2 * ARMv6 Performance counter handling code.
4 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
6 * ARMv6 has 2 configurable performance counters and a single cycle counter.
7 * They all share a single reset bit but can be written to zero so we can use
10 * The counters can't be individually enabled or disabled so when we remove
11 * one event and replace it with another we could get spurious counts from the
12 * wrong event. However, we can take advantage of the fact that the
13 * performance counters can export events to the event bus, and the event bus
14 * itself can be monitored. This requires that we *don't* export the events to
15 * the event bus. The procedure for disabling a configurable counter is:
16 * - change the counter to count the ETMEXTOUT[0] signal (0x20). This
17 * effectively stops the counter from counting.
18 * - disable the counter's interrupt generation (each counter has it's
19 * own interrupt enable bit).
20 * Once stopped, the counter value can be written as 0 to reset.
22 * To enable a counter:
23 * - enable the counter's interrupt generation.
24 * - set the new event type.
26 * Note: the dedicated cycle counter only counts cycles and can't be
27 * enabled/disabled independently of the others. When we want to disable the
28 * cycle counter, we have to just disable the interrupt reporting and start
29 * ignoring that counter. When re-enabling, we have to reset the value and
30 * enable the interrupt.
33 #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
34 enum armv6_perf_types
{
35 ARMV6_PERFCTR_ICACHE_MISS
= 0x0,
36 ARMV6_PERFCTR_IBUF_STALL
= 0x1,
37 ARMV6_PERFCTR_DDEP_STALL
= 0x2,
38 ARMV6_PERFCTR_ITLB_MISS
= 0x3,
39 ARMV6_PERFCTR_DTLB_MISS
= 0x4,
40 ARMV6_PERFCTR_BR_EXEC
= 0x5,
41 ARMV6_PERFCTR_BR_MISPREDICT
= 0x6,
42 ARMV6_PERFCTR_INSTR_EXEC
= 0x7,
43 ARMV6_PERFCTR_DCACHE_HIT
= 0x9,
44 ARMV6_PERFCTR_DCACHE_ACCESS
= 0xA,
45 ARMV6_PERFCTR_DCACHE_MISS
= 0xB,
46 ARMV6_PERFCTR_DCACHE_WBACK
= 0xC,
47 ARMV6_PERFCTR_SW_PC_CHANGE
= 0xD,
48 ARMV6_PERFCTR_MAIN_TLB_MISS
= 0xF,
49 ARMV6_PERFCTR_EXPL_D_ACCESS
= 0x10,
50 ARMV6_PERFCTR_LSU_FULL_STALL
= 0x11,
51 ARMV6_PERFCTR_WBUF_DRAINED
= 0x12,
52 ARMV6_PERFCTR_CPU_CYCLES
= 0xFF,
53 ARMV6_PERFCTR_NOP
= 0x20,
57 ARMV6_CYCLE_COUNTER
= 0,
63 * The hardware events that we support. We do support cache operations but
64 * we have harvard caches and no way to combine instruction and data
65 * accesses/misses in hardware.
67 static const unsigned armv6_perf_map
[PERF_COUNT_HW_MAX
] = {
68 [PERF_COUNT_HW_CPU_CYCLES
] = ARMV6_PERFCTR_CPU_CYCLES
,
69 [PERF_COUNT_HW_INSTRUCTIONS
] = ARMV6_PERFCTR_INSTR_EXEC
,
70 [PERF_COUNT_HW_CACHE_REFERENCES
] = HW_OP_UNSUPPORTED
,
71 [PERF_COUNT_HW_CACHE_MISSES
] = HW_OP_UNSUPPORTED
,
72 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = ARMV6_PERFCTR_BR_EXEC
,
73 [PERF_COUNT_HW_BRANCH_MISSES
] = ARMV6_PERFCTR_BR_MISPREDICT
,
74 [PERF_COUNT_HW_BUS_CYCLES
] = HW_OP_UNSUPPORTED
,
75 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = ARMV6_PERFCTR_IBUF_STALL
,
76 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = ARMV6_PERFCTR_LSU_FULL_STALL
,
79 static const unsigned armv6_perf_cache_map
[PERF_COUNT_HW_CACHE_MAX
]
80 [PERF_COUNT_HW_CACHE_OP_MAX
]
81 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
84 * The performance counters don't differentiate between read
85 * and write accesses/misses so this isn't strictly correct,
86 * but it's the best we can do. Writes and reads get
90 [C(RESULT_ACCESS
)] = ARMV6_PERFCTR_DCACHE_ACCESS
,
91 [C(RESULT_MISS
)] = ARMV6_PERFCTR_DCACHE_MISS
,
94 [C(RESULT_ACCESS
)] = ARMV6_PERFCTR_DCACHE_ACCESS
,
95 [C(RESULT_MISS
)] = ARMV6_PERFCTR_DCACHE_MISS
,
98 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
99 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
104 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
105 [C(RESULT_MISS
)] = ARMV6_PERFCTR_ICACHE_MISS
,
108 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
109 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
112 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
113 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
118 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
119 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
122 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
123 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
126 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
127 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
132 * The ARM performance counters can count micro DTLB misses,
133 * micro ITLB misses and main TLB misses. There isn't an event
134 * for TLB misses, so use the micro misses here and if users
135 * want the main TLB misses they can use a raw counter.
