2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 int selinux_policycap_netpeer
;
74 int selinux_policycap_openperm
;
75 int selinux_policycap_extsockclass
;
76 int selinux_policycap_alwaysnetwork
;
77 int selinux_policycap_cgroupseclabel
;
79 static DEFINE_RWLOCK(policy_rwlock
);
81 static struct sidtab sidtab
;
82 struct policydb policydb
;
86 * The largest sequence number that has been used when
87 * providing an access decision to the access vector cache.
88 * The sequence number only changes when a policy change
91 static u32 latest_granting
;
93 /* Forward declaration. */
94 static int context_struct_to_string(struct context
*context
, char **scontext
,
97 static void context_struct_compute_av(struct context
*scontext
,
98 struct context
*tcontext
,
100 struct av_decision
*avd
,
101 struct extended_perms
*xperms
);
103 struct selinux_mapping
{
104 u16 value
; /* policy value */
106 u32 perms
[sizeof(u32
) * 8];
109 static struct selinux_mapping
*current_mapping
;
110 static u16 current_mapping_size
;
112 static int selinux_set_mapping(struct policydb
*pol
,
113 struct security_class_mapping
*map
,
114 struct selinux_mapping
**out_map_p
,
117 struct selinux_mapping
*out_map
= NULL
;
118 size_t size
= sizeof(struct selinux_mapping
);
121 bool print_unknown_handle
= false;
123 /* Find number of classes in the input mapping */
130 /* Allocate space for the class records, plus one for class zero */
131 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
135 /* Store the raw class and permission values */
137 while (map
[j
].name
) {
138 struct security_class_mapping
*p_in
= map
+ (j
++);
139 struct selinux_mapping
*p_out
= out_map
+ j
;
141 /* An empty class string skips ahead */
142 if (!strcmp(p_in
->name
, "")) {
143 p_out
->num_perms
= 0;
147 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
150 "SELinux: Class %s not defined in policy.\n",
152 if (pol
->reject_unknown
)
154 p_out
->num_perms
= 0;
155 print_unknown_handle
= true;
160 while (p_in
->perms
&& p_in
->perms
[k
]) {
161 /* An empty permission string skips ahead */
162 if (!*p_in
->perms
[k
]) {
166 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
168 if (!p_out
->perms
[k
]) {
170 "SELinux: Permission %s in class %s not defined in policy.\n",
171 p_in
->perms
[k
], p_in
->name
);
172 if (pol
->reject_unknown
)
174 print_unknown_handle
= true;
179 p_out
->num_perms
= k
;
182 if (print_unknown_handle
)
183 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
184 pol
->allow_unknown
? "allowed" : "denied");
186 *out_map_p
= out_map
;
195 * Get real, policy values from mapped values
198 static u16
unmap_class(u16 tclass
)
200 if (tclass
< current_mapping_size
)
201 return current_mapping
[tclass
].value
;
207 * Get kernel value for class from its policy value
209 static u16
map_class(u16 pol_value
)
213 for (i
= 1; i
< current_mapping_size
; i
++) {
214 if (current_mapping
[i
].value
== pol_value
)
218 return SECCLASS_NULL
;
221 static void map_decision(u16 tclass
, struct av_decision
*avd
,
224 if (tclass
< current_mapping_size
) {
225 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
228 for (i
= 0, result
= 0; i
< n
; i
++) {
229 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
231 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
234 avd
->allowed
= result
;
236 for (i
= 0, result
= 0; i
< n
; i
++)
237 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
239 avd
->auditallow
= result
;
241 for (i
= 0, result
= 0; i
< n
; i
++) {
242 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
244 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
248 * In case the kernel has a bug and requests a permission
249 * between num_perms and the maximum permission number, we
250 * should audit that denial
252 for (; i
< (sizeof(u32
)*8); i
++)
254 avd
->auditdeny
= result
;
258 int security_mls_enabled(void)
260 return policydb
.mls_enabled
;
264 * Return the boolean value of a constraint expression
265 * when it is applied to the specified source and target
268 * xcontext is a special beast... It is used by the validatetrans rules
269 * only. For these rules, scontext is the context before the transition,
270 * tcontext is the context after the transition, and xcontext is the context
271 * of the process performing the transition. All other callers of
272 * constraint_expr_eval should pass in NULL for xcontext.
274 static int constraint_expr_eval(struct context
*scontext
,
275 struct context
*tcontext
,
276 struct context
*xcontext
,
277 struct constraint_expr
*cexpr
)
281 struct role_datum
*r1
, *r2
;
282 struct mls_level
*l1
, *l2
;
283 struct constraint_expr
*e
;
284 int s
[CEXPR_MAXDEPTH
];
287 for (e
= cexpr
; e
; e
= e
->next
) {
288 switch (e
->expr_type
) {
304 if (sp
== (CEXPR_MAXDEPTH
- 1))
308 val1
= scontext
->user
;
309 val2
= tcontext
->user
;
312 val1
= scontext
->type
;
313 val2
= tcontext
->type
;
316 val1
= scontext
->role
;
317 val2
= tcontext
->role
;
318 r1
= policydb
.role_val_to_struct
[val1
- 1];
319 r2
= policydb
.role_val_to_struct
[val2
- 1];
322 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
326 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
330 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
332 !ebitmap_get_bit(&r2
->dominates
,
340 l1
= &(scontext
->range
.level
[0]);
341 l2
= &(tcontext
->range
.level
[0]);
344 l1
= &(scontext
->range
.level
[0]);
345 l2
= &(tcontext
->range
.level
[1]);
348 l1
= &(scontext
->range
.level
[1]);
349 l2
= &(tcontext
->range
.level
[0]);
352 l1
= &(scontext
->range
.level
[1]);
353 l2
= &(tcontext
->range
.level
[1]);
356 l1
= &(scontext
->range
.level
[0]);
357 l2
= &(scontext
->range
.level
[1]);
360 l1
= &(tcontext
->range
.level
[0]);
361 l2
= &(tcontext
->range
.level
[1]);
366 s
[++sp
] = mls_level_eq(l1
, l2
);
369 s
[++sp
] = !mls_level_eq(l1
, l2
);
372 s
[++sp
] = mls_level_dom(l1
, l2
);
375 s
[++sp
] = mls_level_dom(l2
, l1
);
378 s
[++sp
] = mls_level_incomp(l2
, l1
);
392 s
[++sp
] = (val1
== val2
);
395 s
[++sp
] = (val1
!= val2
);
403 if (sp
== (CEXPR_MAXDEPTH
-1))
406 if (e
->attr
& CEXPR_TARGET
)
408 else if (e
->attr
& CEXPR_XTARGET
) {
415 if (e
->attr
& CEXPR_USER
)
417 else if (e
->attr
& CEXPR_ROLE
)
419 else if (e
->attr
& CEXPR_TYPE
)
428 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
431 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
449 * security_dump_masked_av - dumps masked permissions during
450 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
452 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
454 struct perm_datum
*pdatum
= d
;
455 char **permission_names
= args
;
457 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
459 permission_names
[pdatum
->value
- 1] = (char *)k
;
464 static void security_dump_masked_av(struct context
*scontext
,
465 struct context
*tcontext
,
470 struct common_datum
*common_dat
;
471 struct class_datum
*tclass_dat
;
472 struct audit_buffer
*ab
;
474 char *scontext_name
= NULL
;
475 char *tcontext_name
= NULL
;
476 char *permission_names
[32];
479 bool need_comma
= false;
484 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
485 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
486 common_dat
= tclass_dat
->comdatum
;
488 /* init permission_names */
490 hashtab_map(common_dat
->permissions
.table
,
491 dump_masked_av_helper
, permission_names
) < 0)
494 if (hashtab_map(tclass_dat
->permissions
.table
,
495 dump_masked_av_helper
, permission_names
) < 0)
498 /* get scontext/tcontext in text form */
499 if (context_struct_to_string(scontext
,
500 &scontext_name
, &length
) < 0)
503 if (context_struct_to_string(tcontext
,
504 &tcontext_name
, &length
) < 0)
507 /* audit a message */
508 ab
= audit_log_start(current
->audit_context
,
509 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
513 audit_log_format(ab
, "op=security_compute_av reason=%s "
514 "scontext=%s tcontext=%s tclass=%s perms=",
515 reason
, scontext_name
, tcontext_name
, tclass_name
);
517 for (index
= 0; index
< 32; index
++) {
518 u32 mask
= (1 << index
);
520 if ((mask
& permissions
) == 0)
523 audit_log_format(ab
, "%s%s",
524 need_comma
? "," : "",
525 permission_names
[index
]
526 ? permission_names
[index
] : "????");
531 /* release scontext/tcontext */
532 kfree(tcontext_name
);
533 kfree(scontext_name
);
539 * security_boundary_permission - drops violated permissions
540 * on boundary constraint.
