Linux 4.14.124
[linux/fpc-iii.git] / mm / mempolicy.c
blob6ca0225335eb11902f5ef24d6c488efe223eec51
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
100 #include <linux/swapops.h>
102 #include <asm/tlbflush.h>
103 #include <linux/uaccess.h>
105 #include "internal.h"
107 /* Internal flags */
108 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
109 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111 static struct kmem_cache *policy_cache;
112 static struct kmem_cache *sn_cache;
114 /* Highest zone. An specific allocation for a zone below that is not
115 policied. */
116 enum zone_type policy_zone = 0;
119 * run-time system-wide default policy => local allocation
121 static struct mempolicy default_policy = {
122 .refcnt = ATOMIC_INIT(1), /* never free it */
123 .mode = MPOL_PREFERRED,
124 .flags = MPOL_F_LOCAL,
127 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 struct mempolicy *get_task_policy(struct task_struct *p)
131 struct mempolicy *pol = p->mempolicy;
132 int node;
134 if (pol)
135 return pol;
137 node = numa_node_id();
138 if (node != NUMA_NO_NODE) {
139 pol = &preferred_node_policy[node];
140 /* preferred_node_policy is not initialised early in boot */
141 if (pol->mode)
142 return pol;
145 return &default_policy;
148 static const struct mempolicy_operations {
149 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
150 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
151 } mpol_ops[MPOL_MAX];
153 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 return pol->flags & MPOL_MODE_FLAGS;
158 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
159 const nodemask_t *rel)
161 nodemask_t tmp;
162 nodes_fold(tmp, *orig, nodes_weight(*rel));
163 nodes_onto(*ret, tmp, *rel);
166 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 if (nodes_empty(*nodes))
169 return -EINVAL;
170 pol->v.nodes = *nodes;
171 return 0;
174 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 if (!nodes)
177 pol->flags |= MPOL_F_LOCAL; /* local allocation */
178 else if (nodes_empty(*nodes))
179 return -EINVAL; /* no allowed nodes */
180 else
181 pol->v.preferred_node = first_node(*nodes);
182 return 0;
185 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 if (nodes_empty(*nodes))
188 return -EINVAL;
189 pol->v.nodes = *nodes;
190 return 0;
194 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
195 * any, for the new policy. mpol_new() has already validated the nodes
196 * parameter with respect to the policy mode and flags. But, we need to
197 * handle an empty nodemask with MPOL_PREFERRED here.
199 * Must be called holding task's alloc_lock to protect task's mems_allowed
200 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 static int mpol_set_nodemask(struct mempolicy *pol,
203 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 int ret;
207 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
208 if (pol == NULL)
209 return 0;
210 /* Check N_MEMORY */
211 nodes_and(nsc->mask1,
212 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214 VM_BUG_ON(!nodes);
215 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
216 nodes = NULL; /* explicit local allocation */
217 else {
218 if (pol->flags & MPOL_F_RELATIVE_NODES)
219 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
220 else
221 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223 if (mpol_store_user_nodemask(pol))
224 pol->w.user_nodemask = *nodes;
225 else
226 pol->w.cpuset_mems_allowed =
227 cpuset_current_mems_allowed;
230 if (nodes)
231 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
232 else
233 ret = mpol_ops[pol->mode].create(pol, NULL);
234 return ret;
238 * This function just creates a new policy, does some check and simple
239 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
242 nodemask_t *nodes)
244 struct mempolicy *policy;
246 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
247 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249 if (mode == MPOL_DEFAULT) {
250 if (nodes && !nodes_empty(*nodes))
251 return ERR_PTR(-EINVAL);
252 return NULL;
254 VM_BUG_ON(!nodes);
257 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
258 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
259 * All other modes require a valid pointer to a non-empty nodemask.
261 if (mode == MPOL_PREFERRED) {
262 if (nodes_empty(*nodes)) {
263 if (((flags & MPOL_F_STATIC_NODES) ||
264 (flags & MPOL_F_RELATIVE_NODES)))
265 return ERR_PTR(-EINVAL);
267 } else if (mode == MPOL_LOCAL) {
268 if (!nodes_empty(*nodes) ||
269 (flags & MPOL_F_STATIC_NODES) ||
270 (flags & MPOL_F_RELATIVE_NODES))
271 return ERR_PTR(-EINVAL);
272 mode = MPOL_PREFERRED;
273 } else if (nodes_empty(*nodes))
274 return ERR_PTR(-EINVAL);
275 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
276 if (!policy)
277 return ERR_PTR(-ENOMEM);
278 atomic_set(&policy->refcnt, 1);
279 policy->mode = mode;
280 policy->flags = flags;
282 return policy;
285 /* Slow path of a mpol destructor. */
286 void __mpol_put(struct mempolicy *p)
288 if (!atomic_dec_and_test(&p->refcnt))
289 return;
290 kmem_cache_free(policy_cache, p);
293 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
297 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 nodemask_t tmp;
301 if (pol->flags & MPOL_F_STATIC_NODES)
302 nodes_and(tmp, pol->w.user_nodemask, *nodes);
303 else if (pol->flags & MPOL_F_RELATIVE_NODES)
304 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
305 else {
306 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
307 *nodes);
308 pol->w.cpuset_mems_allowed = tmp;
311 if (nodes_empty(tmp))
312 tmp = *nodes;
314 pol->v.nodes = tmp;
317 static void mpol_rebind_preferred(struct mempolicy *pol,
318 const nodemask_t *nodes)
320 nodemask_t tmp;
322 if (pol->flags & MPOL_F_STATIC_NODES) {
323 int node = first_node(pol->w.user_nodemask);
325 if (node_isset(node, *nodes)) {
326 pol->v.preferred_node = node;
327 pol->flags &= ~MPOL_F_LOCAL;
328 } else
329 pol->flags |= MPOL_F_LOCAL;
330 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 pol->v.preferred_node = first_node(tmp);
333 } else if (!(pol->flags & MPOL_F_LOCAL)) {
334 pol->v.preferred_node = node_remap(pol->v.preferred_node,
335 pol->w.cpuset_mems_allowed,
336 *nodes);
337 pol->w.cpuset_mems_allowed = *nodes;
342 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 * Per-vma policies are protected by mmap_sem. Allocations using per-task
345 * policies are protected by task->mems_allowed_seq to prevent a premature
346 * OOM/allocation failure due to parallel nodemask modification.
