Staging: Panel: panel: Fixed checkpatch line length warnings
[linux/fpc-iii.git] / arch / s390 / include / asm / pgtable.h
blob4105b8221fddfd3c180caf78ef65eb9350c93193
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 * Derived from "include/asm-i386/pgtable.h"
9 */
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
29 #ifndef __ASSEMBLY__
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <asm/bug.h>
34 #include <asm/page.h>
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
44 #define update_mmu_cache(vma, address, ptep) do { } while (0)
45 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
48 * ZERO_PAGE is a global shared page that is always zero; used
49 * for zero-mapped memory areas etc..
52 extern unsigned long empty_zero_page;
53 extern unsigned long zero_page_mask;
55 #define ZERO_PAGE(vaddr) \
56 (virt_to_page((void *)(empty_zero_page + \
57 (((unsigned long)(vaddr)) &zero_page_mask))))
58 #define __HAVE_COLOR_ZERO_PAGE
60 /* TODO: s390 cannot support io_remap_pfn_range... */
61 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
62 remap_pfn_range(vma, vaddr, pfn, size, prot)
64 #endif /* !__ASSEMBLY__ */
67 * PMD_SHIFT determines the size of the area a second-level page
68 * table can map
69 * PGDIR_SHIFT determines what a third-level page table entry can map
71 #ifndef CONFIG_64BIT
72 # define PMD_SHIFT 20
73 # define PUD_SHIFT 20
74 # define PGDIR_SHIFT 20
75 #else /* CONFIG_64BIT */
76 # define PMD_SHIFT 20
77 # define PUD_SHIFT 31
78 # define PGDIR_SHIFT 42
79 #endif /* CONFIG_64BIT */
81 #define PMD_SIZE (1UL << PMD_SHIFT)
82 #define PMD_MASK (~(PMD_SIZE-1))
83 #define PUD_SIZE (1UL << PUD_SHIFT)
84 #define PUD_MASK (~(PUD_SIZE-1))
85 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
86 #define PGDIR_MASK (~(PGDIR_SIZE-1))
89 * entries per page directory level: the S390 is two-level, so
90 * we don't really have any PMD directory physically.
91 * for S390 segment-table entries are combined to one PGD
92 * that leads to 1024 pte per pgd
94 #define PTRS_PER_PTE 256
95 #ifndef CONFIG_64BIT
96 #define PTRS_PER_PMD 1
97 #define PTRS_PER_PUD 1
98 #else /* CONFIG_64BIT */
99 #define PTRS_PER_PMD 2048
100 #define PTRS_PER_PUD 2048
101 #endif /* CONFIG_64BIT */
102 #define PTRS_PER_PGD 2048
104 #define FIRST_USER_ADDRESS 0
106 #define pte_ERROR(e) \
107 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
108 #define pmd_ERROR(e) \
109 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
110 #define pud_ERROR(e) \
111 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
112 #define pgd_ERROR(e) \
113 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
115 #ifndef __ASSEMBLY__
117 * The vmalloc and module area will always be on the topmost area of the kernel
118 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
119 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
120 * modules will reside. That makes sure that inter module branches always
121 * happen without trampolines and in addition the placement within a 2GB frame
122 * is branch prediction unit friendly.
124 extern unsigned long VMALLOC_START;
125 extern unsigned long VMALLOC_END;
126 extern struct page *vmemmap;
128 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
130 #ifdef CONFIG_64BIT
131 extern unsigned long MODULES_VADDR;
132 extern unsigned long MODULES_END;
133 #define MODULES_VADDR MODULES_VADDR
134 #define MODULES_END MODULES_END
135 #define MODULES_LEN (1UL << 31)
136 #endif
139 * A 31 bit pagetable entry of S390 has following format:
140 * | PFRA | | OS |
141 * 0 0IP0
142 * 00000000001111111111222222222233
143 * 01234567890123456789012345678901
145 * I Page-Invalid Bit: Page is not available for address-translation
146 * P Page-Protection Bit: Store access not possible for page
148 * A 31 bit segmenttable entry of S390 has following format:
149 * | P-table origin | |PTL
150 * 0 IC
151 * 00000000001111111111222222222233
152 * 01234567890123456789012345678901
154 * I Segment-Invalid Bit: Segment is not available for address-translation
155 * C Common-Segment Bit: Segment is not private (PoP 3-30)
156 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
158 * The 31 bit segmenttable origin of S390 has following format:
160 * |S-table origin | | STL |
161 * X **GPS
162 * 00000000001111111111222222222233
163 * 01234567890123456789012345678901
165 * X Space-Switch event:
166 * G Segment-Invalid Bit: *
167 * P Private-Space Bit: Segment is not private (PoP 3-30)
168 * S Storage-Alteration:
169 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
171 * A 64 bit pagetable entry of S390 has following format:
172 * | PFRA |0IPC| OS |
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
176 * I Page-Invalid Bit: Page is not available for address-translation
177 * P Page-Protection Bit: Store access not possible for page
178 * C Change-bit override: HW is not required to set change bit
180 * A 64 bit segmenttable entry of S390 has following format:
181 * | P-table origin | TT
182 * 0000000000111111111122222222223333333333444444444455555555556666
183 * 0123456789012345678901234567890123456789012345678901234567890123
185 * I Segment-Invalid Bit: Segment is not available for address-translation
186 * C Common-Segment Bit: Segment is not private (PoP 3-30)
187 * P Page-Protection Bit: Store access not possible for page
188 * TT Type 00
190 * A 64 bit region table entry of S390 has following format:
191 * | S-table origin | TF TTTL
192 * 0000000000111111111122222222223333333333444444444455555555556666
193 * 0123456789012345678901234567890123456789012345678901234567890123
195 * I Segment-Invalid Bit: Segment is not available for address-translation
196 * TT Type 01
197 * TF
198 * TL Table length
200 * The 64 bit regiontable origin of S390 has following format:
201 * | region table origon | DTTL
202 * 0000000000111111111122222222223333333333444444444455555555556666
203 * 0123456789012345678901234567890123456789012345678901234567890123
205 * X Space-Switch event:
206 * G Segment-Invalid Bit:
207 * P Private-Space Bit:
208 * S Storage-Alteration:
209 * R Real space
210 * TL Table-Length:
212 * A storage key has the following format:
213 * | ACC |F|R|C|0|
214 * 0 3 4 5 6 7
215 * ACC: access key
216 * F : fetch protection bit
217 * R : referenced bit
218 * C : changed bit
221 /* Hardware bits in the page table entry */
222 #define _PAGE_CO 0x100 /* HW Change-bit override */
223 #define _PAGE_RO 0x200 /* HW read-only bit */
224 #define _PAGE_INVALID 0x400 /* HW invalid bit */
226 /* Software bits in the page table entry */
227 #define _PAGE_SWT 0x001 /* SW pte type bit t */
228 #define _PAGE_SWX 0x002 /* SW pte type bit x */
229 #define _PAGE_SWC 0x004 /* SW pte changed bit */
