2 * arch/arm/kernel/topology.c
4 * Copyright (C) 2011 Linaro Limited.
5 * Written by: Vincent Guittot
7 * based on arch/sh/kernel/topology.c
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/init.h>
17 #include <linux/percpu.h>
18 #include <linux/node.h>
19 #include <linux/nodemask.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
24 #include <asm/cputype.h>
25 #include <asm/topology.h>
28 * cpu power scale management
33 * This per cpu data structure describes the relative capacity of each core.
34 * On a heteregenous system, cores don't have the same computation capacity
35 * and we reflect that difference in the cpu_power field so the scheduler can
36 * take this difference into account during load balance. A per cpu structure
37 * is preferred because each CPU updates its own cpu_power field during the
38 * load balance except for idle cores. One idle core is selected to run the
39 * rebalance_domains for all idle cores and the cpu_power can be updated
40 * during this sequence.
42 static DEFINE_PER_CPU(unsigned long, cpu_scale
);
44 unsigned long arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
46 return per_cpu(cpu_scale
, cpu
);
49 static void set_power_scale(unsigned int cpu
, unsigned long power
)
51 per_cpu(cpu_scale
, cpu
) = power
;
55 struct cpu_efficiency
{
56 const char *compatible
;
57 unsigned long efficiency
;
61 * Table of relative efficiency of each processors
62 * The efficiency value must fit in 20bit and the final
63 * cpu_scale value must be in the range
64 * 0 < cpu_scale < 3*SCHED_POWER_SCALE/2
65 * in order to return at most 1 when DIV_ROUND_CLOSEST
66 * is used to compute the capacity of a CPU.
67 * Processors that are not defined in the table,
68 * use the default SCHED_POWER_SCALE value for cpu_scale.
70 struct cpu_efficiency table_efficiency
[] = {
71 {"arm,cortex-a15", 3891},
72 {"arm,cortex-a7", 2048},
78 unsigned long capacity
;
81 struct cpu_capacity
*cpu_capacity
;
83 unsigned long middle_capacity
= 1;
86 * Iterate all CPUs' descriptor in DT and compute the efficiency
87 * (as per table_efficiency). Also calculate a middle efficiency
88 * as close as possible to (max{eff_i} - min{eff_i}) / 2
89 * This is later used to scale the cpu_power field such that an
90 * 'average' CPU is of middle power. Also see the comments near
91 * table_efficiency[] and update_cpu_power().
93 static void __init
parse_dt_topology(void)
95 struct cpu_efficiency
*cpu_eff
;
96 struct device_node
*cn
= NULL
;
97 unsigned long min_capacity
= (unsigned long)(-1);
98 unsigned long max_capacity
= 0;
99 unsigned long capacity
= 0;
100 int alloc_size
, cpu
= 0;
102 alloc_size
= nr_cpu_ids
* sizeof(struct cpu_capacity
);
103 cpu_capacity
= kzalloc(alloc_size
, GFP_NOWAIT
);
105 while ((cn
= of_find_node_by_type(cn
, "cpu"))) {
106 const u32
*rate
, *reg
;
109 if (cpu
>= num_possible_cpus())
112 for (cpu_eff
= table_efficiency
; cpu_eff
->compatible
; cpu_eff
++)
113 if (of_device_is_compatible(cn
, cpu_eff
->compatible
))
116 if (cpu_eff
->compatible
== NULL
)
119 rate
= of_get_property(cn
, "clock-frequency", &len
);
120 if (!rate
|| len
!= 4) {
121 pr_err("%s missing clock-frequency property\n",
126 reg
= of_get_property(cn
, "reg", &len
);
127 if (!reg
|| len
!= 4) {
128 pr_err("%s missing reg property\n", cn
->full_name
);
132 capacity
= ((be32_to_cpup(rate
)) >> 20) * cpu_eff
->efficiency
;
134 /* Save min capacity of the system */
135 if (capacity
< min_capacity
)
136 min_capacity
= capacity
;
138 /* Save max capacity of the system */
139 if (capacity
> max_capacity
)
140 max_capacity
= capacity
;
142 cpu_capacity
[cpu
].capacity
= capacity
;
143 cpu_capacity
[cpu
++].hwid
= be32_to_cpup(reg
);
146 if (cpu
< num_possible_cpus())
147 cpu_capacity
[cpu
].hwid
= (unsigned long)(-1);
149 /* If min and max capacities are equals, we bypass the update of the
150 * cpu_scale because all CPUs have the same capacity. Otherwise, we
151 * compute a middle_capacity factor that will ensure that the capacity
152 * of an 'average' CPU of the system will be as close as possible to
153 * SCHED_POWER_SCALE, which is the default value, but with the
154 * constraint explained near table_efficiency[].