542 static void type_attribute_bounds_av(struct context
*scontext
,
543 struct context
*tcontext
,
545 struct av_decision
*avd
)
547 struct context lo_scontext
;
548 struct context lo_tcontext
, *tcontextp
= tcontext
;
549 struct av_decision lo_avd
;
550 struct type_datum
*source
;
551 struct type_datum
*target
;
554 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
561 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
565 memset(&lo_avd
, 0, sizeof(lo_avd
));
567 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
568 lo_scontext
.type
= source
->bounds
;
570 if (target
->bounds
) {
571 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
572 lo_tcontext
.type
= target
->bounds
;
573 tcontextp
= &lo_tcontext
;
576 context_struct_compute_av(&lo_scontext
,
582 masked
= ~lo_avd
.allowed
& avd
->allowed
;
585 return; /* no masked permission */
587 /* mask violated permissions */
588 avd
->allowed
&= ~masked
;
590 /* audit masked permissions */
591 security_dump_masked_av(scontext
, tcontext
,
592 tclass
, masked
, "bounds");
596 * flag which drivers have permissions
597 * only looking for ioctl based extended permssions
599 void services_compute_xperms_drivers(
600 struct extended_perms
*xperms
,
601 struct avtab_node
*node
)
605 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
606 /* if one or more driver has all permissions allowed */
607 for (i
= 0; i
< ARRAY_SIZE(xperms
->drivers
.p
); i
++)
608 xperms
->drivers
.p
[i
] |= node
->datum
.u
.xperms
->perms
.p
[i
];
609 } else if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
610 /* if allowing permissions within a driver */
611 security_xperm_set(xperms
->drivers
.p
,
612 node
->datum
.u
.xperms
->driver
);
615 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
616 if (node
->key
.specified
& AVTAB_XPERMS_ALLOWED
)
621 * Compute access vectors and extended permissions based on a context
622 * structure pair for the permissions in a particular class.
624 static void context_struct_compute_av(struct context
*scontext
,
625 struct context
*tcontext
,
627 struct av_decision
*avd
,
628 struct extended_perms
*xperms
)
630 struct constraint_node
*constraint
;
631 struct role_allow
*ra
;
632 struct avtab_key avkey
;
633 struct avtab_node
*node
;
634 struct class_datum
*tclass_datum
;
635 struct ebitmap
*sattr
, *tattr
;
636 struct ebitmap_node
*snode
, *tnode
;
641 avd
->auditdeny
= 0xffffffff;
643 memset(&xperms
->drivers
, 0, sizeof(xperms
->drivers
));
647 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
648 if (printk_ratelimit())
649 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
653 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
656 * If a specific type enforcement rule was defined for
657 * this permission check, then use it.
659 avkey
.target_class
= tclass
;
660 avkey
.specified
= AVTAB_AV
| AVTAB_XPERMS
;
661 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
663 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
665 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
666 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
667 avkey
.source_type
= i
+ 1;
668 avkey
.target_type
= j
+ 1;
669 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
671 node
= avtab_search_node_next(node
, avkey
.specified
)) {
672 if (node
->key
.specified
== AVTAB_ALLOWED
)
673 avd
->allowed
|= node
->datum
.u
.data
;
674 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
675 avd
->auditallow
|= node
->datum
.u
.data
;
676 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
677 avd
->auditdeny
&= node
->datum
.u
.data
;
678 else if (xperms
&& (node
->key
.specified
& AVTAB_XPERMS
))
679 services_compute_xperms_drivers(xperms
, node
);
682 /* Check conditional av table for additional permissions */
683 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
,
690 * Remove any permissions prohibited by a constraint (this includes
693 constraint
= tclass_datum
->constraints
;
695 if ((constraint
->permissions
& (avd
->allowed
)) &&
696 !constraint_expr_eval(scontext
, tcontext
, NULL
,
698 avd
->allowed
&= ~(constraint
->permissions
);
700 constraint
= constraint
->next
;
704 * If checking process transition permission and the
705 * role is changing, then check the (current_role, new_role)
708 if (tclass
== policydb
.process_class
&&
709 (avd
->allowed
& policydb
.process_trans_perms
) &&
710 scontext
->role
!= tcontext
->role
) {
711 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
712 if (scontext
->role
== ra
->role
&&
713 tcontext
->role
== ra
->new_role
)
717 avd
->allowed
&= ~policydb
.process_trans_perms
;
721 * If the given source and target types have boundary
722 * constraint, lazy checks have to mask any violated
723 * permission and notice it to userspace via audit.
725 type_attribute_bounds_av(scontext
, tcontext
,
729 static int security_validtrans_handle_fail(struct context
*ocontext
,
730 struct context
*ncontext
,
731 struct context
*tcontext
,
734 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
735 u32 olen
, nlen
, tlen
;
737 if (context_struct_to_string(ocontext
, &o
, &olen
))
739 if (context_struct_to_string(ncontext
, &n
, &nlen
))
741 if (context_struct_to_string(tcontext
, &t
, &tlen
))
743 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
744 "op=security_validate_transition seresult=denied"
745 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
746 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
752 if (!selinux_enforcing
)
757 static int security_compute_validatetrans(u32 oldsid
, u32 newsid
, u32 tasksid
,
758 u16 orig_tclass
, bool user
)
760 struct context
*ocontext
;
761 struct context
*ncontext
;
762 struct context
*tcontext
;
763 struct class_datum
*tclass_datum
;
764 struct constraint_node
*constraint
;
771 read_lock(&policy_rwlock
);
774 tclass
= unmap_class(orig_tclass
);
776 tclass
= orig_tclass
;
778 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
782 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
784 ocontext
= sidtab_search(&sidtab
, oldsid
);
786 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
792 ncontext
= sidtab_search(&sidtab
, newsid
);
794 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
800 tcontext
= sidtab_search(&sidtab
, tasksid
);
802 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
808 constraint
= tclass_datum
->validatetrans
;
810 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
815 rc
= security_validtrans_handle_fail(ocontext
,
821 constraint
= constraint
->next
;
825 read_unlock(&policy_rwlock
);
829 int security_validate_transition_user(u32 oldsid
, u32 newsid
, u32 tasksid
,
832 return security_compute_validatetrans(oldsid
, newsid
, tasksid
,
836 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
839 return security_compute_validatetrans(oldsid
, newsid
, tasksid
,
844 * security_bounded_transition - check whether the given
845 * transition is directed to bounded, or not.
846 * It returns 0, if @newsid is bounded by @oldsid.
847 * Otherwise, it returns error code.