230 #define _PAGE_SWR 0x008 /* SW pte referenced bit */
231 #define _PAGE_SWW 0x010 /* SW pte write bit */
232 #define _PAGE_SPECIAL 0x020 /* SW associated with special page */
233 #define __HAVE_ARCH_PTE_SPECIAL
235 /* Set of bits not changed in pte_modify */
236 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
237 _PAGE_SWC | _PAGE_SWR)
239 /* Six different types of pages. */
240 #define _PAGE_TYPE_EMPTY 0x400
241 #define _PAGE_TYPE_NONE 0x401
242 #define _PAGE_TYPE_SWAP 0x403
243 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
244 #define _PAGE_TYPE_RO 0x200
245 #define _PAGE_TYPE_RW 0x000
248 * Only four types for huge pages, using the invalid bit and protection bit
249 * of a segment table entry.
251 #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
252 #define _HPAGE_TYPE_NONE 0x220
253 #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
254 #define _HPAGE_TYPE_RW 0x000
257 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
258 * pte_none and pte_file to find out the pte type WITHOUT holding the page
259 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
260 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
261 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
262 * This change is done while holding the lock, but the intermediate step
263 * of a previously valid pte with the hw invalid bit set can be observed by
264 * handle_pte_fault. That makes it necessary that all valid pte types with
265 * the hw invalid bit set must be distinguishable from the four pte types
266 * empty, none, swap and file.
268 * irxt ipte irxt
269 * _PAGE_TYPE_EMPTY 1000 -> 1000
270 * _PAGE_TYPE_NONE 1001 -> 1001
271 * _PAGE_TYPE_SWAP 1011 -> 1011
272 * _PAGE_TYPE_FILE 11?1 -> 11?1
273 * _PAGE_TYPE_RO 0100 -> 1100
274 * _PAGE_TYPE_RW 0000 -> 1000
276 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
277 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
278 * pte_file is true for bits combinations 1101, 1111
279 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
282 #ifndef CONFIG_64BIT
284 /* Bits in the segment table address-space-control-element */
285 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
286 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
287 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
288 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
289 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
291 /* Bits in the segment table entry */
292 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
293 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
294 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
295 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
296 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
298 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
299 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
301 /* Page status table bits for virtualization */
302 #define RCP_ACC_BITS 0xf0000000UL
303 #define RCP_FP_BIT 0x08000000UL
304 #define RCP_PCL_BIT 0x00800000UL
305 #define RCP_HR_BIT 0x00400000UL
306 #define RCP_HC_BIT 0x00200000UL
307 #define RCP_GR_BIT 0x00040000UL
308 #define RCP_GC_BIT 0x00020000UL
309 #define RCP_IN_BIT 0x00008000UL /* IPTE notify bit */
311 /* User dirty / referenced bit for KVM's migration feature */
312 #define KVM_UR_BIT 0x00008000UL
313 #define KVM_UC_BIT 0x00004000UL
315 #else /* CONFIG_64BIT */
317 /* Bits in the segment/region table address-space-control-element */
318 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
319 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
320 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
321 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
322 #define _ASCE_REAL_SPACE 0x20 /* real space control */
323 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
324 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
325 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
326 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
327 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
328 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
330 /* Bits in the region table entry */
331 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
332 #define _REGION_ENTRY_RO 0x200 /* region protection bit */
333 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
334 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
335 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
336 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
337 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
338 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
340 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
341 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
342 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
343 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
344 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
345 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
347 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
348 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
349 #define _REGION3_ENTRY_CO 0x100 /* change-recording override */
351 /* Bits in the segment table entry */
352 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
353 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
354 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
355 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
357 #define _SEGMENT_ENTRY (0)
358 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
360 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
361 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
362 #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
363 #define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
365 /* Set of bits not changed in pmd_modify */
366 #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
367 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
369 /* Page status table bits for virtualization */
370 #define RCP_ACC_BITS 0xf000000000000000UL
371 #define RCP_FP_BIT 0x0800000000000000UL
372 #define RCP_PCL_BIT 0x0080000000000000UL
373 #define RCP_HR_BIT 0x0040000000000000UL
374 #define RCP_HC_BIT 0x0020000000000000UL
375 #define RCP_GR_BIT 0x0004000000000000UL
376 #define RCP_GC_BIT 0x0002000000000000UL
377 #define RCP_IN_BIT 0x0000800000000000UL /* IPTE notify bit */
379 /* User dirty / referenced bit for KVM's migration feature */
380 #define KVM_UR_BIT 0x0000800000000000UL
381 #define KVM_UC_BIT 0x0000400000000000UL
383 #endif /* CONFIG_64BIT */
386 * A user page table pointer has the space-switch-event bit, the
387 * private-space-control bit and the storage-alteration-event-control
388 * bit set. A kernel page table pointer doesn't need them.
