4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
96 #include <asm/pgtable.h>
97 #include <asm/pgalloc.h>
98 #include <linux/uaccess.h>
99 #include <asm/mmu_context.h>
100 #include <asm/cacheflush.h>
101 #include <asm/tlbflush.h>
103 #include <trace/events/sched.h>
105 #define CREATE_TRACE_POINTS
106 #include <trace/events/task.h>
109 * Minimum number of threads to boot the kernel
111 #define MIN_THREADS 20
114 * Maximum number of threads
116 #define MAX_THREADS FUTEX_TID_MASK
119 * Protected counters by write_lock_irq(&tasklist_lock)
121 unsigned long total_forks
; /* Handle normal Linux uptimes. */
122 int nr_threads
; /* The idle threads do not count.. */
124 int max_threads
; /* tunable limit on nr_threads */
126 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
128 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
130 #ifdef CONFIG_PROVE_RCU
131 int lockdep_tasklist_lock_is_held(void)
133 return lockdep_is_held(&tasklist_lock
);
135 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
136 #endif /* #ifdef CONFIG_PROVE_RCU */
138 int nr_processes(void)
143 for_each_possible_cpu(cpu
)
144 total
+= per_cpu(process_counts
, cpu
);
149 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
153 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
154 static struct kmem_cache
*task_struct_cachep
;
156 static inline struct task_struct
*alloc_task_struct_node(int node
)
158 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
161 static inline void free_task_struct(struct task_struct
*tsk
)
163 kmem_cache_free(task_struct_cachep
, tsk
);
167 void __weak
arch_release_thread_stack(unsigned long *stack
)
171 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
174 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
175 * kmemcache based allocator.
177 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
179 #ifdef CONFIG_VMAP_STACK
181 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
182 * flush. Try to minimize the number of calls by caching stacks.
184 #define NR_CACHED_STACKS 2
185 static DEFINE_PER_CPU(struct vm_struct
*, cached_stacks
[NR_CACHED_STACKS
]);
187 static int free_vm_stack_cache(unsigned int cpu
)
189 struct vm_struct
**cached_vm_stacks
= per_cpu_ptr(cached_stacks
, cpu
);
192 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
193 struct vm_struct
*vm_stack
= cached_vm_stacks
[i
];
198 vfree(vm_stack
->addr
);
199 cached_vm_stacks
[i
] = NULL
;
206 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
, int node
)
208 #ifdef CONFIG_VMAP_STACK
212 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
215 s
= this_cpu_xchg(cached_stacks
[i
], NULL
);
220 /* Clear stale pointers from reused stack. */
221 memset(s
->addr
, 0, THREAD_SIZE
);
223 tsk
->stack_vm_area
= s
;
228 * Allocated stacks are cached and later reused by new threads,
229 * so memcg accounting is performed manually on assigning/releasing
230 * stacks to tasks. Drop __GFP_ACCOUNT.
232 stack
= __vmalloc_node_range(THREAD_SIZE
, THREAD_ALIGN
,
233 VMALLOC_START
, VMALLOC_END
,
234 THREADINFO_GFP
& ~__GFP_ACCOUNT
,
236 0, node
, __builtin_return_address(0));
239 * We can't call find_vm_area() in interrupt context, and
240 * free_thread_stack() can be called in interrupt context,
241 * so cache the vm_struct.
244 tsk
->stack_vm_area
= find_vm_area(stack
);
247 struct page
*page
= alloc_pages_node(node
, THREADINFO_GFP
,
250 return page
? page_address(page
) : NULL
;
254 static inline void free_thread_stack(struct task_struct
*tsk
)
256 #ifdef CONFIG_VMAP_STACK
257 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
262 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
263 mod_memcg_page_state(vm
->pages
[i
],
264 MEMCG_KERNEL_STACK_KB
,
265 -(int)(PAGE_SIZE
/ 1024));
267 memcg_kmem_uncharge(vm
->pages
[i
], 0);
270 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
271 if (this_cpu_cmpxchg(cached_stacks
[i
],
272 NULL
, tsk
->stack_vm_area
) != NULL
)
278 vfree_atomic(tsk
->stack
);
283 __free_pages(virt_to_page(tsk
->stack
), THREAD_SIZE_ORDER
);
286 static struct kmem_cache
*thread_stack_cache
;
288 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
,
291 return kmem_cache_alloc_node(thread_stack_cache
, THREADINFO_GFP
, node
);
294 static void free_thread_stack(struct task_struct
*tsk
)
296 kmem_cache_free(thread_stack_cache
, tsk
->stack
);
299 void thread_stack_cache_init(void)
301 thread_stack_cache
= kmem_cache_create_usercopy("thread_stack",
302 THREAD_SIZE
, THREAD_SIZE
, 0, 0,
304 BUG_ON(thread_stack_cache
== NULL
);
309 /* SLAB cache for signal_struct structures (tsk->signal) */
310 static struct kmem_cache
*signal_cachep
;
312 /* SLAB cache for sighand_struct structures (tsk->sighand) */
313 struct kmem_cache
*sighand_cachep
;
315 /* SLAB cache for files_struct structures (tsk->files) */
316 struct kmem_cache
*files_cachep
;
318 /* SLAB cache for fs_struct structures (tsk->fs) */
319 struct kmem_cache
*fs_cachep
;
321 /* SLAB cache for vm_area_struct structures */
322 static struct kmem_cache
*vm_area_cachep
;
324 /* SLAB cache for mm_struct structures (tsk->mm) */
325 static struct kmem_cache
*mm_cachep
;
327 struct vm_area_struct
*vm_area_alloc(struct mm_struct
*mm
)
329 struct vm_area_struct
*vma
;
331 vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
337 struct vm_area_struct
*vm_area_dup(struct vm_area_struct
*orig
)
339 struct vm_area_struct
*new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
343 INIT_LIST_HEAD(&new->anon_vma_chain
);
348 void vm_area_free(struct vm_area_struct
*vma
)
350 kmem_cache_free(vm_area_cachep
, vma
);
353 static void account_kernel_stack(struct task_struct
*tsk
, int account
)
355 void *stack
= task_stack_page(tsk
);
356 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
358 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK
) && PAGE_SIZE
% 1024 != 0);
363 BUG_ON(vm
->nr_pages
!= THREAD_SIZE
/ PAGE_SIZE
);
365 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
366 mod_zone_page_state(page_zone(vm
->pages
[i
]),
368 PAGE_SIZE
/ 1024 * account
);
372 * All stack pages are in the same zone and belong to the
375 struct page
*first_page
= virt_to_page(stack
);
377 mod_zone_page_state(page_zone(first_page
), NR_KERNEL_STACK_KB
,
378 THREAD_SIZE
/ 1024 * account
);
380 mod_memcg_page_state(first_page
, MEMCG_KERNEL_STACK_KB
,
381 account
* (THREAD_SIZE
/ 1024));
385 static int memcg_charge_kernel_stack(struct task_struct
*tsk
)
387 #ifdef CONFIG_VMAP_STACK
388 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
394 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
396 * If memcg_kmem_charge() fails, page->mem_cgroup
397 * pointer is NULL, and both memcg_kmem_uncharge()
398 * and mod_memcg_page_state() in free_thread_stack()
399 * will ignore this page. So it's safe.