849 * @oldsid : current security identifier
850 * @newsid : destinated security identifier
852 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
854 struct context
*old_context
, *new_context
;
855 struct type_datum
*type
;
859 read_lock(&policy_rwlock
);
862 old_context
= sidtab_search(&sidtab
, old_sid
);
864 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
870 new_context
= sidtab_search(&sidtab
, new_sid
);
872 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
878 /* type/domain unchanged */
879 if (old_context
->type
== new_context
->type
)
882 index
= new_context
->type
;
884 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
888 /* not bounded anymore */
893 /* @newsid is bounded by @oldsid */
895 if (type
->bounds
== old_context
->type
)
898 index
= type
->bounds
;
902 char *old_name
= NULL
;
903 char *new_name
= NULL
;
906 if (!context_struct_to_string(old_context
,
907 &old_name
, &length
) &&
908 !context_struct_to_string(new_context
,
909 &new_name
, &length
)) {
910 audit_log(current
->audit_context
,
911 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
912 "op=security_bounded_transition "
914 "oldcontext=%s newcontext=%s",
921 read_unlock(&policy_rwlock
);
926 static void avd_init(struct av_decision
*avd
)
930 avd
->auditdeny
= 0xffffffff;
931 avd
->seqno
= latest_granting
;
935 void services_compute_xperms_decision(struct extended_perms_decision
*xpermd
,
936 struct avtab_node
*node
)
940 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
941 if (xpermd
->driver
!= node
->datum
.u
.xperms
->driver
)
943 } else if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
944 if (!security_xperm_test(node
->datum
.u
.xperms
->perms
.p
,
951 if (node
->key
.specified
== AVTAB_XPERMS_ALLOWED
) {
952 xpermd
->used
|= XPERMS_ALLOWED
;
953 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
954 memset(xpermd
->allowed
->p
, 0xff,
955 sizeof(xpermd
->allowed
->p
));
957 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
958 for (i
= 0; i
< ARRAY_SIZE(xpermd
->allowed
->p
); i
++)
959 xpermd
->allowed
->p
[i
] |=
960 node
->datum
.u
.xperms
->perms
.p
[i
];
962 } else if (node
->key
.specified
== AVTAB_XPERMS_AUDITALLOW
) {
963 xpermd
->used
|= XPERMS_AUDITALLOW
;
964 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
965 memset(xpermd
->auditallow
->p
, 0xff,
966 sizeof(xpermd
->auditallow
->p
));
968 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
969 for (i
= 0; i
< ARRAY_SIZE(xpermd
->auditallow
->p
); i
++)
970 xpermd
->auditallow
->p
[i
] |=
971 node
->datum
.u
.xperms
->perms
.p
[i
];
973 } else if (node
->key
.specified
== AVTAB_XPERMS_DONTAUDIT
) {
974 xpermd
->used
|= XPERMS_DONTAUDIT
;
975 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
976 memset(xpermd
->dontaudit
->p
, 0xff,
977 sizeof(xpermd
->dontaudit
->p
));
979 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
980 for (i
= 0; i
< ARRAY_SIZE(xpermd
->dontaudit
->p
); i
++)
981 xpermd
->dontaudit
->p
[i
] |=
982 node
->datum
.u
.xperms
->perms
.p
[i
];
989 void security_compute_xperms_decision(u32 ssid
,
993 struct extended_perms_decision
*xpermd
)
996 struct context
*scontext
, *tcontext
;
997 struct avtab_key avkey
;
998 struct avtab_node
*node
;
999 struct ebitmap
*sattr
, *tattr
;
1000 struct ebitmap_node
*snode
, *tnode
;
1003 xpermd
->driver
= driver
;
1005 memset(xpermd
->allowed
->p
, 0, sizeof(xpermd
->allowed
->p
));
1006 memset(xpermd
->auditallow
->p
, 0, sizeof(xpermd
->auditallow
->p
));
1007 memset(xpermd
->dontaudit
->p
, 0, sizeof(xpermd
->dontaudit
->p
));
1009 read_lock(&policy_rwlock
);
1010 if (!ss_initialized
)
1013 scontext
= sidtab_search(&sidtab
, ssid
);
1015 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1020 tcontext
= sidtab_search(&sidtab
, tsid
);
1022 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1027 tclass
= unmap_class(orig_tclass
);
1028 if (unlikely(orig_tclass
&& !tclass
)) {
1029 if (policydb
.allow_unknown
)
1035 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
1036 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass
);
1040 avkey
.target_class
= tclass
;
1041 avkey
.specified
= AVTAB_XPERMS
;
1042 sattr
= flex_array_get(policydb
.type_attr_map_array
,
1043 scontext
->type
- 1);
1045 tattr
= flex_array_get(policydb
.type_attr_map_array
,
1046 tcontext
->type
- 1);
1048 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
1049 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
1050 avkey
.source_type
= i
+ 1;
1051 avkey
.target_type
= j
+ 1;
1052 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
1054 node
= avtab_search_node_next(node
, avkey
.specified
))
1055 services_compute_xperms_decision(xpermd
, node
);
1057 cond_compute_xperms(&policydb
.te_cond_avtab
,
1062 read_unlock(&policy_rwlock
);
1065 memset(xpermd
->allowed
->p
, 0xff, sizeof(xpermd
->allowed
->p
));
1070 * security_compute_av - Compute access vector decisions.
1071 * @ssid: source security identifier
1072 * @tsid: target security identifier
1073 * @tclass: target security class
1074 * @avd: access vector decisions
1075 * @xperms: extended permissions
1077 * Compute a set of access vector decisions based on the
1078 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1080 void security_compute_av(u32 ssid
,
1083 struct av_decision
*avd
,
1084 struct extended_perms
*xperms
)
1087 struct context
*scontext
= NULL
, *tcontext
= NULL
;
1089 read_lock(&policy_rwlock
);
1092 if (!ss_initialized
)
1095 scontext
= sidtab_search(&sidtab
, ssid
);
1097 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1102 /* permissive domain? */
1103 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
1104 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
1106 tcontext
= sidtab_search(&sidtab
, tsid
);
1108 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1113 tclass
= unmap_class(orig_tclass
);
1114 if (unlikely(orig_tclass
&& !tclass
)) {
1115 if (policydb
.allow_unknown
)
1119 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
, xperms
);
1120 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
1122 read_unlock(&policy_rwlock
);
1125 avd
->allowed
= 0xffffffff;
1129 void security_compute_av_user(u32 ssid
,
1132 struct av_decision
*avd
)
1134 struct context
*scontext
= NULL
, *tcontext
= NULL
;
1136 read_lock(&policy_rwlock
);
1138 if (!ss_initialized
)
1141 scontext
= sidtab_search(&sidtab
, ssid
);
1143 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1148 /* permissive domain? */
1149 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
1150 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
1152 tcontext
= sidtab_search(&sidtab
, tsid
);
1154 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1159 if (unlikely(!tclass
)) {
1160 if (policydb
.allow_unknown
)
1165 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
, NULL
);
1167 read_unlock(&policy_rwlock
);
1170 avd
->allowed
= 0xffffffff;
1175 * Write the security context string representation of
1176 * the context structure `context' into a dynamically
1177 * allocated string of the correct size. Set `*scontext'
1178 * to point to this string and set `*scontext_len' to
1179 * the length of the string.
1181 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1190 *scontext_len
= context
->len
;
1192 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1199 /* Compute the size of the context. */
1200 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1201 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1202 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1203 *scontext_len
+= mls_compute_context_len(context
);
1208 /* Allocate space for the context; caller must free this space. */
1209 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1212 *scontext
= scontextp
;
1215 * Copy the user name, role name and type name into the context.
1217 scontextp
+= sprintf(scontextp
, "%s:%s:%s",
1218 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1219 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1220 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1222 mls_sid_to_context(context
, &scontextp
);
1229 #include "initial_sid_to_string.h"
1231 const char *security_get_initial_sid_context(u32 sid
)
1233 if (unlikely(sid
> SECINITSID_NUM
))
1235 return initial_sid_to_string
[sid
];
1238 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1239 u32
*scontext_len
, int force
)
1241 struct context
*context
;
1248 if (!ss_initialized
) {
1249 if (sid
<= SECINITSID_NUM
) {
1252 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1255 scontextp
= kmemdup(initial_sid_to_string
[sid
],
1256 *scontext_len
, GFP_ATOMIC
);
1261 *scontext
= scontextp
;
1264 printk(KERN_ERR
"SELinux: %s: called before initial "
1265 "load_policy on unknown SID %d\n", __func__
, sid
);
1269 read_lock(&policy_rwlock
);
1271 context
= sidtab_search_force(&sidtab
, sid
);
1273 context
= sidtab_search(&sidtab
, sid
);
1275 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1280 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1282 read_unlock(&policy_rwlock
);
1289 * security_sid_to_context - Obtain a context for a given SID.
1290 * @sid: security identifier, SID
1291 * @scontext: security context
1292 * @scontext_len: length in bytes
1294 * Write the string representation of the context associated with @sid
1295 * into a dynamically allocated string of the correct size. Set @scontext
1296 * to point to this string and set @scontext_len to the length of the string.
1298 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1300 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1303 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1305 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1309 * Caveat: Mutates scontext.