390 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
391 _ASCE_ALT_EVENT)
394 * Page protection definitions.
396 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
397 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
398 #define PAGE_RW __pgprot(_PAGE_TYPE_RO | _PAGE_SWW)
399 #define PAGE_RWC __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC)
401 #define PAGE_KERNEL PAGE_RWC
402 #define PAGE_SHARED PAGE_KERNEL
403 #define PAGE_COPY PAGE_RO
406 * On s390 the page table entry has an invalid bit and a read-only bit.
407 * Read permission implies execute permission and write permission
408 * implies read permission.
410 /*xwr*/
411 #define __P000 PAGE_NONE
412 #define __P001 PAGE_RO
413 #define __P010 PAGE_RO
414 #define __P011 PAGE_RO
415 #define __P100 PAGE_RO
416 #define __P101 PAGE_RO
417 #define __P110 PAGE_RO
418 #define __P111 PAGE_RO
420 #define __S000 PAGE_NONE
421 #define __S001 PAGE_RO
422 #define __S010 PAGE_RW
423 #define __S011 PAGE_RW
424 #define __S100 PAGE_RO
425 #define __S101 PAGE_RO
426 #define __S110 PAGE_RW
427 #define __S111 PAGE_RW
430 * Segment entry (large page) protection definitions.
432 #define SEGMENT_NONE __pgprot(_HPAGE_TYPE_NONE)
433 #define SEGMENT_RO __pgprot(_HPAGE_TYPE_RO)
434 #define SEGMENT_RW __pgprot(_HPAGE_TYPE_RW)
436 static inline int mm_exclusive(struct mm_struct *mm)
438 return likely(mm == current->active_mm &&
439 atomic_read(&mm->context.attach_count) <= 1);
442 static inline int mm_has_pgste(struct mm_struct *mm)
444 #ifdef CONFIG_PGSTE
445 if (unlikely(mm->context.has_pgste))
446 return 1;
447 #endif
448 return 0;
451 * pgd/pmd/pte query functions
453 #ifndef CONFIG_64BIT
455 static inline int pgd_present(pgd_t pgd) { return 1; }
456 static inline int pgd_none(pgd_t pgd) { return 0; }
457 static inline int pgd_bad(pgd_t pgd) { return 0; }
459 static inline int pud_present(pud_t pud) { return 1; }
460 static inline int pud_none(pud_t pud) { return 0; }
461 static inline int pud_large(pud_t pud) { return 0; }
462 static inline int pud_bad(pud_t pud) { return 0; }
464 #else /* CONFIG_64BIT */
466 static inline int pgd_present(pgd_t pgd)
468 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
469 return 1;
470 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
473 static inline int pgd_none(pgd_t pgd)
475 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
476 return 0;
477 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
480 static inline int pgd_bad(pgd_t pgd)
483 * With dynamic page table levels the pgd can be a region table
484 * entry or a segment table entry. Check for the bit that are
485 * invalid for either table entry.
487 unsigned long mask =
488 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
489 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
490 return (pgd_val(pgd) & mask) != 0;
493 static inline int pud_present(pud_t pud)
495 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
496 return 1;
497 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
500 static inline int pud_none(pud_t pud)
502 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
503 return 0;
504 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
507 static inline int pud_large(pud_t pud)
509 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
510 return 0;
511 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
514 static inline int pud_bad(pud_t pud)
517 * With dynamic page table levels the pud can be a region table
518 * entry or a segment table entry. Check for the bit that are
519 * invalid for either table entry.