401 ret
= memcg_kmem_charge(vm
->pages
[i
], GFP_KERNEL
, 0);
405 mod_memcg_page_state(vm
->pages
[i
],
406 MEMCG_KERNEL_STACK_KB
,
414 static void release_task_stack(struct task_struct
*tsk
)
416 if (WARN_ON(tsk
->state
!= TASK_DEAD
))
417 return; /* Better to leak the stack than to free prematurely */
419 account_kernel_stack(tsk
, -1);
420 arch_release_thread_stack(tsk
->stack
);
421 free_thread_stack(tsk
);
423 #ifdef CONFIG_VMAP_STACK
424 tsk
->stack_vm_area
= NULL
;
428 #ifdef CONFIG_THREAD_INFO_IN_TASK
429 void put_task_stack(struct task_struct
*tsk
)
431 if (atomic_dec_and_test(&tsk
->stack_refcount
))
432 release_task_stack(tsk
);
436 void free_task(struct task_struct
*tsk
)
438 #ifndef CONFIG_THREAD_INFO_IN_TASK
440 * The task is finally done with both the stack and thread_info,
443 release_task_stack(tsk
);
446 * If the task had a separate stack allocation, it should be gone
449 WARN_ON_ONCE(atomic_read(&tsk
->stack_refcount
) != 0);
451 rt_mutex_debug_task_free(tsk
);
452 ftrace_graph_exit_task(tsk
);
453 put_seccomp_filter(tsk
);
454 arch_release_task_struct(tsk
);
455 if (tsk
->flags
& PF_KTHREAD
)
456 free_kthread_struct(tsk
);
457 free_task_struct(tsk
);
459 EXPORT_SYMBOL(free_task
);
462 static __latent_entropy
int dup_mmap(struct mm_struct
*mm
,
463 struct mm_struct
*oldmm
)
465 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
466 struct rb_node
**rb_link
, *rb_parent
;
468 unsigned long charge
;
471 uprobe_start_dup_mmap();
472 if (down_write_killable(&oldmm
->mmap_sem
)) {
474 goto fail_uprobe_end
;
476 flush_cache_dup_mm(oldmm
);
477 uprobe_dup_mmap(oldmm
, mm
);
479 * Not linked in yet - no deadlock potential:
481 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
483 /* No ordering required: file already has been exposed. */
484 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
486 mm
->total_vm
= oldmm
->total_vm
;
487 mm
->data_vm
= oldmm
->data_vm
;
488 mm
->exec_vm
= oldmm
->exec_vm
;
489 mm
->stack_vm
= oldmm
->stack_vm
;
491 rb_link
= &mm
->mm_rb
.rb_node
;
494 retval
= ksm_fork(mm
, oldmm
);
497 retval
= khugepaged_fork(mm
, oldmm
);
502 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
505 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
506 vm_stat_account(mm
, mpnt
->vm_flags
, -vma_pages(mpnt
));
511 * Don't duplicate many vmas if we've been oom-killed (for
514 if (fatal_signal_pending(current
)) {
518 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
519 unsigned long len
= vma_pages(mpnt
);
521 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
525 tmp
= vm_area_dup(mpnt
);
528 retval
= vma_dup_policy(mpnt
, tmp
);
530 goto fail_nomem_policy
;
532 retval
= dup_userfaultfd(tmp
, &uf
);
534 goto fail_nomem_anon_vma_fork
;
535 if (tmp
->vm_flags
& VM_WIPEONFORK
) {
536 /* VM_WIPEONFORK gets a clean slate in the child. */
537 tmp
->anon_vma
= NULL
;
538 if (anon_vma_prepare(tmp
))
539 goto fail_nomem_anon_vma_fork
;
540 } else if (anon_vma_fork(tmp
, mpnt
))
541 goto fail_nomem_anon_vma_fork
;
542 tmp
->vm_flags
&= ~(VM_LOCKED
| VM_LOCKONFAULT
);
543 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
546 struct inode
*inode
= file_inode(file
);
547 struct address_space
*mapping
= file
->f_mapping
;
550 if (tmp
->vm_flags
& VM_DENYWRITE
)
551 atomic_dec(&inode
->i_writecount
);
552 i_mmap_lock_write(mapping
);
553 if (tmp
->vm_flags
& VM_SHARED
)
554 atomic_inc(&mapping
->i_mmap_writable
);
555 flush_dcache_mmap_lock(mapping
);
556 /* insert tmp into the share list, just after mpnt */
557 vma_interval_tree_insert_after(tmp
, mpnt
,
559 flush_dcache_mmap_unlock(mapping
);
560 i_mmap_unlock_write(mapping
);
564 * Clear hugetlb-related page reserves for children. This only
565 * affects MAP_PRIVATE mappings. Faults generated by the child
566 * are not guaranteed to succeed, even if read-only
568 if (is_vm_hugetlb_page(tmp
))
569 reset_vma_resv_huge_pages(tmp
);
572 * Link in the new vma and copy the page table entries.
575 pprev
= &tmp
->vm_next
;
579 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
580 rb_link
= &tmp
->vm_rb
.rb_right
;
581 rb_parent
= &tmp
->vm_rb
;
584 if (!(tmp
->vm_flags
& VM_WIPEONFORK
))
585 retval
= copy_page_range(mm
, oldmm
, mpnt
);
587 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
588 tmp
->vm_ops
->open(tmp
);
593 /* a new mm has just been created */
594 retval
= arch_dup_mmap(oldmm
, mm
);
596 up_write(&mm
->mmap_sem
);
598 up_write(&oldmm
->mmap_sem
);
599 dup_userfaultfd_complete(&uf
);
601 uprobe_end_dup_mmap();
603 fail_nomem_anon_vma_fork
:
604 mpol_put(vma_policy(tmp
));
609 vm_unacct_memory(charge
);
613 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
615 mm
->pgd
= pgd_alloc(mm
);
616 if (unlikely(!mm
->pgd
))
621 static inline void mm_free_pgd(struct mm_struct
*mm
)
623 pgd_free(mm
, mm
->pgd
);
626 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
628 down_write(&oldmm
->mmap_sem
);
629 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
630 up_write(&oldmm
->mmap_sem
);
633 #define mm_alloc_pgd(mm) (0)
634 #define mm_free_pgd(mm)
635 #endif /* CONFIG_MMU */
637 static void check_mm(struct mm_struct
*mm
)
641 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
642 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
645 printk(KERN_ALERT
"BUG: Bad rss-counter state "
646 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
649 if (mm_pgtables_bytes(mm
))
650 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
651 mm_pgtables_bytes(mm
));
653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
654 VM_BUG_ON_MM(mm
->pmd_huge_pte
, mm
);
658 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
659 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
662 * Called when the last reference to the mm
663 * is dropped: either by a lazy thread or by
664 * mmput. Free the page directory and the mm.
666 void __mmdrop(struct mm_struct
*mm
)
668 BUG_ON(mm
== &init_mm
);
669 WARN_ON_ONCE(mm
== current
->mm
);
670 WARN_ON_ONCE(mm
== current
->active_mm
);
674 mmu_notifier_mm_destroy(mm
);
676 put_user_ns(mm
->user_ns
);
679 EXPORT_SYMBOL_GPL(__mmdrop
);
681 static void mmdrop_async_fn(struct work_struct
*work
)
683 struct mm_struct
*mm
;
685 mm
= container_of(work
, struct mm_struct
, async_put_work
);
689 static void mmdrop_async(struct mm_struct
*mm
)
691 if (unlikely(atomic_dec_and_test(&mm
->mm_count
))) {
692 INIT_WORK(&mm
->async_put_work
, mmdrop_async_fn
);
693 schedule_work(&mm
->async_put_work
);
697 static inline void free_signal_struct(struct signal_struct
*sig
)
699 taskstats_tgid_free(sig
);
700 sched_autogroup_exit(sig
);
702 * __mmdrop is not safe to call from softirq context on x86 due to
703 * pgd_dtor so postpone it to the async context
706 mmdrop_async(sig
->oom_mm
);
707 kmem_cache_free(signal_cachep
, sig
);
710 static inline void put_signal_struct(struct signal_struct
*sig
)
712 if (atomic_dec_and_test(&sig
->sigcnt
))
713 free_signal_struct(sig
);
716 void __put_task_struct(struct task_struct
*tsk
)
718 WARN_ON(!tsk
->exit_state
);
719 WARN_ON(atomic_read(&tsk
->usage
));
720 WARN_ON(tsk
== current
);
724 security_task_free(tsk
);
726 delayacct_tsk_free(tsk
);
727 put_signal_struct(tsk
->signal
);
729 if (!profile_handoff_task(tsk
))
732 EXPORT_SYMBOL_GPL(__put_task_struct
);
734 void __init __weak
arch_task_cache_init(void) { }
739 static void set_max_threads(unsigned int max_threads_suggested
)
744 * The number of threads shall be limited such that the thread
745 * structures may only consume a small part of the available memory.
