x86/ftrace: Add stack frame pointer to ftrace_caller
[linux/fpc-iii.git] / security / selinux / ss / conditional.c
blob34afeadd9e73ad458dcf0eefe29e1b62b83b913a
1 /* Authors: Karl MacMillan <kmacmillan@tresys.com>
2 * Frank Mayer <mayerf@tresys.com>
4 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, version 2.
8 */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/string.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
16 #include "security.h"
17 #include "conditional.h"
18 #include "services.h"
21 * cond_evaluate_expr evaluates a conditional expr
22 * in reverse polish notation. It returns true (1), false (0),
23 * or undefined (-1). Undefined occurs when the expression
24 * exceeds the stack depth of COND_EXPR_MAXDEPTH.
26 static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr)
29 struct cond_expr *cur;
30 int s[COND_EXPR_MAXDEPTH];
31 int sp = -1;
33 for (cur = expr; cur; cur = cur->next) {
34 switch (cur->expr_type) {
35 case COND_BOOL:
36 if (sp == (COND_EXPR_MAXDEPTH - 1))
37 return -1;
38 sp++;
39 s[sp] = p->bool_val_to_struct[cur->bool - 1]->state;
40 break;
41 case COND_NOT:
42 if (sp < 0)
43 return -1;
44 s[sp] = !s[sp];
45 break;
46 case COND_OR:
47 if (sp < 1)
48 return -1;
49 sp--;
50 s[sp] |= s[sp + 1];
51 break;
52 case COND_AND:
53 if (sp < 1)
54 return -1;
55 sp--;
56 s[sp] &= s[sp + 1];
57 break;
58 case COND_XOR:
59 if (sp < 1)
60 return -1;
61 sp--;
62 s[sp] ^= s[sp + 1];
63 break;
64 case COND_EQ:
65 if (sp < 1)
66 return -1;
67 sp--;
68 s[sp] = (s[sp] == s[sp + 1]);
69 break;
70 case COND_NEQ:
71 if (sp < 1)
72 return -1;
73 sp--;
74 s[sp] = (s[sp] != s[sp + 1]);
75 break;
76 default:
77 return -1;
80 return s[0];
84 * evaluate_cond_node evaluates the conditional stored in
85 * a struct cond_node and if the result is different than the
86 * current state of the node it sets the rules in the true/false
87 * list appropriately. If the result of the expression is undefined
88 * all of the rules are disabled for safety.
90 int evaluate_cond_node(struct policydb *p, struct cond_node *node)
92 int new_state;
93 struct cond_av_list *cur;
95 new_state = cond_evaluate_expr(p, node->expr);
96 if (new_state != node->cur_state) {
97 node->cur_state = new_state;
98 if (new_state == -1)
99 printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n");
100 /* turn the rules on or off */
101 for (cur = node->true_list; cur; cur = cur->next) {
102 if (new_state <= 0)
103 cur->node->key.specified &= ~AVTAB_ENABLED;
104 else
105 cur->node->key.specified |= AVTAB_ENABLED;
108 for (cur = node->false_list; cur; cur = cur->next) {
109 /* -1 or 1 */
110 if (new_state)
111 cur->node->key.specified &= ~AVTAB_ENABLED;
112 else
113 cur->node->key.specified |= AVTAB_ENABLED;
116 return 0;
119 int cond_policydb_init(struct policydb *p)
121 int rc;
123 p->bool_val_to_struct = NULL;
124 p->cond_list = NULL;
126 rc = avtab_init(&p->te_cond_avtab);
127 if (rc)
128 return rc;
130 return 0;
133 static void cond_av_list_destroy(struct cond_av_list *list)
135 struct cond_av_list *cur, *next;
136 for (cur = list; cur; cur = next) {
137 next = cur->next;
138 /* the avtab_ptr_t node is destroy by the avtab */
139 kfree(cur);
143 static void cond_node_destroy(struct cond_node *node)
145 struct cond_expr *cur_expr, *next_expr;
147 for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) {
148 next_expr = cur_expr->next;
