
& FLUSH_DAT_BIT
) ?
2611 SC_FLUSH_DAT
: SC_FLUSH_FILE
;
2612 spin_unlock(&sci
->sc_state_lock
);
2615 err
= nilfs_segctor_do_construct(sci
, mode
);
2617 spin_lock(&sci
->sc_state_lock
);
2618 sci
->sc_flush_request
&= (mode
== SC_FLUSH_FILE
) ?
2619 ~FLUSH_FILE_BIT
: ~FLUSH_DAT_BIT
;
2620 spin_unlock(&sci
->sc_state_lock
);
2622 clear_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
2625 static int nilfs_segctor_flush_mode(struct nilfs_sc_info
*sci
)
2627 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2628 time_before(jiffies
, sci
->sc_lseg_stime
+ sci
->sc_mjcp_freq
)) {
2629 if (!(sci
->sc_flush_request
& ~FLUSH_FILE_BIT
))
2630 return SC_FLUSH_FILE
;
2631 else if (!(sci
->sc_flush_request
& ~FLUSH_DAT_BIT
))
2632 return SC_FLUSH_DAT
;
2638 * nilfs_segctor_thread - main loop of the segment constructor thread.
2639 * @arg: pointer to a struct nilfs_sc_info.
2641 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2642 * to execute segment constructions.
2644 static int nilfs_segctor_thread(void *arg
)
2646 struct nilfs_sc_info
*sci
= (struct nilfs_sc_info
*)arg
;
2647 struct timer_list timer
;
2651 timer
.data
= (unsigned long)current
;
2652 timer
.function
= nilfs_construction_timeout
;
2653 sci
->sc_timer
= &timer
;
2656 sci
->sc_task
= current
;
2657 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_start_thread() */
2659 "segctord starting. Construction interval = %lu seconds, "
2660 "CP frequency < %lu seconds\n",
2661 sci
->sc_interval
/ HZ
, sci
->sc_mjcp_freq
/ HZ
);
2663 spin_lock(&sci
->sc_state_lock
);
2668 if (sci
->sc_state
& NILFS_SEGCTOR_QUIT
)
2671 if (timeout
|| sci
->sc_seq_request
!= sci
->sc_seq_done
)
2673 else if (!sci
->sc_flush_request
)
2676 mode
= nilfs_segctor_flush_mode(sci
);
2678 spin_unlock(&sci
->sc_state_lock
);
2679 nilfs_segctor_thread_construct(sci
, mode
);
2680 spin_lock(&sci
->sc_state_lock
);
2685 if (freezing(current
)) {
2686 spin_unlock(&sci
->sc_state_lock
);
2688 spin_lock(&sci
->sc_state_lock
);
2691 int should_sleep
= 1;
2693 prepare_to_wait(&sci
->sc_wait_daemon
, &wait
,
2694 TASK_INTERRUPTIBLE
);
2696 if (sci
->sc_seq_request
!= sci
->sc_seq_done
)
2698 else if (sci
->sc_flush_request
)
2700 else if (sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)
2701 should_sleep
= time_before(jiffies
,
2702 sci
->sc_timer
->expires
);
2705 spin_unlock(&sci
->sc_state_lock
);
2707 spin_lock(&sci
->sc_state_lock
);
2709 finish_wait(&sci
->sc_wait_daemon
, &wait
);
2710 timeout
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2711 time_after_eq(jiffies
, sci
->sc_timer
->expires
));
2716 spin_unlock(&sci
->sc_state_lock
);
2717 del_timer_sync(sci
->sc_timer
);
2718 sci
->sc_timer
= NULL
;
2721 sci
->sc_task
= NULL
;
2722 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_kill_thread() */
2726 static int nilfs_segctor_start_thread(struct nilfs_sc_info
*sci
)
2728 struct task_struct
*t
;
2730 t
= kthread_run(nilfs_segctor_thread
, sci
, "segctord");
2732 int err
= PTR_ERR(t
);
2734 printk(KERN_ERR
"NILFS: error %d creating segctord thread\n",
2738 wait_event(sci
->sc_wait_task
, sci
->sc_task
!= NULL
);
2742 static void nilfs_segctor_kill_thread(struct nilfs_sc_info
*sci
)
2744 sci
->sc_state
|= NILFS_SEGCTOR_QUIT
;
2746 while (sci
->sc_task
) {
2747 wake_up(&sci
->sc_wait_daemon
);
2748 spin_unlock(&sci
->sc_state_lock
);
2749 wait_event(sci
->sc_wait_task
, sci
->sc_task
== NULL
);
2750 spin_lock(&sci
->sc_state_lock
);
2754 static int nilfs_segctor_init(struct nilfs_sc_info
*sci
)
2756 sci
->sc_seq_done
= sci
->sc_seq_request
;
2758 return nilfs_segctor_start_thread(sci
);
2762 * Setup & clean-up functions
2764 static struct nilfs_sc_info
*nilfs_segctor_new(struct nilfs_sb_info
*sbi
)
2766 struct nilfs_sc_info
*sci
;
2768 sci
= kzalloc(sizeof(*sci
), GFP_KERNEL
);
2773 sci
->sc_super
= sbi
->s_super
;
2775 init_waitqueue_head(&sci
->sc_wait_request
);
2776 init_waitqueue_head(&sci
->sc_wait_daemon
);
2777 init_waitqueue_head(&sci
->sc_wait_task
);
2778 spin_lock_init(&sci
->sc_state_lock
);
2779 INIT_LIST_HEAD(&sci
->sc_dirty_files
);
2780 INIT_LIST_HEAD(&sci
->sc_segbufs
);
2781 INIT_LIST_HEAD(&sci
->sc_gc_inodes
);
2782 INIT_LIST_HEAD(&sci
->sc_copied_buffers
);
2784 sci
->sc_interval
= HZ
* NILFS_SC_DEFAULT_TIMEOUT
;
2785 sci
->sc_mjcp_freq
= HZ
* NILFS_SC_DEFAULT_SR_FREQ
;
2786 sci
->sc_watermark
= NILFS_SC_DEFAULT_WATERMARK
;
2788 if (sbi
->s_interval
)
2789 sci
->sc_interval
= sbi
->s_interval
;
2790 if (sbi
->s_watermark
)
2791 sci
->sc_watermark
= sbi
->s_watermark
;
2795 static void nilfs_segctor_write_out(struct nilfs_sc_info
*sci
)
2797 int ret
, retrycount
= NILFS_SC_CLEANUP_RETRY
;
2799 /* The segctord thread was stopped and its timer was removed.