1311 static int string_to_context_struct(struct policydb
*pol
,
1312 struct sidtab
*sidtabp
,
1315 struct context
*ctx
,
1318 struct role_datum
*role
;
1319 struct type_datum
*typdatum
;
1320 struct user_datum
*usrdatum
;
1321 char *scontextp
, *p
, oldc
;
1326 /* Parse the security context. */
1329 scontextp
= (char *) scontext
;
1331 /* Extract the user. */
1333 while (*p
&& *p
!= ':')
1341 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1345 ctx
->user
= usrdatum
->value
;
1349 while (*p
&& *p
!= ':')
1357 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1360 ctx
->role
= role
->value
;
1364 while (*p
&& *p
!= ':')
1369 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1370 if (!typdatum
|| typdatum
->attribute
)
1373 ctx
->type
= typdatum
->value
;
1375 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1380 if ((p
- scontext
) < scontext_len
)
1383 /* Check the validity of the new context. */
1384 if (!policydb_context_isvalid(pol
, ctx
))
1389 context_destroy(ctx
);
1393 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1394 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1397 char *scontext2
, *str
= NULL
;
1398 struct context context
;
1401 /* An empty security context is never valid. */
1405 if (!ss_initialized
) {
1408 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1409 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1414 *sid
= SECINITSID_KERNEL
;
1419 /* Copy the string so that we can modify the copy as we parse it. */
1420 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1423 memcpy(scontext2
, scontext
, scontext_len
);
1424 scontext2
[scontext_len
] = 0;
1427 /* Save another copy for storing in uninterpreted form */
1429 str
= kstrdup(scontext2
, gfp_flags
);
1434 read_lock(&policy_rwlock
);
1435 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1436 scontext_len
, &context
, def_sid
);
1437 if (rc
== -EINVAL
&& force
) {
1439 context
.len
= scontext_len
;
1443 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1444 context_destroy(&context
);
1446 read_unlock(&policy_rwlock
);
1454 * security_context_to_sid - Obtain a SID for a given security context.
1455 * @scontext: security context
1456 * @scontext_len: length in bytes
1457 * @sid: security identifier, SID
1458 * @gfp: context for the allocation
1460 * Obtains a SID associated with the security context that
1461 * has the string representation specified by @scontext.
1462 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1463 * memory is available, or 0 on success.
1465 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
,
1468 return security_context_to_sid_core(scontext
, scontext_len
,
1469 sid
, SECSID_NULL
, gfp
, 0);
1472 int security_context_str_to_sid(const char *scontext
, u32
*sid
, gfp_t gfp
)
1474 return security_context_to_sid(scontext
, strlen(scontext
), sid
, gfp
);
1478 * security_context_to_sid_default - Obtain a SID for a given security context,
1479 * falling back to specified default if needed.
1481 * @scontext: security context
1482 * @scontext_len: length in bytes
1483 * @sid: security identifier, SID
1484 * @def_sid: default SID to assign on error
1486 * Obtains a SID associated with the security context that
1487 * has the string representation specified by @scontext.
1488 * The default SID is passed to the MLS layer to be used to allow
1489 * kernel labeling of the MLS field if the MLS field is not present
1490 * (for upgrading to MLS without full relabel).
1491 * Implicitly forces adding of the context even if it cannot be mapped yet.
1492 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1493 * memory is available, or 0 on success.
1495 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1496 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1498 return security_context_to_sid_core(scontext
, scontext_len
,
1499 sid
, def_sid
, gfp_flags
, 1);
1502 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1505 return security_context_to_sid_core(scontext
, scontext_len
,
1506 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1509 static int compute_sid_handle_invalid_context(
1510 struct context
*scontext
,
1511 struct context
*tcontext
,
1513 struct context
*newcontext
)
1515 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1516 u32 slen
, tlen
, nlen
;
1518 if (context_struct_to_string(scontext
, &s
, &slen
))
1520 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1522 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1524 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1525 "op=security_compute_sid invalid_context=%s"
1529 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1534 if (!selinux_enforcing
)
1539 static void filename_compute_type(struct policydb
*p
, struct context
*newcontext
,
1540 u32 stype
, u32 ttype
, u16 tclass
,
1541 const char *objname
)
1543 struct filename_trans ft
;
1544 struct filename_trans_datum
*otype
;
1547 * Most filename trans rules are going to live in specific directories
1548 * like /dev or /var/run. This bitmap will quickly skip rule searches
1549 * if the ttype does not contain any rules.
1551 if (!ebitmap_get_bit(&p
->filename_trans_ttypes
, ttype
))
1559 otype
= hashtab_search(p
->filename_trans
, &ft
);
1561 newcontext
->type
= otype
->otype
;
1564 static int security_compute_sid(u32 ssid
,
1568 const char *objname
,
1572 struct class_datum
*cladatum
= NULL
;
1573 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1574 struct role_trans
*roletr
= NULL
;
1575 struct avtab_key avkey
;
1576 struct avtab_datum
*avdatum
;
1577 struct avtab_node
*node
;
1582 if (!ss_initialized
) {
1583 switch (orig_tclass
) {
1584 case SECCLASS_PROCESS
: /* kernel value */
1594 context_init(&newcontext
);
1596 read_lock(&policy_rwlock
);
1599 tclass
= unmap_class(orig_tclass
);
1600 sock
= security_is_socket_class(orig_tclass
);
1602 tclass
= orig_tclass
;
1603 sock
= security_is_socket_class(map_class(tclass
));
1606 scontext
= sidtab_search(&sidtab
, ssid
);
1608 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1613 tcontext
= sidtab_search(&sidtab
, tsid
);
1615 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1621 if (tclass
&& tclass
<= policydb
.p_classes
.nprim
)
1622 cladatum
= policydb
.class_val_to_struct
[tclass
- 1];
1624 /* Set the user identity. */
1625 switch (specified
) {
1626 case AVTAB_TRANSITION
:
1628 if (cladatum
&& cladatum
->default_user
== DEFAULT_TARGET
) {
1629 newcontext
.user
= tcontext
->user
;
1631 /* notice this gets both DEFAULT_SOURCE and unset */
1632 /* Use the process user identity. */
1633 newcontext
.user
= scontext
->user
;
1637 /* Use the related object owner. */
1638 newcontext
.user
= tcontext
->user
;
1642 /* Set the role to default values. */
1643 if (cladatum
&& cladatum
->default_role
== DEFAULT_SOURCE
) {
1644 newcontext
.role
= scontext
->role
;
1645 } else if (cladatum
&& cladatum
->default_role
== DEFAULT_TARGET
) {
1646 newcontext
.role
= tcontext
->role
;
1648 if ((tclass
== policydb
.process_class
) || (sock
== true))
1649 newcontext
.role
= scontext
->role
;
1651 newcontext
.role
= OBJECT_R_VAL
;
1654 /* Set the type to default values. */
1655 if (cladatum
&& cladatum
->default_type
== DEFAULT_SOURCE
) {
1656 newcontext
.type
= scontext
->type
;
1657 } else if (cladatum
&& cladatum
->default_type
== DEFAULT_TARGET
) {
1658 newcontext
.type
= tcontext
->type
;
1660 if ((tclass
== policydb
.process_class
) || (sock
== true)) {
1661 /* Use the type of process. */
1662 newcontext
.type
= scontext
->type
;
1664 /* Use the type of the related object. */
1665 newcontext
.type
= tcontext
->type
;
1669 /* Look for a type transition/member/change rule. */
1670 avkey
.source_type
= scontext
->type
;
1671 avkey
.target_type
= tcontext
->type
;
1672 avkey
.target_class
= tclass
;
1673 avkey
.specified
= specified
;
1674 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1676 /* If no permanent rule, also check for enabled conditional rules */
1678 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1679 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1680 if (node
->key
.specified
& AVTAB_ENABLED
) {
1681 avdatum
= &node
->datum
;
1688 /* Use the type from the type transition/member/change rule. */
1689 newcontext
.type
= avdatum
->u
.data
;
1692 /* if we have a objname this is a file trans check so check those rules */
1694 filename_compute_type(&policydb
, &newcontext
, scontext
->type
,
1695 tcontext
->type
, tclass
, objname
);
1697 /* Check for class-specific changes. */
1698 if (specified
& AVTAB_TRANSITION
) {
1699 /* Look for a role transition rule. */
1700 for (roletr
= policydb
.role_tr
; roletr
; roletr
= roletr
->next
) {
1701 if ((roletr
->role
== scontext
->role
) &&
1702 (roletr
->type
== tcontext
->type
) &&
1703 (roletr
->tclass
== tclass
)) {
1704 /* Use the role transition rule. */
1705 newcontext
.role
= roletr
->new_role
;
1711 /* Set the MLS attributes.