156 if (min_capacity
== max_capacity
)
157 cpu_capacity
[0].hwid
= (unsigned long)(-1);
158 else if (4*max_capacity
< (3*(max_capacity
+ min_capacity
)))
159 middle_capacity
= (min_capacity
+ max_capacity
)
160 >> (SCHED_POWER_SHIFT
+1);
162 middle_capacity
= ((max_capacity
/ 3)
163 >> (SCHED_POWER_SHIFT
-1)) + 1;
168 * Look for a customed capacity of a CPU in the cpu_capacity table during the
169 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
170 * function returns directly for SMP system.
172 void update_cpu_power(unsigned int cpu
, unsigned long hwid
)
174 unsigned int idx
= 0;
176 /* look for the cpu's hwid in the cpu capacity table */
177 for (idx
= 0; idx
< num_possible_cpus(); idx
++) {
178 if (cpu_capacity
[idx
].hwid
== hwid
)
181 if (cpu_capacity
[idx
].hwid
== -1)
185 if (idx
== num_possible_cpus())
188 set_power_scale(cpu
, cpu_capacity
[idx
].capacity
/ middle_capacity
);
190 printk(KERN_INFO
"CPU%u: update cpu_power %lu\n",
191 cpu
, arch_scale_freq_power(NULL
, cpu
));
195 static inline void parse_dt_topology(void) {}
196 static inline void update_cpu_power(unsigned int cpuid
, unsigned int mpidr
) {}
202 struct cputopo_arm cpu_topology
[NR_CPUS
];
204 const struct cpumask
*cpu_coregroup_mask(int cpu
)
206 return &cpu_topology
[cpu
].core_sibling
;
209 void update_siblings_masks(unsigned int cpuid
)
211 struct cputopo_arm
*cpu_topo
, *cpuid_topo
= &cpu_topology
[cpuid
];
214 /* update core and thread sibling masks */
215 for_each_possible_cpu(cpu
) {
216 cpu_topo
= &cpu_topology
[cpu
];
218 if (cpuid_topo
->socket_id
!= cpu_topo
->socket_id
)
221 cpumask_set_cpu(cpuid
, &cpu_topo
->core_sibling
);
223 cpumask_set_cpu(cpu
, &cpuid_topo
->core_sibling
);
225 if (cpuid_topo
->core_id
!= cpu_topo
->core_id
)
228 cpumask_set_cpu(cpuid
, &cpu_topo
->thread_sibling
);
230 cpumask_set_cpu(cpu
, &cpuid_topo
->thread_sibling
);
236 * store_cpu_topology is called at boot when only one cpu is running
237 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
238 * which prevents simultaneous write access to cpu_topology array
240 void store_cpu_topology(unsigned int cpuid
)
242 struct cputopo_arm
*cpuid_topo
= &cpu_topology
[cpuid
];
245 /* If the cpu topology has been already set, just return */
246 if (cpuid_topo
->core_id
!= -1)
249 mpidr
= read_cpuid_mpidr();
251 /* create cpu topology mapping */
252 if ((mpidr
& MPIDR_SMP_BITMASK
) == MPIDR_SMP_VALUE
) {
254 * This is a multiprocessor system
255 * multiprocessor format & multiprocessor mode field are set
258 if (mpidr
& MPIDR_MT_BITMASK
) {
259 /* core performance interdependency */
260 cpuid_topo
->thread_id
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
261 cpuid_topo
->core_id
= MPIDR_AFFINITY_LEVEL(mpidr
, 1);
262 cpuid_topo
->socket_id
= MPIDR_AFFINITY_LEVEL(mpidr
, 2);
264 /* largely independent cores */
265 cpuid_topo
->thread_id
= -1;
266 cpuid_topo
->core_id
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
267 cpuid_topo
->socket_id
= MPIDR_AFFINITY_LEVEL(mpidr
, 1);
271 * This is an uniprocessor system
272 * we are in multiprocessor format but uniprocessor system
273 * or in the old uniprocessor format
275 cpuid_topo
->thread_id
= -1;
276 cpuid_topo
->core_id
= 0;
277 cpuid_topo
->socket_id
= -1;
280 update_siblings_masks(cpuid
);
282 update_cpu_power(cpuid
, mpidr
& MPIDR_HWID_BITMASK
);
284 printk(KERN_INFO
"CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
285 cpuid
, cpu_topology
[cpuid
].thread_id
,
286 cpu_topology
[cpuid
].core_id
,
287 cpu_topology
[cpuid
].socket_id
, mpidr
);
291 * init_cpu_topology is called at boot when only one cpu is running
292 * which prevent simultaneous write access to cpu_topology array
294 void __init
init_cpu_topology(void)
298 /* init core mask and power*/
299 for_each_possible_cpu(cpu
) {
300 struct cputopo_arm
*cpu_topo
= &(cpu_topology
[cpu
]);
302 cpu_topo
->thread_id
= -1;
303 cpu_topo
->core_id
= -1;
304 cpu_topo
->socket_id
= -1;
305 cpumask_clear(&cpu_topo
->core_sibling
);
306 cpumask_clear(&cpu_topo
->thread_sibling
);
308 set_power_scale(cpu
, SCHED_POWER_SCALE
);