2 * Handle unaligned accesses by emulation.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * This file contains exception handler for address error exception with the
12 * special capability to execute faulting instructions in software. The
13 * handler does not try to handle the case when the program counter points
14 * to an address not aligned to a word boundary.
16 * Putting data to unaligned addresses is a bad practice even on Intel where
17 * only the performance is affected. Much worse is that such code is non-
18 * portable. Due to several programs that die on MIPS due to alignment
19 * problems I decided to implement this handler anyway though I originally
20 * didn't intend to do this at all for user code.
22 * For now I enable fixing of address errors by default to make life easier.
23 * I however intend to disable this somewhen in the future when the alignment
24 * problems with user programs have been fixed. For programmers this is the
27 * Fixing address errors is a per process option. The option is inherited
28 * across fork(2) and execve(2) calls. If you really want to use the
29 * option in your user programs - I discourage the use of the software
30 * emulation strongly - use the following code in your userland stuff:
32 * #include <sys/sysmips.h>
35 * sysmips(MIPS_FIXADE, x);
38 * The argument x is 0 for disabling software emulation, enabled otherwise.
40 * Below a little program to play around with this feature.
43 * #include <sys/sysmips.h>
46 * unsigned char bar[8];
49 * main(int argc, char *argv[])
51 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
52 * unsigned int *p = (unsigned int *) (x.bar + 3);
56 * sysmips(MIPS_FIXADE, atoi(argv[1]));
58 * printf("*p = %08lx\n", *p);
62 * for(i = 0; i <= 7; i++)
63 * printf("%02x ", x.bar[i]);
67 * Coprocessor loads are not supported; I think this case is unimportant
70 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
71 * exception for the R6000.
72 * A store crossing a page boundary might be executed only partially.
73 * Undo the partial store in this case.
76 #include <linux/signal.h>
77 #include <linux/smp.h>
78 #include <linux/sched.h>
79 #include <linux/debugfs.h>
80 #include <linux/perf_event.h>
83 #include <asm/branch.h>
84 #include <asm/byteorder.h>
87 #include <asm/fpu_emulator.h>
89 #include <asm/uaccess.h>
91 #include <asm/fpu_emulator.h>
93 #define STR(x) __STR(x)
97 UNALIGNED_ACTION_QUIET
,
98 UNALIGNED_ACTION_SIGNAL
,
99 UNALIGNED_ACTION_SHOW
,
101 #ifdef CONFIG_DEBUG_FS
102 static u32 unaligned_instructions
;
103 static u32 unaligned_action
;
105 #define unaligned_action UNALIGNED_ACTION_QUIET
107 extern void show_registers(struct pt_regs
*regs
);
110 #define LoadHW(addr, value, res) \
111 __asm__ __volatile__ (".set\tnoat\n" \
112 "1:\tlb\t%0, 0(%2)\n" \
113 "2:\tlbu\t$1, 1(%2)\n\t" \
119 ".section\t.fixup,\"ax\"\n\t" \
120 "4:\tli\t%1, %3\n\t" \
123 ".section\t__ex_table,\"a\"\n\t" \
124 STR(PTR)"\t1b, 4b\n\t" \
125 STR(PTR)"\t2b, 4b\n\t" \
127 : "=&r" (value), "=r" (res) \
128 : "r" (addr), "i" (-EFAULT));
130 #define LoadW(addr, value, res) \
131 __asm__ __volatile__ ( \
132 "1:\tlwl\t%0, (%2)\n" \
133 "2:\tlwr\t%0, 3(%2)\n\t" \
137 ".section\t.fixup,\"ax\"\n\t" \
138 "4:\tli\t%1, %3\n\t" \
141 ".section\t__ex_table,\"a\"\n\t" \
142 STR(PTR)"\t1b, 4b\n\t" \
143 STR(PTR)"\t2b, 4b\n\t" \
145 : "=&r" (value), "=r" (res) \
