2 * linux/arch/arm/kernel/smp.c
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
29 #include <linux/atomic.h>
31 #include <asm/cacheflush.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
47 #include <asm/mach/arch.h>
50 * as from 2.5, kernels no longer have an init_tasks structure
51 * so we need some other way of telling a new secondary core
52 * where to place its SVC stack
54 struct secondary_data secondary_data
;
57 * control for which core is the next to come out of the secondary
60 volatile int __cpuinitdata pen_release
= -1;
71 static DECLARE_COMPLETION(cpu_running
);
73 static struct smp_operations smp_ops
;
75 void __init
smp_set_ops(struct smp_operations
*ops
)
81 int __cpuinit
__cpu_up(unsigned int cpu
, struct task_struct
*idle
)
86 * We need to tell the secondary core where to find
87 * its stack and the page tables.
89 secondary_data
.stack
= task_stack_page(idle
) + THREAD_START_SP
;
90 secondary_data
.pgdir
= virt_to_phys(idmap_pgd
);
91 secondary_data
.swapper_pg_dir
= virt_to_phys(swapper_pg_dir
);
92 __cpuc_flush_dcache_area(&secondary_data
, sizeof(secondary_data
));
93 outer_clean_range(__pa(&secondary_data
), __pa(&secondary_data
+ 1));
96 * Now bring the CPU into our world.
98 ret
= boot_secondary(cpu
, idle
);
101 * CPU was successfully started, wait for it
102 * to come online or time out.
104 wait_for_completion_timeout(&cpu_running
,
105 msecs_to_jiffies(1000));
107 if (!cpu_online(cpu
)) {
108 pr_crit("CPU%u: failed to come online\n", cpu
);
112 pr_err("CPU%u: failed to boot: %d\n", cpu
, ret
);
115 secondary_data
.stack
= NULL
;
116 secondary_data
.pgdir
= 0;
121 /* platform specific SMP operations */
122 void __init
smp_init_cpus(void)
124 if (smp_ops
.smp_init_cpus
)
125 smp_ops
.smp_init_cpus();
128 int __cpuinit
boot_secondary(unsigned int cpu
, struct task_struct
*idle
)
130 if (smp_ops
.smp_boot_secondary
)
131 return smp_ops
.smp_boot_secondary(cpu
, idle
);
135 #ifdef CONFIG_HOTPLUG_CPU
136 static void percpu_timer_stop(void);
138 static int platform_cpu_kill(unsigned int cpu
)
140 if (smp_ops
.cpu_kill
)
141 return smp_ops
.cpu_kill(cpu
);
145 static int platform_cpu_disable(unsigned int cpu
)
147 if (smp_ops
.cpu_disable
)
148 return smp_ops
.cpu_disable(cpu
);
151 * By default, allow disabling all CPUs except the first one,
152 * since this is special on a lot of platforms, e.g. because
153 * of clock tick interrupts.
155 return cpu
== 0 ? -EPERM
: 0;
158 * __cpu_disable runs on the processor to be shutdown.
160 int __cpuinit
__cpu_disable(void)
162 unsigned int cpu
= smp_processor_id();
165 ret
= platform_cpu_disable(cpu
);
170 * Take this CPU offline. Once we clear this, we can't return,
171 * and we must not schedule until we're ready to give up the cpu.
173 set_cpu_online(cpu
, false);
176 * OK - migrate IRQs away from this CPU
181 * Stop the local timer for this CPU.
186 * Flush user cache and TLB mappings, and then remove this CPU
187 * from the vm mask set of all processes.
189 * Caches are flushed to the Level of Unification Inner Shareable
190 * to write-back dirty lines to unified caches shared by all CPUs.
193 local_flush_tlb_all();
195 clear_tasks_mm_cpumask(cpu
);
200 static DECLARE_COMPLETION(cpu_died
);
203 * called on the thread which is asking for a CPU to be shutdown -
204 * waits until shutdown has completed, or it is timed out.
206 void __cpuinit
__cpu_die(unsigned int cpu
)
208 if (!wait_for_completion_timeout(&cpu_died
, msecs_to_jiffies(5000))) {
209 pr_err("CPU%u: cpu didn't die\n", cpu
);
212 printk(KERN_NOTICE
"CPU%u: shutdown\n", cpu
);
215 * platform_cpu_kill() is generally expected to do the powering off
216 * and/or cutting of clocks to the dying CPU. Optionally, this may
217 * be done by the CPU which is dying in preference to supporting
218 * this call, but that means there is _no_ synchronisation between
219 * the requesting CPU and the dying CPU actually losing power.