521 unsigned long mask =
522 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
523 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
524 return (pud_val(pud) & mask) != 0;
527 #endif /* CONFIG_64BIT */
529 static inline int pmd_present(pmd_t pmd)
531 unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO;
532 return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE ||
533 !(pmd_val(pmd) & _SEGMENT_ENTRY_INV);
536 static inline int pmd_none(pmd_t pmd)
538 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) &&
539 !(pmd_val(pmd) & _SEGMENT_ENTRY_RO);
542 static inline int pmd_large(pmd_t pmd)
544 #ifdef CONFIG_64BIT
545 return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
546 #else
547 return 0;
548 #endif
551 static inline int pmd_bad(pmd_t pmd)
553 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
554 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
557 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
558 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
559 unsigned long addr, pmd_t *pmdp);
561 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
562 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
563 unsigned long address, pmd_t *pmdp,
564 pmd_t entry, int dirty);
566 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
567 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
568 unsigned long address, pmd_t *pmdp);
570 #define __HAVE_ARCH_PMD_WRITE
571 static inline int pmd_write(pmd_t pmd)
573 return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
576 static inline int pmd_young(pmd_t pmd)
578 return 0;
581 static inline int pte_none(pte_t pte)
583 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
586 static inline int pte_present(pte_t pte)
588 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
589 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
590 (!(pte_val(pte) & _PAGE_INVALID) &&
591 !(pte_val(pte) & _PAGE_SWT));
594 static inline int pte_file(pte_t pte)
596 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
597 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
600 static inline int pte_special(pte_t pte)
602 return (pte_val(pte) & _PAGE_SPECIAL);
605 #define __HAVE_ARCH_PTE_SAME
606 static inline int pte_same(pte_t a, pte_t b)
608 return pte_val(a) == pte_val(b);
611 static inline pgste_t pgste_get_lock(pte_t *ptep)
613 unsigned long new = 0;
614 #ifdef CONFIG_PGSTE
615 unsigned long old;
617 preempt_disable();
618 asm(
619 " lg %0,%2\n"
620 "0: lgr %1,%0\n"
621 " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */
622 " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */
623 " csg %0,%1,%2\n"
624 " jl 0b\n"
625 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
626 : "Q" (ptep[PTRS_PER_PTE]) : "cc");
627 #endif
628 return __pgste(new);
631 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
633 #ifdef CONFIG_PGSTE
634 asm(
635 " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */
636 " stg %1,%0\n"
637 : "=Q" (ptep[PTRS_PER_PTE])
638 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc");
639 preempt_enable();
640 #endif
643 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
645 #ifdef CONFIG_PGSTE
646 unsigned long address, bits;
647 unsigned char skey;
649 if (!pte_present(*ptep))
650 return pgste;
651 address = pte_val(*ptep) & PAGE_MASK;
652 skey = page_get_storage_key(address);
653 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
654 /* Clear page changed & referenced bit in the storage key */
655 if (bits & _PAGE_CHANGED)
656 page_set_storage_key(address, skey ^ bits, 0);
657 else if (bits)
658 page_reset_referenced(address);
659 /* Transfer page changed & referenced bit to guest bits in pgste */
660 pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */
661 /* Get host changed & referenced bits from pgste */
662 bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
663 /* Transfer page changed & referenced bit to kvm user bits */
664 pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */
665 /* Clear relevant host bits in pgste. */
666 pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
667 pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
668 /* Copy page access key and fetch protection bit to pgste */
669 pgste_val(pgste) |=
670 (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
671 /* Transfer referenced bit to pte */
672 pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1;
673 #endif
674 return pgste;
678 static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
680 #ifdef CONFIG_PGSTE
681 int young;
683 if (!pte_present(*ptep))
684 return pgste;
685 /* Get referenced bit from storage key */
686 young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
687 if (young)
688 pgste_val(pgste) |= RCP_GR_BIT;
689 /* Get host referenced bit from pgste */
690 if (pgste_val(pgste) & RCP_HR_BIT) {
691 pgste_val(pgste) &= ~RCP_HR_BIT;
692 young = 1;
694 /* Transfer referenced bit to kvm user bits and pte */
695 if (young) {
696 pgste_val(pgste) |= KVM_UR_BIT;
697 pte_val(*ptep) |= _PAGE_SWR;
699 #endif
700 return pgste;
703 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
705 #ifdef CONFIG_PGSTE
706 unsigned long address;
707 unsigned long okey, nkey;
709 if (!pte_present(entry))
710 return;
711 address = pte_val(entry) & PAGE_MASK;
712 okey = nkey = page_get_storage_key(address);
713 nkey &= ~(_PAGE_ACC_BITS | _PAGE_FP_BIT);
714 /* Set page access key and fetch protection bit from pgste */
715 nkey |= (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
716 if (okey != nkey)
717 page_set_storage_key(address, nkey, 0);
718 #endif
721 static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
723 if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) {
725 * Without enhanced suppression-on-protection force
726 * the dirty bit on for all writable ptes.