146 : "r" (addr), "i" (-EFAULT));
148 #define LoadHWU(addr, value, res) \
149 __asm__ __volatile__ ( \
151 "1:\tlbu\t%0, 0(%2)\n" \
152 "2:\tlbu\t$1, 1(%2)\n\t" \
159 ".section\t.fixup,\"ax\"\n\t" \
160 "4:\tli\t%1, %3\n\t" \
163 ".section\t__ex_table,\"a\"\n\t" \
164 STR(PTR)"\t1b, 4b\n\t" \
165 STR(PTR)"\t2b, 4b\n\t" \
167 : "=&r" (value), "=r" (res) \
168 : "r" (addr), "i" (-EFAULT));
170 #define LoadWU(addr, value, res) \
171 __asm__ __volatile__ ( \
172 "1:\tlwl\t%0, (%2)\n" \
173 "2:\tlwr\t%0, 3(%2)\n\t" \
174 "dsll\t%0, %0, 32\n\t" \
175 "dsrl\t%0, %0, 32\n\t" \
179 "\t.section\t.fixup,\"ax\"\n\t" \
180 "4:\tli\t%1, %3\n\t" \
183 ".section\t__ex_table,\"a\"\n\t" \
184 STR(PTR)"\t1b, 4b\n\t" \
185 STR(PTR)"\t2b, 4b\n\t" \
187 : "=&r" (value), "=r" (res) \
188 : "r" (addr), "i" (-EFAULT));
190 #define LoadDW(addr, value, res) \
191 __asm__ __volatile__ ( \
192 "1:\tldl\t%0, (%2)\n" \
193 "2:\tldr\t%0, 7(%2)\n\t" \
197 "\t.section\t.fixup,\"ax\"\n\t" \
198 "4:\tli\t%1, %3\n\t" \
201 ".section\t__ex_table,\"a\"\n\t" \
202 STR(PTR)"\t1b, 4b\n\t" \
203 STR(PTR)"\t2b, 4b\n\t" \
205 : "=&r" (value), "=r" (res) \
206 : "r" (addr), "i" (-EFAULT));
208 #define StoreHW(addr, value, res) \
209 __asm__ __volatile__ ( \
211 "1:\tsb\t%1, 1(%2)\n\t" \
212 "srl\t$1, %1, 0x8\n" \
213 "2:\tsb\t$1, 0(%2)\n\t" \
218 ".section\t.fixup,\"ax\"\n\t" \
219 "4:\tli\t%0, %3\n\t" \
222 ".section\t__ex_table,\"a\"\n\t" \
223 STR(PTR)"\t1b, 4b\n\t" \
224 STR(PTR)"\t2b, 4b\n\t" \
227 : "r" (value), "r" (addr), "i" (-EFAULT));
229 #define StoreW(addr, value, res) \
230 __asm__ __volatile__ ( \
231 "1:\tswl\t%1,(%2)\n" \
232 "2:\tswr\t%1, 3(%2)\n\t" \
236 ".section\t.fixup,\"ax\"\n\t" \
237 "4:\tli\t%0, %3\n\t" \
240 ".section\t__ex_table,\"a\"\n\t" \
241 STR(PTR)"\t1b, 4b\n\t" \
242 STR(PTR)"\t2b, 4b\n\t" \
245 : "r" (value), "r" (addr), "i" (-EFAULT));
247 #define StoreDW(addr, value, res) \
248 __asm__ __volatile__ ( \
249 "1:\tsdl\t%1,(%2)\n" \
250 "2:\tsdr\t%1, 7(%2)\n\t" \
254 ".section\t.fixup,\"ax\"\n\t" \
255 "4:\tli\t%0, %3\n\t" \
258 ".section\t__ex_table,\"a\"\n\t" \
259 STR(PTR)"\t1b, 4b\n\t" \
260 STR(PTR)"\t2b, 4b\n\t" \
263 : "r" (value), "r" (addr), "i" (-EFAULT));
266 #ifdef __LITTLE_ENDIAN
267 #define LoadHW(addr, value, res) \
268 __asm__ __volatile__ (".set\tnoat\n" \
269 "1:\tlb\t%0, 1(%2)\n" \
270 "2:\tlbu\t$1, 0(%2)\n\t" \
276 ".section\t.fixup,\"ax\"\n\t" \
277 "4:\tli\t%1, %3\n\t" \
280 ".section\t__ex_table,\"a\"\n\t" \
281 STR(PTR)"\t1b, 4b\n\t" \
282 STR(PTR)"\t2b, 4b\n\t" \
284 : "=&r" (value), "=r" (res) \
285 : "r" (addr), "i" (-EFAULT));
287 #define LoadW(addr, value, res) \
288 __asm__ __volatile__ ( \
289 "1:\tlwl\t%0, 3(%2)\n" \
290 "2:\tlwr\t%0, (%2)\n\t" \
294 ".section\t.fixup,\"ax\"\n\t" \
295 "4:\tli\t%1, %3\n\t" \
298 ".section\t__ex_table,\"a\"\n\t" \
299 STR(PTR)"\t1b, 4b\n\t" \
300 STR(PTR)"\t2b, 4b\n\t" \
302 : "=&r" (value), "=r" (res) \
303 : "r" (addr), "i" (-EFAULT));
305 #define LoadHWU(addr, value, res) \
306 __asm__ __volatile__ ( \
308 "1:\tlbu\t%0, 1(%2)\n" \
309 "2:\tlbu\t$1, 0(%2)\n\t" \
316 ".section\t.fixup,\"ax\"\n\t" \
317 "4:\tli\t%1, %3\n\t" \
320 ".section\t__ex_table,\"a\"\n\t" \
321 STR(PTR)"\t1b, 4b\n\t" \
322 STR(PTR)"\t2b, 4b\n\t" \
324 : "=&r" (value), "=r" (res) \
325 : "r" (addr), "i" (-EFAULT));
327 #define LoadWU(addr, value, res) \
328 __asm__ __volatile__ ( \