2800 But some tasks remain. */
2802 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2803 struct nilfs_transaction_info ti
;
2804 struct nilfs_segctor_req req
= { .mode
= SC_LSEG_SR
};
2806 nilfs_transaction_lock(sbi
, &ti
, 0);
2807 nilfs_segctor_accept(sci
, &req
);
2808 ret
= nilfs_segctor_construct(sci
, &req
);
2809 nilfs_segctor_notify(sci
, &req
);
2810 nilfs_transaction_unlock(sbi
);
2812 } while (ret
&& retrycount
-- > 0);
2816 * nilfs_segctor_destroy - destroy the segment constructor.
2817 * @sci: nilfs_sc_info
2819 * nilfs_segctor_destroy() kills the segctord thread and frees
2820 * the nilfs_sc_info struct.
2821 * Caller must hold the segment semaphore.
2823 static void nilfs_segctor_destroy(struct nilfs_sc_info
*sci
)
2825 struct nilfs_sb_info
*sbi
= sci
->sc_sbi
;
2828 up_write(&sbi
->s_nilfs
->ns_segctor_sem
);
2830 spin_lock(&sci
->sc_state_lock
);
2831 nilfs_segctor_kill_thread(sci
);
2832 flag
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) || sci
->sc_flush_request
2833 || sci
->sc_seq_request
!= sci
->sc_seq_done
);
2834 spin_unlock(&sci
->sc_state_lock
);
2836 if (flag
|| nilfs_segctor_confirm(sci
))
2837 nilfs_segctor_write_out(sci
);
2839 WARN_ON(!list_empty(&sci
->sc_copied_buffers
));
2841 if (!list_empty(&sci
->sc_dirty_files
)) {
2842 nilfs_warning(sbi
->s_super
, __func__
,
2843 "dirty file(s) after the final construction\n");
2844 nilfs_dispose_list(sbi
, &sci
->sc_dirty_files
, 1);
2847 WARN_ON(!list_empty(&sci
->sc_segbufs
));
2849 down_write(&sbi
->s_nilfs
->ns_segctor_sem
);
2855 * nilfs_attach_segment_constructor - attach a segment constructor
2856 * @sbi: nilfs_sb_info
2858 * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
2859 * initilizes it, and starts the segment constructor.
2861 * Return Value: On success, 0 is returned. On error, one of the following
2862 * negative error code is returned.
2864 * %-ENOMEM - Insufficient memory available.
2866 int nilfs_attach_segment_constructor(struct nilfs_sb_info
*sbi
)
2868 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2871 /* Each field of nilfs_segctor is cleared through the initialization
2872 of super-block info */
2873 sbi
->s_sc_info
= nilfs_segctor_new(sbi
);
2874 if (!sbi
->s_sc_info
)
2877 nilfs_attach_writer(nilfs
, sbi
);
2878 err
= nilfs_segctor_init(NILFS_SC(sbi
));
2880 nilfs_detach_writer(nilfs
, sbi
);
2881 kfree(sbi
->s_sc_info
);
2882 sbi
->s_sc_info
= NULL
;
2888 * nilfs_detach_segment_constructor - destroy the segment constructor
2889 * @sbi: nilfs_sb_info
2891 * nilfs_detach_segment_constructor() kills the segment constructor daemon,
2892 * frees the struct nilfs_sc_info, and destroy the dirty file list.
2894 void nilfs_detach_segment_constructor(struct nilfs_sb_info
*sbi
)
2896 struct the_nilfs
*nilfs
= sbi
->s_nilfs
;
2897 LIST_HEAD(garbage_list
);
2899 down_write(&nilfs
->ns_segctor_sem
);
2900 if (NILFS_SC(sbi
)) {
2901 nilfs_segctor_destroy(NILFS_SC(sbi
));
2902 sbi
->s_sc_info
= NULL
;
2905 /* Force to free the list of dirty files */
2906 spin_lock(&sbi
->s_inode_lock
);
2907 if (!list_empty(&sbi
->s_dirty_files
)) {
2908 list_splice_init(&sbi
->s_dirty_files
, &garbage_list
);
2909 nilfs_warning(sbi
->s_super
, __func__
,
2910 "Non empty dirty list after the last "
2911 "segment construction\n");
2913 spin_unlock(&sbi
->s_inode_lock
);
2914 up_write(&nilfs
->ns_segctor_sem
);
2916 nilfs_dispose_list(sbi
, &garbage_list
, 1);
2917 nilfs_detach_writer(nilfs
, sbi
);