Linux 4.14.124
[linux/fpc-iii.git] / mm / huge_memory.c
blob930f2aa3bb4d39151eab9018fbb927f3e7f55ef9
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
42 * By default transparent hugepage support is disabled in order that avoid
43 * to risk increase the memory footprint of applications without a guaranteed
44 * benefit. When transparent hugepage support is enabled, is for all mappings,
45 * and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 static struct shrinker deferred_split_shrinker;
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
65 static struct page *get_huge_zero_page(void)
67 struct page *zero_page;
68 retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
70 return READ_ONCE(huge_zero_page);
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
73 HPAGE_PMD_ORDER);
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
76 return NULL;
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
79 preempt_disable();
80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
81 preempt_enable();
82 __free_pages(zero_page, compound_order(zero_page));
83 goto retry;
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
89 return READ_ONCE(huge_zero_page);
92 static void put_huge_zero_page(void)
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
101 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
106 if (!get_huge_zero_page())
107 return NULL;
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
112 return READ_ONCE(huge_zero_page);
115 void mm_put_huge_zero_page(struct mm_struct *mm)
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
121 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
128 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
134 __free_pages(zero_page, compound_order(zero_page));
135 return HPAGE_PMD_NR;
138 return 0;
141 static struct shrinker huge_zero_page_shrinker = {
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
144 .seeks = DEFAULT_SEEKS,
147 #ifdef CONFIG_SYSFS
148 static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
159 static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
163 ssize_t ret = count;
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
180 if (ret > 0) {
181 int err = start_stop_khugepaged();
182 if (err)
183 ret = err;
185 return ret;
187 static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
190 ssize_t single_hugepage_flag_show(struct kobject *kobj,
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
198 ssize_t single_hugepage_flag_store(struct kobject *kobj,
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
203 unsigned long value;
204 int ret;
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
212 if (value)
213 set_bit(flag, &transparent_hugepage_flags);
214 else
215 clear_bit(flag, &transparent_hugepage_flags);
217 return count;
220 static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
234 static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
271 return count;
273 static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
276 static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
279 return single_hugepage_flag_show(kobj, attr, buf,
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
282 static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
285 return single_hugepage_flag_store(kobj, attr, buf, count,
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288 static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
291 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
296 static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
299 #ifdef CONFIG_DEBUG_VM
300 static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
303 return single_hugepage_flag_show(kobj, attr, buf,
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
306 static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
310 return single_hugepage_flag_store(kobj, attr, buf, count,
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313 static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315 #endif /* CONFIG_DEBUG_VM */
317 static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
320 &use_zero_page_attr.attr,
321 &hpage_pmd_size_attr.attr,
322 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
323 &shmem_enabled_attr.attr,
324 #endif
325 #ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327 #endif
328 NULL,
331 static const struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
337 int err;
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
341 pr_err("failed to create transparent hugepage kobject\n");
342 return -ENOMEM;
345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 if (err) {
347 pr_err("failed to register transparent hugepage group\n");
348 goto delete_obj;
351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 if (err) {
353 pr_err("failed to register transparent hugepage group\n");
354 goto remove_hp_group;
357 return 0;
359 remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375 return 0;
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 #endif /* CONFIG_SYSFS */
383 static int __init hugepage_init(void)
385 int err;
386 struct kobject *hugepage_kobj;
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
394 * hugepages can't be allocated by the buddy allocator
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
405 goto err_sysfs;
407 err = khugepaged_init();
408 if (err)
409 goto err_slab;
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
424 transparent_hugepage_flags = 0;
425 return 0;
428 err = start_stop_khugepaged();
429 if (err)
430 goto err_khugepaged;
432 return 0;
433 err_khugepaged:
434 unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 khugepaged_destroy();
439 err_slab:
440 hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 return err;
444 subsys_initcall(hugepage_init);
446 static int __init setup_transparent_hugepage(char *str)
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
470 out:
471 if (!ret)
472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 return ret;
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
484 static inline struct list_head *page_deferred_list(struct page *page)
487 * ->lru in the tail pages is occupied by compound_head.
488 * Let's use ->mapping + ->index in the second tail page as list_head.
490 return (struct list_head *)&page[2].mapping;
493 void prep_transhuge_page(struct page *page)
496 * we use page->mapping and page->indexlru in second tail page
497 * as list_head: assuming THP order >= 2
500 INIT_LIST_HEAD(page_deferred_list(page));
501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
504 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 loff_t off, unsigned long flags, unsigned long size)
507 unsigned long addr;
508 loff_t off_end = off + len;
509 loff_t off_align = round_up(off, size);
510 unsigned long len_pad;
512 if (off_end <= off_align || (off_end - off_align) < size)
513 return 0;
515 len_pad = len + size;
516 if (len_pad < len || (off + len_pad) < off)
517 return 0;
519 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 off >> PAGE_SHIFT, flags);
521 if (IS_ERR_VALUE(addr))
522 return 0;
524 addr += (off - addr) & (size - 1);
525 return addr;
528 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 unsigned long len, unsigned long pgoff, unsigned long flags)
531 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
533 if (addr)
534 goto out;
535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 goto out;
538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 if (addr)
540 return addr;
542 out:
543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
545 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
547 static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
548 gfp_t gfp)
550 struct vm_area_struct *vma = vmf->vma;
551 struct mem_cgroup *memcg;
552 pgtable_t pgtable;
553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
554 int ret = 0;
556 VM_BUG_ON_PAGE(!PageCompound(page), page);
558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg,
559 true)) {
560 put_page(page);
561 count_vm_event(THP_FAULT_FALLBACK);
562 return VM_FAULT_FALLBACK;
565 pgtable = pte_alloc_one(vma->vm_mm, haddr);
566 if (unlikely(!pgtable)) {
567 ret = VM_FAULT_OOM;
568 goto release;
571 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
573 * The memory barrier inside __SetPageUptodate makes sure that
574 * clear_huge_page writes become visible before the set_pmd_at()
575 * write.
577 __SetPageUptodate(page);
579 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
580 if (unlikely(!pmd_none(*vmf->pmd))) {
581 goto unlock_release;
582 } else {
583 pmd_t entry;
585 ret = check_stable_address_space(vma->vm_mm);
586 if (ret)
587 goto unlock_release;
589 /* Deliver the page fault to userland */
590 if (userfaultfd_missing(vma)) {
591 int ret;
593 spin_unlock(vmf->ptl);
594 mem_cgroup_cancel_charge(page, memcg, true);
595 put_page(page);
596 pte_free(vma->vm_mm, pgtable);
597 ret = handle_userfault(vmf, VM_UFFD_MISSING);
598 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
599 return ret;
602 entry = mk_huge_pmd(page, vma->vm_page_prot);
603 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
604 page_add_new_anon_rmap(page, vma, haddr, true);
605 mem_cgroup_commit_charge(page, memcg, false, true);
606 lru_cache_add_active_or_unevictable(page, vma);
607 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
608 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
609 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
610 atomic_long_inc(&vma->vm_mm->nr_ptes);
611 spin_unlock(vmf->ptl);
612 count_vm_event(THP_FAULT_ALLOC);
615 return 0;
616 unlock_release:
617 spin_unlock(vmf->ptl);
618 release:
619 if (pgtable)
620 pte_free(vma->vm_mm, pgtable);
621 mem_cgroup_cancel_charge(page, memcg, true);
622 put_page(page);
623 return ret;
628 * always: directly stall for all thp allocations
629 * defer: wake kswapd and fail if not immediately available
630 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
631 * fail if not immediately available
632 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
633 * available
634 * never: never stall for any thp allocation
636 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
638 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
640 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
641 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
642 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
643 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
644 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
645 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
646 __GFP_KSWAPD_RECLAIM);
647 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
648 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
650 return GFP_TRANSHUGE_LIGHT;
653 /* Caller must hold page table lock. */
654 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
655 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
656 struct page *zero_page)
658 pmd_t entry;
659 if (!pmd_none(*pmd))
660 return false;
661 entry = mk_pmd(zero_page, vma->vm_page_prot);
662 entry = pmd_mkhuge(entry);
663 if (pgtable)
664 pgtable_trans_huge_deposit(mm, pmd, pgtable);
665 set_pmd_at(mm, haddr, pmd, entry);
666 atomic_long_inc(&mm->nr_ptes);
667 return true;
670 int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
672 struct vm_area_struct *vma = vmf->vma;
673 gfp_t gfp;
674 struct page *page;
675 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
677 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
678 return VM_FAULT_FALLBACK;
679 if (unlikely(anon_vma_prepare(vma)))
680 return VM_FAULT_OOM;
681 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
682 return VM_FAULT_OOM;
683 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
684 !mm_forbids_zeropage(vma->vm_mm) &&
685 transparent_hugepage_use_zero_page()) {
686 pgtable_t pgtable;
687 struct page *zero_page;
688 bool set;
689 int ret;
690 pgtable = pte_alloc_one(vma->vm_mm, haddr);
691 if (unlikely(!pgtable))
692 return VM_FAULT_OOM;
693 zero_page = mm_get_huge_zero_page(vma->vm_mm);
694 if (unlikely(!zero_page)) {
695 pte_free(vma->vm_mm, pgtable);
696 count_vm_event(THP_FAULT_FALLBACK);
697 return VM_FAULT_FALLBACK;
699 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
700 ret = 0;
701 set = false;
702 if (pmd_none(*vmf->pmd)) {
703 ret = check_stable_address_space(vma->vm_mm);
704 if (ret) {
705 spin_unlock(vmf->ptl);
706 } else if (userfaultfd_missing(vma)) {
707 spin_unlock(vmf->ptl);
708 ret = handle_userfault(vmf, VM_UFFD_MISSING);
709 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
710 } else {
711 set_huge_zero_page(pgtable, vma->vm_mm, vma,
712 haddr, vmf->pmd, zero_page);
713 spin_unlock(vmf->ptl);
714 set = true;
716 } else
717 spin_unlock(vmf->ptl);
718 if (!set)
719 pte_free(vma->vm_mm, pgtable);
720 return ret;
722 gfp = alloc_hugepage_direct_gfpmask(vma);
723 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
724 if (unlikely(!page)) {
725 count_vm_event(THP_FAULT_FALLBACK);
726 return VM_FAULT_FALLBACK;
728 prep_transhuge_page(page);
729 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
732 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
733 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
734 pgtable_t pgtable)
736 struct mm_struct *mm = vma->vm_mm;
737 pmd_t entry;
738 spinlock_t *ptl;
740 ptl = pmd_lock(mm, pmd);
741 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
742 if (pfn_t_devmap(pfn))
743 entry = pmd_mkdevmap(entry);
744 if (write) {
745 entry = pmd_mkyoung(pmd_mkdirty(entry));
746 entry = maybe_pmd_mkwrite(entry, vma);
749 if (pgtable) {
750 pgtable_trans_huge_deposit(mm, pmd, pgtable);
751 atomic_long_inc(&mm->nr_ptes);
754 set_pmd_at(mm, addr, pmd, entry);
755 update_mmu_cache_pmd(vma, addr, pmd);
756 spin_unlock(ptl);
759 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
760 pmd_t *pmd, pfn_t pfn, bool write)
762 pgprot_t pgprot = vma->vm_page_prot;
763 pgtable_t pgtable = NULL;
765 * If we had pmd_special, we could avoid all these restrictions,
766 * but we need to be consistent with PTEs and architectures that
767 * can't support a 'special' bit.