329 "1:\tlwl\t%0, 3(%2)\n" \
330 "2:\tlwr\t%0, (%2)\n\t" \
331 "dsll\t%0, %0, 32\n\t" \
332 "dsrl\t%0, %0, 32\n\t" \
336 "\t.section\t.fixup,\"ax\"\n\t" \
337 "4:\tli\t%1, %3\n\t" \
340 ".section\t__ex_table,\"a\"\n\t" \
341 STR(PTR)"\t1b, 4b\n\t" \
342 STR(PTR)"\t2b, 4b\n\t" \
344 : "=&r" (value), "=r" (res) \
345 : "r" (addr), "i" (-EFAULT));
347 #define LoadDW(addr, value, res) \
348 __asm__ __volatile__ ( \
349 "1:\tldl\t%0, 7(%2)\n" \
350 "2:\tldr\t%0, (%2)\n\t" \
354 "\t.section\t.fixup,\"ax\"\n\t" \
355 "4:\tli\t%1, %3\n\t" \
358 ".section\t__ex_table,\"a\"\n\t" \
359 STR(PTR)"\t1b, 4b\n\t" \
360 STR(PTR)"\t2b, 4b\n\t" \
362 : "=&r" (value), "=r" (res) \
363 : "r" (addr), "i" (-EFAULT));
365 #define StoreHW(addr, value, res) \
366 __asm__ __volatile__ ( \
368 "1:\tsb\t%1, 0(%2)\n\t" \
369 "srl\t$1,%1, 0x8\n" \
370 "2:\tsb\t$1, 1(%2)\n\t" \
375 ".section\t.fixup,\"ax\"\n\t" \
376 "4:\tli\t%0, %3\n\t" \
379 ".section\t__ex_table,\"a\"\n\t" \
380 STR(PTR)"\t1b, 4b\n\t" \
381 STR(PTR)"\t2b, 4b\n\t" \
384 : "r" (value), "r" (addr), "i" (-EFAULT));
386 #define StoreW(addr, value, res) \
387 __asm__ __volatile__ ( \
388 "1:\tswl\t%1, 3(%2)\n" \
389 "2:\tswr\t%1, (%2)\n\t" \
393 ".section\t.fixup,\"ax\"\n\t" \
394 "4:\tli\t%0, %3\n\t" \
397 ".section\t__ex_table,\"a\"\n\t" \
398 STR(PTR)"\t1b, 4b\n\t" \
399 STR(PTR)"\t2b, 4b\n\t" \
402 : "r" (value), "r" (addr), "i" (-EFAULT));
404 #define StoreDW(addr, value, res) \
405 __asm__ __volatile__ ( \
406 "1:\tsdl\t%1, 7(%2)\n" \
407 "2:\tsdr\t%1, (%2)\n\t" \
411 ".section\t.fixup,\"ax\"\n\t" \
412 "4:\tli\t%0, %3\n\t" \
415 ".section\t__ex_table,\"a\"\n\t" \
416 STR(PTR)"\t1b, 4b\n\t" \
417 STR(PTR)"\t2b, 4b\n\t" \
420 : "r" (value), "r" (addr), "i" (-EFAULT));
423 static void emulate_load_store_insn(struct pt_regs
*regs
,
424 void __user
*addr
, unsigned int __user
*pc
)
426 union mips_instruction insn
;
429 unsigned long origpc
;
430 unsigned long orig31
;
431 void __user
*fault_addr
= NULL
;
433 origpc
= (unsigned long)pc
;
434 orig31
= regs
->regs
[31];
436 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
, 1, regs
, 0);
439 * This load never faults.
441 __get_user(insn
.word
, pc
);
443 switch (insn
.i_format
.opcode
) {
445 * These are instructions that a compiler doesn't generate. We
446 * can assume therefore that the code is MIPS-aware and
447 * really buggy. Emulating these instructions would break the
456 * For these instructions the only way to create an address
457 * error is an attempted access to kernel/supervisor address
474 * The remaining opcodes are the ones that are really of
478 if (!access_ok(VERIFY_READ
, addr
, 2))
481 LoadHW(addr
, value
, res
);
484 compute_return_epc(regs
);
485 regs
->regs
[insn
.i_format
.rt
] = value
;
489 if (!access_ok(VERIFY_READ
, addr
, 4))
492 LoadW(addr
, value
, res
);
495 compute_return_epc(regs
);
496 regs
->regs
[insn
.i_format
.rt
] = value
;
500 if (!access_ok(VERIFY_READ
, addr
, 2))
503 LoadHWU(addr
, value
, res
);
506 compute_return_epc(regs
);
507 regs
->regs
[insn
.i_format
.rt
] = value
;
513 * A 32-bit kernel might be running on a 64-bit processor. But
514 * if we're on a 32-bit processor and an i-cache incoherency
515 * or race makes us see a 64-bit instruction here the sdl/sdr
516 * would blow up, so for now we don't handle unaligned 64-bit
517 * instructions on 32-bit kernels.