138 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
139 [C(RESULT_MISS
)] = ARMV6_PERFCTR_DTLB_MISS
,
142 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
143 [C(RESULT_MISS
)] = ARMV6_PERFCTR_DTLB_MISS
,
146 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
147 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
152 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
153 [C(RESULT_MISS
)] = ARMV6_PERFCTR_ITLB_MISS
,
156 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
157 [C(RESULT_MISS
)] = ARMV6_PERFCTR_ITLB_MISS
,
160 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
161 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
166 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
167 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
170 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
171 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
174 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
175 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
180 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
181 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
184 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
185 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
188 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
189 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
194 enum armv6mpcore_perf_types
{
195 ARMV6MPCORE_PERFCTR_ICACHE_MISS
= 0x0,
196 ARMV6MPCORE_PERFCTR_IBUF_STALL
= 0x1,
197 ARMV6MPCORE_PERFCTR_DDEP_STALL
= 0x2,
198 ARMV6MPCORE_PERFCTR_ITLB_MISS
= 0x3,
199 ARMV6MPCORE_PERFCTR_DTLB_MISS
= 0x4,
200 ARMV6MPCORE_PERFCTR_BR_EXEC
= 0x5,
201 ARMV6MPCORE_PERFCTR_BR_NOTPREDICT
= 0x6,
202 ARMV6MPCORE_PERFCTR_BR_MISPREDICT
= 0x7,
203 ARMV6MPCORE_PERFCTR_INSTR_EXEC
= 0x8,
204 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS
= 0xA,
205 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS
= 0xB,
206 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS
= 0xC,
207 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS
= 0xD,
208 ARMV6MPCORE_PERFCTR_DCACHE_EVICTION
= 0xE,
209 ARMV6MPCORE_PERFCTR_SW_PC_CHANGE
= 0xF,
210 ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS
= 0x10,
211 ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS
= 0x11,
212 ARMV6MPCORE_PERFCTR_LSU_FULL_STALL
= 0x12,
213 ARMV6MPCORE_PERFCTR_WBUF_DRAINED
= 0x13,
214 ARMV6MPCORE_PERFCTR_CPU_CYCLES
= 0xFF,
218 * The hardware events that we support. We do support cache operations but
219 * we have harvard caches and no way to combine instruction and data
220 * accesses/misses in hardware.
222 static const unsigned armv6mpcore_perf_map
[PERF_COUNT_HW_MAX
] = {
223 [PERF_COUNT_HW_CPU_CYCLES
] = ARMV6MPCORE_PERFCTR_CPU_CYCLES
,
224 [PERF_COUNT_HW_INSTRUCTIONS
] = ARMV6MPCORE_PERFCTR_INSTR_EXEC
,
225 [PERF_COUNT_HW_CACHE_REFERENCES
] = HW_OP_UNSUPPORTED
,
226 [PERF_COUNT_HW_CACHE_MISSES
] = HW_OP_UNSUPPORTED
,
227 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = ARMV6MPCORE_PERFCTR_BR_EXEC
,
228 [PERF_COUNT_HW_BRANCH_MISSES
] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT
,
229 [PERF_COUNT_HW_BUS_CYCLES
] = HW_OP_UNSUPPORTED
,
230 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND
] = ARMV6MPCORE_PERFCTR_IBUF_STALL
,
231 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND
] = ARMV6MPCORE_PERFCTR_LSU_FULL_STALL
,
234 static const unsigned armv6mpcore_perf_cache_map
[PERF_COUNT_HW_CACHE_MAX
]
235 [PERF_COUNT_HW_CACHE_OP_MAX
]
236 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
240 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS
,
242 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS
,
246 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS
,
248 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS
,
251 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
252 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
257 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
258 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS
,
261 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
262 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
265 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
266 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
271 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
272 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
275 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
276 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
279 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
280 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
285 * The ARM performance counters can count micro DTLB misses,
286 * micro ITLB misses and main TLB misses. There isn't an event
287 * for TLB misses, so use the micro misses here and if users
288 * want the main TLB misses they can use a raw counter.