769 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
770 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
771 (VM_PFNMAP|VM_MIXEDMAP));
772 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
773 BUG_ON(!pfn_t_devmap(pfn));
775 if (addr < vma->vm_start || addr >= vma->vm_end)
776 return VM_FAULT_SIGBUS;
778 if (arch_needs_pgtable_deposit()) {
779 pgtable = pte_alloc_one(vma->vm_mm, addr);
780 if (!pgtable)
781 return VM_FAULT_OOM;
784 track_pfn_insert(vma, &pgprot, pfn);
786 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
787 return VM_FAULT_NOPAGE;
789 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
791 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
792 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
794 if (likely(vma->vm_flags & VM_WRITE))
795 pud = pud_mkwrite(pud);
796 return pud;
799 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
800 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
802 struct mm_struct *mm = vma->vm_mm;
803 pud_t entry;
804 spinlock_t *ptl;
806 ptl = pud_lock(mm, pud);
807 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
808 if (pfn_t_devmap(pfn))
809 entry = pud_mkdevmap(entry);
810 if (write) {
811 entry = pud_mkyoung(pud_mkdirty(entry));
812 entry = maybe_pud_mkwrite(entry, vma);
814 set_pud_at(mm, addr, pud, entry);
815 update_mmu_cache_pud(vma, addr, pud);
816 spin_unlock(ptl);
819 int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
820 pud_t *pud, pfn_t pfn, bool write)
822 pgprot_t pgprot = vma->vm_page_prot;
824 * If we had pud_special, we could avoid all these restrictions,
825 * but we need to be consistent with PTEs and architectures that
826 * can't support a 'special' bit.
828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
829 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
830 (VM_PFNMAP|VM_MIXEDMAP));
831 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
832 BUG_ON(!pfn_t_devmap(pfn));
834 if (addr < vma->vm_start || addr >= vma->vm_end)
835 return VM_FAULT_SIGBUS;
837 track_pfn_insert(vma, &pgprot, pfn);
839 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
840 return VM_FAULT_NOPAGE;
842 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
843 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
845 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
846 pmd_t *pmd, int flags)
848 pmd_t _pmd;
850 _pmd = pmd_mkyoung(*pmd);
851 if (flags & FOLL_WRITE)
852 _pmd = pmd_mkdirty(_pmd);
853 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
854 pmd, _pmd, flags & FOLL_WRITE))
855 update_mmu_cache_pmd(vma, addr, pmd);
858 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
859 pmd_t *pmd, int flags)
861 unsigned long pfn = pmd_pfn(*pmd);
862 struct mm_struct *mm = vma->vm_mm;
863 struct dev_pagemap *pgmap;
864 struct page *page;
866 assert_spin_locked(pmd_lockptr(mm, pmd));
869 * When we COW a devmap PMD entry, we split it into PTEs, so we should
870 * not be in this function with `flags & FOLL_COW` set.
872 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
874 if (flags & FOLL_WRITE && !pmd_write(*pmd))
875 return NULL;
877 if (pmd_present(*pmd) && pmd_devmap(*pmd))
878 /* pass */;
879 else
880 return NULL;
882 if (flags & FOLL_TOUCH)
883 touch_pmd(vma, addr, pmd, flags);
886 * device mapped pages can only be returned if the
887 * caller will manage the page reference count.
889 if (!(flags & FOLL_GET))
890 return ERR_PTR(-EEXIST);
892 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
893 pgmap = get_dev_pagemap(pfn, NULL);
894 if (!pgmap)
895 return ERR_PTR(-EFAULT);
896 page = pfn_to_page(pfn);
897 get_page(page);
898 put_dev_pagemap(pgmap);
900 return page;
903 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
904 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
905 struct vm_area_struct *vma)
907 spinlock_t *dst_ptl, *src_ptl;
908 struct page *src_page;
909 pmd_t pmd;
910 pgtable_t pgtable = NULL;
911 int ret = -ENOMEM;
913 /* Skip if can be re-fill on fault */
914 if (!vma_is_anonymous(vma))
915 return 0;
917 pgtable = pte_alloc_one(dst_mm, addr);
918 if (unlikely(!pgtable))
919 goto out;
921 dst_ptl = pmd_lock(dst_mm, dst_pmd);
922 src_ptl = pmd_lockptr(src_mm, src_pmd);
923 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
925 ret = -EAGAIN;
926 pmd = *src_pmd;
928 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
929 if (unlikely(is_swap_pmd(pmd))) {
930 swp_entry_t entry = pmd_to_swp_entry(pmd);
932 VM_BUG_ON(!is_pmd_migration_entry(pmd));
933 if (is_write_migration_entry(entry)) {
934 make_migration_entry_read(&entry);
935 pmd = swp_entry_to_pmd(entry);
936 if (pmd_swp_soft_dirty(*src_pmd))
937 pmd = pmd_swp_mksoft_dirty(pmd);
938 set_pmd_at(src_mm, addr, src_pmd, pmd);
940 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
941 atomic_long_inc(&dst_mm->nr_ptes);
942 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
943 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
944 ret = 0;
945 goto out_unlock;
947 #endif
949 if (unlikely(!pmd_trans_huge(pmd))) {
950 pte_free(dst_mm, pgtable);
951 goto out_unlock;
954 * When page table lock is held, the huge zero pmd should not be
955 * under splitting since we don't split the page itself, only pmd to
956 * a page table.
958 if (is_huge_zero_pmd(pmd)) {
959 struct page *zero_page;
961 * get_huge_zero_page() will never allocate a new page here,
962 * since we already have a zero page to copy. It just takes a
963 * reference.
965 zero_page = mm_get_huge_zero_page(dst_mm);
966 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
967 zero_page);
968 ret = 0;
969 goto out_unlock;
972 src_page = pmd_page(pmd);
973 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
974 get_page(src_page);
975 page_dup_rmap(src_page, true);
976 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
977 atomic_long_inc(&dst_mm->nr_ptes);
978 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
980 pmdp_set_wrprotect(src_mm, addr, src_pmd);
981 pmd = pmd_mkold(pmd_wrprotect(pmd));
982 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
984 ret = 0;
985 out_unlock:
986 spin_unlock(src_ptl);
987 spin_unlock(dst_ptl);
988 out:
989 return ret;
992 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
993 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
994 pud_t *pud, int flags)
996 pud_t _pud;
998 _pud = pud_mkyoung(*pud);
999 if (flags & FOLL_WRITE)
1000 _pud = pud_mkdirty(_pud);
1001 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1002 pud, _pud, flags & FOLL_WRITE))
1003 update_mmu_cache_pud(vma, addr, pud);
1006 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1007 pud_t *pud, int flags)
1009 unsigned long pfn = pud_pfn(*pud);
1010 struct mm_struct *mm = vma->vm_mm;
1011 struct dev_pagemap *pgmap;
1012 struct page *page;
1014 assert_spin_locked(pud_lockptr(mm, pud));
1016 if (flags & FOLL_WRITE && !pud_write(*pud))
1017 return NULL;
1019 if (pud_present(*pud) && pud_devmap(*pud))
1020 /* pass */;
1021 else
1022 return NULL;
1024 if (flags & FOLL_TOUCH)
1025 touch_pud(vma, addr, pud, flags);
1028 * device mapped pages can only be returned if the
1029 * caller will manage the page reference count.