519 if (!access_ok(VERIFY_READ
, addr
, 4))
522 LoadWU(addr
, value
, res
);
525 compute_return_epc(regs
);
526 regs
->regs
[insn
.i_format
.rt
] = value
;
528 #endif /* CONFIG_64BIT */
530 /* Cannot handle 64-bit instructions in 32-bit kernel */
536 * A 32-bit kernel might be running on a 64-bit processor. But
537 * if we're on a 32-bit processor and an i-cache incoherency
538 * or race makes us see a 64-bit instruction here the sdl/sdr
539 * would blow up, so for now we don't handle unaligned 64-bit
540 * instructions on 32-bit kernels.
542 if (!access_ok(VERIFY_READ
, addr
, 8))
545 LoadDW(addr
, value
, res
);
548 compute_return_epc(regs
);
549 regs
->regs
[insn
.i_format
.rt
] = value
;
551 #endif /* CONFIG_64BIT */
553 /* Cannot handle 64-bit instructions in 32-bit kernel */
557 if (!access_ok(VERIFY_WRITE
, addr
, 2))
560 compute_return_epc(regs
);
561 value
= regs
->regs
[insn
.i_format
.rt
];
562 StoreHW(addr
, value
, res
);
568 if (!access_ok(VERIFY_WRITE
, addr
, 4))
571 compute_return_epc(regs
);
572 value
= regs
->regs
[insn
.i_format
.rt
];
573 StoreW(addr
, value
, res
);
581 * A 32-bit kernel might be running on a 64-bit processor. But
582 * if we're on a 32-bit processor and an i-cache incoherency
583 * or race makes us see a 64-bit instruction here the sdl/sdr
584 * would blow up, so for now we don't handle unaligned 64-bit
585 * instructions on 32-bit kernels.
587 if (!access_ok(VERIFY_WRITE
, addr
, 8))
590 compute_return_epc(regs
);
591 value
= regs
->regs
[insn
.i_format
.rt
];
592 StoreDW(addr
, value
, res
);
596 #endif /* CONFIG_64BIT */
598 /* Cannot handle 64-bit instructions in 32-bit kernel */
605 die_if_kernel("Unaligned FP access in kernel code", regs
);
606 BUG_ON(!used_math());
607 BUG_ON(!is_fpu_owner());
609 lose_fpu(1); /* Save FPU state for the emulator. */
610 res
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
612 own_fpu(1); /* Restore FPU state. */
614 /* Signal if something went wrong. */
615 process_fpemu_return(res
, fault_addr
);
622 * COP2 is available to implementor for application specific use.
623 * It's up to applications to register a notifier chain and do
624 * whatever they have to do, including possible sending of signals.
627 cu2_notifier_call_chain(CU2_LWC2_OP
, regs
);
631 cu2_notifier_call_chain(CU2_LDC2_OP
, regs
);
635 cu2_notifier_call_chain(CU2_SWC2_OP
, regs
);
639 cu2_notifier_call_chain(CU2_SDC2_OP
, regs
);
644 * Pheeee... We encountered an yet unknown instruction or
645 * cache coherence problem. Die sucker, die ...
650 #ifdef CONFIG_DEBUG_FS
651 unaligned_instructions
++;
657 /* roll back jump/branch */
658 regs
->cp0_epc
= origpc
;
659 regs
->regs
[31] = orig31
;
660 /* Did we have an exception handler installed? */
661 if (fixup_exception(regs
))
664 die_if_kernel("Unhandled kernel unaligned access", regs
);
665 force_sig(SIGSEGV
, current
);
670 die_if_kernel("Unhandled kernel unaligned access", regs
);
671 force_sig(SIGBUS
, current
);
677 ("Unhandled kernel unaligned access or invalid instruction", regs
);
678 force_sig(SIGILL
, current
);
681 /* Recode table from 16-bit register notation to 32-bit GPR. */
682 const int reg16to32
[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
684 /* Recode table from 16-bit STORE register notation to 32-bit GPR. */
685 const int reg16to32st
[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
687 void emulate_load_store_microMIPS(struct pt_regs
*regs
, void __user
* addr
)
692 unsigned int reg
= 0, rvar
;
693 unsigned long orig31
;
697 unsigned long origpc
, contpc
;
698 union mips_instruction insn
;
699 struct mm_decoded_insn mminsn
;
700 void __user
*fault_addr
= NULL
;
702 origpc
= regs
->cp0_epc
;
703 orig31
= regs
->regs
[31];
705 mminsn
.micro_mips_mode
= 1;
708 * This load never faults.