149 kfree(cur_expr);
151 cond_av_list_destroy(node->true_list);
152 cond_av_list_destroy(node->false_list);
153 kfree(node);
156 static void cond_list_destroy(struct cond_node *list)
158 struct cond_node *next, *cur;
160 if (list == NULL)
161 return;
163 for (cur = list; cur; cur = next) {
164 next = cur->next;
165 cond_node_destroy(cur);
169 void cond_policydb_destroy(struct policydb *p)
171 kfree(p->bool_val_to_struct);
172 avtab_destroy(&p->te_cond_avtab);
173 cond_list_destroy(p->cond_list);
176 int cond_init_bool_indexes(struct policydb *p)
178 kfree(p->bool_val_to_struct);
179 p->bool_val_to_struct =
180 kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL);
181 if (!p->bool_val_to_struct)
182 return -ENOMEM;
183 return 0;
186 int cond_destroy_bool(void *key, void *datum, void *p)
188 kfree(key);
189 kfree(datum);
190 return 0;
193 int cond_index_bool(void *key, void *datum, void *datap)
195 struct policydb *p;
196 struct cond_bool_datum *booldatum;
197 struct flex_array *fa;
199 booldatum = datum;
200 p = datap;
202 if (!booldatum->value || booldatum->value > p->p_bools.nprim)
203 return -EINVAL;
205 fa = p->sym_val_to_name[SYM_BOOLS];
206 if (flex_array_put_ptr(fa, booldatum->value - 1, key,
207 GFP_KERNEL | __GFP_ZERO))
208 BUG();
209 p->bool_val_to_struct[booldatum->value - 1] = booldatum;
211 return 0;
214 static int bool_isvalid(struct cond_bool_datum *b)
216 if (!(b->state == 0 || b->state == 1))
217 return 0;
218 return 1;
221 int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp)
223 char *key = NULL;
224 struct cond_bool_datum *booldatum;
225 __le32 buf[3];
226 u32 len;
227 int rc;
229 booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL);
230 if (!booldatum)
231 return -ENOMEM;
233 rc = next_entry(buf, fp, sizeof buf);
234 if (rc)
235 goto err;
237 booldatum->value = le32_to_cpu(buf[0]);
238 booldatum->state = le32_to_cpu(buf[1]);
240 rc = -EINVAL;
241 if (!bool_isvalid(booldatum))
242 goto err;
244 len = le32_to_cpu(buf[2]);
245 if (((len == 0) || (len == (u32)-1)))
246 goto err;
248 rc = -ENOMEM;
249 key = kmalloc(len + 1, GFP_KERNEL);
250 if (!key)
251 goto err;
252 rc = next_entry(key, fp, len);
253 if (rc)
254 goto err;
255 key[len] = '\0';
256 rc = hashtab_insert(h, key, booldatum);
257 if (rc)
258 goto err;
260 return 0;
261 err:
262 cond_destroy_bool(key, booldatum, NULL);
263 return rc;
266 struct cond_insertf_data {
267 struct policydb *p;
268 struct cond_av_list *other;
269 struct cond_av_list *head;
270 struct cond_av_list *tail;
273 static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr)
275 struct cond_insertf_data *data = ptr;
276 struct policydb *p = data->p;
277 struct cond_av_list *other = data->other, *list, *cur;
278 struct avtab_node *node_ptr;
279 u8 found;
280 int rc = -EINVAL;
283 * For type rules we have to make certain there aren't any
284 * conflicting rules by searching the te_avtab and the
285 * cond_te_avtab.
287 if (k->specified & AVTAB_TYPE) {
288 if (avtab_search(&p->te_avtab, k)) {
289 printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n");
290 goto err;
293 * If we are reading the false list other will be a pointer to
294 * the true list. We can have duplicate entries if there is only
295 * 1 other entry and it is in our true list.
297 * If we are reading the true list (other == NULL) there shouldn't
298 * be any other entries.