291 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
292 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_DTLB_MISS
,
295 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
296 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_DTLB_MISS
,
299 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
300 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
305 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
306 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_ITLB_MISS
,
309 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
310 [C(RESULT_MISS
)] = ARMV6MPCORE_PERFCTR_ITLB_MISS
,
313 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
314 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
319 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
320 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
323 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
324 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
327 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
328 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
333 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
334 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
337 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
338 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
341 [C(RESULT_ACCESS
)] = CACHE_OP_UNSUPPORTED
,
342 [C(RESULT_MISS
)] = CACHE_OP_UNSUPPORTED
,
347 static inline unsigned long
348 armv6_pmcr_read(void)
351 asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val
));
356 armv6_pmcr_write(unsigned long val
)
358 asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val
));
361 #define ARMV6_PMCR_ENABLE (1 << 0)
362 #define ARMV6_PMCR_CTR01_RESET (1 << 1)
363 #define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
364 #define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
365 #define ARMV6_PMCR_COUNT0_IEN (1 << 4)
366 #define ARMV6_PMCR_COUNT1_IEN (1 << 5)
367 #define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
368 #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
369 #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
370 #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
371 #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
372 #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
373 #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
374 #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
376 #define ARMV6_PMCR_OVERFLOWED_MASK \
377 (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
378 ARMV6_PMCR_CCOUNT_OVERFLOW)
381 armv6_pmcr_has_overflowed(unsigned long pmcr
)
383 return pmcr
& ARMV6_PMCR_OVERFLOWED_MASK
;
387 armv6_pmcr_counter_has_overflowed(unsigned long pmcr
,
388 enum armv6_counters counter
)
392 if (ARMV6_CYCLE_COUNTER
== counter
)
393 ret
= pmcr
& ARMV6_PMCR_CCOUNT_OVERFLOW
;
394 else if (ARMV6_COUNTER0
== counter
)
395 ret
= pmcr
& ARMV6_PMCR_COUNT0_OVERFLOW
;
396 else if (ARMV6_COUNTER1
== counter
)
397 ret
= pmcr
& ARMV6_PMCR_COUNT1_OVERFLOW
;
399 WARN_ONCE(1, "invalid counter number (%d)\n", counter
);
404 static inline u32
armv6pmu_read_counter(struct perf_event
*event
)
406 struct hw_perf_event
*hwc
= &event
->hw
;
407 int counter
= hwc
->idx
;
408 unsigned long value
= 0;
410 if (ARMV6_CYCLE_COUNTER
== counter
)
411 asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value
));
412 else if (ARMV6_COUNTER0
== counter
)
413 asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value
));
414 else if (ARMV6_COUNTER1
== counter
)
415 asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value
));
417 WARN_ONCE(1, "invalid counter number (%d)\n", counter
);
422 static inline void armv6pmu_write_counter(struct perf_event
*event
, u32 value
)
424 struct hw_perf_event
*hwc
= &event
->hw
;
425 int counter
= hwc
->idx
;
427 if (ARMV6_CYCLE_COUNTER
== counter
)
428 asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value
));
429 else if (ARMV6_COUNTER0
== counter
)
430 asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value
));
431 else if (ARMV6_COUNTER1
== counter
)
432 asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value
));
434 WARN_ONCE(1, "invalid counter number (%d)\n", counter
);
437 static void armv6pmu_enable_event(struct perf_event
*event
)
439 unsigned long val
, mask
, evt
, flags
;
440 struct arm_pmu
*cpu_pmu
= to_arm_pmu(event
->pmu
);
441 struct hw_perf_event
*hwc
= &event
->hw
;
442 struct pmu_hw_events
*events
= cpu_pmu
->get_hw_events();
445 if (ARMV6_CYCLE_COUNTER
== idx
) {
447 evt
= ARMV6_PMCR_CCOUNT_IEN
;
448 } else if (ARMV6_COUNTER0
== idx
) {
449 mask
= ARMV6_PMCR_EVT_COUNT0_MASK
;
450 evt
= (hwc
->config_base
<< ARMV6_PMCR_EVT_COUNT0_SHIFT
) |
451 ARMV6_PMCR_COUNT0_IEN
;
452 } else if (ARMV6_COUNTER1
== idx
) {
453 mask
= ARMV6_PMCR_EVT_COUNT1_MASK
;
454 evt
= (hwc
->config_base
<< ARMV6_PMCR_EVT_COUNT1_SHIFT
) |
455 ARMV6_PMCR_COUNT1_IEN
;
457 WARN_ONCE(1, "invalid counter number (%d)\n", idx
);
462 * Mask out the current event and set the counter to count the event
463 * that we're interested in.