747 if (fls64(totalram_pages
) + fls64(PAGE_SIZE
) > 64)
748 threads
= MAX_THREADS
;
750 threads
= div64_u64((u64
) totalram_pages
* (u64
) PAGE_SIZE
,
751 (u64
) THREAD_SIZE
* 8UL);
753 if (threads
> max_threads_suggested
)
754 threads
= max_threads_suggested
;
756 max_threads
= clamp_t(u64
, threads
, MIN_THREADS
, MAX_THREADS
);
759 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
760 /* Initialized by the architecture: */
761 int arch_task_struct_size __read_mostly
;
764 static void task_struct_whitelist(unsigned long *offset
, unsigned long *size
)
766 /* Fetch thread_struct whitelist for the architecture. */
767 arch_thread_struct_whitelist(offset
, size
);
770 * Handle zero-sized whitelist or empty thread_struct, otherwise
771 * adjust offset to position of thread_struct in task_struct.
773 if (unlikely(*size
== 0))
776 *offset
+= offsetof(struct task_struct
, thread
);
779 void __init
fork_init(void)
782 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
783 #ifndef ARCH_MIN_TASKALIGN
784 #define ARCH_MIN_TASKALIGN 0
786 int align
= max_t(int, L1_CACHE_BYTES
, ARCH_MIN_TASKALIGN
);
787 unsigned long useroffset
, usersize
;
789 /* create a slab on which task_structs can be allocated */
790 task_struct_whitelist(&useroffset
, &usersize
);
791 task_struct_cachep
= kmem_cache_create_usercopy("task_struct",
792 arch_task_struct_size
, align
,
793 SLAB_PANIC
|SLAB_ACCOUNT
,
794 useroffset
, usersize
, NULL
);
797 /* do the arch specific task caches init */
798 arch_task_cache_init();
800 set_max_threads(MAX_THREADS
);
802 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
803 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
804 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
805 init_task
.signal
->rlim
[RLIMIT_NPROC
];
807 for (i
= 0; i
< UCOUNT_COUNTS
; i
++) {
808 init_user_ns
.ucount_max
[i
] = max_threads
/2;
811 #ifdef CONFIG_VMAP_STACK
812 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN
, "fork:vm_stack_cache",
813 NULL
, free_vm_stack_cache
);
816 lockdep_init_task(&init_task
);
819 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
820 struct task_struct
*src
)
826 void set_task_stack_end_magic(struct task_struct
*tsk
)
828 unsigned long *stackend
;
830 stackend
= end_of_stack(tsk
);
831 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
834 static struct task_struct
*dup_task_struct(struct task_struct
*orig
, int node
)
836 struct task_struct
*tsk
;
837 unsigned long *stack
;
838 struct vm_struct
*stack_vm_area
;
841 if (node
== NUMA_NO_NODE
)
842 node
= tsk_fork_get_node(orig
);
843 tsk
= alloc_task_struct_node(node
);
847 stack
= alloc_thread_stack_node(tsk
, node
);
851 if (memcg_charge_kernel_stack(tsk
))
854 stack_vm_area
= task_stack_vm_area(tsk
);
856 err
= arch_dup_task_struct(tsk
, orig
);
859 * arch_dup_task_struct() clobbers the stack-related fields. Make
860 * sure they're properly initialized before using any stack-related
864 #ifdef CONFIG_VMAP_STACK
865 tsk
->stack_vm_area
= stack_vm_area
;
867 #ifdef CONFIG_THREAD_INFO_IN_TASK
868 atomic_set(&tsk
->stack_refcount
, 1);
874 #ifdef CONFIG_SECCOMP
876 * We must handle setting up seccomp filters once we're under
877 * the sighand lock in case orig has changed between now and
878 * then. Until then, filter must be NULL to avoid messing up
879 * the usage counts on the error path calling free_task.
881 tsk
->seccomp
.filter
= NULL
;
884 setup_thread_stack(tsk
, orig
);
885 clear_user_return_notifier(tsk
);
886 clear_tsk_need_resched(tsk
);
887 set_task_stack_end_magic(tsk
);
889 #ifdef CONFIG_STACKPROTECTOR
890 tsk
->stack_canary
= get_random_canary();
894 * One for us, one for whoever does the "release_task()" (usually
897 atomic_set(&tsk
->usage
, 2);
898 #ifdef CONFIG_BLK_DEV_IO_TRACE
901 tsk
->splice_pipe
= NULL
;
902 tsk
->task_frag
.page
= NULL
;
903 tsk
->wake_q
.next
= NULL
;
905 account_kernel_stack(tsk
, 1);
909 #ifdef CONFIG_FAULT_INJECTION
913 #ifdef CONFIG_BLK_CGROUP
914 tsk
->throttle_queue
= NULL
;
915 tsk
->use_memdelay
= 0;
919 tsk
->active_memcg
= NULL
;
924 free_thread_stack(tsk
);
926 free_task_struct(tsk
);
930 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
932 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
934 static int __init
coredump_filter_setup(char *s
)
936 default_dump_filter
=
937 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
938 MMF_DUMP_FILTER_MASK
;
942 __setup("coredump_filter=", coredump_filter_setup
);
944 #include <linux/init_task.h>
946 static void mm_init_aio(struct mm_struct
*mm
)
949 spin_lock_init(&mm
->ioctx_lock
);
950 mm
->ioctx_table
= NULL
;
954 static void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
961 static void mm_init_uprobes_state(struct mm_struct
*mm
)
963 #ifdef CONFIG_UPROBES
964 mm
->uprobes_state
.xol_area
= NULL
;
968 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
,
969 struct user_namespace
*user_ns
)
973 mm
->vmacache_seqnum
= 0;
974 atomic_set(&mm
->mm_users
, 1);
975 atomic_set(&mm
->mm_count
, 1);
976 init_rwsem(&mm
->mmap_sem
);
977 INIT_LIST_HEAD(&mm
->mmlist
);
978 mm
->core_state
= NULL
;
979 mm_pgtables_bytes_init(mm
);
983 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
984 spin_lock_init(&mm
->page_table_lock
);
985 spin_lock_init(&mm
->arg_lock
);
988 mm_init_owner(mm
, p
);
989 RCU_INIT_POINTER(mm
->exe_file
, NULL
);
990 mmu_notifier_mm_init(mm
);
992 init_tlb_flush_pending(mm
);
993 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
994 mm
->pmd_huge_pte
= NULL
;
996 mm_init_uprobes_state(mm
);
999 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
1000 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
1002 mm
->flags
= default_dump_filter
;
1006 if (mm_alloc_pgd(mm
))
1009 if (init_new_context(p
, mm
))
1010 goto fail_nocontext
;
1012 mm
->user_ns
= get_user_ns(user_ns
);
1023 * Allocate and initialize an mm_struct.
1025 struct mm_struct
*mm_alloc(void)
1027 struct mm_struct
*mm
;
1033 memset(mm
, 0, sizeof(*mm
));
1034 return mm_init(mm
, current
, current_user_ns());
1037 static inline void __mmput(struct mm_struct
*mm
)
1039 VM_BUG_ON(atomic_read(&mm
->mm_users
));
1041 uprobe_clear_state(mm
);
1044 khugepaged_exit(mm
); /* must run before exit_mmap */
1046 mm_put_huge_zero_page(mm
);
1047 set_mm_exe_file(mm
, NULL
);
1048 if (!list_empty(&mm
->mmlist
)) {
1049 spin_lock(&mmlist_lock
);
1050 list_del(&mm
->mmlist
);
1051 spin_unlock(&mmlist_lock
);
1054 module_put(mm
->binfmt
->module
);
1059 * Decrement the use count and release all resources for an mm.