1712 This is done last because it may allocate memory. */
1713 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
,
1718 /* Check the validity of the context. */
1719 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1720 rc
= compute_sid_handle_invalid_context(scontext
,
1727 /* Obtain the sid for the context. */
1728 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1730 read_unlock(&policy_rwlock
);
1731 context_destroy(&newcontext
);
1737 * security_transition_sid - Compute the SID for a new subject/object.
1738 * @ssid: source security identifier
1739 * @tsid: target security identifier
1740 * @tclass: target security class
1741 * @out_sid: security identifier for new subject/object
1743 * Compute a SID to use for labeling a new subject or object in the
1744 * class @tclass based on a SID pair (@ssid, @tsid).
1745 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1746 * if insufficient memory is available, or %0 if the new SID was
1747 * computed successfully.
1749 int security_transition_sid(u32 ssid
, u32 tsid
, u16 tclass
,
1750 const struct qstr
*qstr
, u32
*out_sid
)
1752 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1753 qstr
? qstr
->name
: NULL
, out_sid
, true);
1756 int security_transition_sid_user(u32 ssid
, u32 tsid
, u16 tclass
,
1757 const char *objname
, u32
*out_sid
)
1759 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1760 objname
, out_sid
, false);
1764 * security_member_sid - Compute the SID for member selection.
1765 * @ssid: source security identifier
1766 * @tsid: target security identifier
1767 * @tclass: target security class
1768 * @out_sid: security identifier for selected member
1770 * Compute a SID to use when selecting a member of a polyinstantiated
1771 * object of class @tclass based on a SID pair (@ssid, @tsid).
1772 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1773 * if insufficient memory is available, or %0 if the SID was
1774 * computed successfully.
1776 int security_member_sid(u32 ssid
,
1781 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, NULL
,
1786 * security_change_sid - Compute the SID for object relabeling.
1787 * @ssid: source security identifier
1788 * @tsid: target security identifier
1789 * @tclass: target security class
1790 * @out_sid: security identifier for selected member
1792 * Compute a SID to use for relabeling an object of class @tclass
1793 * based on a SID pair (@ssid, @tsid).
1794 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1795 * if insufficient memory is available, or %0 if the SID was
1796 * computed successfully.
1798 int security_change_sid(u32 ssid
,
1803 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, NULL
,
1807 /* Clone the SID into the new SID table. */
1808 static int clone_sid(u32 sid
,
1809 struct context
*context
,
1812 struct sidtab
*s
= arg
;
1814 if (sid
> SECINITSID_NUM
)
1815 return sidtab_insert(s
, sid
, context
);
1820 static inline int convert_context_handle_invalid_context(struct context
*context
)
1825 if (selinux_enforcing
)
1828 if (!context_struct_to_string(context
, &s
, &len
)) {
1829 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1835 struct convert_context_args
{
1836 struct policydb
*oldp
;
1837 struct policydb
*newp
;
1841 * Convert the values in the security context
1842 * structure `c' from the values specified
1843 * in the policy `p->oldp' to the values specified
1844 * in the policy `p->newp'. Verify that the
1845 * context is valid under the new policy.
1847 static int convert_context(u32 key
,
1851 struct convert_context_args
*args
;
1852 struct context oldc
;
1853 struct ocontext
*oc
;
1854 struct mls_range
*range
;
1855 struct role_datum
*role
;
1856 struct type_datum
*typdatum
;
1857 struct user_datum
*usrdatum
;
1862 if (key
<= SECINITSID_NUM
)
1871 s
= kstrdup(c
->str
, GFP_KERNEL
);
1875 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1876 c
->len
, &ctx
, SECSID_NULL
);
1879 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1881 /* Replace string with mapped representation. */
1883 memcpy(c
, &ctx
, sizeof(*c
));
1885 } else if (rc
== -EINVAL
) {
1886 /* Retain string representation for later mapping. */
1890 /* Other error condition, e.g. ENOMEM. */
1891 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1897 rc
= context_cpy(&oldc
, c
);
1901 /* Convert the user. */
1903 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1904 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1907 c
->user
= usrdatum
->value
;
1909 /* Convert the role. */
1911 role
= hashtab_search(args
->newp
->p_roles
.table
,
1912 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1915 c
->role
= role
->value
;
1917 /* Convert the type. */
1919 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1920 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1923 c
->type
= typdatum
->value
;
1925 /* Convert the MLS fields if dealing with MLS policies */
1926 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1927 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1930 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1932 * Switching between MLS and non-MLS policy:
1933 * free any storage used by the MLS fields in the
1934 * context for all existing entries in the sidtab.
1936 mls_context_destroy(c
);
1937 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1939 * Switching between non-MLS and MLS policy:
1940 * ensure that the MLS fields of the context for all
1941 * existing entries in the sidtab are filled in with a
1942 * suitable default value, likely taken from one of the
1945 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1946 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1950 printk(KERN_ERR
"SELinux: unable to look up"
1951 " the initial SIDs list\n");
1954 range
= &oc
->context
[0].range
;
1955 rc
= mls_range_set(c
, range
);
1960 /* Check the validity of the new context. */
1961 if (!policydb_context_isvalid(args
->newp
, c
)) {
1962 rc
= convert_context_handle_invalid_context(&oldc
);
1967 context_destroy(&oldc
);
1973 /* Map old representation to string and save it. */
1974 rc
= context_struct_to_string(&oldc
, &s
, &len
);
1977 context_destroy(&oldc
);
1981 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
1987 static void security_load_policycaps(void)
1989 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1990 POLICYDB_CAPABILITY_NETPEER
);
1991 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1992 POLICYDB_CAPABILITY_OPENPERM
);
1993 selinux_policycap_extsockclass
= ebitmap_get_bit(&policydb
.policycaps
,
1994 POLICYDB_CAPABILITY_EXTSOCKCLASS
);
1995 selinux_policycap_alwaysnetwork
= ebitmap_get_bit(&policydb
.policycaps
,
1996 POLICYDB_CAPABILITY_ALWAYSNETWORK
);
1997 selinux_policycap_cgroupseclabel
=
1998 ebitmap_get_bit(&policydb
.policycaps
,
1999 POLICYDB_CAPABILITY_CGROUPSECLABEL
);
2002 static int security_preserve_bools(struct policydb
*p
);
2005 * security_load_policy - Load a security policy configuration.
2006 * @data: binary policy data
2007 * @len: length of data in bytes
2009 * Load a new set of security policy configuration data,
2010 * validate it and convert the SID table as necessary.
2011 * This function will flush the access vector cache after
2012 * loading the new policy.
2014 int security_load_policy(void *data
, size_t len
)
2016 struct policydb
*oldpolicydb
, *newpolicydb
;
2017 struct sidtab oldsidtab
, newsidtab
;
2018 struct selinux_mapping
*oldmap
, *map
= NULL
;
2019 struct convert_context_args args
;
2023 struct policy_file file
= { data
, len
}, *fp
= &file
;
2025 oldpolicydb
= kzalloc(2 * sizeof(*oldpolicydb
), GFP_KERNEL
);
2030 newpolicydb
= oldpolicydb
+ 1;
2032 if (!ss_initialized
) {
2034 rc
= policydb_read(&policydb
, fp
);
2036 avtab_cache_destroy();
2041 rc
= selinux_set_mapping(&policydb
, secclass_map
,
2043 ¤t_mapping_size
);
2045 policydb_destroy(&policydb
);
2046 avtab_cache_destroy();
2050 rc
= policydb_load_isids(&policydb
, &sidtab
);
2052 policydb_destroy(&policydb
);
2053 avtab_cache_destroy();
2057 security_load_policycaps();
2059 seqno
= ++latest_granting
;
2060 selinux_complete_init();
2061 avc_ss_reset(seqno
);
2062 selnl_notify_policyload(seqno
);
2063 selinux_status_update_policyload(seqno
);
2064 selinux_netlbl_cache_invalidate();
2065 selinux_xfrm_notify_policyload();
2070 sidtab_hash_eval(&sidtab
, "sids");
2073 rc
= policydb_read(newpolicydb
, fp
);
2077 newpolicydb
->len
= len
;
2078 /* If switching between different policy types, log MLS status */
2079 if (policydb
.mls_enabled
&& !newpolicydb
->mls_enabled
)
2080 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
2081 else if (!policydb
.mls_enabled
&& newpolicydb
->mls_enabled
)
2082 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
2084 rc
= policydb_load_isids(newpolicydb
, &newsidtab
);
2086 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
2087 policydb_destroy(newpolicydb
);
2091 rc
= selinux_set_mapping(newpolicydb
, secclass_map
, &map
, &map_size
);
2095 rc
= security_preserve_bools(newpolicydb
);
2097 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
2101 /* Clone the SID table. */
2102 sidtab_shutdown(&sidtab
);
2104 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
2109 * Convert the internal representations of contexts
2110 * in the new SID table.