221 if (!platform_cpu_kill(cpu
))
222 printk("CPU%u: unable to kill\n", cpu
);
226 * Called from the idle thread for the CPU which has been shutdown.
228 * Note that we disable IRQs here, but do not re-enable them
229 * before returning to the caller. This is also the behaviour
230 * of the other hotplug-cpu capable cores, so presumably coming
231 * out of idle fixes this.
233 void __ref
cpu_die(void)
235 unsigned int cpu
= smp_processor_id();
242 * Flush the data out of the L1 cache for this CPU. This must be
243 * before the completion to ensure that data is safely written out
244 * before platform_cpu_kill() gets called - which may disable
245 * *this* CPU and power down its cache.
250 * Tell __cpu_die() that this CPU is now safe to dispose of. Once
251 * this returns, power and/or clocks can be removed at any point
252 * from this CPU and its cache by platform_cpu_kill().
254 RCU_NONIDLE(complete(&cpu_died
));
257 * Ensure that the cache lines associated with that completion are
258 * written out. This covers the case where _this_ CPU is doing the
259 * powering down, to ensure that the completion is visible to the
260 * CPU waiting for this one.
265 * The actual CPU shutdown procedure is at least platform (if not
266 * CPU) specific. This may remove power, or it may simply spin.
268 * Platforms are generally expected *NOT* to return from this call,
269 * although there are some which do because they have no way to
270 * power down the CPU. These platforms are the _only_ reason we
271 * have a return path which uses the fragment of assembly below.
273 * The return path should not be used for platforms which can
277 smp_ops
.cpu_die(cpu
);
280 * Do not return to the idle loop - jump back to the secondary
281 * cpu initialisation. There's some initialisation which needs
282 * to be repeated to undo the effects of taking the CPU offline.
284 __asm__("mov sp, %0\n"
286 " b secondary_start_kernel"
288 : "r" (task_stack_page(current
) + THREAD_SIZE
- 8));
290 #endif /* CONFIG_HOTPLUG_CPU */
293 * Called by both boot and secondaries to move global data into
294 * per-processor storage.
296 static void __cpuinit
smp_store_cpu_info(unsigned int cpuid
)
298 struct cpuinfo_arm
*cpu_info
= &per_cpu(cpu_data
, cpuid
);
300 cpu_info
->loops_per_jiffy
= loops_per_jiffy
;
301 cpu_info
->cpuid
= read_cpuid_id();
303 store_cpu_topology(cpuid
);
306 static void percpu_timer_setup(void);
309 * This is the secondary CPU boot entry. We're using this CPUs
310 * idle thread stack, but a set of temporary page tables.
312 asmlinkage
void __cpuinit
secondary_start_kernel(void)
314 struct mm_struct
*mm
= &init_mm
;
318 * The identity mapping is uncached (strongly ordered), so
319 * switch away from it before attempting any exclusive accesses.
321 cpu_switch_mm(mm
->pgd
, mm
);
322 local_flush_bp_all();
323 enter_lazy_tlb(mm
, current
);
324 local_flush_tlb_all();
327 * All kernel threads share the same mm context; grab a
328 * reference and switch to it.
330 cpu
= smp_processor_id();
331 atomic_inc(&mm
->mm_count
);
332 current
->active_mm
= mm
;
333 cpumask_set_cpu(cpu
, mm_cpumask(mm
));
337 printk("CPU%u: Booted secondary processor\n", cpu
);
340 trace_hardirqs_off();
343 * Give the platform a chance to do its own initialisation.
345 if (smp_ops
.smp_secondary_init
)
346 smp_ops
.smp_secondary_init(cpu
);
348 notify_cpu_starting(cpu
);
352 smp_store_cpu_info(cpu
);
355 * OK, now it's safe to let the boot CPU continue. Wait for
356 * the CPU migration code to notice that the CPU is online
357 * before we continue - which happens after __cpu_up returns.
359 set_cpu_online(cpu
, true);
360 complete(&cpu_running
);
363 * Setup the percpu timer for this CPU.
365 percpu_timer_setup();
371 * OK, it's off to the idle thread for us
373 cpu_startup_entry(CPUHP_ONLINE
);
376 void __init
smp_cpus_done(unsigned int max_cpus
)
379 unsigned long bogosum
= 0;
381 for_each_online_cpu(cpu
)
382 bogosum
+= per_cpu(cpu_data
, cpu
).loops_per_jiffy
;
384 printk(KERN_INFO
"SMP: Total of %d processors activated "
385 "(%lu.%02lu BogoMIPS).\n",
387 bogosum
/ (500000/HZ
),
388 (bogosum
/ (5000/HZ
)) % 100);
393 void __init
smp_prepare_boot_cpu(void)
395 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
398 void __init
smp_prepare_cpus(unsigned int max_cpus
)
400 unsigned int ncores
= num_possible_cpus();
404 smp_store_cpu_info(smp_processor_id());
407 * are we trying to boot more cores than exist?