1031 if (!(flags & FOLL_GET))
1032 return ERR_PTR(-EEXIST);
1034 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1035 pgmap = get_dev_pagemap(pfn, NULL);
1036 if (!pgmap)
1037 return ERR_PTR(-EFAULT);
1038 page = pfn_to_page(pfn);
1039 get_page(page);
1040 put_dev_pagemap(pgmap);
1042 return page;
1045 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1046 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1047 struct vm_area_struct *vma)
1049 spinlock_t *dst_ptl, *src_ptl;
1050 pud_t pud;
1051 int ret;
1053 dst_ptl = pud_lock(dst_mm, dst_pud);
1054 src_ptl = pud_lockptr(src_mm, src_pud);
1055 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1057 ret = -EAGAIN;
1058 pud = *src_pud;
1059 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1060 goto out_unlock;
1063 * When page table lock is held, the huge zero pud should not be
1064 * under splitting since we don't split the page itself, only pud to
1065 * a page table.
1067 if (is_huge_zero_pud(pud)) {
1068 /* No huge zero pud yet */
1071 pudp_set_wrprotect(src_mm, addr, src_pud);
1072 pud = pud_mkold(pud_wrprotect(pud));
1073 set_pud_at(dst_mm, addr, dst_pud, pud);
1075 ret = 0;
1076 out_unlock:
1077 spin_unlock(src_ptl);
1078 spin_unlock(dst_ptl);
1079 return ret;
1082 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1084 pud_t entry;
1085 unsigned long haddr;
1086 bool write = vmf->flags & FAULT_FLAG_WRITE;
1088 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1089 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1090 goto unlock;
1092 entry = pud_mkyoung(orig_pud);
1093 if (write)
1094 entry = pud_mkdirty(entry);
1095 haddr = vmf->address & HPAGE_PUD_MASK;
1096 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1097 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1099 unlock:
1100 spin_unlock(vmf->ptl);
1102 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1104 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1106 pmd_t entry;
1107 unsigned long haddr;
1108 bool write = vmf->flags & FAULT_FLAG_WRITE;
1110 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1111 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1112 goto unlock;
1114 entry = pmd_mkyoung(orig_pmd);
1115 if (write)
1116 entry = pmd_mkdirty(entry);
1117 haddr = vmf->address & HPAGE_PMD_MASK;
1118 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1119 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1121 unlock:
1122 spin_unlock(vmf->ptl);
1125 static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
1126 struct page *page)
1128 struct vm_area_struct *vma = vmf->vma;
1129 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1130 struct mem_cgroup *memcg;
1131 pgtable_t pgtable;
1132 pmd_t _pmd;
1133 int ret = 0, i;
1134 struct page **pages;
1135 unsigned long mmun_start; /* For mmu_notifiers */
1136 unsigned long mmun_end; /* For mmu_notifiers */
1138 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1139 GFP_KERNEL);
1140 if (unlikely(!pages)) {
1141 ret |= VM_FAULT_OOM;
1142 goto out;
1145 for (i = 0; i < HPAGE_PMD_NR; i++) {
1146 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1147 vmf->address, page_to_nid(page));
1148 if (unlikely(!pages[i] ||
1149 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1150 GFP_KERNEL, &memcg, false))) {
1151 if (pages[i])
1152 put_page(pages[i]);
1153 while (--i >= 0) {
1154 memcg = (void *)page_private(pages[i]);
1155 set_page_private(pages[i], 0);
1156 mem_cgroup_cancel_charge(pages[i], memcg,
1157 false);
1158 put_page(pages[i]);
1160 kfree(pages);
1161 ret |= VM_FAULT_OOM;
1162 goto out;
1164 set_page_private(pages[i], (unsigned long)memcg);
1167 for (i = 0; i < HPAGE_PMD_NR; i++) {
1168 copy_user_highpage(pages[i], page + i,
1169 haddr + PAGE_SIZE * i, vma);
1170 __SetPageUptodate(pages[i]);
1171 cond_resched();
1174 mmun_start = haddr;
1175 mmun_end = haddr + HPAGE_PMD_SIZE;
1176 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1178 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1179 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1180 goto out_free_pages;
1181 VM_BUG_ON_PAGE(!PageHead(page), page);
1183 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1184 /* leave pmd empty until pte is filled */
1186 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1187 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1189 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1190 pte_t entry;
1191 entry = mk_pte(pages[i], vma->vm_page_prot);
1192 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1193 memcg = (void *)page_private(pages[i]);
1194 set_page_private(pages[i], 0);
1195 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1196 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1197 lru_cache_add_active_or_unevictable(pages[i], vma);
1198 vmf->pte = pte_offset_map(&_pmd, haddr);
1199 VM_BUG_ON(!pte_none(*vmf->pte));
1200 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1201 pte_unmap(vmf->pte);
1203 kfree(pages);
1205 smp_wmb(); /* make pte visible before pmd */
1206 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1207 page_remove_rmap(page, true);
1208 spin_unlock(vmf->ptl);
1210 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1212 ret |= VM_FAULT_WRITE;
1213 put_page(page);
1215 out:
1216 return ret;
1218 out_free_pages:
1219 spin_unlock(vmf->ptl);
1220 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1221 for (i = 0; i < HPAGE_PMD_NR; i++) {
1222 memcg = (void *)page_private(pages[i]);
1223 set_page_private(pages[i], 0);
1224 mem_cgroup_cancel_charge(pages[i], memcg, false);
1225 put_page(pages[i]);
1227 kfree(pages);
1228 goto out;
1231 int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1233 struct vm_area_struct *vma = vmf->vma;
1234 struct page *page = NULL, *new_page;
1235 struct mem_cgroup *memcg;
1236 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1237 unsigned long mmun_start; /* For mmu_notifiers */
1238 unsigned long mmun_end; /* For mmu_notifiers */
1239 gfp_t huge_gfp; /* for allocation and charge */
1240 int ret = 0;
1242 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1243 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1244 if (is_huge_zero_pmd(orig_pmd))
1245 goto alloc;
1246 spin_lock(vmf->ptl);
1247 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1248 goto out_unlock;
1250 page = pmd_page(orig_pmd);
1251 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1253 * We can only reuse the page if nobody else maps the huge page or it's
1254 * part.
1256 if (!trylock_page(page)) {
1257 get_page(page);
1258 spin_unlock(vmf->ptl);
1259 lock_page(page);
1260 spin_lock(vmf->ptl);
1261 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1262 unlock_page(page);
1263 put_page(page);
1264 goto out_unlock;
1266 put_page(page);
1268 if (reuse_swap_page(page, NULL)) {
1269 pmd_t entry;
1270 entry = pmd_mkyoung(orig_pmd);
1271 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1272 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1273 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1274 ret |= VM_FAULT_WRITE;
1275 unlock_page(page);
1276 goto out_unlock;
1278 unlock_page(page);
1279 get_page(page);
1280 spin_unlock(vmf->ptl);
1281 alloc:
1282 if (transparent_hugepage_enabled(vma) &&
1283 !transparent_hugepage_debug_cow()) {
1284 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1285 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1286 } else
1287 new_page = NULL;
1289 if (likely(new_page)) {
1290 prep_transhuge_page(new_page);
1291 } else {
1292 if (!page) {
1293 split_huge_pmd(vma, vmf->pmd, vmf->address);
1294 ret |= VM_FAULT_FALLBACK;
1295 } else {
1296 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1297 if (ret & VM_FAULT_OOM) {
1298 split_huge_pmd(vma, vmf->pmd, vmf->address);
1299 ret |= VM_FAULT_FALLBACK;
1301 put_page(page);
1303 count_vm_event(THP_FAULT_FALLBACK);
1304 goto out;
1307 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1308 huge_gfp | __GFP_NORETRY, &memcg, true))) {
1309 put_page(new_page);
1310 split_huge_pmd(vma, vmf->pmd, vmf->address);
1311 if (page)
1312 put_page(page);
1313 ret |= VM_FAULT_FALLBACK;
1314 count_vm_event(THP_FAULT_FALLBACK);
1315 goto out;
1318 count_vm_event(THP_FAULT_ALLOC);
1320 if (!page)
1321 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1322 else
1323 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1324 __SetPageUptodate(new_page);
1326 mmun_start = haddr;
1327 mmun_end = haddr + HPAGE_PMD_SIZE;
1328 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1330 spin_lock(vmf->ptl);
1331 if (page)
1332 put_page(page);
1333 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1334 spin_unlock(vmf->ptl);
1335 mem_cgroup_cancel_charge(new_page, memcg, true);
1336 put_page(new_page);
1337 goto out_mn;
1338 } else {
1339 pmd_t entry;
1340 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1341 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1342 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1343 page_add_new_anon_rmap(new_page, vma, haddr, true);
1344 mem_cgroup_commit_charge(new_page, memcg, false, true);
1345 lru_cache_add_active_or_unevictable(new_page, vma);
1346 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1347 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1348 if (!page) {
1349 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1350 } else {
1351 VM_BUG_ON_PAGE(!PageHead(page), page);
1352 page_remove_rmap(page, true);
1353 put_page(page);
1355 ret |= VM_FAULT_WRITE;
1357 spin_unlock(vmf->ptl);
1358 out_mn:
1359 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1360 out:
1361 return ret;
1362 out_unlock:
1363 spin_unlock(vmf->ptl);
1364 return ret;
1368 * FOLL_FORCE can write to even unwritable pmd's, but only
1369 * after we've gone through a COW cycle and they are dirty.