728 pte_val(entry) |= _PAGE_SWC;
729 pte_val(entry) &= ~_PAGE_RO;
731 *ptep = entry;
735 * struct gmap_struct - guest address space
736 * @mm: pointer to the parent mm_struct
737 * @table: pointer to the page directory
738 * @asce: address space control element for gmap page table
739 * @crst_list: list of all crst tables used in the guest address space
741 struct gmap {
742 struct list_head list;
743 struct mm_struct *mm;
744 unsigned long *table;
745 unsigned long asce;
746 struct list_head crst_list;
750 * struct gmap_rmap - reverse mapping for segment table entries
751 * @gmap: pointer to the gmap_struct
752 * @entry: pointer to a segment table entry
753 * @vmaddr: virtual address in the guest address space
755 struct gmap_rmap {
756 struct list_head list;
757 struct gmap *gmap;
758 unsigned long *entry;
759 unsigned long vmaddr;
763 * struct gmap_pgtable - gmap information attached to a page table
764 * @vmaddr: address of the 1MB segment in the process virtual memory
765 * @mapper: list of segment table entries mapping a page table
767 struct gmap_pgtable {
768 unsigned long vmaddr;
769 struct list_head mapper;
773 * struct gmap_notifier - notify function block for page invalidation
774 * @notifier_call: address of callback function
776 struct gmap_notifier {
777 struct list_head list;
778 void (*notifier_call)(struct gmap *gmap, unsigned long address);
781 struct gmap *gmap_alloc(struct mm_struct *mm);
782 void gmap_free(struct gmap *gmap);
783 void gmap_enable(struct gmap *gmap);
784 void gmap_disable(struct gmap *gmap);
785 int gmap_map_segment(struct gmap *gmap, unsigned long from,
786 unsigned long to, unsigned long len);
787 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
788 unsigned long __gmap_translate(unsigned long address, struct gmap *);
789 unsigned long gmap_translate(unsigned long address, struct gmap *);
790 unsigned long __gmap_fault(unsigned long address, struct gmap *);
791 unsigned long gmap_fault(unsigned long address, struct gmap *);
792 void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
794 void gmap_register_ipte_notifier(struct gmap_notifier *);
795 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
796 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
797 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
799 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
800 unsigned long addr,
801 pte_t *ptep, pgste_t pgste)
803 #ifdef CONFIG_PGSTE
804 if (pgste_val(pgste) & RCP_IN_BIT) {
805 pgste_val(pgste) &= ~RCP_IN_BIT;
806 gmap_do_ipte_notify(mm, addr, ptep);
808 #endif
809 return pgste;
813 * Certain architectures need to do special things when PTEs
814 * within a page table are directly modified. Thus, the following
815 * hook is made available.
817 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
818 pte_t *ptep, pte_t entry)
820 pgste_t pgste;
822 if (mm_has_pgste(mm)) {
823 pgste = pgste_get_lock(ptep);
824 pgste_set_key(ptep, pgste, entry);
825 pgste_set_pte(ptep, entry);
826 pgste_set_unlock(ptep, pgste);
827 } else {
828 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
829 pte_val(entry) |= _PAGE_CO;
830 *ptep = entry;
835 * query functions pte_write/pte_dirty/pte_young only work if
836 * pte_present() is true. Undefined behaviour if not..
838 static inline int pte_write(pte_t pte)
840 return (pte_val(pte) & _PAGE_SWW) != 0;
843 static inline int pte_dirty(pte_t pte)
845 return (pte_val(pte) & _PAGE_SWC) != 0;
848 static inline int pte_young(pte_t pte)
850 #ifdef CONFIG_PGSTE
851 if (pte_val(pte) & _PAGE_SWR)
852 return 1;
853 #endif
854 return 0;
858 * pgd/pmd/pte modification functions
861 static inline void pgd_clear(pgd_t *pgd)
863 #ifdef CONFIG_64BIT
864 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
865 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
866 #endif
869 static inline void pud_clear(pud_t *pud)
871 #ifdef CONFIG_64BIT
872 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
873 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
874 #endif
877 static inline void pmd_clear(pmd_t *pmdp)
879 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
882 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
884 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
888 * The following pte modification functions only work if
889 * pte_present() is true. Undefined behaviour if not..
891 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
893 pte_val(pte) &= _PAGE_CHG_MASK;
894 pte_val(pte) |= pgprot_val(newprot);
895 if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW))
896 pte_val(pte) &= ~_PAGE_RO;
897 return pte;
900 static inline pte_t pte_wrprotect(pte_t pte)
902 pte_val(pte) &= ~_PAGE_SWW;
903 /* Do not clobber _PAGE_TYPE_NONE pages! */
904 if (!(pte_val(pte) & _PAGE_INVALID))
905 pte_val(pte) |= _PAGE_RO;
906 return pte;
909 static inline pte_t pte_mkwrite(pte_t pte)
911 pte_val(pte) |= _PAGE_SWW;
912 if (pte_val(pte) & _PAGE_SWC)
913 pte_val(pte) &= ~_PAGE_RO;
914 return pte;
917 static inline pte_t pte_mkclean(pte_t pte)
919 pte_val(pte) &= ~_PAGE_SWC;
920 /* Do not clobber _PAGE_TYPE_NONE pages! */
921 if (!(pte_val(pte) & _PAGE_INVALID))
922 pte_val(pte) |= _PAGE_RO;
923 return pte;
926 static inline pte_t pte_mkdirty(pte_t pte)
928 pte_val(pte) |= _PAGE_SWC;
929 if (pte_val(pte) & _PAGE_SWW)
930 pte_val(pte) &= ~_PAGE_RO;
931 return pte;
934 static inline pte_t pte_mkold(pte_t pte)
936 #ifdef CONFIG_PGSTE
937 pte_val(pte) &= ~_PAGE_SWR;
938 #endif
939 return pte;
942 static inline pte_t pte_mkyoung(pte_t pte)
944 return pte;
947 static inline pte_t pte_mkspecial(pte_t pte)
949 pte_val(pte) |= _PAGE_SPECIAL;
950 return pte;
953 #ifdef CONFIG_HUGETLB_PAGE
954 static inline pte_t pte_mkhuge(pte_t pte)
956 pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
957 return pte;
959 #endif
962 * Get (and clear) the user dirty bit for a pte.