710 pc16
= (unsigned short __user
*)msk_isa16_mode(regs
->cp0_epc
);
711 __get_user(halfword
, pc16
);
713 contpc
= regs
->cp0_epc
+ 2;
714 word
= ((unsigned int)halfword
<< 16);
717 if (!mm_insn_16bit(halfword
)) {
718 __get_user(halfword
, pc16
);
720 contpc
= regs
->cp0_epc
+ 4;
726 if (get_user(halfword
, pc16
))
728 mminsn
.next_pc_inc
= 2;
729 word
= ((unsigned int)halfword
<< 16);
731 if (!mm_insn_16bit(halfword
)) {
733 if (get_user(halfword
, pc16
))
735 mminsn
.next_pc_inc
= 4;
738 mminsn
.next_insn
= word
;
740 insn
= (union mips_instruction
)(mminsn
.insn
);
741 if (mm_isBranchInstr(regs
, mminsn
, &contpc
))
742 insn
= (union mips_instruction
)(mminsn
.next_insn
);
744 /* Parse instruction to find what to do */
746 switch (insn
.mm_i_format
.opcode
) {
749 switch (insn
.mm_x_format
.func
) {
751 reg
= insn
.mm_x_format
.rd
;
758 switch (insn
.mm_m_format
.func
) {
760 reg
= insn
.mm_m_format
.rd
;
764 if (!access_ok(VERIFY_READ
, addr
, 8))
767 LoadW(addr
, value
, res
);
770 regs
->regs
[reg
] = value
;
772 LoadW(addr
, value
, res
);
775 regs
->regs
[reg
+ 1] = value
;
779 reg
= insn
.mm_m_format
.rd
;
783 if (!access_ok(VERIFY_WRITE
, addr
, 8))
786 value
= regs
->regs
[reg
];
787 StoreW(addr
, value
, res
);
791 value
= regs
->regs
[reg
+ 1];
792 StoreW(addr
, value
, res
);
799 reg
= insn
.mm_m_format
.rd
;
803 if (!access_ok(VERIFY_READ
, addr
, 16))
806 LoadDW(addr
, value
, res
);
809 regs
->regs
[reg
] = value
;
811 LoadDW(addr
, value
, res
);
814 regs
->regs
[reg
+ 1] = value
;
816 #endif /* CONFIG_64BIT */
822 reg
= insn
.mm_m_format
.rd
;
826 if (!access_ok(VERIFY_WRITE
, addr
, 16))
829 value
= regs
->regs
[reg
];
830 StoreDW(addr
, value
, res
);
834 value
= regs
->regs
[reg
+ 1];
835 StoreDW(addr
, value
, res
);
839 #endif /* CONFIG_64BIT */
844 reg
= insn
.mm_m_format
.rd
;
846 if ((rvar
> 9) || !reg
)
850 (VERIFY_READ
, addr
, 4 * (rvar
+ 1)))
853 if (!access_ok(VERIFY_READ
, addr
, 4 * rvar
))
858 for (i
= 16; rvar
; rvar
--, i
++) {
859 LoadW(addr
, value
, res
);
863 regs
->regs
[i
] = value
;
865 if ((reg
& 0xf) == 9) {
866 LoadW(addr
, value
, res
);
870 regs
->regs
[30] = value
;
873 LoadW(addr
, value
, res
);
876 regs
->regs
[31] = value
;
881 reg
= insn
.mm_m_format
.rd
;
883 if ((rvar
> 9) || !reg
)
887 (VERIFY_WRITE
, addr
, 4 * (rvar
+ 1)))
890 if (!access_ok(VERIFY_WRITE
, addr
, 4 * rvar
))
895 for (i
= 16; rvar
; rvar
--, i
++) {
896 value
= regs
->regs
[i
];
897 StoreW(addr
, value
, res
);
902 if ((reg
& 0xf) == 9) {
903 value
= regs
->regs
[30];
904 StoreW(addr
, value
, res
);
910 value
= regs
->regs
[31];
911 StoreW(addr
, value
, res
);
919 reg
= insn
.mm_m_format
.rd
;
921 if ((rvar
> 9) || !reg
)
925 (VERIFY_READ
, addr
, 8 * (rvar
+ 1)))
928 if (!access_ok(VERIFY_READ
, addr
, 8 * rvar
))
934 for (i
= 16; rvar
; rvar
--, i
++) {
935 LoadDW(addr
, value
, res
);
939 regs
->regs
[i
] = value
;
941 if ((reg
& 0xf) == 9) {
942 LoadDW(addr
, value
, res
);
946 regs
->regs
[30] = value
;
949 LoadDW(addr
, value
, res
);
952 regs
->regs
[31] = value
;
955 #endif /* CONFIG_64BIT */
961 reg
= insn
.mm_m_format
.rd
;
963 if ((rvar
> 9) || !reg
)
967 (VERIFY_WRITE
, addr
, 8 * (rvar
+ 1)))
970 if (!access_ok(VERIFY_WRITE
, addr
, 8 * rvar
))
976 for (i
= 16; rvar
; rvar
--, i
++) {
977 value
= regs
->regs
[i
];
978 StoreDW(addr
, value
, res
);
983 if ((reg
& 0xf) == 9) {
984 value
= regs
->regs
[30];
985 StoreDW(addr
, value
, res
);
991 value
= regs
->regs
[31];
992 StoreDW(addr
, value
, res
);
997 #endif /* CONFIG_64BIT */
1001 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
1007 switch (insn
.mm_m_format
.func