1371 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1373 return pmd_write(pmd) ||
1374 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1377 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1378 unsigned long addr,
1379 pmd_t *pmd,
1380 unsigned int flags)
1382 struct mm_struct *mm = vma->vm_mm;
1383 struct page *page = NULL;
1385 assert_spin_locked(pmd_lockptr(mm, pmd));
1387 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1388 goto out;
1390 /* Avoid dumping huge zero page */
1391 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1392 return ERR_PTR(-EFAULT);
1394 /* Full NUMA hinting faults to serialise migration in fault paths */
1395 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1396 goto out;
1398 page = pmd_page(*pmd);
1399 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1400 if (flags & FOLL_TOUCH)
1401 touch_pmd(vma, addr, pmd, flags);
1402 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1404 * We don't mlock() pte-mapped THPs. This way we can avoid
1405 * leaking mlocked pages into non-VM_LOCKED VMAs.
1407 * For anon THP:
1409 * In most cases the pmd is the only mapping of the page as we
1410 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1411 * writable private mappings in populate_vma_page_range().
1413 * The only scenario when we have the page shared here is if we
1414 * mlocking read-only mapping shared over fork(). We skip
1415 * mlocking such pages.
1417 * For file THP:
1419 * We can expect PageDoubleMap() to be stable under page lock:
1420 * for file pages we set it in page_add_file_rmap(), which
1421 * requires page to be locked.
1424 if (PageAnon(page) && compound_mapcount(page) != 1)
1425 goto skip_mlock;
1426 if (PageDoubleMap(page) || !page->mapping)
1427 goto skip_mlock;
1428 if (!trylock_page(page))
1429 goto skip_mlock;
1430 lru_add_drain();
1431 if (page->mapping && !PageDoubleMap(page))
1432 mlock_vma_page(page);
1433 unlock_page(page);
1435 skip_mlock:
1436 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1437 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1438 if (flags & FOLL_GET)
1439 get_page(page);
1441 out:
1442 return page;
1445 /* NUMA hinting page fault entry point for trans huge pmds */
1446 int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1448 struct vm_area_struct *vma = vmf->vma;
1449 struct anon_vma *anon_vma = NULL;
1450 struct page *page;
1451 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1452 int page_nid = -1, this_nid = numa_node_id();
1453 int target_nid, last_cpupid = -1;
1454 bool page_locked;
1455 bool migrated = false;
1456 bool was_writable;
1457 int flags = 0;
1459 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1460 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1461 goto out_unlock;
1464 * If there are potential migrations, wait for completion and retry
1465 * without disrupting NUMA hinting information. Do not relock and
1466 * check_same as the page may no longer be mapped.
1468 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1469 page = pmd_page(*vmf->pmd);
1470 if (!get_page_unless_zero(page))
1471 goto out_unlock;
1472 spin_unlock(vmf->ptl);
1473 wait_on_page_locked(page);
1474 put_page(page);
1475 goto out;
1478 page = pmd_page(pmd);
1479 BUG_ON(is_huge_zero_page(page));
1480 page_nid = page_to_nid(page);
1481 last_cpupid = page_cpupid_last(page);
1482 count_vm_numa_event(NUMA_HINT_FAULTS);
1483 if (page_nid == this_nid) {
1484 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1485 flags |= TNF_FAULT_LOCAL;
1488 /* See similar comment in do_numa_page for explanation */
1489 if (!pmd_savedwrite(pmd))
1490 flags |= TNF_NO_GROUP;
1493 * Acquire the page lock to serialise THP migrations but avoid dropping
1494 * page_table_lock if at all possible
1496 page_locked = trylock_page(page);
1497 target_nid = mpol_misplaced(page, vma, haddr);
1498 if (target_nid == -1) {
1499 /* If the page was locked, there are no parallel migrations */
1500 if (page_locked)
1501 goto clear_pmdnuma;
1504 /* Migration could have started since the pmd_trans_migrating check */
1505 if (!page_locked) {
1506 page_nid = -1;
1507 if (!get_page_unless_zero(page))
1508 goto out_unlock;
1509 spin_unlock(vmf->ptl);
1510 wait_on_page_locked(page);
1511 put_page(page);
1512 goto out;
1516 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1517 * to serialises splits
1519 get_page(page);
1520 spin_unlock(vmf->ptl);
1521 anon_vma = page_lock_anon_vma_read(page);
1523 /* Confirm the PMD did not change while page_table_lock was released */
1524 spin_lock(vmf->ptl);
1525 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1526 unlock_page(page);
1527 put_page(page);
1528 page_nid = -1;
1529 goto out_unlock;
1532 /* Bail if we fail to protect against THP splits for any reason */
1533 if (unlikely(!anon_vma)) {
1534 put_page(page);
1535 page_nid = -1;
1536 goto clear_pmdnuma;
1540 * Since we took the NUMA fault, we must have observed the !accessible
1541 * bit. Make sure all other CPUs agree with that, to avoid them
1542 * modifying the page we're about to migrate.
1544 * Must be done under PTL such that we'll observe the relevant
1545 * inc_tlb_flush_pending().
1547 * We are not sure a pending tlb flush here is for a huge page
1548 * mapping or not. Hence use the tlb range variant
1550 if (mm_tlb_flush_pending(vma->vm_mm))
1551 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1554 * Migrate the THP to the requested node, returns with page unlocked
1555 * and access rights restored.
1557 spin_unlock(vmf->ptl);
1559 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1560 vmf->pmd, pmd, vmf->address, page, target_nid);
1561 if (migrated) {
1562 flags |= TNF_MIGRATED;
1563 page_nid = target_nid;
1564 } else
1565 flags |= TNF_MIGRATE_FAIL;
1567 goto out;
1568 clear_pmdnuma:
1569 BUG_ON(!PageLocked(page));
1570 was_writable = pmd_savedwrite(pmd);
1571 pmd = pmd_modify(pmd, vma->vm_page_prot);
1572 pmd = pmd_mkyoung(pmd);
1573 if (was_writable)
1574 pmd = pmd_mkwrite(pmd);
1575 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1576 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1577 unlock_page(page);
1578 out_unlock:
1579 spin_unlock(vmf->ptl);
1581 out:
1582 if (anon_vma)
1583 page_unlock_anon_vma_read(anon_vma);
1585 if (page_nid != -1)
1586 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1587 flags);
1589 return 0;
1593 * Return true if we do MADV_FREE successfully on entire pmd page.
1594 * Otherwise, return false.
1596 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1597 pmd_t *pmd, unsigned long addr, unsigned long next)
1599 spinlock_t *ptl;
1600 pmd_t orig_pmd;
1601 struct page *page;
1602 struct mm_struct *mm = tlb->mm;
1603 bool ret = false;
1605 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1607 ptl = pmd_trans_huge_lock(pmd, vma);
1608 if (!ptl)
1609 goto out_unlocked;
1611 orig_pmd = *pmd;
1612 if (is_huge_zero_pmd(orig_pmd))
1613 goto out;
1615 if (unlikely(!pmd_present(orig_pmd))) {
1616 VM_BUG_ON(thp_migration_supported() &&
1617 !is_pmd_migration_entry(orig_pmd));
1618 goto out;
1621 page = pmd_page(orig_pmd);
1623 * If other processes are mapping this page, we couldn't discard
1624 * the page unless they all do MADV_FREE so let's skip the page.
1626 if (page_mapcount(page) != 1)
1627 goto out;
1629 if (!trylock_page(page))
1630 goto out;
1633 * If user want to discard part-pages of THP, split it so MADV_FREE
1634 * will deactivate only them.