964 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
965 pte_t *ptep)
967 pgste_t pgste;
968 int dirty = 0;
970 if (mm_has_pgste(mm)) {
971 pgste = pgste_get_lock(ptep);
972 pgste = pgste_update_all(ptep, pgste);
973 dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
974 pgste_val(pgste) &= ~KVM_UC_BIT;
975 pgste_set_unlock(ptep, pgste);
976 return dirty;
978 return dirty;
982 * Get (and clear) the user referenced bit for a pte.
984 static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
985 pte_t *ptep)
987 pgste_t pgste;
988 int young = 0;
990 if (mm_has_pgste(mm)) {
991 pgste = pgste_get_lock(ptep);
992 pgste = pgste_update_young(ptep, pgste);
993 young = !!(pgste_val(pgste) & KVM_UR_BIT);
994 pgste_val(pgste) &= ~KVM_UR_BIT;
995 pgste_set_unlock(ptep, pgste);
997 return young;
1000 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1001 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1002 unsigned long addr, pte_t *ptep)
1004 pgste_t pgste;
1005 pte_t pte;
1007 if (mm_has_pgste(vma->vm_mm)) {
1008 pgste = pgste_get_lock(ptep);
1009 pgste = pgste_update_young(ptep, pgste);
1010 pte = *ptep;
1011 *ptep = pte_mkold(pte);
1012 pgste_set_unlock(ptep, pgste);
1013 return pte_young(pte);
1015 return 0;
1018 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1019 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1020 unsigned long address, pte_t *ptep)
1022 /* No need to flush TLB
1023 * On s390 reference bits are in storage key and never in TLB
1024 * With virtualization we handle the reference bit, without we
1025 * we can simply return */
1026 return ptep_test_and_clear_young(vma, address, ptep);
1029 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1031 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1032 #ifndef CONFIG_64BIT
1033 /* pto must point to the start of the segment table */
1034 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
1035 #else
1036 /* ipte in zarch mode can do the math */
1037 pte_t *pto = ptep;
1038 #endif
1039 asm volatile(
1040 " ipte %2,%3"
1041 : "=m" (*ptep) : "m" (*ptep),
1042 "a" (pto), "a" (address));
1047 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1048 * both clear the TLB for the unmapped pte. The reason is that
1049 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1050 * to modify an active pte. The sequence is
1051 * 1) ptep_get_and_clear
1052 * 2) set_pte_at
1053 * 3) flush_tlb_range
1054 * On s390 the tlb needs to get flushed with the modification of the pte
1055 * if the pte is active. The only way how this can be implemented is to
1056 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1057 * is a nop.
1059 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1060 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1061 unsigned long address, pte_t *ptep)
1063 pgste_t pgste;
1064 pte_t pte;
1066 mm->context.flush_mm = 1;
1067 if (mm_has_pgste(mm)) {
1068 pgste = pgste_get_lock(ptep);
1069 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1072 pte = *ptep;
1073 if (!mm_exclusive(mm))
1074 __ptep_ipte(address, ptep);
1075 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1077 if (mm_has_pgste(mm)) {
1078 pgste = pgste_update_all(&pte, pgste);
1079 pgste_set_unlock(ptep, pgste);
1081 return pte;
1084 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1085 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1086 unsigned long address,
1087 pte_t *ptep)
1089 pgste_t pgste;
1090 pte_t pte;
1092 mm->context.flush_mm = 1;
1093 if (mm_has_pgste(mm)) {
1094 pgste = pgste_get_lock(ptep);
1095 pgste_ipte_notify(mm, address, ptep, pgste);
1098 pte = *ptep;
1099 if (!mm_exclusive(mm))
1100 __ptep_ipte(address, ptep);
1101 return pte;
1104 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1105 unsigned long address,
1106 pte_t *ptep, pte_t pte)
1108 if (mm_has_pgste(mm)) {
1109 pgste_set_pte(ptep, pte);
1110 pgste_set_unlock(ptep, *(pgste_t *)(ptep + PTRS_PER_PTE));
1111 } else
1112 *ptep = pte;
1115 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1116 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1117 unsigned long address, pte_t *ptep)
1119 pgste_t pgste;
1120 pte_t pte;
1122 if (mm_has_pgste(vma->vm_mm)) {
1123 pgste = pgste_get_lock(ptep);
1124 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1127 pte = *ptep;
1128 __ptep_ipte(address, ptep);
1129 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1131 if (mm_has_pgste(vma->vm_mm)) {
1132 pgste = pgste_update_all(&pte, pgste);
1133 pgste_set_unlock(ptep, pgste);
1135 return pte;
1139 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1140 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1141 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1142 * cannot be accessed while the batched unmap is running. In this case
1143 * full==1 and a simple pte_clear is enough. See tlb.h.