300 if (other) {
301 node_ptr = avtab_search_node(&p->te_cond_avtab, k);
302 if (node_ptr) {
303 if (avtab_search_node_next(node_ptr, k->specified)) {
304 printk(KERN_ERR "SELinux: too many conflicting type rules.\n");
305 goto err;
307 found = 0;
308 for (cur = other; cur; cur = cur->next) {
309 if (cur->node == node_ptr) {
310 found = 1;
311 break;
314 if (!found) {
315 printk(KERN_ERR "SELinux: conflicting type rules.\n");
316 goto err;
319 } else {
320 if (avtab_search(&p->te_cond_avtab, k)) {
321 printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n");
322 goto err;
327 node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d);
328 if (!node_ptr) {
329 printk(KERN_ERR "SELinux: could not insert rule.\n");
330 rc = -ENOMEM;
331 goto err;
334 list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL);
335 if (!list) {
336 rc = -ENOMEM;
337 goto err;
340 list->node = node_ptr;
341 if (!data->head)
342 data->head = list;
343 else
344 data->tail->next = list;
345 data->tail = list;
346 return 0;
348 err:
349 cond_av_list_destroy(data->head);
350 data->head = NULL;
351 return rc;
354 static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other)
356 int i, rc;
357 __le32 buf[1];
358 u32 len;
359 struct cond_insertf_data data;
361 *ret_list = NULL;
363 len = 0;
364 rc = next_entry(buf, fp, sizeof(u32));
365 if (rc)
366 return rc;
368 len = le32_to_cpu(buf[0]);
369 if (len == 0)
370 return 0;
372 data.p = p;
373 data.other = other;
374 data.head = NULL;
375 data.tail = NULL;
376 for (i = 0; i < len; i++) {
377 rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf,
378 &data);
379 if (rc)
380 return rc;
383 *ret_list = data.head;
384 return 0;
387 static int expr_isvalid(struct policydb *p, struct cond_expr *expr)
389 if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) {
390 printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n");
391 return 0;
394 if (expr->bool > p->p_bools.nprim) {
395 printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n");
396 return 0;
398 return 1;
401 static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp)
403 __le32 buf[2];
404 u32 len, i;
405 int rc;
406 struct cond_expr *expr = NULL, *last = NULL;
408 rc = next_entry(buf, fp, sizeof(u32) * 2);
409 if (rc)
410 goto err;
412 node->cur_state = le32_to_cpu(buf[0]);
414 /* expr */
415 len = le32_to_cpu(buf[1]);
417 for (i = 0; i < len; i++) {
418 rc = next_entry(buf, fp, sizeof(u32) * 2);
419 if (rc)
420 goto err;
422 rc = -ENOMEM;
423 expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL);
424 if (!expr)
425 goto err;
427 expr->expr_type = le32_to_cpu(buf[0]);
428 expr->bool = le32_to_cpu(buf[1]);
430 if (!expr_isvalid(p, expr)) {
431 rc = -EINVAL;
432 kfree(expr);
433 goto err;
436 if (i == 0)
437 node->expr = expr;
438 else
439 last->next = expr;
440 last = expr;
443 rc = cond_read_av_list(p, fp, &node->true_list, NULL);
444 if (rc)
445 goto err;
446 rc = cond_read_av_list(p, fp, &node->false_list, node->true_list);
447 if (rc)
448 goto err;
449 return 0;
450 err:
451 cond_node_destroy(node);
452 return rc;
455 int cond_read_list(struct policydb *p, void *fp)
457 struct cond_node *node, *last = NULL;
458 __le32 buf[1];
459 u32 i, len;
460 int rc;
462 rc = next_entry(buf, fp, sizeof buf);
463 if (rc)
464 return rc;
466 len = le32_to_cpu(buf[0]);
468 rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel);
469 if (rc)
470 goto err;
472 for (i = 0; i < len; i++) {
473 rc = -ENOMEM;
474 node = kzalloc(sizeof(struct cond_node), GFP_KERNEL);
475 if (!node)
476 goto err;
478 rc = cond_read_node(p, node, fp);
479 if (rc)
480 goto err;
482 if (i == 0)
483 p->cond_list = node;
484 else
485 last->next = node;
486 last = node;
488 return 0;
489 err:
490 cond_list_destroy(p->cond_list);
491 p->cond_list = NULL;
492 return rc;
495 int cond_write_bool(void *vkey, void *datum, void *ptr)
497 char *key = vkey;
498 struct cond_bool_datum *booldatum = datum;
499 struct policy_data *pd = ptr;
500 void *fp = pd->fp;
501 __le32 buf[3];
502 u32 len;
503 int rc;
505 len = strlen(key);
506 buf[0] = cpu_to_le32(booldatum->value);
507 buf[1] = cpu_to_le32(booldatum->state);
508 buf[2] = cpu_to_le32(len);
509 rc = put_entry(buf, sizeof(u32), 3, fp);
510 if (rc)
511 return rc;
512 rc = put_entry(key, 1, len, fp);
513 if (rc)
514 return rc;
515 return 0;
519 * cond_write_cond_av_list doesn't write out the av_list nodes.