1636 if (next - addr != HPAGE_PMD_SIZE) {
1637 get_page(page);
1638 spin_unlock(ptl);
1639 split_huge_page(page);
1640 unlock_page(page);
1641 put_page(page);
1642 goto out_unlocked;
1645 if (PageDirty(page))
1646 ClearPageDirty(page);
1647 unlock_page(page);
1649 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1650 pmdp_invalidate(vma, addr, pmd);
1651 orig_pmd = pmd_mkold(orig_pmd);
1652 orig_pmd = pmd_mkclean(orig_pmd);
1654 set_pmd_at(mm, addr, pmd, orig_pmd);
1655 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1658 mark_page_lazyfree(page);
1659 ret = true;
1660 out:
1661 spin_unlock(ptl);
1662 out_unlocked:
1663 return ret;
1666 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1668 pgtable_t pgtable;
1670 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1671 pte_free(mm, pgtable);
1672 atomic_long_dec(&mm->nr_ptes);
1675 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1676 pmd_t *pmd, unsigned long addr)
1678 pmd_t orig_pmd;
1679 spinlock_t *ptl;
1681 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1683 ptl = __pmd_trans_huge_lock(pmd, vma);
1684 if (!ptl)
1685 return 0;
1687 * For architectures like ppc64 we look at deposited pgtable
1688 * when calling pmdp_huge_get_and_clear. So do the
1689 * pgtable_trans_huge_withdraw after finishing pmdp related
1690 * operations.
1692 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1693 tlb->fullmm);
1694 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1695 if (vma_is_dax(vma)) {
1696 if (arch_needs_pgtable_deposit())
1697 zap_deposited_table(tlb->mm, pmd);
1698 spin_unlock(ptl);
1699 if (is_huge_zero_pmd(orig_pmd))
1700 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1701 } else if (is_huge_zero_pmd(orig_pmd)) {
1702 zap_deposited_table(tlb->mm, pmd);
1703 spin_unlock(ptl);
1704 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1705 } else {
1706 struct page *page = NULL;
1707 int flush_needed = 1;
1709 if (pmd_present(orig_pmd)) {
1710 page = pmd_page(orig_pmd);
1711 page_remove_rmap(page, true);
1712 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1713 VM_BUG_ON_PAGE(!PageHead(page), page);
1714 } else if (thp_migration_supported()) {
1715 swp_entry_t entry;
1717 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1718 entry = pmd_to_swp_entry(orig_pmd);
1719 page = pfn_to_page(swp_offset(entry));
1720 flush_needed = 0;
1721 } else
1722 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1724 if (PageAnon(page)) {
1725 zap_deposited_table(tlb->mm, pmd);
1726 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1727 } else {
1728 if (arch_needs_pgtable_deposit())
1729 zap_deposited_table(tlb->mm, pmd);
1730 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1733 spin_unlock(ptl);
1734 if (flush_needed)
1735 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1737 return 1;
1740 #ifndef pmd_move_must_withdraw
1741 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1742 spinlock_t *old_pmd_ptl,
1743 struct vm_area_struct *vma)
1746 * With split pmd lock we also need to move preallocated
1747 * PTE page table if new_pmd is on different PMD page table.
1749 * We also don't deposit and withdraw tables for file pages.
1751 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1753 #endif
1755 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1757 #ifdef CONFIG_MEM_SOFT_DIRTY
1758 if (unlikely(is_pmd_migration_entry(pmd)))
1759 pmd = pmd_swp_mksoft_dirty(pmd);
1760 else if (pmd_present(pmd))
1761 pmd = pmd_mksoft_dirty(pmd);
1762 #endif
1763 return pmd;
1766 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1767 unsigned long new_addr, unsigned long old_end,
1768 pmd_t *old_pmd, pmd_t *new_pmd)
1770 spinlock_t *old_ptl, *new_ptl;
1771 pmd_t pmd;
1772 struct mm_struct *mm = vma->vm_mm;
1773 bool force_flush = false;
1775 if ((old_addr & ~HPAGE_PMD_MASK) ||
1776 (new_addr & ~HPAGE_PMD_MASK) ||
1777 old_end - old_addr < HPAGE_PMD_SIZE)
1778 return false;
1781 * The destination pmd shouldn't be established, free_pgtables()
1782 * should have release it.
1784 if (WARN_ON(!pmd_none(*new_pmd))) {
1785 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1786 return false;
1790 * We don't have to worry about the ordering of src and dst
1791 * ptlocks because exclusive mmap_sem prevents deadlock.
1793 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1794 if (old_ptl) {
1795 new_ptl = pmd_lockptr(mm, new_pmd);
1796 if (new_ptl != old_ptl)
1797 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1798 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1799 if (pmd_present(pmd))
1800 force_flush = true;
1801 VM_BUG_ON(!pmd_none(*new_pmd));
1803 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1804 pgtable_t pgtable;
1805 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1806 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1808 pmd = move_soft_dirty_pmd(pmd);
1809 set_pmd_at(mm, new_addr, new_pmd, pmd);
1810 if (force_flush)
1811 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1812 if (new_ptl != old_ptl)
1813 spin_unlock(new_ptl);
1814 spin_unlock(old_ptl);
1815 return true;
1817 return false;
1821 * Returns
1822 * - 0 if PMD could not be locked
1823 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1824 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1826 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1827 unsigned long addr, pgprot_t newprot, int prot_numa)
1829 struct mm_struct *mm = vma->vm_mm;
1830 spinlock_t *ptl;
1831 pmd_t entry;
1832 bool preserve_write;
1833 int ret;
1835 ptl = __pmd_trans_huge_lock(pmd, vma);
1836 if (!ptl)
1837 return 0;
1839 preserve_write = prot_numa && pmd_write(*pmd);
1840 ret = 1;
1842 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1843 if (is_swap_pmd(*pmd)) {
1844 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1846 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1847 if (is_write_migration_entry(entry)) {
1848 pmd_t newpmd;
1850 * A protection check is difficult so
1851 * just be safe and disable write
1853 make_migration_entry_read(&entry);
1854 newpmd = swp_entry_to_pmd(entry);
1855 if (pmd_swp_soft_dirty(*pmd))
1856 newpmd = pmd_swp_mksoft_dirty(newpmd);
1857 set_pmd_at(mm, addr, pmd, newpmd);
1859 goto unlock;
1861 #endif
1864 * Avoid trapping faults against the zero page. The read-only
1865 * data is likely to be read-cached on the local CPU and
1866 * local/remote hits to the zero page are not interesting.
1868 if (prot_numa && is_huge_zero_pmd(*pmd))
1869 goto unlock;
1871 if (prot_numa && pmd_protnone(*pmd))
1872 goto unlock;
1875 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1876 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1877 * which is also under down_read(mmap_sem):
1879 * CPU0: CPU1:
1880 * change_huge_pmd(prot_numa=1)
1881 * pmdp_huge_get_and_clear_notify()
1882 * madvise_dontneed()
1883 * zap_pmd_range()
1884 * pmd_trans_huge(*pmd) == 0 (without ptl)
1885 * // skip the pmd
1886 * set_pmd_at();
1887 * // pmd is re-established
1889 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1890 * which may break userspace.
1892 * pmdp_invalidate() is required to make sure we don't miss
1893 * dirty/young flags set by hardware.
1895 entry = *pmd;
1896 pmdp_invalidate(vma, addr, pmd);
1899 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1900 * corrupt them.
1902 if (pmd_dirty(*pmd))
1903 entry = pmd_mkdirty(entry);
1904 if (pmd_young(*pmd))
1905 entry = pmd_mkyoung(entry);
1907 entry = pmd_modify(entry, newprot);
1908 if (preserve_write)
1909 entry = pmd_mk_savedwrite(entry);
1910 ret = HPAGE_PMD_NR;
1911 set_pmd_at(mm, addr, pmd, entry);
1912 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1913 unlock:
1914 spin_unlock(ptl);
1915 return ret;
1919 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1921 * Note that if it returns page table lock pointer, this routine returns without
1922 * unlocking page table lock. So callers must unlock it.
1924 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1926 spinlock_t *ptl;
1927 ptl = pmd_lock(vma->vm_mm, pmd);
1928 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1929 pmd_devmap(*pmd)))
1930 return ptl;
1931 spin_unlock(ptl);
1932 return NULL;
1936 * Returns true if a given pud maps a thp, false otherwise.
1938 * Note that if it returns true, this routine returns without unlocking page
1939 * table lock. So callers must unlock it.
1941 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1943 spinlock_t *ptl;
1945 ptl = pud_lock(vma->vm_mm, pud);
1946 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1947 return ptl;
1948 spin_unlock(ptl);
1949 return NULL;
1952 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1953 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1954 pud_t *pud, unsigned long addr)
1956 pud_t orig_pud;
1957 spinlock_t *ptl;
1959 ptl = __pud_trans_huge_lock(pud, vma);
1960 if (!ptl)
1961 return 0;
1963 * For architectures like ppc64 we look at deposited pgtable
1964 * when calling pudp_huge_get_and_clear. So do the
1965 * pgtable_trans_huge_withdraw after finishing pudp related
1966 * operations.