1145 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1146 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1147 unsigned long address,
1148 pte_t *ptep, int full)
1150 pgste_t pgste;
1151 pte_t pte;
1153 if (mm_has_pgste(mm)) {
1154 pgste = pgste_get_lock(ptep);
1155 if (!full)
1156 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1159 pte = *ptep;
1160 if (!full)
1161 __ptep_ipte(address, ptep);
1162 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1164 if (mm_has_pgste(mm)) {
1165 pgste = pgste_update_all(&pte, pgste);
1166 pgste_set_unlock(ptep, pgste);
1168 return pte;
1171 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1172 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1173 unsigned long address, pte_t *ptep)
1175 pgste_t pgste;
1176 pte_t pte = *ptep;
1178 if (pte_write(pte)) {
1179 mm->context.flush_mm = 1;
1180 if (mm_has_pgste(mm)) {
1181 pgste = pgste_get_lock(ptep);
1182 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1185 if (!mm_exclusive(mm))
1186 __ptep_ipte(address, ptep);
1187 pte = pte_wrprotect(pte);
1189 if (mm_has_pgste(mm)) {
1190 pgste_set_pte(ptep, pte);
1191 pgste_set_unlock(ptep, pgste);
1192 } else
1193 *ptep = pte;
1195 return pte;
1198 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1199 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1200 unsigned long address, pte_t *ptep,
1201 pte_t entry, int dirty)
1203 pgste_t pgste;
1205 if (pte_same(*ptep, entry))
1206 return 0;
1207 if (mm_has_pgste(vma->vm_mm)) {
1208 pgste = pgste_get_lock(ptep);
1209 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1212 __ptep_ipte(address, ptep);
1214 if (mm_has_pgste(vma->vm_mm)) {
1215 pgste_set_pte(ptep, entry);
1216 pgste_set_unlock(ptep, pgste);
1217 } else
1218 *ptep = entry;
1219 return 1;
1223 * Conversion functions: convert a page and protection to a page entry,
1224 * and a page entry and page directory to the page they refer to.
1226 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1228 pte_t __pte;
1229 pte_val(__pte) = physpage + pgprot_val(pgprot);
1230 return __pte;
1233 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1235 unsigned long physpage = page_to_phys(page);
1236 pte_t __pte = mk_pte_phys(physpage, pgprot);
1238 if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) {
1239 pte_val(__pte) |= _PAGE_SWC;
1240 pte_val(__pte) &= ~_PAGE_RO;
1242 return __pte;
1245 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1246 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1247 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1248 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1250 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1251 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1253 #ifndef CONFIG_64BIT
1255 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1256 #define pud_deref(pmd) ({ BUG(); 0UL; })
1257 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1259 #define pud_offset(pgd, address) ((pud_t *) pgd)
1260 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1262 #else /* CONFIG_64BIT */
1264 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1265 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1266 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1268 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1270 pud_t *pud = (pud_t *) pgd;
1271 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1272 pud = (pud_t *) pgd_deref(*pgd);
1273 return pud + pud_index(address);
1276 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1278 pmd_t *pmd = (pmd_t *) pud;
1279 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1280 pmd = (pmd_t *) pud_deref(*pud);
1281 return pmd + pmd_index(address);
1284 #endif /* CONFIG_64BIT */
1286 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1287 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1288 #define pte_page(x) pfn_to_page(pte_pfn(x))
1290 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1292 /* Find an entry in the lowest level page table.. */
1293 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1294 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1295 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1296 #define pte_unmap(pte) do { } while (0)
1298 static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
1300 unsigned long sto = (unsigned long) pmdp -
1301 pmd_index(address) * sizeof(pmd_t);
1303 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
1304 asm volatile(
1305 " .insn rrf,0xb98e0000,%2,%3,0,0"
1306 : "=m" (*pmdp)
1307 : "m" (*pmdp), "a" (sto),
1308 "a" ((address & HPAGE_MASK))
1309 : "cc"
1314 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1315 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1318 * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx)
1319 * Convert to segment table entry format.