409 if (max_cpus
> ncores
)
411 if (ncores
> 1 && max_cpus
) {
413 * Enable the local timer or broadcast device for the
414 * boot CPU, but only if we have more than one CPU.
416 percpu_timer_setup();
419 * Initialise the present map, which describes the set of CPUs
420 * actually populated at the present time. A platform should
421 * re-initialize the map in the platforms smp_prepare_cpus()
422 * if present != possible (e.g. physical hotplug).
424 init_cpu_present(cpu_possible_mask
);
427 * Initialise the SCU if there are more than one CPU
428 * and let them know where to start.
430 if (smp_ops
.smp_prepare_cpus
)
431 smp_ops
.smp_prepare_cpus(max_cpus
);
435 static void (*smp_cross_call
)(const struct cpumask
*, unsigned int);
437 void __init
set_smp_cross_call(void (*fn
)(const struct cpumask
*, unsigned int))
443 void arch_send_call_function_ipi_mask(const struct cpumask
*mask
)
445 smp_cross_call(mask
, IPI_CALL_FUNC
);
448 void arch_send_wakeup_ipi_mask(const struct cpumask
*mask
)
450 smp_cross_call(mask
, IPI_WAKEUP
);
453 void arch_send_call_function_single_ipi(int cpu
)
455 smp_cross_call(cpumask_of(cpu
), IPI_CALL_FUNC_SINGLE
);
458 static const char *ipi_types
[NR_IPI
] = {
459 #define S(x,s) [x] = s
460 S(IPI_WAKEUP
, "CPU wakeup interrupts"),
461 S(IPI_TIMER
, "Timer broadcast interrupts"),
462 S(IPI_RESCHEDULE
, "Rescheduling interrupts"),
463 S(IPI_CALL_FUNC
, "Function call interrupts"),
464 S(IPI_CALL_FUNC_SINGLE
, "Single function call interrupts"),
465 S(IPI_CPU_STOP
, "CPU stop interrupts"),
468 void show_ipi_list(struct seq_file
*p
, int prec
)
472 for (i
= 0; i
< NR_IPI
; i
++) {
473 seq_printf(p
, "%*s%u: ", prec
- 1, "IPI", i
);
475 for_each_online_cpu(cpu
)
476 seq_printf(p
, "%10u ",
477 __get_irq_stat(cpu
, ipi_irqs
[i
]));
479 seq_printf(p
, " %s\n", ipi_types
[i
]);
483 u64
smp_irq_stat_cpu(unsigned int cpu
)
488 for (i
= 0; i
< NR_IPI
; i
++)
489 sum
+= __get_irq_stat(cpu
, ipi_irqs
[i
]);
495 * Timer (local or broadcast) support
497 static DEFINE_PER_CPU(struct clock_event_device
, percpu_clockevent
);
499 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
500 void tick_broadcast(const struct cpumask
*mask
)
502 smp_cross_call(mask
, IPI_TIMER
);
506 static void broadcast_timer_set_mode(enum clock_event_mode mode
,
507 struct clock_event_device
*evt
)
511 static void __cpuinit
broadcast_timer_setup(struct clock_event_device
*evt
)
513 evt
->name
= "dummy_timer";
514 evt
->features
= CLOCK_EVT_FEAT_ONESHOT
|
515 CLOCK_EVT_FEAT_PERIODIC
|
516 CLOCK_EVT_FEAT_DUMMY
;
519 evt
->set_mode
= broadcast_timer_set_mode
;
521 clockevents_register_device(evt
);
524 static struct local_timer_ops
*lt_ops
;
526 #ifdef CONFIG_LOCAL_TIMERS
527 int local_timer_register(struct local_timer_ops
*ops
)
529 if (!is_smp() || !setup_max_cpus
)
540 static void __cpuinit
percpu_timer_setup(void)
542 unsigned int cpu
= smp_processor_id();
543 struct clock_event_device
*evt
= &per_cpu(percpu_clockevent
, cpu
);
545 evt
->cpumask
= cpumask_of(cpu
);
547 if (!lt_ops
|| lt_ops
->setup(evt
))
548 broadcast_timer_setup(evt
);
551 #ifdef CONFIG_HOTPLUG_CPU
553 * The generic clock events code purposely does not stop the local timer
554 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
557 static void percpu_timer_stop(void)
559 unsigned int cpu
= smp_processor_id();