1061 void mmput(struct mm_struct
*mm
)
1065 if (atomic_dec_and_test(&mm
->mm_users
))
1068 EXPORT_SYMBOL_GPL(mmput
);
1071 static void mmput_async_fn(struct work_struct
*work
)
1073 struct mm_struct
*mm
= container_of(work
, struct mm_struct
,
1079 void mmput_async(struct mm_struct
*mm
)
1081 if (atomic_dec_and_test(&mm
->mm_users
)) {
1082 INIT_WORK(&mm
->async_put_work
, mmput_async_fn
);
1083 schedule_work(&mm
->async_put_work
);
1089 * set_mm_exe_file - change a reference to the mm's executable file
1091 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1093 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1094 * invocations: in mmput() nobody alive left, in execve task is single
1095 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1096 * mm->exe_file, but does so without using set_mm_exe_file() in order
1097 * to do avoid the need for any locks.
1099 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
1101 struct file
*old_exe_file
;
1104 * It is safe to dereference the exe_file without RCU as
1105 * this function is only called if nobody else can access
1106 * this mm -- see comment above for justification.
1108 old_exe_file
= rcu_dereference_raw(mm
->exe_file
);
1111 get_file(new_exe_file
);
1112 rcu_assign_pointer(mm
->exe_file
, new_exe_file
);
1118 * get_mm_exe_file - acquire a reference to the mm's executable file
1120 * Returns %NULL if mm has no associated executable file.
1121 * User must release file via fput().
1123 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
1125 struct file
*exe_file
;
1128 exe_file
= rcu_dereference(mm
->exe_file
);
1129 if (exe_file
&& !get_file_rcu(exe_file
))
1134 EXPORT_SYMBOL(get_mm_exe_file
);
1137 * get_task_exe_file - acquire a reference to the task's executable file
1139 * Returns %NULL if task's mm (if any) has no associated executable file or
1140 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1141 * User must release file via fput().
1143 struct file
*get_task_exe_file(struct task_struct
*task
)
1145 struct file
*exe_file
= NULL
;
1146 struct mm_struct
*mm
;
1151 if (!(task
->flags
& PF_KTHREAD
))
1152 exe_file
= get_mm_exe_file(mm
);
1157 EXPORT_SYMBOL(get_task_exe_file
);
1160 * get_task_mm - acquire a reference to the task's mm
1162 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1163 * this kernel workthread has transiently adopted a user mm with use_mm,
1164 * to do its AIO) is not set and if so returns a reference to it, after
1165 * bumping up the use count. User must release the mm via mmput()
1166 * after use. Typically used by /proc and ptrace.
1168 struct mm_struct
*get_task_mm(struct task_struct
*task
)
1170 struct mm_struct
*mm
;
1175 if (task
->flags
& PF_KTHREAD
)
1183 EXPORT_SYMBOL_GPL(get_task_mm
);
1185 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
1187 struct mm_struct
*mm
;
1190 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
1192 return ERR_PTR(err
);
1194 mm
= get_task_mm(task
);
1195 if (mm
&& mm
!= current
->mm
&&
1196 !ptrace_may_access(task
, mode
)) {
1198 mm
= ERR_PTR(-EACCES
);
1200 mutex_unlock(&task
->signal
->cred_guard_mutex
);
1205 static void complete_vfork_done(struct task_struct
*tsk
)
1207 struct completion
*vfork
;
1210 vfork
= tsk
->vfork_done
;
1211 if (likely(vfork
)) {
1212 tsk
->vfork_done
= NULL
;
1218 static int wait_for_vfork_done(struct task_struct
*child
,
1219 struct completion
*vfork
)
1223 freezer_do_not_count();
1224 killed
= wait_for_completion_killable(vfork
);
1229 child
->vfork_done
= NULL
;
1233 put_task_struct(child
);
1237 /* Please note the differences between mmput and mm_release.
1238 * mmput is called whenever we stop holding onto a mm_struct,
1239 * error success whatever.
1241 * mm_release is called after a mm_struct has been removed
1242 * from the current process.
1244 * This difference is important for error handling, when we
1245 * only half set up a mm_struct for a new process and need to restore
1246 * the old one. Because we mmput the new mm_struct before
1247 * restoring the old one. . .
1248 * Eric Biederman 10 January 1998
1250 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
1252 /* Get rid of any futexes when releasing the mm */
1254 if (unlikely(tsk
->robust_list
)) {
1255 exit_robust_list(tsk
);
1256 tsk
->robust_list
= NULL
;
1258 #ifdef CONFIG_COMPAT
1259 if (unlikely(tsk
->compat_robust_list
)) {
1260 compat_exit_robust_list(tsk
);
1261 tsk
->compat_robust_list
= NULL
;
1264 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
1265 exit_pi_state_list(tsk
);
1268 uprobe_free_utask(tsk
);
1270 /* Get rid of any cached register state */
1271 deactivate_mm(tsk
, mm
);
1274 * Signal userspace if we're not exiting with a core dump
1275 * because we want to leave the value intact for debugging
1278 if (tsk
->clear_child_tid
) {
1279 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_COREDUMP
) &&
1280 atomic_read(&mm
->mm_users
) > 1) {
1282 * We don't check the error code - if userspace has
1283 * not set up a proper pointer then tough luck.
1285 put_user(0, tsk
->clear_child_tid
);
1286 do_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
1287 1, NULL
, NULL
, 0, 0);
1289 tsk
->clear_child_tid
= NULL
;
1293 * All done, finally we can wake up parent and return this mm to him.
1294 * Also kthread_stop() uses this completion for synchronization.
1296 if (tsk
->vfork_done
)
1297 complete_vfork_done(tsk
);
1301 * Allocate a new mm structure and copy contents from the
1302 * mm structure of the passed in task structure.
1304 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
1306 struct mm_struct
*mm
, *oldmm
= current
->mm
;
1313 memcpy(mm
, oldmm
, sizeof(*mm
));
1315 if (!mm_init(mm
, tsk
, mm
->user_ns
))
1318 err
= dup_mmap(mm
, oldmm
);
1322 mm
->hiwater_rss
= get_mm_rss(mm
);
1323 mm
->hiwater_vm
= mm
->total_vm
;
1325 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
1331 /* don't put binfmt in mmput, we haven't got module yet */
1339 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
1341 struct mm_struct
*mm
, *oldmm
;
1344 tsk
->min_flt
= tsk
->maj_flt
= 0;
1345 tsk
->nvcsw
= tsk
->nivcsw
= 0;
1346 #ifdef CONFIG_DETECT_HUNG_TASK
1347 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
1348 tsk
->last_switch_time
= 0;
1352 tsk
->active_mm
= NULL
;
1355 * Are we cloning a kernel thread?
1357 * We need to steal a active VM for that..
1359 oldmm
= current
->mm
;
1363 /* initialize the new vmacache entries */
1364 vmacache_flush(tsk
);
1366 if (clone_flags
& CLONE_VM
) {
1379 tsk
->active_mm
= mm
;
1386 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
1388 struct fs_struct
*fs
= current
->fs
;
1389 if (clone_flags
& CLONE_FS
) {
1390 /* tsk->fs is already what we want */
1391 spin_lock(&fs
->lock
);
1393 spin_unlock(&fs
->lock
);
1397 spin_unlock(&fs
->lock
);
1400 tsk
->fs
= copy_fs_struct(fs
);
1406 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
1408 struct files_struct
*oldf
, *newf
;
1412 * A background process may not have any files ...
1414 oldf
= current
->files
;
1418 if (clone_flags
& CLONE_FILES
) {
1419 atomic_inc(&oldf
->count
);
1423 newf
= dup_fd(oldf
, &error
);
1433 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
1436 struct io_context
*ioc
= current
->io_context
;
1437 struct io_context
*new_ioc
;
1442 * Share io context with parent, if CLONE_IO is set
1444 if (clone_flags
& CLONE_IO
) {
1446 tsk
->io_context
= ioc
;
1447 } else if (ioprio_valid(ioc
->ioprio
)) {
1448 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
1449 if (unlikely(!new_ioc
))
1452 new_ioc
->ioprio
= ioc
->ioprio
;
1453 put_io_context(new_ioc
);
1459 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1461 struct sighand_struct
*sig
;
1463 if (clone_flags
& CLONE_SIGHAND
) {
1464 atomic_inc(¤t
->sighand
->count
);
1467 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1468 rcu_assign_pointer(tsk
->sighand
, sig
);
1472 atomic_set(&sig
->count
, 1);
1473 spin_lock_irq(¤t
->sighand
->siglock
);
1474 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1475 spin_unlock_irq(¤t
->sighand
->siglock
);
1479 void __cleanup_sighand(struct sighand_struct
*sighand
)
1481 if (atomic_dec_and_test(&sighand
->count
)) {
1482 signalfd_cleanup(sighand
);
1484 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1485 * without an RCU grace period, see __lock_task_sighand().