1321 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1322 return pgprot_val(SEGMENT_NONE);
1323 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1324 return pgprot_val(SEGMENT_RO);
1325 return pgprot_val(SEGMENT_RW);
1328 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1330 pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1331 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1332 return pmd;
1335 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1337 pmd_t __pmd;
1338 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1339 return __pmd;
1342 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1344 /* Do not clobber _HPAGE_TYPE_NONE pages! */
1345 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV))
1346 pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
1347 return pmd;
1349 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1353 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1354 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
1356 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1357 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
1359 static inline int pmd_trans_splitting(pmd_t pmd)
1361 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1364 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1365 pmd_t *pmdp, pmd_t entry)
1367 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1)
1368 pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1369 *pmdp = entry;
1372 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1374 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1375 return pmd;
1378 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1380 pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
1381 return pmd;
1384 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1386 /* No dirty bit in the segment table entry. */
1387 return pmd;
1390 static inline pmd_t pmd_mkold(pmd_t pmd)
1392 /* No referenced bit in the segment table entry. */
1393 return pmd;
1396 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1398 /* No referenced bit in the segment table entry. */
1399 return pmd;
1402 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1403 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1404 unsigned long address, pmd_t *pmdp)
1406 unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
1407 long tmp, rc;
1408 int counter;
1410 rc = 0;
1411 if (MACHINE_HAS_RRBM) {
1412 counter = PTRS_PER_PTE >> 6;
1413 asm volatile(
1414 "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */
1415 " ogr %1,%0\n"
1416 " la %3,0(%4,%3)\n"
1417 " brct %2,0b\n"
1418 : "=&d" (tmp), "+&d" (rc), "+d" (counter),
1419 "+a" (pmd_addr)
1420 : "a" (64 * 4096UL) : "cc");
1421 rc = !!rc;
1422 } else {
1423 counter = PTRS_PER_PTE;
1424 asm volatile(
1425 "0: rrbe 0,%2\n"
1426 " la %2,0(%3,%2)\n"
1427 " brc 12,1f\n"
1428 " lhi %0,1\n"
1429 "1: brct %1,0b\n"
1430 : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
1431 : "a" (4096UL) : "cc");
1433 return rc;
1436 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1437 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1438 unsigned long address, pmd_t *pmdp)
1440 pmd_t pmd = *pmdp;
1442 __pmd_idte(address, pmdp);
1443 pmd_clear(pmdp);
1444 return pmd;
1447 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1448 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1449 unsigned long address, pmd_t *pmdp)
1451 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1454 #define __HAVE_ARCH_PMDP_INVALIDATE
1455 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1456 unsigned long address, pmd_t *pmdp)
1458 __pmd_idte(address, pmdp);
1461 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1462 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1463 unsigned long address, pmd_t *pmdp)
1465 pmd_t pmd = *pmdp;
1467 if (pmd_write(pmd)) {
1468 __pmd_idte(address, pmdp);
1469 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1473 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1474 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1476 static inline int pmd_trans_huge(pmd_t pmd)
1478 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1481 static inline int has_transparent_hugepage(void)
1483 return MACHINE_HAS_HPAGE ? 1 : 0;
1486 static inline unsigned long pmd_pfn(pmd_t pmd)
1488 return pmd_val(pmd) >> PAGE_SHIFT;
1490 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493 * 31 bit swap entry format:
1494 * A page-table entry has some bits we have to treat in a special way.
1495 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1496 * exception will occur instead of a page translation exception. The
1497 * specifiation exception has the bad habit not to store necessary
1498 * information in the lowcore.
1499 * Bit 21 and bit 22 are the page invalid bit and the page protection
1500 * bit. We set both to indicate a swapped page.
1501 * Bit 30 and 31 are used to distinguish the different page types. For
1502 * a swapped page these bits need to be zero.
1503 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1504 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1505 * plus 24 for the offset.
1506 * 0| offset |0110|o|type |00|
1507 * 0 0000000001111111111 2222 2 22222 33
1508 * 0 1234567890123456789 0123 4 56789 01
1510 * 64 bit swap entry format:
1511 * A page-table entry has some bits we have to treat in a special way.
1512 * Bits 52 and bit 55 have to be zero, otherwise an specification
1513 * exception will occur instead of a page translation exception. The
1514 * specifiation exception has the bad habit not to store necessary
1515 * information in the lowcore.
1516 * Bit 53 and bit 54 are the page invalid bit and the page protection
1517 * bit. We set both to indicate a swapped page.
1518 * Bit 62 and 63 are used to distinguish the different page types. For
1519 * a swapped page these bits need to be zero.
1520 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1521 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1522 * plus 56 for the offset.
1523 * | offset |0110|o|type |00|
1524 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1525 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1527 #ifndef CONFIG_64BIT
1528 #define __SWP_OFFSET_MASK (~0UL >> 12)
1529 #else
1530 #define __SWP_OFFSET_MASK (~0UL >> 11)
1531 #endif
1532 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1534 pte_t pte;
1535 offset &= __SWP_OFFSET_MASK;
1536 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1537 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1538 return pte;
1541 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1542 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1543 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1545 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1546 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1548 #ifndef CONFIG_64BIT
1549 # define PTE_FILE_MAX_BITS 26
1550 #else /* CONFIG_64BIT */
1551 # define PTE_FILE_MAX_BITS 59
1552 #endif /* CONFIG_64BIT */
1554 #define pte_to_pgoff(__pte) \
1555 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1557 #define pgoff_to_pte(__off) \
1558 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1559 | _PAGE_TYPE_FILE })
1561 #endif /* !__ASSEMBLY__ */
1563 #define kern_addr_valid(addr) (1)
1565 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1566 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1567 extern int s390_enable_sie(void);
1570 * No page table caches to initialise
1572 static inline void pgtable_cache_init(void) { }
1573 static inline void check_pgt_cache(void) { }
1575 #include <asm-generic/pgtable.h>
1577 #endif /* _S390_PAGE_H */