560 struct clock_event_device
*evt
= &per_cpu(percpu_clockevent
, cpu
);
567 static DEFINE_RAW_SPINLOCK(stop_lock
);
570 * ipi_cpu_stop - handle IPI from smp_send_stop()
572 static void ipi_cpu_stop(unsigned int cpu
)
574 if (system_state
== SYSTEM_BOOTING
||
575 system_state
== SYSTEM_RUNNING
) {
576 raw_spin_lock(&stop_lock
);
577 printk(KERN_CRIT
"CPU%u: stopping\n", cpu
);
579 raw_spin_unlock(&stop_lock
);
582 set_cpu_online(cpu
, false);
592 * Main handler for inter-processor interrupts
594 asmlinkage
void __exception_irq_entry
do_IPI(int ipinr
, struct pt_regs
*regs
)
596 handle_IPI(ipinr
, regs
);
599 void handle_IPI(int ipinr
, struct pt_regs
*regs
)
601 unsigned int cpu
= smp_processor_id();
602 struct pt_regs
*old_regs
= set_irq_regs(regs
);
605 __inc_irq_stat(cpu
, ipi_irqs
[ipinr
]);
611 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
614 tick_receive_broadcast();
625 generic_smp_call_function_interrupt();
629 case IPI_CALL_FUNC_SINGLE
:
631 generic_smp_call_function_single_interrupt();
642 printk(KERN_CRIT
"CPU%u: Unknown IPI message 0x%x\n",
646 set_irq_regs(old_regs
);
649 void smp_send_reschedule(int cpu
)
651 smp_cross_call(cpumask_of(cpu
), IPI_RESCHEDULE
);
654 #ifdef CONFIG_HOTPLUG_CPU
655 static void smp_kill_cpus(cpumask_t
*mask
)
658 for_each_cpu(cpu
, mask
)
659 platform_cpu_kill(cpu
);
662 static void smp_kill_cpus(cpumask_t
*mask
) { }
665 void smp_send_stop(void)
667 unsigned long timeout
;
670 cpumask_copy(&mask
, cpu_online_mask
);
671 cpumask_clear_cpu(smp_processor_id(), &mask
);
672 if (!cpumask_empty(&mask
))
673 smp_cross_call(&mask
, IPI_CPU_STOP
);
675 /* Wait up to one second for other CPUs to stop */
676 timeout
= USEC_PER_SEC
;
677 while (num_online_cpus() > 1 && timeout
--)
680 if (num_online_cpus() > 1)
681 pr_warning("SMP: failed to stop secondary CPUs\n");
683 smp_kill_cpus(&mask
);
689 int setup_profiling_timer(unsigned int multiplier
)
694 #ifdef CONFIG_CPU_FREQ
696 static DEFINE_PER_CPU(unsigned long, l_p_j_ref
);
697 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq
);
698 static unsigned long global_l_p_j_ref
;
699 static unsigned long global_l_p_j_ref_freq
;
701 static int cpufreq_callback(struct notifier_block
*nb
,
702 unsigned long val
, void *data
)
704 struct cpufreq_freqs
*freq
= data
;
707 if (freq
->flags
& CPUFREQ_CONST_LOOPS
)
710 if (!per_cpu(l_p_j_ref
, cpu
)) {
711 per_cpu(l_p_j_ref
, cpu
) =
712 per_cpu(cpu_data
, cpu
).loops_per_jiffy
;
713 per_cpu(l_p_j_ref_freq
, cpu
) = freq
->old
;
714 if (!global_l_p_j_ref
) {
715 global_l_p_j_ref
= loops_per_jiffy
;
716 global_l_p_j_ref_freq
= freq
->old
;
720 if ((val
== CPUFREQ_PRECHANGE
&& freq
->old
< freq
->new) ||
721 (val
== CPUFREQ_POSTCHANGE
&& freq
->old
> freq
->new) ||
722 (val
== CPUFREQ_RESUMECHANGE
|| val
== CPUFREQ_SUSPENDCHANGE
)) {
723 loops_per_jiffy
= cpufreq_scale(global_l_p_j_ref
,
724 global_l_p_j_ref_freq
,
726 per_cpu(cpu_data
, cpu
).loops_per_jiffy
=
727 cpufreq_scale(per_cpu(l_p_j_ref
, cpu
),
728 per_cpu(l_p_j_ref_freq
, cpu
),
734 static struct notifier_block cpufreq_notifier
= {
735 .notifier_call
= cpufreq_callback
,
738 static int __init
register_cpufreq_notifier(void)
740 return cpufreq_register_notifier(&cpufreq_notifier
,
741 CPUFREQ_TRANSITION_NOTIFIER
);
743 core_initcall(register_cpufreq_notifier
);