2112 args
.oldp
= &policydb
;
2113 args
.newp
= newpolicydb
;
2114 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
2116 printk(KERN_ERR
"SELinux: unable to convert the internal"
2117 " representation of contexts in the new SID"
2122 /* Save the old policydb and SID table to free later. */
2123 memcpy(oldpolicydb
, &policydb
, sizeof(policydb
));
2124 sidtab_set(&oldsidtab
, &sidtab
);
2126 /* Install the new policydb and SID table. */
2127 write_lock_irq(&policy_rwlock
);
2128 memcpy(&policydb
, newpolicydb
, sizeof(policydb
));
2129 sidtab_set(&sidtab
, &newsidtab
);
2130 security_load_policycaps();
2131 oldmap
= current_mapping
;
2132 current_mapping
= map
;
2133 current_mapping_size
= map_size
;
2134 seqno
= ++latest_granting
;
2135 write_unlock_irq(&policy_rwlock
);
2137 /* Free the old policydb and SID table. */
2138 policydb_destroy(oldpolicydb
);
2139 sidtab_destroy(&oldsidtab
);
2142 avc_ss_reset(seqno
);
2143 selnl_notify_policyload(seqno
);
2144 selinux_status_update_policyload(seqno
);
2145 selinux_netlbl_cache_invalidate();
2146 selinux_xfrm_notify_policyload();
2153 sidtab_destroy(&newsidtab
);
2154 policydb_destroy(newpolicydb
);
2161 size_t security_policydb_len(void)
2165 read_lock(&policy_rwlock
);
2167 read_unlock(&policy_rwlock
);
2173 * security_port_sid - Obtain the SID for a port.
2174 * @protocol: protocol number
2175 * @port: port number
2176 * @out_sid: security identifier
2178 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
2183 read_lock(&policy_rwlock
);
2185 c
= policydb
.ocontexts
[OCON_PORT
];
2187 if (c
->u
.port
.protocol
== protocol
&&
2188 c
->u
.port
.low_port
<= port
&&
2189 c
->u
.port
.high_port
>= port
)
2196 rc
= sidtab_context_to_sid(&sidtab
,
2202 *out_sid
= c
->sid
[0];
2204 *out_sid
= SECINITSID_PORT
;
2208 read_unlock(&policy_rwlock
);
2213 * security_netif_sid - Obtain the SID for a network interface.
2214 * @name: interface name
2215 * @if_sid: interface SID
2217 int security_netif_sid(char *name
, u32
*if_sid
)
2222 read_lock(&policy_rwlock
);
2224 c
= policydb
.ocontexts
[OCON_NETIF
];
2226 if (strcmp(name
, c
->u
.name
) == 0)
2232 if (!c
->sid
[0] || !c
->sid
[1]) {
2233 rc
= sidtab_context_to_sid(&sidtab
,
2238 rc
= sidtab_context_to_sid(&sidtab
,
2244 *if_sid
= c
->sid
[0];
2246 *if_sid
= SECINITSID_NETIF
;
2249 read_unlock(&policy_rwlock
);
2253 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
2257 for (i
= 0; i
< 4; i
++)
2258 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2267 * security_node_sid - Obtain the SID for a node (host).
2268 * @domain: communication domain aka address family
2270 * @addrlen: address length in bytes
2271 * @out_sid: security identifier
2273 int security_node_sid(u16 domain
,
2281 read_lock(&policy_rwlock
);
2288 if (addrlen
!= sizeof(u32
))
2291 addr
= *((u32
*)addrp
);
2293 c
= policydb
.ocontexts
[OCON_NODE
];
2295 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2304 if (addrlen
!= sizeof(u64
) * 2)
2306 c
= policydb
.ocontexts
[OCON_NODE6
];
2308 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2317 *out_sid
= SECINITSID_NODE
;
2323 rc
= sidtab_context_to_sid(&sidtab
,
2329 *out_sid
= c
->sid
[0];
2331 *out_sid
= SECINITSID_NODE
;
2336 read_unlock(&policy_rwlock
);
2343 * security_get_user_sids - Obtain reachable SIDs for a user.
2344 * @fromsid: starting SID
2345 * @username: username
2346 * @sids: array of reachable SIDs for user
2347 * @nel: number of elements in @sids
2349 * Generate the set of SIDs for legal security contexts
2350 * for a given user that can be reached by @fromsid.
2351 * Set *@sids to point to a dynamically allocated
2352 * array containing the set of SIDs. Set *@nel to the
2353 * number of elements in the array.
2356 int security_get_user_sids(u32 fromsid
,
2361 struct context
*fromcon
, usercon
;
2362 u32
*mysids
= NULL
, *mysids2
, sid
;
2363 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2364 struct user_datum
*user
;
2365 struct role_datum
*role
;
2366 struct ebitmap_node
*rnode
, *tnode
;
2372 if (!ss_initialized
)
2375 read_lock(&policy_rwlock
);
2377 context_init(&usercon
);
2380 fromcon
= sidtab_search(&sidtab
, fromsid
);
2385 user
= hashtab_search(policydb
.p_users
.table
, username
);
2389 usercon
.user
= user
->value
;
2392 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2396 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2397 role
= policydb
.role_val_to_struct
[i
];
2398 usercon
.role
= i
+ 1;
2399 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2400 usercon
.type
= j
+ 1;
2402 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2405 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2408 if (mynel
< maxnel
) {
2409 mysids
[mynel
++] = sid
;
2413 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2416 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2419 mysids
[mynel
++] = sid
;
2425 read_unlock(&policy_rwlock
);
2432 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2437 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2438 struct av_decision dummy_avd
;
2439 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2440 SECCLASS_PROCESS
, /* kernel value */
2441 PROCESS__TRANSITION
, AVC_STRICT
,
2444 mysids2
[j
++] = mysids
[i
];
2456 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2457 * @fstype: filesystem type
2458 * @path: path from root of mount
2459 * @sclass: file security class
2460 * @sid: SID for path
2462 * Obtain a SID to use for a file in a filesystem that
2463 * cannot support xattr or use a fixed labeling behavior like
2464 * transition SIDs or task SIDs.
2466 * The caller must acquire the policy_rwlock before calling this function.
2468 static inline int __security_genfs_sid(const char *fstype
,
2475 struct genfs
*genfs
;
2479 while (path
[0] == '/' && path
[1] == '/')
2482 sclass
= unmap_class(orig_sclass
);
2483 *sid
= SECINITSID_UNLABELED
;
2485 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2486 cmp
= strcmp(fstype
, genfs
->fstype
);
2495 for (c
= genfs
->head
; c
; c
= c
->next
) {
2496 len
= strlen(c
->u
.name
);
2497 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2498 (strncmp(c
->u
.name
, path
, len
) == 0))
2507 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2519 * security_genfs_sid - Obtain a SID for a file in a filesystem
2520 * @fstype: filesystem type
2521 * @path: path from root of mount
2522 * @sclass: file security class
2523 * @sid: SID for path
2525 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2528 int security_genfs_sid(const char *fstype
,
2535 read_lock(&policy_rwlock
);
2536 retval
= __security_genfs_sid(fstype
, path
, orig_sclass
, sid
);
2537 read_unlock(&policy_rwlock
);
2542 * security_fs_use - Determine how to handle labeling for a filesystem.