1968 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1969 tlb->fullmm);
1970 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1971 if (vma_is_dax(vma)) {
1972 spin_unlock(ptl);
1973 /* No zero page support yet */
1974 } else {
1975 /* No support for anonymous PUD pages yet */
1976 BUG();
1978 return 1;
1981 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1982 unsigned long haddr)
1984 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1985 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1986 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1987 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1989 count_vm_event(THP_SPLIT_PUD);
1991 pudp_huge_clear_flush_notify(vma, haddr, pud);
1994 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1995 unsigned long address)
1997 spinlock_t *ptl;
1998 struct mm_struct *mm = vma->vm_mm;
1999 unsigned long haddr = address & HPAGE_PUD_MASK;
2001 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2002 ptl = pud_lock(mm, pud);
2003 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2004 goto out;
2005 __split_huge_pud_locked(vma, pud, haddr);
2007 out:
2008 spin_unlock(ptl);
2009 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
2011 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2013 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2014 unsigned long haddr, pmd_t *pmd)
2016 struct mm_struct *mm = vma->vm_mm;
2017 pgtable_t pgtable;
2018 pmd_t _pmd;
2019 int i;
2021 /* leave pmd empty until pte is filled */
2022 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2024 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2025 pmd_populate(mm, &_pmd, pgtable);
2027 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2028 pte_t *pte, entry;
2029 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2030 entry = pte_mkspecial(entry);
2031 pte = pte_offset_map(&_pmd, haddr);
2032 VM_BUG_ON(!pte_none(*pte));
2033 set_pte_at(mm, haddr, pte, entry);
2034 pte_unmap(pte);
2036 smp_wmb(); /* make pte visible before pmd */
2037 pmd_populate(mm, pmd, pgtable);
2040 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2041 unsigned long haddr, bool freeze)
2043 struct mm_struct *mm = vma->vm_mm;
2044 struct page *page;
2045 pgtable_t pgtable;
2046 pmd_t _pmd;
2047 bool young, write, dirty, soft_dirty, pmd_migration = false;
2048 unsigned long addr;
2049 int i;
2051 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2052 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2053 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2054 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2055 && !pmd_devmap(*pmd));
2057 count_vm_event(THP_SPLIT_PMD);
2059 if (!vma_is_anonymous(vma)) {
2060 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2062 * We are going to unmap this huge page. So
2063 * just go ahead and zap it
2065 if (arch_needs_pgtable_deposit())
2066 zap_deposited_table(mm, pmd);
2067 if (vma_is_dax(vma))
2068 return;
2069 page = pmd_page(_pmd);
2070 if (!PageDirty(page) && pmd_dirty(_pmd))
2071 set_page_dirty(page);
2072 if (!PageReferenced(page) && pmd_young(_pmd))
2073 SetPageReferenced(page);
2074 page_remove_rmap(page, true);
2075 put_page(page);
2076 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
2077 return;
2078 } else if (is_huge_zero_pmd(*pmd)) {
2079 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2082 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2083 pmd_migration = is_pmd_migration_entry(*pmd);
2084 if (pmd_migration) {
2085 swp_entry_t entry;
2087 entry = pmd_to_swp_entry(*pmd);
2088 page = pfn_to_page(swp_offset(entry));
2089 } else
2090 #endif
2091 page = pmd_page(*pmd);
2092 VM_BUG_ON_PAGE(!page_count(page), page);
2093 page_ref_add(page, HPAGE_PMD_NR - 1);
2094 write = pmd_write(*pmd);
2095 young = pmd_young(*pmd);
2096 dirty = pmd_dirty(*pmd);
2097 soft_dirty = pmd_soft_dirty(*pmd);
2099 pmdp_huge_split_prepare(vma, haddr, pmd);
2100 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2101 pmd_populate(mm, &_pmd, pgtable);
2103 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2104 pte_t entry, *pte;
2106 * Note that NUMA hinting access restrictions are not
2107 * transferred to avoid any possibility of altering
2108 * permissions across VMAs.
2110 if (freeze || pmd_migration) {
2111 swp_entry_t swp_entry;
2112 swp_entry = make_migration_entry(page + i, write);
2113 entry = swp_entry_to_pte(swp_entry);
2114 if (soft_dirty)
2115 entry = pte_swp_mksoft_dirty(entry);
2116 } else {
2117 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2118 entry = maybe_mkwrite(entry, vma);
2119 if (!write)
2120 entry = pte_wrprotect(entry);
2121 if (!young)
2122 entry = pte_mkold(entry);
2123 if (soft_dirty)
2124 entry = pte_mksoft_dirty(entry);
2126 if (dirty)
2127 SetPageDirty(page + i);
2128 pte = pte_offset_map(&_pmd, addr);
2129 BUG_ON(!pte_none(*pte));
2130 set_pte_at(mm, addr, pte, entry);
2131 atomic_inc(&page[i]._mapcount);
2132 pte_unmap(pte);
2136 * Set PG_double_map before dropping compound_mapcount to avoid
2137 * false-negative page_mapped().
2139 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2140 for (i = 0; i < HPAGE_PMD_NR; i++)
2141 atomic_inc(&page[i]._mapcount);
2144 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2145 /* Last compound_mapcount is gone. */
2146 __dec_node_page_state(page, NR_ANON_THPS);
2147 if (TestClearPageDoubleMap(page)) {
2148 /* No need in mapcount reference anymore */
2149 for (i = 0; i < HPAGE_PMD_NR; i++)
2150 atomic_dec(&page[i]._mapcount);
2154 smp_wmb(); /* make pte visible before pmd */
2156 * Up to this point the pmd is present and huge and userland has the
2157 * whole access to the hugepage during the split (which happens in
2158 * place). If we overwrite the pmd with the not-huge version pointing
2159 * to the pte here (which of course we could if all CPUs were bug
2160 * free), userland could trigger a small page size TLB miss on the
2161 * small sized TLB while the hugepage TLB entry is still established in
2162 * the huge TLB. Some CPU doesn't like that.
2163 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2164 * 383 on page 93. Intel should be safe but is also warns that it's
2165 * only safe if the permission and cache attributes of the two entries
2166 * loaded in the two TLB is identical (which should be the case here).
2167 * But it is generally safer to never allow small and huge TLB entries
2168 * for the same virtual address to be loaded simultaneously. So instead
2169 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2170 * current pmd notpresent (atomically because here the pmd_trans_huge
2171 * and pmd_trans_splitting must remain set at all times on the pmd
2172 * until the split is complete for this pmd), then we flush the SMP TLB
2173 * and finally we write the non-huge version of the pmd entry with
2174 * pmd_populate.
2176 pmdp_invalidate(vma, haddr, pmd);
2177 pmd_populate(mm, pmd, pgtable);
2179 if (freeze) {
2180 for (i = 0; i < HPAGE_PMD_NR; i++) {
2181 page_remove_rmap(page + i, false);
2182 put_page(page + i);
2187 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2188 unsigned long address, bool freeze, struct page *page)
2190 spinlock_t *ptl;
2191 struct mm_struct *mm = vma->vm_mm;
2192 unsigned long haddr = address & HPAGE_PMD_MASK;
2194 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2195 ptl = pmd_lock(mm, pmd);
2198 * If caller asks to setup a migration entries, we need a page to check
2199 * pmd against. Otherwise we can end up replacing wrong page.
2201 VM_BUG_ON(freeze && !page);
2202 if (page && page != pmd_page(*pmd))
2203 goto out;
2205 if (pmd_trans_huge(*pmd)) {
2206 page = pmd_page(*pmd);
2207 if (PageMlocked(page))
2208 clear_page_mlock(page);
2209 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2210 goto out;
2211 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2212 out:
2213 spin_unlock(ptl);
2214 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2217 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2218 bool freeze, struct page *page)
2220 pgd_t *pgd;
2221 p4d_t *p4d;
2222 pud_t *pud;
2223 pmd_t *pmd;
2225 pgd = pgd_offset(vma->vm_mm, address);
2226 if (!pgd_present(*pgd))
2227 return;
2229 p4d = p4d_offset(pgd, address);
2230 if (!p4d_present(*p4d))
2231 return;
2233 pud = pud_offset(p4d, address);
2234 if (!pud_present(*pud))
2235 return;
2237 pmd = pmd_offset(pud, address);
2239 __split_huge_pmd(vma, pmd, address, freeze, page);
2242 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2243 unsigned long start,
2244 unsigned long end,
2245 long adjust_next)
2248 * If the new start address isn't hpage aligned and it could
2249 * previously contain an hugepage: check if we need to split
2250 * an huge pmd.
2252 if (start & ~HPAGE_PMD_MASK &&
2253 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2254 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2255 split_huge_pmd_address(vma, start, false, NULL);
2258 * If the new end address isn't hpage aligned and it could
2259 * previously contain an hugepage: check if we need to split
2260 * an huge pmd.
2262 if (end & ~HPAGE_PMD_MASK &&
2263 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2264 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2265 split_huge_pmd_address(vma, end, false, NULL);
2268 * If we're also updating the vma->vm_next->vm_start, if the new
2269 * vm_next->vm_start isn't page aligned and it could previously
2270 * contain an hugepage: check if we need to split an huge pmd.