1487 kmem_cache_free(sighand_cachep
, sighand
);
1491 #ifdef CONFIG_POSIX_TIMERS
1493 * Initialize POSIX timer handling for a thread group.
1495 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1497 unsigned long cpu_limit
;
1499 cpu_limit
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1500 if (cpu_limit
!= RLIM_INFINITY
) {
1501 sig
->cputime_expires
.prof_exp
= cpu_limit
* NSEC_PER_SEC
;
1502 sig
->cputimer
.running
= true;
1505 /* The timer lists. */
1506 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1507 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1508 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1511 static inline void posix_cpu_timers_init_group(struct signal_struct
*sig
) { }
1514 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1516 struct signal_struct
*sig
;
1518 if (clone_flags
& CLONE_THREAD
)
1521 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1526 sig
->nr_threads
= 1;
1527 atomic_set(&sig
->live
, 1);
1528 atomic_set(&sig
->sigcnt
, 1);
1530 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1531 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1532 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1534 init_waitqueue_head(&sig
->wait_chldexit
);
1535 sig
->curr_target
= tsk
;
1536 init_sigpending(&sig
->shared_pending
);
1537 INIT_HLIST_HEAD(&sig
->multiprocess
);
1538 seqlock_init(&sig
->stats_lock
);
1539 prev_cputime_init(&sig
->prev_cputime
);
1541 #ifdef CONFIG_POSIX_TIMERS
1542 INIT_LIST_HEAD(&sig
->posix_timers
);
1543 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1544 sig
->real_timer
.function
= it_real_fn
;
1547 task_lock(current
->group_leader
);
1548 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1549 task_unlock(current
->group_leader
);
1551 posix_cpu_timers_init_group(sig
);
1553 tty_audit_fork(sig
);
1554 sched_autogroup_fork(sig
);
1556 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1557 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1559 mutex_init(&sig
->cred_guard_mutex
);
1564 static void copy_seccomp(struct task_struct
*p
)
1566 #ifdef CONFIG_SECCOMP
1568 * Must be called with sighand->lock held, which is common to
1569 * all threads in the group. Holding cred_guard_mutex is not
1570 * needed because this new task is not yet running and cannot
1573 assert_spin_locked(¤t
->sighand
->siglock
);
1575 /* Ref-count the new filter user, and assign it. */
1576 get_seccomp_filter(current
);
1577 p
->seccomp
= current
->seccomp
;
1580 * Explicitly enable no_new_privs here in case it got set
1581 * between the task_struct being duplicated and holding the
1582 * sighand lock. The seccomp state and nnp must be in sync.
1584 if (task_no_new_privs(current
))
1585 task_set_no_new_privs(p
);
1588 * If the parent gained a seccomp mode after copying thread
1589 * flags and between before we held the sighand lock, we have
1590 * to manually enable the seccomp thread flag here.
1592 if (p
->seccomp
.mode
!= SECCOMP_MODE_DISABLED
)
1593 set_tsk_thread_flag(p
, TIF_SECCOMP
);
1597 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1599 current
->clear_child_tid
= tidptr
;
1601 return task_pid_vnr(current
);
1604 static void rt_mutex_init_task(struct task_struct
*p
)
1606 raw_spin_lock_init(&p
->pi_lock
);
1607 #ifdef CONFIG_RT_MUTEXES
1608 p
->pi_waiters
= RB_ROOT_CACHED
;
1609 p
->pi_top_task
= NULL
;
1610 p
->pi_blocked_on
= NULL
;
1614 #ifdef CONFIG_POSIX_TIMERS
1616 * Initialize POSIX timer handling for a single task.
1618 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1620 tsk
->cputime_expires
.prof_exp
= 0;
1621 tsk
->cputime_expires
.virt_exp
= 0;
1622 tsk
->cputime_expires
.sched_exp
= 0;
1623 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1624 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1625 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1628 static inline void posix_cpu_timers_init(struct task_struct
*tsk
) { }
1631 static inline void init_task_pid_links(struct task_struct
*task
)
1635 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1636 INIT_HLIST_NODE(&task
->pid_links
[type
]);
1641 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1643 if (type
== PIDTYPE_PID
)
1644 task
->thread_pid
= pid
;
1646 task
->signal
->pids
[type
] = pid
;
1649 static inline void rcu_copy_process(struct task_struct
*p
)
1651 #ifdef CONFIG_PREEMPT_RCU
1652 p
->rcu_read_lock_nesting
= 0;
1653 p
->rcu_read_unlock_special
.s
= 0;
1654 p
->rcu_blocked_node
= NULL
;
1655 INIT_LIST_HEAD(&p
->rcu_node_entry
);
1656 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1657 #ifdef CONFIG_TASKS_RCU
1658 p
->rcu_tasks_holdout
= false;
1659 INIT_LIST_HEAD(&p
->rcu_tasks_holdout_list
);
1660 p
->rcu_tasks_idle_cpu
= -1;
1661 #endif /* #ifdef CONFIG_TASKS_RCU */
1665 * This creates a new process as a copy of the old one,
1666 * but does not actually start it yet.
1668 * It copies the registers, and all the appropriate
1669 * parts of the process environment (as per the clone
1670 * flags). The actual kick-off is left to the caller.
1672 static __latent_entropy
struct task_struct
*copy_process(
1673 unsigned long clone_flags
,
1674 unsigned long stack_start
,
1675 unsigned long stack_size
,
1676 int __user
*child_tidptr
,
1683 struct task_struct
*p
;
1684 struct multiprocess_signals delayed
;
1687 * Don't allow sharing the root directory with processes in a different
1690 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1691 return ERR_PTR(-EINVAL
);
1693 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1694 return ERR_PTR(-EINVAL
);
1697 * Thread groups must share signals as well, and detached threads
1698 * can only be started up within the thread group.
1700 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1701 return ERR_PTR(-EINVAL
);
1704 * Shared signal handlers imply shared VM. By way of the above,
1705 * thread groups also imply shared VM. Blocking this case allows
1706 * for various simplifications in other code.
1708 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1709 return ERR_PTR(-EINVAL
);
1712 * Siblings of global init remain as zombies on exit since they are
1713 * not reaped by their parent (swapper). To solve this and to avoid
1714 * multi-rooted process trees, prevent global and container-inits
1715 * from creating siblings.
1717 if ((clone_flags
& CLONE_PARENT
) &&
1718 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1719 return ERR_PTR(-EINVAL
);
1722 * If the new process will be in a different pid or user namespace
1723 * do not allow it to share a thread group with the forking task.
1725 if (clone_flags
& CLONE_THREAD
) {
1726 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1727 (task_active_pid_ns(current
) !=
1728 current
->nsproxy
->pid_ns_for_children
))
1729 return ERR_PTR(-EINVAL
);
1733 * Force any signals received before this point to be delivered
1734 * before the fork happens. Collect up signals sent to multiple
1735 * processes that happen during the fork and delay them so that
1736 * they appear to happen after the fork.
1738 sigemptyset(&delayed
.signal
);
1739 INIT_HLIST_NODE(&delayed
.node
);
1741 spin_lock_irq(¤t
->sighand
->siglock
);
1742 if (!(clone_flags
& CLONE_THREAD
))
1743 hlist_add_head(&delayed
.node
, ¤t
->signal
->multiprocess
);
1744 recalc_sigpending();
1745 spin_unlock_irq(¤t
->sighand
->siglock
);
1746 retval
= -ERESTARTNOINTR
;
1747 if (signal_pending(current
))
1751 p
= dup_task_struct(current
, node
);
1756 * This _must_ happen before we call free_task(), i.e. before we jump
1757 * to any of the bad_fork_* labels. This is to avoid freeing
1758 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1759 * kernel threads (PF_KTHREAD).