) {
1009 reg
= insn
.mm_m_format
.rd
;
1013 /* LL,SC,LLD,SCD are not serviced */
1017 switch (insn
.mm_x_format
.func
) {
1032 /* roll back jump/branch */
1033 regs
->cp0_epc
= origpc
;
1034 regs
->regs
[31] = orig31
;
1036 die_if_kernel("Unaligned FP access in kernel code", regs
);
1037 BUG_ON(!used_math());
1038 BUG_ON(!is_fpu_owner());
1040 lose_fpu(1); /* save the FPU state for the emulator */
1041 res
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
1043 own_fpu(1); /* restore FPU state */
1045 /* If something went wrong, signal */
1046 process_fpemu_return(res
, fault_addr
);
1053 reg
= insn
.mm_i_format
.rt
;
1057 reg
= insn
.mm_i_format
.rt
;
1061 reg
= insn
.mm_i_format
.rt
;
1065 reg
= insn
.mm_i_format
.rt
;
1069 reg
= insn
.mm_i_format
.rt
;
1073 reg
= insn
.mm_i_format
.rt
;
1077 reg
= insn
.mm_i_format
.rt
;
1081 switch (insn
.mm16_m_format
.func
) {
1083 reg
= insn
.mm16_m_format
.rlist
;
1085 if (!access_ok(VERIFY_READ
, addr
, 4 * rvar
))
1088 for (i
= 16; rvar
; rvar
--, i
++) {
1089 LoadW(addr
, value
, res
);
1093 regs
->regs
[i
] = value
;
1095 LoadW(addr
, value
, res
);
1098 regs
->regs
[31] = value
;
1103 reg
= insn
.mm16_m_format
.rlist
;
1105 if (!access_ok(VERIFY_WRITE
, addr
, 4 * rvar
))
1108 for (i
= 16; rvar
; rvar
--, i
++) {
1109 value
= regs
->regs
[i
];
1110 StoreW(addr
, value
, res
);
1115 value
= regs
->regs
[31];
1116 StoreW(addr
, value
, res
);
1127 reg
= reg16to32
[insn
.mm16_rb_format
.rt
];
1131 reg
= reg16to32
[insn
.mm16_rb_format
.rt
];
1135 reg
= reg16to32st
[insn
.mm16_rb_format
.rt
];
1139 reg
= reg16to32st
[insn
.mm16_rb_format
.rt
];
1143 reg
= insn
.mm16_r5_format
.rt
;
1147 reg
= insn
.mm16_r5_format
.rt
;
1151 reg
= reg16to32
[insn
.mm16_r3_format
.rt
];
1159 if (!access_ok(VERIFY_READ
, addr
, 2))
1162 LoadHW(addr
, value
, res
);
1165 regs
->regs
[reg
] = value
;
1169 if (!access_ok(VERIFY_READ
, addr
, 2))
1172 LoadHWU(addr
, value
, res
);
1175 regs
->regs
[reg
] = value
;
1179 if (!access_ok(VERIFY_READ
, addr
, 4))
1182 LoadW(addr
, value
, res
);
1185 regs
->regs
[reg
] = value
;
1191 * A 32-bit kernel might be running on a 64-bit processor. But
1192 * if we're on a 32-bit processor and an i-cache incoherency
1193 * or race makes us see a 64-bit instruction here the sdl/sdr
1194 * would blow up, so for now we don't handle unaligned 64-bit
1195 * instructions on 32-bit kernels.
1197 if (!access_ok(VERIFY_READ
, addr
, 4))
1200 LoadWU(addr
, value
, res
);
1203 regs
->regs
[reg
] = value
;
1205 #endif /* CONFIG_64BIT */
1207 /* Cannot handle 64-bit instructions in 32-bit kernel */
1213 * A 32-bit kernel might be running on a 64-bit processor. But
1214 * if we're on a 32-bit processor and an i-cache incoherency
1215 * or race makes us see a 64-bit instruction here the sdl/sdr
1216 * would blow up, so for now we don't handle unaligned 64-bit
1217 * instructions on 32-bit kernels.
1219 if (!access_ok(VERIFY_READ
, addr
, 8))
1222 LoadDW(addr
, value
, res
);
1225 regs
->regs
[reg
] = value
;
1227 #endif /* CONFIG_64BIT */
1229 /* Cannot handle 64-bit instructions in 32-bit kernel */
1233 if (!access_ok(VERIFY_WRITE
, addr
, 2))
1236 value
= regs
->regs
[reg
];
1237 StoreHW(addr
, value
, res
);
1243 if (!access_ok(VERIFY_WRITE
, addr
, 4))
1246 value
= regs
->regs
[reg
];
1247 StoreW(addr
, value
, res
);
1255 * A 32-bit kernel might be running on a 64-bit processor. But
1256 * if we're on a 32-bit processor and an i-cache incoherency
1257 * or race makes us see a 64-bit instruction here the sdl/sdr
1258 * would blow up, so for now we don't handle unaligned 64-bit
1259 * instructions on 32-bit kernels.