2543 * @sb: superblock in question
2545 int security_fs_use(struct super_block
*sb
)
2549 struct superblock_security_struct
*sbsec
= sb
->s_security
;
2550 const char *fstype
= sb
->s_type
->name
;
2552 read_lock(&policy_rwlock
);
2554 c
= policydb
.ocontexts
[OCON_FSUSE
];
2556 if (strcmp(fstype
, c
->u
.name
) == 0)
2562 sbsec
->behavior
= c
->v
.behavior
;
2564 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2569 sbsec
->sid
= c
->sid
[0];
2571 rc
= __security_genfs_sid(fstype
, "/", SECCLASS_DIR
,
2574 sbsec
->behavior
= SECURITY_FS_USE_NONE
;
2577 sbsec
->behavior
= SECURITY_FS_USE_GENFS
;
2582 read_unlock(&policy_rwlock
);
2586 int security_get_bools(int *len
, char ***names
, int **values
)
2590 read_lock(&policy_rwlock
);
2595 *len
= policydb
.p_bools
.nprim
;
2600 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2605 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2609 for (i
= 0; i
< *len
; i
++) {
2610 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2613 (*names
)[i
] = kstrdup(sym_name(&policydb
, SYM_BOOLS
, i
), GFP_ATOMIC
);
2619 read_unlock(&policy_rwlock
);
2623 for (i
= 0; i
< *len
; i
++)
2631 int security_set_bools(int len
, int *values
)
2634 int lenp
, seqno
= 0;
2635 struct cond_node
*cur
;
2637 write_lock_irq(&policy_rwlock
);
2640 lenp
= policydb
.p_bools
.nprim
;
2644 for (i
= 0; i
< len
; i
++) {
2645 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2646 audit_log(current
->audit_context
, GFP_ATOMIC
,
2647 AUDIT_MAC_CONFIG_CHANGE
,
2648 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2649 sym_name(&policydb
, SYM_BOOLS
, i
),
2651 policydb
.bool_val_to_struct
[i
]->state
,
2652 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
2653 audit_get_sessionid(current
));
2656 policydb
.bool_val_to_struct
[i
]->state
= 1;
2658 policydb
.bool_val_to_struct
[i
]->state
= 0;
2661 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2662 rc
= evaluate_cond_node(&policydb
, cur
);
2667 seqno
= ++latest_granting
;
2670 write_unlock_irq(&policy_rwlock
);
2672 avc_ss_reset(seqno
);
2673 selnl_notify_policyload(seqno
);
2674 selinux_status_update_policyload(seqno
);
2675 selinux_xfrm_notify_policyload();
2680 int security_get_bool_value(int index
)
2685 read_lock(&policy_rwlock
);
2688 len
= policydb
.p_bools
.nprim
;
2692 rc
= policydb
.bool_val_to_struct
[index
]->state
;
2694 read_unlock(&policy_rwlock
);
2698 static int security_preserve_bools(struct policydb
*p
)
2700 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2701 char **bnames
= NULL
;
2702 struct cond_bool_datum
*booldatum
;
2703 struct cond_node
*cur
;
2705 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2708 for (i
= 0; i
< nbools
; i
++) {
2709 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2711 booldatum
->state
= bvalues
[i
];
2713 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2714 rc
= evaluate_cond_node(p
, cur
);
2721 for (i
= 0; i
< nbools
; i
++)
2730 * security_sid_mls_copy() - computes a new sid based on the given
2731 * sid and the mls portion of mls_sid.
2733 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2735 struct context
*context1
;
2736 struct context
*context2
;
2737 struct context newcon
;
2743 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2748 context_init(&newcon
);
2750 read_lock(&policy_rwlock
);
2753 context1
= sidtab_search(&sidtab
, sid
);
2755 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2761 context2
= sidtab_search(&sidtab
, mls_sid
);
2763 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2768 newcon
.user
= context1
->user
;
2769 newcon
.role
= context1
->role
;
2770 newcon
.type
= context1
->type
;
2771 rc
= mls_context_cpy(&newcon
, context2
);
2775 /* Check the validity of the new context. */
2776 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2777 rc
= convert_context_handle_invalid_context(&newcon
);
2779 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2780 audit_log(current
->audit_context
,
2781 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2782 "op=security_sid_mls_copy "
2783 "invalid_context=%s", s
);
2790 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2792 read_unlock(&policy_rwlock
);
2793 context_destroy(&newcon
);
2799 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2800 * @nlbl_sid: NetLabel SID
2801 * @nlbl_type: NetLabel labeling protocol type
2802 * @xfrm_sid: XFRM SID
2805 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2806 * resolved into a single SID it is returned via @peer_sid and the function
2807 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2808 * returns a negative value. A table summarizing the behavior is below:
2810 * | function return | @sid
2811 * ------------------------------+-----------------+-----------------
2812 * no peer labels | 0 | SECSID_NULL
2813 * single peer label | 0 | <peer_label>
2814 * multiple, consistent labels | 0 | <peer_label>
2815 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2818 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2823 struct context
*nlbl_ctx
;
2824 struct context
*xfrm_ctx
;
2826 *peer_sid
= SECSID_NULL
;
2828 /* handle the common (which also happens to be the set of easy) cases
2829 * right away, these two if statements catch everything involving a
2830 * single or absent peer SID/label */
2831 if (xfrm_sid
== SECSID_NULL
) {
2832 *peer_sid
= nlbl_sid
;
2835 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2836 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2838 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2839 *peer_sid
= xfrm_sid
;
2843 /* we don't need to check ss_initialized here since the only way both
2844 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2845 * security server was initialized and ss_initialized was true */
2846 if (!policydb
.mls_enabled
)
2849 read_lock(&policy_rwlock
);
2852 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2854 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2855 __func__
, nlbl_sid
);
2859 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2861 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2862 __func__
, xfrm_sid
);
2865 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2869 /* at present NetLabel SIDs/labels really only carry MLS
2870 * information so if the MLS portion of the NetLabel SID
2871 * matches the MLS portion of the labeled XFRM SID/label
2872 * then pass along the XFRM SID as it is the most
2874 *peer_sid
= xfrm_sid
;
2876 read_unlock(&policy_rwlock
);
2880 static int get_classes_callback(void *k
, void *d
, void *args
)
2882 struct class_datum
*datum
= d
;
2883 char *name
= k
, **classes
= args
;
2884 int value
= datum
->value
- 1;
2886 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2887 if (!classes
[value
])
2893 int security_get_classes(char ***classes
, int *nclasses
)
2897 read_lock(&policy_rwlock
);
2900 *nclasses
= policydb
.p_classes
.nprim
;
2901 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
2905 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2909 for (i
= 0; i
< *nclasses
; i
++)
2910 kfree((*classes
)[i
]);
2915 read_unlock(&policy_rwlock
);
2919 static int get_permissions_callback(void *k
, void *d
, void *args
)
2921 struct perm_datum
*datum
= d
;
2922 char *name
= k
, **perms
= args
;
2923 int value
= datum
->value
- 1;
2925 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2932 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2935 struct class_datum
*match
;
2937 read_lock(&policy_rwlock
);
2940 match
= hashtab_search(policydb
.p_classes
.table
, class);
2942 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2948 *nperms
= match
->permissions
.nprim
;
2949 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
2953 if (match
->comdatum
) {
2954 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2955 get_permissions_callback
, *perms
);
2960 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2966 read_unlock(&policy_rwlock
);
2970 read_unlock(&policy_rwlock
);
2971 for (i
= 0; i
< *nperms
; i
++)
2977 int security_get_reject_unknown(void)
2979 return policydb
.reject_unknown
;
2982 int security_get_allow_unknown(void)
2984 return policydb
.allow_unknown
;
2988 * security_policycap_supported - Check for a specific policy capability
2989 * @req_cap: capability
2992 * This function queries the currently loaded policy to see if it supports the
2993 * capability specified by @req_cap. Returns true (1) if the capability is
2994 * supported, false (0) if it isn't supported.