1761 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1763 * Clear TID on mm_release()?
1765 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1767 ftrace_graph_init_task(p
);
1769 rt_mutex_init_task(p
);
1771 #ifdef CONFIG_PROVE_LOCKING
1772 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1773 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1776 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1777 task_rlimit(p
, RLIMIT_NPROC
)) {
1778 if (p
->real_cred
->user
!= INIT_USER
&&
1779 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1782 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1784 retval
= copy_creds(p
, clone_flags
);
1789 * If multiple threads are within copy_process(), then this check
1790 * triggers too late. This doesn't hurt, the check is only there
1791 * to stop root fork bombs.
1794 if (nr_threads
>= max_threads
)
1795 goto bad_fork_cleanup_count
;
1797 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1798 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
| PF_IDLE
);
1799 p
->flags
|= PF_FORKNOEXEC
;
1800 INIT_LIST_HEAD(&p
->children
);
1801 INIT_LIST_HEAD(&p
->sibling
);
1802 rcu_copy_process(p
);
1803 p
->vfork_done
= NULL
;
1804 spin_lock_init(&p
->alloc_lock
);
1806 init_sigpending(&p
->pending
);
1808 p
->utime
= p
->stime
= p
->gtime
= 0;
1809 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1810 p
->utimescaled
= p
->stimescaled
= 0;
1812 prev_cputime_init(&p
->prev_cputime
);
1814 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1815 seqcount_init(&p
->vtime
.seqcount
);
1816 p
->vtime
.starttime
= 0;
1817 p
->vtime
.state
= VTIME_INACTIVE
;
1820 #if defined(SPLIT_RSS_COUNTING)
1821 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1824 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1830 task_io_accounting_init(&p
->ioac
);
1831 acct_clear_integrals(p
);
1833 posix_cpu_timers_init(p
);
1835 p
->start_time
= ktime_get_ns();
1836 p
->real_start_time
= ktime_get_boot_ns();
1837 p
->io_context
= NULL
;
1838 audit_set_context(p
, NULL
);
1841 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1842 if (IS_ERR(p
->mempolicy
)) {
1843 retval
= PTR_ERR(p
->mempolicy
);
1844 p
->mempolicy
= NULL
;
1845 goto bad_fork_cleanup_threadgroup_lock
;
1848 #ifdef CONFIG_CPUSETS
1849 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1850 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1851 seqcount_init(&p
->mems_allowed_seq
);
1853 #ifdef CONFIG_TRACE_IRQFLAGS
1855 p
->hardirqs_enabled
= 0;
1856 p
->hardirq_enable_ip
= 0;
1857 p
->hardirq_enable_event
= 0;
1858 p
->hardirq_disable_ip
= _THIS_IP_
;
1859 p
->hardirq_disable_event
= 0;
1860 p
->softirqs_enabled
= 1;
1861 p
->softirq_enable_ip
= _THIS_IP_
;
1862 p
->softirq_enable_event
= 0;
1863 p
->softirq_disable_ip
= 0;
1864 p
->softirq_disable_event
= 0;
1865 p
->hardirq_context
= 0;
1866 p
->softirq_context
= 0;
1869 p
->pagefault_disabled
= 0;
1871 #ifdef CONFIG_LOCKDEP
1872 p
->lockdep_depth
= 0; /* no locks held yet */
1873 p
->curr_chain_key
= 0;
1874 p
->lockdep_recursion
= 0;
1875 lockdep_init_task(p
);
1878 #ifdef CONFIG_DEBUG_MUTEXES
1879 p
->blocked_on
= NULL
; /* not blocked yet */
1881 #ifdef CONFIG_BCACHE
1882 p
->sequential_io
= 0;
1883 p
->sequential_io_avg
= 0;
1886 /* Perform scheduler related setup. Assign this task to a CPU. */
1887 retval
= sched_fork(clone_flags
, p
);
1889 goto bad_fork_cleanup_policy
;
1891 retval
= perf_event_init_task(p
);
1893 goto bad_fork_cleanup_policy
;
1894 retval
= audit_alloc(p
);
1896 goto bad_fork_cleanup_perf
;
1897 /* copy all the process information */
1899 retval
= security_task_alloc(p
, clone_flags
);
1901 goto bad_fork_cleanup_audit
;
1902 retval
= copy_semundo(clone_flags
, p
);
1904 goto bad_fork_cleanup_security
;
1905 retval
= copy_files(clone_flags
, p
);
1907 goto bad_fork_cleanup_semundo
;
1908 retval
= copy_fs(clone_flags
, p
);
1910 goto bad_fork_cleanup_files
;
1911 retval
= copy_sighand(clone_flags
, p
);
1913 goto bad_fork_cleanup_fs
;
1914 retval
= copy_signal(clone_flags
, p
);
1916 goto bad_fork_cleanup_sighand
;
1917 retval
= copy_mm(clone_flags
, p
);
1919 goto bad_fork_cleanup_signal
;
1920 retval
= copy_namespaces(clone_flags
, p
);
1922 goto bad_fork_cleanup_mm
;
1923 retval
= copy_io(clone_flags
, p
);
1925 goto bad_fork_cleanup_namespaces
;
1926 retval
= copy_thread_tls(clone_flags
, stack_start
, stack_size
, p
, tls
);
1928 goto bad_fork_cleanup_io
;
1930 stackleak_task_init(p
);
1932 if (pid
!= &init_struct_pid
) {
1933 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1935 retval
= PTR_ERR(pid
);
1936 goto bad_fork_cleanup_thread
;
1944 p
->robust_list
= NULL
;
1945 #ifdef CONFIG_COMPAT
1946 p
->compat_robust_list
= NULL
;
1948 INIT_LIST_HEAD(&p
->pi_state_list
);
1949 p
->pi_state_cache
= NULL
;
1952 * sigaltstack should be cleared when sharing the same VM
1954 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1958 * Syscall tracing and stepping should be turned off in the
1959 * child regardless of CLONE_PTRACE.
1961 user_disable_single_step(p
);
1962 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1963 #ifdef TIF_SYSCALL_EMU
1964 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1966 clear_all_latency_tracing(p
);
1968 /* ok, now we should be set up.. */
1969 p
->pid
= pid_nr(pid
);
1970 if (clone_flags
& CLONE_THREAD
) {
1971 p
->exit_signal
= -1;
1972 p
->group_leader
= current
->group_leader
;
1973 p
->tgid
= current
->tgid
;
1975 if (clone_flags
& CLONE_PARENT
)
1976 p
->exit_signal
= current
->group_leader
->exit_signal
;
1978 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1979 p
->group_leader
= p
;
1984 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1985 p
->dirty_paused_when
= 0;
1987 p
->pdeath_signal
= 0;
1988 INIT_LIST_HEAD(&p
->thread_group
);
1989 p
->task_works
= NULL
;
1991 cgroup_threadgroup_change_begin(current
);
1993 * Ensure that the cgroup subsystem policies allow the new process to be
1994 * forked. It should be noted the the new process's css_set can be changed
1995 * between here and cgroup_post_fork() if an organisation operation is in
1998 retval
= cgroup_can_fork(p
);
2000 goto bad_fork_free_pid
;
2003 * Make it visible to the rest of the system, but dont wake it up yet.
2004 * Need tasklist lock for parent etc handling!
2006 write_lock_irq(&tasklist_lock
);
2008 /* CLONE_PARENT re-uses the old parent */
2009 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
2010 p
->real_parent
= current
->real_parent
;
2011 p
->parent_exec_id
= current
->parent_exec_id
;
2013 p
->real_parent
= current
;
2014 p
->parent_exec_id
= current
->self_exec_id
;
2017 klp_copy_process(p
);
2019 spin_lock(¤t
->sighand
->siglock
);
2022 * Copy seccomp details explicitly here, in case they were changed
2023 * before holding sighand lock.