1261 if (!access_ok(VERIFY_WRITE
, addr
, 8))
1264 value
= regs
->regs
[reg
];
1265 StoreDW(addr
, value
, res
);
1269 #endif /* CONFIG_64BIT */
1271 /* Cannot handle 64-bit instructions in 32-bit kernel */
1275 regs
->cp0_epc
= contpc
; /* advance or branch */
1277 #ifdef CONFIG_DEBUG_FS
1278 unaligned_instructions
++;
1283 /* roll back jump/branch */
1284 regs
->cp0_epc
= origpc
;
1285 regs
->regs
[31] = orig31
;
1286 /* Did we have an exception handler installed? */
1287 if (fixup_exception(regs
))
1290 die_if_kernel("Unhandled kernel unaligned access", regs
);
1291 force_sig(SIGSEGV
, current
);
1296 die_if_kernel("Unhandled kernel unaligned access", regs
);
1297 force_sig(SIGBUS
, current
);
1303 ("Unhandled kernel unaligned access or invalid instruction", regs
);
1304 force_sig(SIGILL
, current
);
1307 static void emulate_load_store_MIPS16e(struct pt_regs
*regs
, void __user
* addr
)
1309 unsigned long value
;
1312 unsigned long orig31
;
1314 unsigned long origpc
;
1315 union mips16e_instruction mips16inst
, oldinst
;
1317 origpc
= regs
->cp0_epc
;
1318 orig31
= regs
->regs
[31];
1319 pc16
= (unsigned short __user
*)msk_isa16_mode(origpc
);
1321 * This load never faults.
1323 __get_user(mips16inst
.full
, pc16
);
1324 oldinst
= mips16inst
;
1326 /* skip EXTEND instruction */
1327 if (mips16inst
.ri
.opcode
== MIPS16e_extend_op
) {
1329 __get_user(mips16inst
.full
, pc16
);
1330 } else if (delay_slot(regs
)) {
1331 /* skip jump instructions */
1332 /* JAL/JALX are 32 bits but have OPCODE in first short int */
1333 if (mips16inst
.ri
.opcode
== MIPS16e_jal_op
)
1336 if (get_user(mips16inst
.full
, pc16
))
1340 switch (mips16inst
.ri
.opcode
) {
1341 case MIPS16e_i64_op
: /* I64 or RI64 instruction */
1342 switch (mips16inst
.i64
.func
) { /* I64/RI64 func field check */
1343 case MIPS16e_ldpc_func
:
1344 case MIPS16e_ldsp_func
:
1345 reg
= reg16to32
[mips16inst
.ri64
.ry
];
1348 case MIPS16e_sdsp_func
:
1349 reg
= reg16to32
[mips16inst
.ri64
.ry
];
1352 case MIPS16e_sdrasp_func
:
1353 reg
= 29; /* GPRSP */
1359 case MIPS16e_swsp_op
:
1360 case MIPS16e_lwpc_op
:
1361 case MIPS16e_lwsp_op
:
1362 reg
= reg16to32
[mips16inst
.ri
.rx
];
1366 if (mips16inst
.i8
.func
!= MIPS16e_swrasp_func
)
1368 reg
= 29; /* GPRSP */
1372 reg
= reg16to32
[mips16inst
.rri
.ry
];
1376 switch (mips16inst
.ri
.opcode
) {
1379 case MIPS16e_lbu_op
:
1384 if (!access_ok(VERIFY_READ
, addr
, 2))
1387 LoadHW(addr
, value
, res
);
1390 MIPS16e_compute_return_epc(regs
, &oldinst
);
1391 regs
->regs
[reg
] = value
;
1394 case MIPS16e_lhu_op
:
1395 if (!access_ok(VERIFY_READ
, addr
, 2))
1398 LoadHWU(addr
, value
, res
);
1401 MIPS16e_compute_return_epc(regs
, &oldinst
);
1402 regs
->regs
[reg
] = value
;
1406 case MIPS16e_lwpc_op
:
1407 case MIPS16e_lwsp_op
:
1408 if (!access_ok(VERIFY_READ
, addr
, 4))
1411 LoadW(addr
, value
, res
);
1414 MIPS16e_compute_return_epc(regs
, &oldinst
);
1415 regs
->regs
[reg
] = value
;
1418 case MIPS16e_lwu_op
:
1421 * A 32-bit kernel might be running on a 64-bit processor. But
1422 * if we're on a 32-bit processor and an i-cache incoherency
1423 * or race makes us see a 64-bit instruction here the sdl/sdr
1424 * would blow up, so for now we don't handle unaligned 64-bit
1425 * instructions on 32-bit kernels.
1427 if (!access_ok(VERIFY_READ
, addr
, 4))
1430 LoadWU(addr
, value
, res
);
1433 MIPS16e_compute_return_epc(regs
, &oldinst
);
1434 regs
->regs
[reg
] = value
;
1436 #endif /* CONFIG_64BIT */
1438 /* Cannot handle 64-bit instructions in 32-bit kernel */
1445 * A 32-bit kernel might be running on a 64-bit processor. But
1446 * if we're on a 32-bit processor and an i-cache incoherency
1447 * or race makes us see a 64-bit instruction here the sdl/sdr
1448 * would blow up, so for now we don't handle unaligned 64-bit
1449 * instructions on 32-bit kernels.