465 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
466 val
= armv6_pmcr_read();
469 armv6_pmcr_write(val
);
470 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
474 armv6pmu_handle_irq(int irq_num
,
477 unsigned long pmcr
= armv6_pmcr_read();
478 struct perf_sample_data data
;
479 struct arm_pmu
*cpu_pmu
= (struct arm_pmu
*)dev
;
480 struct pmu_hw_events
*cpuc
= cpu_pmu
->get_hw_events();
481 struct pt_regs
*regs
;
484 if (!armv6_pmcr_has_overflowed(pmcr
))
487 regs
= get_irq_regs();
490 * The interrupts are cleared by writing the overflow flags back to
491 * the control register. All of the other bits don't have any effect
492 * if they are rewritten, so write the whole value back.
494 armv6_pmcr_write(pmcr
);
496 for (idx
= 0; idx
< cpu_pmu
->num_events
; ++idx
) {
497 struct perf_event
*event
= cpuc
->events
[idx
];
498 struct hw_perf_event
*hwc
;
500 /* Ignore if we don't have an event. */
505 * We have a single interrupt for all counters. Check that
506 * each counter has overflowed before we process it.
508 if (!armv6_pmcr_counter_has_overflowed(pmcr
, idx
))
512 armpmu_event_update(event
);
513 perf_sample_data_init(&data
, 0, hwc
->last_period
);
514 if (!armpmu_event_set_period(event
))
517 if (perf_event_overflow(event
, &data
, regs
))
518 cpu_pmu
->disable(event
);
522 * Handle the pending perf events.
524 * Note: this call *must* be run with interrupts disabled. For
525 * platforms that can have the PMU interrupts raised as an NMI, this
533 static void armv6pmu_start(struct arm_pmu
*cpu_pmu
)
535 unsigned long flags
, val
;
536 struct pmu_hw_events
*events
= cpu_pmu
->get_hw_events();
538 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
539 val
= armv6_pmcr_read();
540 val
|= ARMV6_PMCR_ENABLE
;
541 armv6_pmcr_write(val
);
542 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
545 static void armv6pmu_stop(struct arm_pmu
*cpu_pmu
)
547 unsigned long flags
, val
;
548 struct pmu_hw_events
*events
= cpu_pmu
->get_hw_events();
550 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
551 val
= armv6_pmcr_read();
552 val
&= ~ARMV6_PMCR_ENABLE
;
553 armv6_pmcr_write(val
);
554 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
558 armv6pmu_get_event_idx(struct pmu_hw_events
*cpuc
,
559 struct perf_event
*event
)
561 struct hw_perf_event
*hwc
= &event
->hw
;
562 /* Always place a cycle counter into the cycle counter. */
563 if (ARMV6_PERFCTR_CPU_CYCLES
== hwc
->config_base
) {
564 if (test_and_set_bit(ARMV6_CYCLE_COUNTER
, cpuc
->used_mask
))
567 return ARMV6_CYCLE_COUNTER
;
570 * For anything other than a cycle counter, try and use
571 * counter0 and counter1.
573 if (!test_and_set_bit(ARMV6_COUNTER1
, cpuc
->used_mask
))
574 return ARMV6_COUNTER1
;
576 if (!test_and_set_bit(ARMV6_COUNTER0
, cpuc
->used_mask
))
577 return ARMV6_COUNTER0
;
579 /* The counters are all in use. */
584 static void armv6pmu_disable_event(struct perf_event
*event
)
586 unsigned long val
, mask
, evt
, flags
;
587 struct arm_pmu
*cpu_pmu
= to_arm_pmu(event
->pmu
);
588 struct hw_perf_event
*hwc
= &event
->hw
;
589 struct pmu_hw_events
*events
= cpu_pmu
->get_hw_events();
592 if (ARMV6_CYCLE_COUNTER
== idx
) {
593 mask
= ARMV6_PMCR_CCOUNT_IEN
;
595 } else if (ARMV6_COUNTER0
== idx
) {
596 mask
= ARMV6_PMCR_COUNT0_IEN
| ARMV6_PMCR_EVT_COUNT0_MASK
;
597 evt
= ARMV6_PERFCTR_NOP
<< ARMV6_PMCR_EVT_COUNT0_SHIFT
;
598 } else if (ARMV6_COUNTER1
== idx
) {
599 mask
= ARMV6_PMCR_COUNT1_IEN
| ARMV6_PMCR_EVT_COUNT1_MASK
;
600 evt
= ARMV6_PERFCTR_NOP
<< ARMV6_PMCR_EVT_COUNT1_SHIFT
;
602 WARN_ONCE(1, "invalid counter number (%d)\n", idx
);
607 * Mask out the current event and set the counter to count the number
608 * of ETM bus signal assertion cycles. The external reporting should
609 * be disabled and so this should never increment.