2027 rseq_fork(p
, clone_flags
);
2029 /* Don't start children in a dying pid namespace */
2030 if (unlikely(!(ns_of_pid(pid
)->pid_allocated
& PIDNS_ADDING
))) {
2032 goto bad_fork_cancel_cgroup
;
2035 /* Let kill terminate clone/fork in the middle */
2036 if (fatal_signal_pending(current
)) {
2038 goto bad_fork_cancel_cgroup
;
2042 init_task_pid_links(p
);
2043 if (likely(p
->pid
)) {
2044 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
2046 init_task_pid(p
, PIDTYPE_PID
, pid
);
2047 if (thread_group_leader(p
)) {
2048 init_task_pid(p
, PIDTYPE_TGID
, pid
);
2049 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
2050 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
2052 if (is_child_reaper(pid
)) {
2053 ns_of_pid(pid
)->child_reaper
= p
;
2054 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
2056 p
->signal
->shared_pending
.signal
= delayed
.signal
;
2057 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
2059 * Inherit has_child_subreaper flag under the same
2060 * tasklist_lock with adding child to the process tree
2061 * for propagate_has_child_subreaper optimization.
2063 p
->signal
->has_child_subreaper
= p
->real_parent
->signal
->has_child_subreaper
||
2064 p
->real_parent
->signal
->is_child_subreaper
;
2065 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
2066 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
2067 attach_pid(p
, PIDTYPE_TGID
);
2068 attach_pid(p
, PIDTYPE_PGID
);
2069 attach_pid(p
, PIDTYPE_SID
);
2070 __this_cpu_inc(process_counts
);
2072 current
->signal
->nr_threads
++;
2073 atomic_inc(¤t
->signal
->live
);
2074 atomic_inc(¤t
->signal
->sigcnt
);
2075 task_join_group_stop(p
);
2076 list_add_tail_rcu(&p
->thread_group
,
2077 &p
->group_leader
->thread_group
);
2078 list_add_tail_rcu(&p
->thread_node
,
2079 &p
->signal
->thread_head
);
2081 attach_pid(p
, PIDTYPE_PID
);
2085 hlist_del_init(&delayed
.node
);
2086 spin_unlock(¤t
->sighand
->siglock
);
2087 syscall_tracepoint_update(p
);
2088 write_unlock_irq(&tasklist_lock
);
2090 proc_fork_connector(p
);
2091 cgroup_post_fork(p
);
2092 cgroup_threadgroup_change_end(current
);
2095 trace_task_newtask(p
, clone_flags
);
2096 uprobe_copy_process(p
, clone_flags
);
2100 bad_fork_cancel_cgroup
:
2101 spin_unlock(¤t
->sighand
->siglock
);
2102 write_unlock_irq(&tasklist_lock
);
2103 cgroup_cancel_fork(p
);
2105 cgroup_threadgroup_change_end(current
);
2106 if (pid
!= &init_struct_pid
)
2108 bad_fork_cleanup_thread
:
2110 bad_fork_cleanup_io
:
2113 bad_fork_cleanup_namespaces
:
2114 exit_task_namespaces(p
);
2115 bad_fork_cleanup_mm
:
2118 bad_fork_cleanup_signal
:
2119 if (!(clone_flags
& CLONE_THREAD
))
2120 free_signal_struct(p
->signal
);
2121 bad_fork_cleanup_sighand
:
2122 __cleanup_sighand(p
->sighand
);
2123 bad_fork_cleanup_fs
:
2124 exit_fs(p
); /* blocking */
2125 bad_fork_cleanup_files
:
2126 exit_files(p
); /* blocking */
2127 bad_fork_cleanup_semundo
:
2129 bad_fork_cleanup_security
:
2130 security_task_free(p
);
2131 bad_fork_cleanup_audit
:
2133 bad_fork_cleanup_perf
:
2134 perf_event_free_task(p
);
2135 bad_fork_cleanup_policy
:
2136 lockdep_free_task(p
);
2138 mpol_put(p
->mempolicy
);
2139 bad_fork_cleanup_threadgroup_lock
:
2141 delayacct_tsk_free(p
);
2142 bad_fork_cleanup_count
:
2143 atomic_dec(&p
->cred
->user
->processes
);
2146 p
->state
= TASK_DEAD
;
2150 spin_lock_irq(¤t
->sighand
->siglock
);
2151 hlist_del_init(&delayed
.node
);
2152 spin_unlock_irq(¤t
->sighand
->siglock
);
2153 return ERR_PTR(retval
);
2156 static inline void init_idle_pids(struct task_struct
*idle
)
2160 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
2161 INIT_HLIST_NODE(&idle
->pid_links
[type
]); /* not really needed */
2162 init_task_pid(idle
, type
, &init_struct_pid
);
2166 struct task_struct
*fork_idle(int cpu
)
2168 struct task_struct
*task
;
2169 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0, 0,
2171 if (!IS_ERR(task
)) {
2172 init_idle_pids(task
);
2173 init_idle(task
, cpu
);
2180 * Ok, this is the main fork-routine.
2182 * It copies the process, and if successful kick-starts
2183 * it and waits for it to finish using the VM if required.
2185 long _do_fork(unsigned long clone_flags
,
2186 unsigned long stack_start
,
2187 unsigned long stack_size
,
2188 int __user
*parent_tidptr
,
2189 int __user
*child_tidptr
,
2192 struct completion vfork
;
2194 struct task_struct
*p
;
2199 * Determine whether and which event to report to ptracer. When
2200 * called from kernel_thread or CLONE_UNTRACED is explicitly
2201 * requested, no event is reported; otherwise, report if the event
2202 * for the type of forking is enabled.
2204 if (!(clone_flags
& CLONE_UNTRACED
)) {
2205 if (clone_flags
& CLONE_VFORK
)
2206 trace
= PTRACE_EVENT_VFORK
;
2207 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
2208 trace
= PTRACE_EVENT_CLONE
;
2210 trace
= PTRACE_EVENT_FORK
;
2212 if (likely(!ptrace_event_enabled(current
, trace
)))
2216 p
= copy_process(clone_flags
, stack_start
, stack_size
,
2217 child_tidptr
, NULL
, trace
, tls
, NUMA_NO_NODE
);
2218 add_latent_entropy();
2224 * Do this prior waking up the new thread - the thread pointer
2225 * might get invalid after that point, if the thread exits quickly.
2227 trace_sched_process_fork(current
, p
);
2229 pid
= get_task_pid(p
, PIDTYPE_PID
);
2232 if (clone_flags
& CLONE_PARENT_SETTID
)
2233 put_user(nr
, parent_tidptr
);
2235 if (clone_flags
& CLONE_VFORK
) {
2236 p
->vfork_done
= &vfork
;
2237 init_completion(&vfork
);
2241 wake_up_new_task(p
);
2243 /* forking complete and child started to run, tell ptracer */
2244 if (unlikely(trace
))
2245 ptrace_event_pid(trace
, pid
);
2247 if (clone_flags
& CLONE_VFORK
) {
2248 if (!wait_for_vfork_done(p
, &vfork
))
2249 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
2256 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2257 /* For compatibility with architectures that call do_fork directly rather than
2258 * using the syscall entry points below. */
2259 long do_fork(unsigned long clone_flags
,
2260 unsigned long stack_start
,
2261 unsigned long stack_size
,
2262 int __user
*parent_tidptr
,
2263 int __user
*child_tidptr
)
2265 return _do_fork(clone_flags
, stack_start
, stack_size
,
2266 parent_tidptr
, child_tidptr
, 0);
2271 * Create a kernel thread.