2997 int security_policycap_supported(unsigned int req_cap
)
3001 read_lock(&policy_rwlock
);
3002 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
3003 read_unlock(&policy_rwlock
);
3008 struct selinux_audit_rule
{
3010 struct context au_ctxt
;
3013 void selinux_audit_rule_free(void *vrule
)
3015 struct selinux_audit_rule
*rule
= vrule
;
3018 context_destroy(&rule
->au_ctxt
);
3023 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
3025 struct selinux_audit_rule
*tmprule
;
3026 struct role_datum
*roledatum
;
3027 struct type_datum
*typedatum
;
3028 struct user_datum
*userdatum
;
3029 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
3034 if (!ss_initialized
)
3038 case AUDIT_SUBJ_USER
:
3039 case AUDIT_SUBJ_ROLE
:
3040 case AUDIT_SUBJ_TYPE
:
3041 case AUDIT_OBJ_USER
:
3042 case AUDIT_OBJ_ROLE
:
3043 case AUDIT_OBJ_TYPE
:
3044 /* only 'equals' and 'not equals' fit user, role, and type */
3045 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
3048 case AUDIT_SUBJ_SEN
:
3049 case AUDIT_SUBJ_CLR
:
3050 case AUDIT_OBJ_LEV_LOW
:
3051 case AUDIT_OBJ_LEV_HIGH
:
3052 /* we do not allow a range, indicated by the presence of '-' */
3053 if (strchr(rulestr
, '-'))
3057 /* only the above fields are valid */
3061 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
3065 context_init(&tmprule
->au_ctxt
);
3067 read_lock(&policy_rwlock
);
3069 tmprule
->au_seqno
= latest_granting
;
3072 case AUDIT_SUBJ_USER
:
3073 case AUDIT_OBJ_USER
:
3075 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
3078 tmprule
->au_ctxt
.user
= userdatum
->value
;
3080 case AUDIT_SUBJ_ROLE
:
3081 case AUDIT_OBJ_ROLE
:
3083 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
3086 tmprule
->au_ctxt
.role
= roledatum
->value
;
3088 case AUDIT_SUBJ_TYPE
:
3089 case AUDIT_OBJ_TYPE
:
3091 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
3094 tmprule
->au_ctxt
.type
= typedatum
->value
;
3096 case AUDIT_SUBJ_SEN
:
3097 case AUDIT_SUBJ_CLR
:
3098 case AUDIT_OBJ_LEV_LOW
:
3099 case AUDIT_OBJ_LEV_HIGH
:
3100 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
3107 read_unlock(&policy_rwlock
);
3110 selinux_audit_rule_free(tmprule
);
3119 /* Check to see if the rule contains any selinux fields */
3120 int selinux_audit_rule_known(struct audit_krule
*rule
)
3124 for (i
= 0; i
< rule
->field_count
; i
++) {
3125 struct audit_field
*f
= &rule
->fields
[i
];
3127 case AUDIT_SUBJ_USER
:
3128 case AUDIT_SUBJ_ROLE
:
3129 case AUDIT_SUBJ_TYPE
:
3130 case AUDIT_SUBJ_SEN
:
3131 case AUDIT_SUBJ_CLR
:
3132 case AUDIT_OBJ_USER
:
3133 case AUDIT_OBJ_ROLE
:
3134 case AUDIT_OBJ_TYPE
:
3135 case AUDIT_OBJ_LEV_LOW
:
3136 case AUDIT_OBJ_LEV_HIGH
:
3144 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
3145 struct audit_context
*actx
)
3147 struct context
*ctxt
;
3148 struct mls_level
*level
;
3149 struct selinux_audit_rule
*rule
= vrule
;
3152 if (unlikely(!rule
)) {
3153 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3157 read_lock(&policy_rwlock
);
3159 if (rule
->au_seqno
< latest_granting
) {
3164 ctxt
= sidtab_search(&sidtab
, sid
);
3165 if (unlikely(!ctxt
)) {
3166 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3172 /* a field/op pair that is not caught here will simply fall through
3175 case AUDIT_SUBJ_USER
:
3176 case AUDIT_OBJ_USER
:
3179 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
3181 case Audit_not_equal
:
3182 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
3186 case AUDIT_SUBJ_ROLE
:
3187 case AUDIT_OBJ_ROLE
:
3190 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
3192 case Audit_not_equal
:
3193 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
3197 case AUDIT_SUBJ_TYPE
:
3198 case AUDIT_OBJ_TYPE
:
3201 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
3203 case Audit_not_equal
:
3204 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
3208 case AUDIT_SUBJ_SEN
:
3209 case AUDIT_SUBJ_CLR
:
3210 case AUDIT_OBJ_LEV_LOW
:
3211 case AUDIT_OBJ_LEV_HIGH
:
3212 level
= ((field
== AUDIT_SUBJ_SEN
||
3213 field
== AUDIT_OBJ_LEV_LOW
) ?
3214 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
3217 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3220 case Audit_not_equal
:
3221 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3225 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3227 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3231 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3235 match
= (mls_level_dom(level
,
3236 &rule
->au_ctxt
.range
.level
[0]) &&
3237 !mls_level_eq(level
,
3238 &rule
->au_ctxt
.range
.level
[0]));
3241 match
= mls_level_dom(level
,
3242 &rule
->au_ctxt
.range
.level
[0]);
3248 read_unlock(&policy_rwlock
);
3252 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
3254 static int aurule_avc_callback(u32 event
)
3258 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
3259 err
= aurule_callback();
3263 static int __init
aurule_init(void)
3267 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
);
3269 panic("avc_add_callback() failed, error %d\n", err
);
3273 __initcall(aurule_init
);
3275 #ifdef CONFIG_NETLABEL
3277 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3278 * @secattr: the NetLabel packet security attributes
3279 * @sid: the SELinux SID
3282 * Attempt to cache the context in @ctx, which was derived from the packet in
3283 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3284 * already been initialized.
3287 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3292 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3293 if (sid_cache
== NULL
)
3295 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3296 if (secattr
->cache
== NULL
) {
3302 secattr
->cache
->free
= kfree
;
3303 secattr
->cache
->data
= sid_cache
;
3304 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3308 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3309 * @secattr: the NetLabel packet security attributes
3310 * @sid: the SELinux SID
3313 * Convert the given NetLabel security attributes in @secattr into a
3314 * SELinux SID. If the @secattr field does not contain a full SELinux
3315 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3316 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3317 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3318 * conversion for future lookups. Returns zero on success, negative values on
3322 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3326 struct context
*ctx
;
3327 struct context ctx_new
;
3329 if (!ss_initialized
) {
3334 read_lock(&policy_rwlock
);
3336 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3337 *sid
= *(u32
*)secattr
->cache
->data
;
3338 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3339 *sid
= secattr
->attr
.secid
;
3340 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3342 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3346 context_init(&ctx_new
);
3347 ctx_new
.user
= ctx
->user
;
3348 ctx_new
.role
= ctx
->role
;
3349 ctx_new
.type
= ctx
->type
;
3350 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3351 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3352 rc
= mls_import_netlbl_cat(&ctx_new
, secattr
);
3357 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3360 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3364 security_netlbl_cache_add(secattr
, *sid
);
3366 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3370 read_unlock(&policy_rwlock
);
3373 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3375 read_unlock(&policy_rwlock
);
3380 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3381 * @sid: the SELinux SID
3382 * @secattr: the NetLabel packet security attributes
3385 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3386 * Returns zero on success, negative values on failure.
3389 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3392 struct context
*ctx
;
3394 if (!ss_initialized
)
3397 read_lock(&policy_rwlock
);
3400 ctx
= sidtab_search(&sidtab
, sid
);
3405 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3407 if (secattr
->domain
== NULL
)
3410 secattr
->attr
.secid
= sid
;
3411 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3412 mls_export_netlbl_lvl(ctx
, secattr
);
3413 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3415 read_unlock(&policy_rwlock
);
3418 #endif /* CONFIG_NETLABEL */
3421 * security_read_policy - read the policy.
3422 * @data: binary policy data
3423 * @len: length of data in bytes
3426 int security_read_policy(void **data
, size_t *len
)
3429 struct policy_file fp
;
3431 if (!ss_initialized
)
3434 *len
= security_policydb_len();
3436 *data
= vmalloc_user(*len
);
3443 read_lock(&policy_rwlock
);
3444 rc
= policydb_write(&policydb
, &fp
);
3445 read_unlock(&policy_rwlock
);
3450 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;