520 * Instead it writes out the key/value pairs from the avtab. This
521 * is necessary because there is no way to uniquely identifying rules
522 * in the avtab so it is not possible to associate individual rules
523 * in the avtab with a conditional without saving them as part of
524 * the conditional. This means that the avtab with the conditional
525 * rules will not be saved but will be rebuilt on policy load.
527 static int cond_write_av_list(struct policydb *p,
528 struct cond_av_list *list, struct policy_file *fp)
530 __le32 buf[1];
531 struct cond_av_list *cur_list;
532 u32 len;
533 int rc;
535 len = 0;
536 for (cur_list = list; cur_list != NULL; cur_list = cur_list->next)
537 len++;
539 buf[0] = cpu_to_le32(len);
540 rc = put_entry(buf, sizeof(u32), 1, fp);
541 if (rc)
542 return rc;
544 if (len == 0)
545 return 0;
547 for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) {
548 rc = avtab_write_item(p, cur_list->node, fp);
549 if (rc)
550 return rc;
553 return 0;
556 static int cond_write_node(struct policydb *p, struct cond_node *node,
557 struct policy_file *fp)
559 struct cond_expr *cur_expr;
560 __le32 buf[2];
561 int rc;
562 u32 len = 0;
564 buf[0] = cpu_to_le32(node->cur_state);
565 rc = put_entry(buf, sizeof(u32), 1, fp);
566 if (rc)
567 return rc;
569 for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next)
570 len++;
572 buf[0] = cpu_to_le32(len);
573 rc = put_entry(buf, sizeof(u32), 1, fp);
574 if (rc)
575 return rc;
577 for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) {
578 buf[0] = cpu_to_le32(cur_expr->expr_type);
579 buf[1] = cpu_to_le32(cur_expr->bool);
580 rc = put_entry(buf, sizeof(u32), 2, fp);
581 if (rc)
582 return rc;
585 rc = cond_write_av_list(p, node->true_list, fp);
586 if (rc)
587 return rc;
588 rc = cond_write_av_list(p, node->false_list, fp);
589 if (rc)
590 return rc;
592 return 0;
595 int cond_write_list(struct policydb *p, struct cond_node *list, void *fp)
597 struct cond_node *cur;
598 u32 len;
599 __le32 buf[1];
600 int rc;
602 len = 0;
603 for (cur = list; cur != NULL; cur = cur->next)
604 len++;
605 buf[0] = cpu_to_le32(len);
606 rc = put_entry(buf, sizeof(u32), 1, fp);
607 if (rc)
608 return rc;
610 for (cur = list; cur != NULL; cur = cur->next) {
611 rc = cond_write_node(p, cur, fp);
612 if (rc)
613 return rc;
616 return 0;
619 void cond_compute_xperms(struct avtab *ctab, struct avtab_key *key,
620 struct extended_perms_decision *xpermd)
622 struct avtab_node *node;
624 if (!ctab || !key || !xpermd)
625 return;
627 for (node = avtab_search_node(ctab, key); node;
628 node = avtab_search_node_next(node, key->specified)) {
629 if (node->key.specified & AVTAB_ENABLED)
630 services_compute_xperms_decision(xpermd, node);
632 return;
635 /* Determine whether additional permissions are granted by the conditional
636 * av table, and if so, add them to the result
638 void cond_compute_av(struct avtab *ctab, struct avtab_key *key,
639 struct av_decision *avd, struct extended_perms *xperms)
641 struct avtab_node *node;
643 if (!ctab || !key || !avd)
644 return;
646 for (node = avtab_search_node(ctab, key); node;
647 node = avtab_search_node_next(node, key->specified)) {
648 if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) ==
649 (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED)))
650 avd->allowed |= node->datum.u.data;
651 if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) ==
652 (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED)))
653 /* Since a '0' in an auditdeny mask represents a
654 * permission we do NOT want to audit (dontaudit), we use
655 * the '&' operand to ensure that all '0's in the mask
656 * are retained (much unlike the allow and auditallow cases).
658 avd->auditdeny &= node->datum.u.data;
659 if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) ==
660 (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED)))
661 avd->auditallow |= node->datum.u.data;
662 if (xperms && (node->key.specified & AVTAB_ENABLED) &&
663 (node->key.specified & AVTAB_XPERMS))
664 services_compute_xperms_drivers(xperms, node);
666 return;