2272 if (adjust_next > 0) {
2273 struct vm_area_struct *next = vma->vm_next;
2274 unsigned long nstart = next->vm_start;
2275 nstart += adjust_next << PAGE_SHIFT;
2276 if (nstart & ~HPAGE_PMD_MASK &&
2277 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2278 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2279 split_huge_pmd_address(next, nstart, false, NULL);
2283 static void unmap_page(struct page *page)
2285 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2286 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2287 bool unmap_success;
2289 VM_BUG_ON_PAGE(!PageHead(page), page);
2291 if (PageAnon(page))
2292 ttu_flags |= TTU_SPLIT_FREEZE;
2294 unmap_success = try_to_unmap(page, ttu_flags);
2295 VM_BUG_ON_PAGE(!unmap_success, page);
2298 static void remap_page(struct page *page)
2300 int i;
2301 if (PageTransHuge(page)) {
2302 remove_migration_ptes(page, page, true);
2303 } else {
2304 for (i = 0; i < HPAGE_PMD_NR; i++)
2305 remove_migration_ptes(page + i, page + i, true);
2309 static void __split_huge_page_tail(struct page *head, int tail,
2310 struct lruvec *lruvec, struct list_head *list)
2312 struct page *page_tail = head + tail;
2314 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2317 * Clone page flags before unfreezing refcount.
2319 * After successful get_page_unless_zero() might follow flags change,
2320 * for exmaple lock_page() which set PG_waiters.
2322 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2323 page_tail->flags |= (head->flags &
2324 ((1L << PG_referenced) |
2325 (1L << PG_swapbacked) |
2326 (1L << PG_swapcache) |
2327 (1L << PG_mlocked) |
2328 (1L << PG_uptodate) |
2329 (1L << PG_active) |
2330 (1L << PG_locked) |
2331 (1L << PG_unevictable) |
2332 (1L << PG_dirty)));
2334 /* ->mapping in first tail page is compound_mapcount */
2335 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2336 page_tail);
2337 page_tail->mapping = head->mapping;
2338 page_tail->index = head->index + tail;
2340 /* Page flags must be visible before we make the page non-compound. */
2341 smp_wmb();
2344 * Clear PageTail before unfreezing page refcount.
2346 * After successful get_page_unless_zero() might follow put_page()
2347 * which needs correct compound_head().
2349 clear_compound_head(page_tail);
2351 /* Finally unfreeze refcount. Additional reference from page cache. */
2352 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2353 PageSwapCache(head)));
2355 if (page_is_young(head))
2356 set_page_young(page_tail);
2357 if (page_is_idle(head))
2358 set_page_idle(page_tail);
2360 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2361 lru_add_page_tail(head, page_tail, lruvec, list);
2364 static void __split_huge_page(struct page *page, struct list_head *list,
2365 pgoff_t end, unsigned long flags)
2367 struct page *head = compound_head(page);
2368 struct zone *zone = page_zone(head);
2369 struct lruvec *lruvec;
2370 int i;
2372 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2374 /* complete memcg works before add pages to LRU */
2375 mem_cgroup_split_huge_fixup(head);
2377 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2378 __split_huge_page_tail(head, i, lruvec, list);
2379 /* Some pages can be beyond i_size: drop them from page cache */
2380 if (head[i].index >= end) {
2381 ClearPageDirty(head + i);
2382 __delete_from_page_cache(head + i, NULL);
2383 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2384 shmem_uncharge(head->mapping->host, 1);
2385 put_page(head + i);
2389 ClearPageCompound(head);
2390 /* See comment in __split_huge_page_tail() */
2391 if (PageAnon(head)) {
2392 /* Additional pin to radix tree of swap cache */
2393 if (PageSwapCache(head))
2394 page_ref_add(head, 2);
2395 else
2396 page_ref_inc(head);
2397 } else {
2398 /* Additional pin to radix tree */
2399 page_ref_add(head, 2);
2400 spin_unlock(&head->mapping->tree_lock);
2403 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2405 remap_page(head);
2407 for (i = 0; i < HPAGE_PMD_NR; i++) {
2408 struct page *subpage = head + i;
2409 if (subpage == page)
2410 continue;
2411 unlock_page(subpage);
2414 * Subpages may be freed if there wasn't any mapping
2415 * like if add_to_swap() is running on a lru page that
2416 * had its mapping zapped. And freeing these pages
2417 * requires taking the lru_lock so we do the put_page
2418 * of the tail pages after the split is complete.
2420 put_page(subpage);
2424 int total_mapcount(struct page *page)
2426 int i, compound, ret;
2428 VM_BUG_ON_PAGE(PageTail(page), page);
2430 if (likely(!PageCompound(page)))
2431 return atomic_read(&page->_mapcount) + 1;
2433 compound = compound_mapcount(page);
2434 if (PageHuge(page))
2435 return compound;
2436 ret = compound;
2437 for (i = 0; i < HPAGE_PMD_NR; i++)
2438 ret += atomic_read(&page[i]._mapcount) + 1;
2439 /* File pages has compound_mapcount included in _mapcount */
2440 if (!PageAnon(page))
2441 return ret - compound * HPAGE_PMD_NR;
2442 if (PageDoubleMap(page))
2443 ret -= HPAGE_PMD_NR;
2444 return ret;
2448 * This calculates accurately how many mappings a transparent hugepage
2449 * has (unlike page_mapcount() which isn't fully accurate). This full
2450 * accuracy is primarily needed to know if copy-on-write faults can
2451 * reuse the page and change the mapping to read-write instead of
2452 * copying them. At the same time this returns the total_mapcount too.
2454 * The function returns the highest mapcount any one of the subpages
2455 * has. If the return value is one, even if different processes are
2456 * mapping different subpages of the transparent hugepage, they can
2457 * all reuse it, because each process is reusing a different subpage.
2459 * The total_mapcount is instead counting all virtual mappings of the
2460 * subpages. If the total_mapcount is equal to "one", it tells the
2461 * caller all mappings belong to the same "mm" and in turn the
2462 * anon_vma of the transparent hugepage can become the vma->anon_vma
2463 * local one as no other process may be mapping any of the subpages.
2465 * It would be more accurate to replace page_mapcount() with
2466 * page_trans_huge_mapcount(), however we only use
2467 * page_trans_huge_mapcount() in the copy-on-write faults where we
2468 * need full accuracy to avoid breaking page pinning, because
2469 * page_trans_huge_mapcount() is slower than page_mapcount().
2471 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2473 int i, ret, _total_mapcount, mapcount;
2475 /* hugetlbfs shouldn't call it */
2476 VM_BUG_ON_PAGE(PageHuge(page), page);
2478 if (likely(!PageTransCompound(page))) {
2479 mapcount = atomic_read(&page->_mapcount) + 1;
2480 if (total_mapcount)
2481 *total_mapcount = mapcount;
2482 return mapcount;
2485 page = compound_head(page);
2487 _total_mapcount = ret = 0;
2488 for (i = 0; i < HPAGE_PMD_NR; i++) {
2489 mapcount = atomic_read(&page[i]._mapcount) + 1;
2490 ret = max(ret, mapcount);
2491 _total_mapcount += mapcount;
2493 if (PageDoubleMap(page)) {
2494 ret -= 1;
2495 _total_mapcount -= HPAGE_PMD_NR;
2497 mapcount = compound_mapcount(page);
2498 ret += mapcount;
2499 _total_mapcount += mapcount;
2500 if (total_mapcount)
2501 *total_mapcount = _total_mapcount;
2502 return ret;
2505 /* Racy check whether the huge page can be split */
2506 bool can_split_huge_page(struct page *page, int *pextra_pins)
2508 int extra_pins;
2510 /* Additional pins from radix tree */
2511 if (PageAnon(page))
2512 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2513 else
2514 extra_pins = HPAGE_PMD_NR;
2515 if (pextra_pins)
2516 *pextra_pins = extra_pins;
2517 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2521 * This function splits huge page into normal pages. @page can point to any
2522 * subpage of huge page to split. Split doesn't change the position of @page.
2524 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2525 * The huge page must be locked.
2527 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2529 * Both head page and tail pages will inherit mapping, flags, and so on from
2530 * the hugepage.
2532 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2533 * they are not mapped.
2535 * Returns 0 if the hugepage is split successfully.
2536 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2537 * us.
2539 int split_huge_page_to_list(struct page *page, struct list_head *list)
2541 struct page *head = compound_head(page);
2542 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2543 struct anon_vma *anon_vma = NULL;
2544 struct address_space *mapping = NULL;
2545 int count, mapcount, extra_pins, ret;
2546 bool mlocked;
2547 unsigned long flags;
2548 pgoff_t end;
2550 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2551 VM_BUG_ON_PAGE(!PageLocked(page), page);
2552 VM_BUG_ON_PAGE(!PageCompound(page), page);
2554 if (PageWriteback(page))
2555 return -EBUSY;
2557 if (PageAnon(head)) {
2559 * The caller does not necessarily hold an mmap_sem that would
2560 * prevent the anon_vma disappearing so we first we take a
2561 * reference to it and then lock the anon_vma for write. This
2562 * is similar to page_lock_anon_vma_read except the write lock
2563 * is taken to serialise against parallel split or collapse
2564 * operations.