1451 if (!access_ok(VERIFY_READ
, addr
, 8))
1454 LoadDW(addr
, value
, res
);
1457 MIPS16e_compute_return_epc(regs
, &oldinst
);
1458 regs
->regs
[reg
] = value
;
1460 #endif /* CONFIG_64BIT */
1462 /* Cannot handle 64-bit instructions in 32-bit kernel */
1466 if (!access_ok(VERIFY_WRITE
, addr
, 2))
1469 MIPS16e_compute_return_epc(regs
, &oldinst
);
1470 value
= regs
->regs
[reg
];
1471 StoreHW(addr
, value
, res
);
1477 case MIPS16e_swsp_op
:
1478 case MIPS16e_i8_op
: /* actually - MIPS16e_swrasp_func */
1479 if (!access_ok(VERIFY_WRITE
, addr
, 4))
1482 MIPS16e_compute_return_epc(regs
, &oldinst
);
1483 value
= regs
->regs
[reg
];
1484 StoreW(addr
, value
, res
);
1493 * A 32-bit kernel might be running on a 64-bit processor. But
1494 * if we're on a 32-bit processor and an i-cache incoherency
1495 * or race makes us see a 64-bit instruction here the sdl/sdr
1496 * would blow up, so for now we don't handle unaligned 64-bit
1497 * instructions on 32-bit kernels.
1499 if (!access_ok(VERIFY_WRITE
, addr
, 8))
1502 MIPS16e_compute_return_epc(regs
, &oldinst
);
1503 value
= regs
->regs
[reg
];
1504 StoreDW(addr
, value
, res
);
1508 #endif /* CONFIG_64BIT */
1510 /* Cannot handle 64-bit instructions in 32-bit kernel */
1515 * Pheeee... We encountered an yet unknown instruction or
1516 * cache coherence problem. Die sucker, die ...
1521 #ifdef CONFIG_DEBUG_FS
1522 unaligned_instructions
++;
1528 /* roll back jump/branch */
1529 regs
->cp0_epc
= origpc
;
1530 regs
->regs
[31] = orig31
;
1531 /* Did we have an exception handler installed? */
1532 if (fixup_exception(regs
))
1535 die_if_kernel("Unhandled kernel unaligned access", regs
);
1536 force_sig(SIGSEGV
, current
);
1541 die_if_kernel("Unhandled kernel unaligned access", regs
);
1542 force_sig(SIGBUS
, current
);
1548 ("Unhandled kernel unaligned access or invalid instruction", regs
);
1549 force_sig(SIGILL
, current
);
1551 asmlinkage
void do_ade(struct pt_regs
*regs
)
1553 unsigned int __user
*pc
;
1556 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS
,
1557 1, regs
, regs
->cp0_badvaddr
);
1559 * Did we catch a fault trying to load an instruction?
1561 if (regs
->cp0_badvaddr
== regs
->cp0_epc
)
1564 if (user_mode(regs
) && !test_thread_flag(TIF_FIXADE
))
1566 if (unaligned_action
== UNALIGNED_ACTION_SIGNAL
)
1570 * Do branch emulation only if we didn't forward the exception.
1571 * This is all so but ugly ...
1575 * Are we running in microMIPS mode?
1577 if (get_isa16_mode(regs
->cp0_epc
)) {
1579 * Did we catch a fault trying to load an instruction in
1582 if (regs
->cp0_badvaddr
== msk_isa16_mode(regs
->cp0_epc
))
1584 if (unaligned_action
== UNALIGNED_ACTION_SHOW
)
1585 show_registers(regs
);
1587 if (cpu_has_mmips
) {
1589 if (!user_mode(regs
))
1591 emulate_load_store_microMIPS(regs
,
1592 (void __user
*)regs
->cp0_badvaddr
);
1598 if (cpu_has_mips16
) {
1600 if (!user_mode(regs
))
1602 emulate_load_store_MIPS16e(regs
,
1603 (void __user
*)regs
->cp0_badvaddr
);
1612 if (unaligned_action
== UNALIGNED_ACTION_SHOW
)
1613 show_registers(regs
);
1614 pc
= (unsigned int __user
*)exception_epc(regs
);
1617 if (!user_mode(regs
))
1619 emulate_load_store_insn(regs
, (void __user
*)regs
->cp0_badvaddr
, pc
);
1625 die_if_kernel("Kernel unaligned instruction access", regs
);
1626 force_sig(SIGBUS
, current
);
1629 * XXX On return from the signal handler we should advance the epc
1633 #ifdef CONFIG_DEBUG_FS
1634 extern struct dentry
*mips_debugfs_dir
;
1635 static int __init
debugfs_unaligned(void)
1639 if (!mips_debugfs_dir
)
1641 d
= debugfs_create_u32("unaligned_instructions", S_IRUGO
,
1642 mips_debugfs_dir
, &unaligned_instructions
);
1645 d
= debugfs_create_u32("unaligned_action", S_IRUGO
| S_IWUSR
,
1646 mips_debugfs_dir
, &unaligned_action
);
1651 __initcall(debugfs_unaligned
);