2273 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
2275 return _do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
2276 (unsigned long)arg
, NULL
, NULL
, 0);
2279 #ifdef __ARCH_WANT_SYS_FORK
2280 SYSCALL_DEFINE0(fork
)
2283 return _do_fork(SIGCHLD
, 0, 0, NULL
, NULL
, 0);
2285 /* can not support in nommu mode */
2291 #ifdef __ARCH_WANT_SYS_VFORK
2292 SYSCALL_DEFINE0(vfork
)
2294 return _do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
2299 #ifdef __ARCH_WANT_SYS_CLONE
2300 #ifdef CONFIG_CLONE_BACKWARDS
2301 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2302 int __user
*, parent_tidptr
,
2304 int __user
*, child_tidptr
)
2305 #elif defined(CONFIG_CLONE_BACKWARDS2)
2306 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
2307 int __user
*, parent_tidptr
,
2308 int __user
*, child_tidptr
,
2310 #elif defined(CONFIG_CLONE_BACKWARDS3)
2311 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2313 int __user
*, parent_tidptr
,
2314 int __user
*, child_tidptr
,
2317 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2318 int __user
*, parent_tidptr
,
2319 int __user
*, child_tidptr
,
2323 return _do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
, tls
);
2327 void walk_process_tree(struct task_struct
*top
, proc_visitor visitor
, void *data
)
2329 struct task_struct
*leader
, *parent
, *child
;
2332 read_lock(&tasklist_lock
);
2333 leader
= top
= top
->group_leader
;
2335 for_each_thread(leader
, parent
) {
2336 list_for_each_entry(child
, &parent
->children
, sibling
) {
2337 res
= visitor(child
, data
);
2349 if (leader
!= top
) {
2351 parent
= child
->real_parent
;
2352 leader
= parent
->group_leader
;
2356 read_unlock(&tasklist_lock
);
2359 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2360 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2363 static void sighand_ctor(void *data
)
2365 struct sighand_struct
*sighand
= data
;
2367 spin_lock_init(&sighand
->siglock
);
2368 init_waitqueue_head(&sighand
->signalfd_wqh
);
2371 void __init
proc_caches_init(void)
2373 unsigned int mm_size
;
2375 sighand_cachep
= kmem_cache_create("sighand_cache",
2376 sizeof(struct sighand_struct
), 0,
2377 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_TYPESAFE_BY_RCU
|
2378 SLAB_ACCOUNT
, sighand_ctor
);
2379 signal_cachep
= kmem_cache_create("signal_cache",
2380 sizeof(struct signal_struct
), 0,
2381 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2383 files_cachep
= kmem_cache_create("files_cache",
2384 sizeof(struct files_struct
), 0,
2385 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2387 fs_cachep
= kmem_cache_create("fs_cache",
2388 sizeof(struct fs_struct
), 0,
2389 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2393 * The mm_cpumask is located at the end of mm_struct, and is
2394 * dynamically sized based on the maximum CPU number this system
2395 * can have, taking hotplug into account (nr_cpu_ids).
2397 mm_size
= sizeof(struct mm_struct
) + cpumask_size();
2399 mm_cachep
= kmem_cache_create_usercopy("mm_struct",
2400 mm_size
, ARCH_MIN_MMSTRUCT_ALIGN
,
2401 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2402 offsetof(struct mm_struct
, saved_auxv
),
2403 sizeof_field(struct mm_struct
, saved_auxv
),
2405 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
|SLAB_ACCOUNT
);
2407 nsproxy_cache_init();
2411 * Check constraints on flags passed to the unshare system call.
2413 static int check_unshare_flags(unsigned long unshare_flags
)
2415 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
2416 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
2417 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
2418 CLONE_NEWUSER
|CLONE_NEWPID
|CLONE_NEWCGROUP
))
2421 * Not implemented, but pretend it works if there is nothing
2422 * to unshare. Note that unsharing the address space or the
2423 * signal handlers also need to unshare the signal queues (aka
2426 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
2427 if (!thread_group_empty(current
))
2430 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
2431 if (atomic_read(¤t
->sighand
->count
) > 1)
2434 if (unshare_flags
& CLONE_VM
) {
2435 if (!current_is_single_threaded())
2443 * Unshare the filesystem structure if it is being shared
2445 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
2447 struct fs_struct
*fs
= current
->fs
;
2449 if (!(unshare_flags
& CLONE_FS
) || !fs
)
2452 /* don't need lock here; in the worst case we'll do useless copy */
2456 *new_fsp
= copy_fs_struct(fs
);
2464 * Unshare file descriptor table if it is being shared
2466 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
2468 struct files_struct
*fd
= current
->files
;
2471 if ((unshare_flags
& CLONE_FILES
) &&
2472 (fd
&& atomic_read(&fd
->count
) > 1)) {
2473 *new_fdp
= dup_fd(fd
, &error
);
2482 * unshare allows a process to 'unshare' part of the process
2483 * context which was originally shared using clone. copy_*
2484 * functions used by do_fork() cannot be used here directly
2485 * because they modify an inactive task_struct that is being
2486 * constructed. Here we are modifying the current, active,
2489 int ksys_unshare(unsigned long unshare_flags
)
2491 struct fs_struct
*fs
, *new_fs
= NULL
;
2492 struct files_struct
*fd
, *new_fd
= NULL
;
2493 struct cred
*new_cred
= NULL
;
2494 struct nsproxy
*new_nsproxy
= NULL
;
2499 * If unsharing a user namespace must also unshare the thread group
2500 * and unshare the filesystem root and working directories.
2502 if (unshare_flags
& CLONE_NEWUSER
)
2503 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
2505 * If unsharing vm, must also unshare signal handlers.
2507 if (unshare_flags
& CLONE_VM
)
2508 unshare_flags
|= CLONE_SIGHAND
;
2510 * If unsharing a signal handlers, must also unshare the signal queues.
2512 if (unshare_flags
& CLONE_SIGHAND
)
2513 unshare_flags
|= CLONE_THREAD
;
2515 * If unsharing namespace, must also unshare filesystem information.
2517 if (unshare_flags
& CLONE_NEWNS
)
2518 unshare_flags
|= CLONE_FS
;
2520 err
= check_unshare_flags(unshare_flags
);
2522 goto bad_unshare_out
;
2524 * CLONE_NEWIPC must also detach from the undolist: after switching
2525 * to a new ipc namespace, the semaphore arrays from the old
2526 * namespace are unreachable.
2528 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
2530 err
= unshare_fs(unshare_flags
, &new_fs
);
2532 goto bad_unshare_out
;
2533 err
= unshare_fd(unshare_flags
, &new_fd
);
2535 goto bad_unshare_cleanup_fs
;
2536 err
= unshare_userns(unshare_flags
, &new_cred
);
2538 goto bad_unshare_cleanup_fd
;
2539 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
2542 goto bad_unshare_cleanup_cred
;
2544 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
2547 * CLONE_SYSVSEM is equivalent to sys_exit().
2551 if (unshare_flags
& CLONE_NEWIPC
) {
2552 /* Orphan segments in old ns (see sem above). */
2554 shm_init_task(current
);
2558 switch_task_namespaces(current
, new_nsproxy
);
2564 spin_lock(&fs
->lock
);
2565 current
->fs
= new_fs
;
2570 spin_unlock(&fs
->lock
);
2574 fd
= current
->files
;
2575 current
->files
= new_fd
;
2579 task_unlock(current
);
2582 /* Install the new user namespace */
2583 commit_creds(new_cred
);
2588 perf_event_namespaces(current
);
2590 bad_unshare_cleanup_cred
:
2593 bad_unshare_cleanup_fd
:
2595 put_files_struct(new_fd
);
2597 bad_unshare_cleanup_fs
:
2599 free_fs_struct(new_fs
);
2605 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
2607 return ksys_unshare(unshare_flags
);
2611 * Helper to unshare the files of the current task.
2612 * We don't want to expose copy_files internals to
2613 * the exec layer of the kernel.
2616 int unshare_files(struct files_struct
**displaced
)
2618 struct task_struct
*task
= current
;
2619 struct files_struct
*copy
= NULL
;
2622 error
= unshare_fd(CLONE_FILES
, ©
);
2623 if (error
|| !copy
) {
2627 *displaced
= task
->files
;
2634 int sysctl_max_threads(struct ctl_table
*table
, int write
,
2635 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2639 int threads
= max_threads
;
2640 int min
= MIN_THREADS
;
2641 int max
= MAX_THREADS
;
2648 ret
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2652 set_max_threads(threads
);