2566 anon_vma = page_get_anon_vma(head);
2567 if (!anon_vma) {
2568 ret = -EBUSY;
2569 goto out;
2571 end = -1;
2572 mapping = NULL;
2573 anon_vma_lock_write(anon_vma);
2574 } else {
2575 mapping = head->mapping;
2577 /* Truncated ? */
2578 if (!mapping) {
2579 ret = -EBUSY;
2580 goto out;
2583 anon_vma = NULL;
2584 i_mmap_lock_read(mapping);
2587 *__split_huge_page() may need to trim off pages beyond EOF:
2588 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2589 * which cannot be nested inside the page tree lock. So note
2590 * end now: i_size itself may be changed at any moment, but
2591 * head page lock is good enough to serialize the trimming.
2593 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2597 * Racy check if we can split the page, before unmap_page() will
2598 * split PMDs
2600 if (!can_split_huge_page(head, &extra_pins)) {
2601 ret = -EBUSY;
2602 goto out_unlock;
2605 mlocked = PageMlocked(page);
2606 unmap_page(head);
2607 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2609 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2610 if (mlocked)
2611 lru_add_drain();
2613 /* prevent PageLRU to go away from under us, and freeze lru stats */
2614 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2616 if (mapping) {
2617 void **pslot;
2619 spin_lock(&mapping->tree_lock);
2620 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2621 page_index(head));
2623 * Check if the head page is present in radix tree.
2624 * We assume all tail are present too, if head is there.
2626 if (radix_tree_deref_slot_protected(pslot,
2627 &mapping->tree_lock) != head)
2628 goto fail;
2631 /* Prevent deferred_split_scan() touching ->_refcount */
2632 spin_lock(&pgdata->split_queue_lock);
2633 count = page_count(head);
2634 mapcount = total_mapcount(head);
2635 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2636 if (!list_empty(page_deferred_list(head))) {
2637 pgdata->split_queue_len--;
2638 list_del(page_deferred_list(head));
2640 if (mapping)
2641 __dec_node_page_state(page, NR_SHMEM_THPS);
2642 spin_unlock(&pgdata->split_queue_lock);
2643 __split_huge_page(page, list, end, flags);
2644 if (PageSwapCache(head)) {
2645 swp_entry_t entry = { .val = page_private(head) };
2647 ret = split_swap_cluster(entry);
2648 } else
2649 ret = 0;
2650 } else {
2651 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2652 pr_alert("total_mapcount: %u, page_count(): %u\n",
2653 mapcount, count);
2654 if (PageTail(page))
2655 dump_page(head, NULL);
2656 dump_page(page, "total_mapcount(head) > 0");
2657 BUG();
2659 spin_unlock(&pgdata->split_queue_lock);
2660 fail: if (mapping)
2661 spin_unlock(&mapping->tree_lock);
2662 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2663 remap_page(head);
2664 ret = -EBUSY;
2667 out_unlock:
2668 if (anon_vma) {
2669 anon_vma_unlock_write(anon_vma);
2670 put_anon_vma(anon_vma);
2672 if (mapping)
2673 i_mmap_unlock_read(mapping);
2674 out:
2675 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2676 return ret;
2679 void free_transhuge_page(struct page *page)
2681 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2682 unsigned long flags;
2684 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2685 if (!list_empty(page_deferred_list(page))) {
2686 pgdata->split_queue_len--;
2687 list_del(page_deferred_list(page));
2689 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2690 free_compound_page(page);
2693 void deferred_split_huge_page(struct page *page)
2695 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2696 unsigned long flags;
2698 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2700 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2701 if (list_empty(page_deferred_list(page))) {
2702 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2703 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2704 pgdata->split_queue_len++;
2706 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2709 static unsigned long deferred_split_count(struct shrinker *shrink,
2710 struct shrink_control *sc)
2712 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2713 return ACCESS_ONCE(pgdata->split_queue_len);
2716 static unsigned long deferred_split_scan(struct shrinker *shrink,
2717 struct shrink_control *sc)
2719 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2720 unsigned long flags;
2721 LIST_HEAD(list), *pos, *next;
2722 struct page *page;
2723 int split = 0;
2725 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2726 /* Take pin on all head pages to avoid freeing them under us */
2727 list_for_each_safe(pos, next, &pgdata->split_queue) {
2728 page = list_entry((void *)pos, struct page, mapping);
2729 page = compound_head(page);
2730 if (get_page_unless_zero(page)) {
2731 list_move(page_deferred_list(page), &list);
2732 } else {
2733 /* We lost race with put_compound_page() */
2734 list_del_init(page_deferred_list(page));
2735 pgdata->split_queue_len--;
2737 if (!--sc->nr_to_scan)
2738 break;
2740 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2742 list_for_each_safe(pos, next, &list) {
2743 page = list_entry((void *)pos, struct page, mapping);
2744 if (!trylock_page(page))
2745 goto next;
2746 /* split_huge_page() removes page from list on success */
2747 if (!split_huge_page(page))
2748 split++;
2749 unlock_page(page);
2750 next:
2751 put_page(page);
2754 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2755 list_splice_tail(&list, &pgdata->split_queue);
2756 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2759 * Stop shrinker if we didn't split any page, but the queue is empty.
2760 * This can happen if pages were freed under us.
2762 if (!split && list_empty(&pgdata->split_queue))
2763 return SHRINK_STOP;
2764 return split;
2767 static struct shrinker deferred_split_shrinker = {
2768 .count_objects = deferred_split_count,
2769 .scan_objects = deferred_split_scan,
2770 .seeks = DEFAULT_SEEKS,
2771 .flags = SHRINKER_NUMA_AWARE,
2774 #ifdef CONFIG_DEBUG_FS
2775 static int split_huge_pages_set(void *data, u64 val)
2777 struct zone *zone;
2778 struct page *page;
2779 unsigned long pfn, max_zone_pfn;
2780 unsigned long total = 0, split = 0;
2782 if (val != 1)
2783 return -EINVAL;
2785 for_each_populated_zone(zone) {
2786 max_zone_pfn = zone_end_pfn(zone);
2787 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2788 if (!pfn_valid(pfn))
2789 continue;
2791 page = pfn_to_page(pfn);
2792 if (!get_page_unless_zero(page))
2793 continue;
2795 if (zone != page_zone(page))
2796 goto next;
2798 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2799 goto next;
2801 total++;
2802 lock_page(page);
2803 if (!split_huge_page(page))
2804 split++;
2805 unlock_page(page);
2806 next:
2807 put_page(page);
2811 pr_info("%lu of %lu THP split\n", split, total);
2813 return 0;
2815 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2816 "%llu\n");
2818 static int __init split_huge_pages_debugfs(void)
2820 void *ret;
2822 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2823 &split_huge_pages_fops);
2824 if (!ret)
2825 pr_warn("Failed to create split_huge_pages in debugfs");
2826 return 0;
2828 late_initcall(split_huge_pages_debugfs);
2829 #endif
2831 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2832 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2833 struct page *page)
2835 struct vm_area_struct *vma = pvmw->vma;
2836 struct mm_struct *mm = vma->vm_mm;
2837 unsigned long address = pvmw->address;
2838 pmd_t pmdval;
2839 swp_entry_t entry;
2840 pmd_t pmdswp;
2842 if (!(pvmw->pmd && !pvmw->pte))
2843 return;
2845 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2846 pmdval = *pvmw->pmd;
2847 pmdp_invalidate(vma, address, pvmw->pmd);
2848 if (pmd_dirty(pmdval))
2849 set_page_dirty(page);
2850 entry = make_migration_entry(page, pmd_write(pmdval));
2851 pmdswp = swp_entry_to_pmd(entry);
2852 if (pmd_soft_dirty(pmdval))
2853 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2854 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2855 page_remove_rmap(page, true);
2856 put_page(page);
2859 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2861 struct vm_area_struct *vma = pvmw->vma;
2862 struct mm_struct *mm = vma->vm_mm;
2863 unsigned long address = pvmw->address;
2864 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2865 pmd_t pmde;
2866 swp_entry_t entry;
2868 if (!(pvmw->pmd && !pvmw->pte))
2869 return;
2871 entry = pmd_to_swp_entry(*pvmw->pmd);
2872 get_page(new);
2873 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2874 if (pmd_swp_soft_dirty(*pvmw->pmd))
2875 pmde = pmd_mksoft_dirty(pmde);
2876 if (is_write_migration_entry(entry))
2877 pmde = maybe_pmd_mkwrite(pmde, vma);
2879 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2880 page_add_anon_rmap(new, vma, mmun_start, true);
2881 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2882 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2883 mlock_vma_page(new);
2884 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2886 #endif