611 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
612 val
= armv6_pmcr_read();
615 armv6_pmcr_write(val
);
616 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
619 static void armv6mpcore_pmu_disable_event(struct perf_event
*event
)
621 unsigned long val
, mask
, flags
, evt
= 0;
622 struct arm_pmu
*cpu_pmu
= to_arm_pmu(event
->pmu
);
623 struct hw_perf_event
*hwc
= &event
->hw
;
624 struct pmu_hw_events
*events
= cpu_pmu
->get_hw_events();
627 if (ARMV6_CYCLE_COUNTER
== idx
) {
628 mask
= ARMV6_PMCR_CCOUNT_IEN
;
629 } else if (ARMV6_COUNTER0
== idx
) {
630 mask
= ARMV6_PMCR_COUNT0_IEN
;
631 } else if (ARMV6_COUNTER1
== idx
) {
632 mask
= ARMV6_PMCR_COUNT1_IEN
;
634 WARN_ONCE(1, "invalid counter number (%d)\n", idx
);
639 * Unlike UP ARMv6, we don't have a way of stopping the counters. We
640 * simply disable the interrupt reporting.
642 raw_spin_lock_irqsave(&events
->pmu_lock
, flags
);
643 val
= armv6_pmcr_read();
646 armv6_pmcr_write(val
);
647 raw_spin_unlock_irqrestore(&events
->pmu_lock
, flags
);
650 static int armv6_map_event(struct perf_event
*event
)
652 return armpmu_map_event(event
, &armv6_perf_map
,
653 &armv6_perf_cache_map
, 0xFF);
656 static int armv6pmu_init(struct arm_pmu
*cpu_pmu
)
658 cpu_pmu
->name
= "v6";
659 cpu_pmu
->handle_irq
= armv6pmu_handle_irq
;
660 cpu_pmu
->enable
= armv6pmu_enable_event
;
661 cpu_pmu
->disable
= armv6pmu_disable_event
;
662 cpu_pmu
->read_counter
= armv6pmu_read_counter
;
663 cpu_pmu
->write_counter
= armv6pmu_write_counter
;
664 cpu_pmu
->get_event_idx
= armv6pmu_get_event_idx
;
665 cpu_pmu
->start
= armv6pmu_start
;
666 cpu_pmu
->stop
= armv6pmu_stop
;
667 cpu_pmu
->map_event
= armv6_map_event
;
668 cpu_pmu
->num_events
= 3;
669 cpu_pmu
->max_period
= (1LLU << 32) - 1;
675 * ARMv6mpcore is almost identical to single core ARMv6 with the exception
676 * that some of the events have different enumerations and that there is no
677 * *hack* to stop the programmable counters. To stop the counters we simply
678 * disable the interrupt reporting and update the event. When unthrottling we
679 * reset the period and enable the interrupt reporting.
682 static int armv6mpcore_map_event(struct perf_event
*event
)
684 return armpmu_map_event(event
, &armv6mpcore_perf_map
,
685 &armv6mpcore_perf_cache_map
, 0xFF);
688 static int armv6mpcore_pmu_init(struct arm_pmu
*cpu_pmu
)
690 cpu_pmu
->name
= "v6mpcore";
691 cpu_pmu
->handle_irq
= armv6pmu_handle_irq
;
692 cpu_pmu
->enable
= armv6pmu_enable_event
;
693 cpu_pmu
->disable
= armv6mpcore_pmu_disable_event
;
694 cpu_pmu
->read_counter
= armv6pmu_read_counter
;
695 cpu_pmu
->write_counter
= armv6pmu_write_counter
;
696 cpu_pmu
->get_event_idx
= armv6pmu_get_event_idx
;
697 cpu_pmu
->start
= armv6pmu_start
;
698 cpu_pmu
->stop
= armv6pmu_stop
;
699 cpu_pmu
->map_event
= armv6mpcore_map_event
;
700 cpu_pmu
->num_events
= 3;
701 cpu_pmu
->max_period
= (1LLU << 32) - 1;
706 static int armv6pmu_init(struct arm_pmu
*cpu_pmu
)
711 static int armv6mpcore_pmu_init(struct arm_pmu
*cpu_pmu
)
715 #endif /* CONFIG_CPU_V6 || CONFIG_CPU_V6K */