4 * Copyright (C) 1991, 1992, 1993 Linus Torvalds
8 * head.S contains the 32-bit startup code.
10 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
11 * the page directory will exist. The startup code will be overwritten by
12 * the page directory. [According to comments etc elsewhere on a compressed
13 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
15 * Page 0 is deliberately kept safe, since System Management Mode code in
16 * laptops may need to access the BIOS data stored there. This is also
17 * useful for future device drivers that either access the BIOS via VM86
22 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
27 #include <linux/init.h>
28 #include <linux/linkage.h>
29 #include <asm/segment.h>
32 #include <asm/processor-flags.h>
33 #include <asm/asm-offsets.h>
39 * 32bit entry is 0 and it is ABI so immutable!
40 * If we come here directly from a bootloader,
41 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
42 * all need to be under the 4G limit.
46 * Test KEEP_SEGMENTS flag to see if the bootloader is asking
47 * us to not reload segments
49 testb $(1<<6), BP_loadflags(%esi)
53 movl $(__BOOT_DS), %eax
60 * Calculate the delta between where we were compiled to run
61 * at and where we were actually loaded at. This can only be done
62 * with a short local call on x86. Nothing else will tell us what
63 * address we are running at. The reserved chunk of the real-mode
64 * data at 0x1e4 (defined as a scratch field) are used as the stack
65 * for this calculation. Only 4 bytes are needed.
67 leal (BP_scratch+4)(%esi), %esp
72 /* setup a stack and make sure cpu supports long mode. */
73 movl $boot_stack_end, %eax
82 * Compute the delta between where we were compiled to run at
83 * and where the code will actually run at.
85 * %ebp contains the address we are loaded at by the boot loader and %ebx
86 * contains the address where we should move the kernel image temporarily
87 * for safe in-place decompression.
90 #ifdef CONFIG_RELOCATABLE
92 movl BP_kernel_alignment(%esi), %eax
97 cmpl $LOAD_PHYSICAL_ADDR, %ebx
100 movl $LOAD_PHYSICAL_ADDR, %ebx
103 /* Target address to relocate to for decompression */
104 addl $z_extract_offset, %ebx
107 * Prepare for entering 64 bit mode
110 /* Load new GDT with the 64bit segments using 32bit descriptor */
112 movl %eax, gdt+2(%ebp)
115 /* Enable PAE mode */
117 orl $X86_CR4_PAE, %eax
121 * Build early 4G boot pagetable
123 /* Initialize Page tables to 0 */
124 leal pgtable(%ebx), %edi
126 movl $((4096*6)/4), %ecx
130 leal pgtable + 0(%ebx), %edi
131 leal 0x1007 (%edi), %eax
135 leal pgtable + 0x1000(%ebx), %edi
136 leal 0x1007(%edi), %eax
138 1: movl %eax, 0x00(%edi)
139 addl $0x00001000, %eax
145 leal pgtable + 0x2000(%ebx), %edi
146 movl $0x00000183, %eax
148 1: movl %eax, 0(%edi)
149 addl $0x00200000, %eax
154 /* Enable the boot page tables */
155 leal pgtable(%ebx), %eax
158 /* Enable Long mode in EFER (Extended Feature Enable Register) */
161 btsl $_EFER_LME, %eax
164 /* After gdt is loaded */
171 * Setup for the jump to 64bit mode
173 * When the jump is performend we will be in long mode but
174 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
175 * (and in turn EFER.LMA = 1). To jump into 64bit mode we use
176 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
177 * We place all of the values on our mini stack so lret can
178 * used to perform that far jump.
181 leal startup_64(%ebp), %eax
182 #ifdef CONFIG_EFI_MIXED
183 movl efi32_config(%ebp), %ebx
186 leal handover_entry(%ebp), %eax
191 /* Enter paged protected Mode, activating Long Mode */
192 movl $(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
195 /* Jump from 32bit compatibility mode into 64bit mode. */
199 #ifdef CONFIG_EFI_MIXED
201 ENTRY(efi32_stub_entry)
202 add $0x4, %esp /* Discard return address */
207 leal (BP_scratch+4)(%esi), %esp
212 movl %ecx, efi32_config(%ebp)
213 movl %edx, efi32_config+8(%ebp)
214 sgdtl efi32_boot_gdt(%ebp)
216 leal efi32_config(%ebp), %eax
217 movl %eax, efi_config(%ebp)
220 ENDPROC(efi32_stub_entry)
227 * 64bit entry is 0x200 and it is ABI so immutable!
228 * We come here either from startup_32 or directly from a
230 * If we come here from a bootloader, kernel(text+data+bss+brk),
231 * ramdisk, zero_page, command line could be above 4G.
232 * We depend on an identity mapped page table being provided
233 * that maps our entire kernel(text+data+bss+brk), zero page
236 #ifdef CONFIG_EFI_STUB
238 * The entry point for the PE/COFF executable is efi_pe_entry, so
239 * only legacy boot loaders will execute this jmp.
244 movq %rcx, efi64_config(%rip) /* Handle */
245 movq %rdx, efi64_config+8(%rip) /* EFI System table pointer */
247 leaq efi64_config(%rip), %rax
248 movq %rax, efi_config(%rip)
255 * Relocate efi_config->call().
257 addq %rbp, efi64_config+88(%rip)
260 call make_boot_params
264 leaq startup_32(%rip), %rax
265 movl %eax, BP_code32_start(%rsi)
266 jmp 2f /* Skip the relocation */
274 * Relocate efi_config->call().
276 movq efi_config(%rip), %rax
279 movq efi_config(%rip), %rdi
285 /* EFI init failed, so hang. */
289 movl BP_code32_start(%esi), %eax
290 leaq preferred_addr(%rax), %rax
296 /* Setup data segments. */
305 * Compute the decompressed kernel start address. It is where
306 * we were loaded at aligned to a 2M boundary. %rbp contains the
307 * decompressed kernel start address.
309 * If it is a relocatable kernel then decompress and run the kernel
310 * from load address aligned to 2MB addr, otherwise decompress and
311 * run the kernel from LOAD_PHYSICAL_ADDR
313 * We cannot rely on the calculation done in 32-bit mode, since we
314 * may have been invoked via the 64-bit entry point.
317 /* Start with the delta to where the kernel will run at. */
318 #ifdef CONFIG_RELOCATABLE
319 leaq startup_32(%rip) /* - $startup_32 */, %rbp
320 movl BP_kernel_alignment(%rsi), %eax
325 cmpq $LOAD_PHYSICAL_ADDR, %rbp
328 movq $LOAD_PHYSICAL_ADDR, %rbp
331 /* Target address to relocate to for decompression */
332 leaq z_extract_offset(%rbp), %rbx
334 /* Set up the stack */
335 leaq boot_stack_end(%rbx), %rsp
342 * Copy the compressed kernel to the end of our buffer
343 * where decompression in place becomes safe.
346 leaq (_bss-8)(%rip), %rsi
347 leaq (_bss-8)(%rbx), %rdi
348 movq $_bss /* - $startup_32 */, %rcx
356 * Jump to the relocated address.
358 leaq relocated(%rbx), %rax
361 #ifdef CONFIG_EFI_STUB
363 ENTRY(efi64_stub_entry)
364 movq %rdi, efi64_config(%rip) /* Handle */
365 movq %rsi, efi64_config+8(%rip) /* EFI System table pointer */
367 leaq efi64_config(%rip), %rax
368 movq %rax, efi_config(%rip)
372 ENDPROC(efi64_stub_entry)
379 * Clear BSS (stack is currently empty)
382 leaq _bss(%rip), %rdi
383 leaq _ebss(%rip), %rcx
391 leaq _got(%rip), %rdx
392 leaq _egot(%rip), %rcx
402 * Do the decompression, and jump to the new kernel..
404 pushq %rsi /* Save the real mode argument */
405 movq %rsi, %rdi /* real mode address */
406 leaq boot_heap(%rip), %rsi /* malloc area for uncompression */
407 leaq input_data(%rip), %rdx /* input_data */
408 movl $z_input_len, %ecx /* input_len */
409 movq %rbp, %r8 /* output target address */
410 movq $z_output_len, %r9 /* decompressed length */
411 call decompress_kernel /* returns kernel location in %rax */
415 * Jump to the decompressed kernel.
421 /* This isn't an x86-64 CPU so hang */
426 #include "../../kernel/verify_cpu.S"
433 .quad 0x0000000000000000 /* NULL descriptor */
434 .quad 0x00af9a000000ffff /* __KERNEL_CS */
435 .quad 0x00cf92000000ffff /* __KERNEL_DS */
436 .quad 0x0080890000000000 /* TS descriptor */
437 .quad 0x0000000000000000 /* TS continued */
440 #ifdef CONFIG_EFI_STUB
444 #ifdef CONFIG_EFI_MIXED
457 #endif /* CONFIG_EFI_STUB */
460 * Stack and heap for uncompression
465 .fill BOOT_HEAP_SIZE, 1, 0
467 .fill BOOT_STACK_SIZE, 1, 0
471 * Space for page tables (not in .bss so not zeroed)
473 .section ".pgtable","a",@nobits