348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 if (!pol)
351 return;
352 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
353 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
354 return;
356 mpol_ops[pol->mode].rebind(pol, newmask);
360 * Wrapper for mpol_rebind_policy() that just requires task
361 * pointer, and updates task mempolicy.
363 * Called with task's alloc_lock held.
366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 mpol_rebind_policy(tsk->mempolicy, new);
372 * Rebind each vma in mm to new nodemask.
374 * Call holding a reference to mm. Takes mm->mmap_sem during call.
377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 struct vm_area_struct *vma;
381 down_write(&mm->mmap_sem);
382 for (vma = mm->mmap; vma; vma = vma->vm_next)
383 mpol_rebind_policy(vma->vm_policy, new);
384 up_write(&mm->mmap_sem);
387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
388 [MPOL_DEFAULT] = {
389 .rebind = mpol_rebind_default,
391 [MPOL_INTERLEAVE] = {
392 .create = mpol_new_interleave,
393 .rebind = mpol_rebind_nodemask,
395 [MPOL_PREFERRED] = {
396 .create = mpol_new_preferred,
397 .rebind = mpol_rebind_preferred,
399 [MPOL_BIND] = {
400 .create = mpol_new_bind,
401 .rebind = mpol_rebind_nodemask,
405 static void migrate_page_add(struct page *page, struct list_head *pagelist,
406 unsigned long flags);
408 struct queue_pages {
409 struct list_head *pagelist;
410 unsigned long flags;
411 nodemask_t *nmask;
412 struct vm_area_struct *prev;
416 * Check if the page's nid is in qp->nmask.
418 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
419 * in the invert of qp->nmask.
421 static inline bool queue_pages_required(struct page *page,
422 struct queue_pages *qp)
424 int nid = page_to_nid(page);
425 unsigned long flags = qp->flags;
427 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
431 * queue_pages_pmd() has three possible return values:
432 * 1 - pages are placed on the right node or queued successfully.
433 * 0 - THP was split.
434 * -EIO - is migration entry or MPOL_MF_STRICT was specified and an existing
435 * page was already on a node that does not follow the policy.
437 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
438 unsigned long end, struct mm_walk *walk)
440 int ret = 0;
441 struct page *page;
442 struct queue_pages *qp = walk->private;
443 unsigned long flags;
445 if (unlikely(is_pmd_migration_entry(*pmd))) {
446 ret = -EIO;
447 goto unlock;
449 page = pmd_page(*pmd);
450 if (is_huge_zero_page(page)) {
451 spin_unlock(ptl);
452 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
453 goto out;
455 if (!thp_migration_supported()) {
456 get_page(page);
457 spin_unlock(ptl);
458 lock_page(page);
459 ret = split_huge_page(page);
460 unlock_page(page);
461 put_page(page);
462 goto out;
464 if (!queue_pages_required(page, qp)) {
465 ret = 1;
466 goto unlock;
469 ret = 1;
470 flags = qp->flags;
471 /* go to thp migration */
472 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
473 if (!vma_migratable(walk->vma)) {
474 ret = -EIO;
475 goto unlock;
478 migrate_page_add(page, qp->pagelist, flags);
479 } else
480 ret = -EIO;
481 unlock:
482 spin_unlock(ptl);
483 out:
484 return ret;
488 * Scan through pages checking if pages follow certain conditions,
489 * and move them to the pagelist if they do.
491 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
492 unsigned long end, struct mm_walk *walk)
494 struct vm_area_struct *vma = walk->vma;
495 struct page *page;
496 struct queue_pages *qp = walk->private;
497 unsigned long flags = qp->flags;
498 int ret;
499 pte_t *pte;
500 spinlock_t *ptl;
502 ptl = pmd_trans_huge_lock(pmd, vma);
503 if (ptl) {
504 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
505 if (ret > 0)
506 return 0;
507 else if (ret < 0)
508 return ret;
511 if (pmd_trans_unstable(pmd))
512 return 0;
513 retry:
514 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
515 for (; addr != end; pte++, addr += PAGE_SIZE) {
516 if (!pte_present(*pte))
517 continue;
518 page = vm_normal_page(vma, addr, *pte);
519 if (!page)
520 continue;
522 * vm_normal_page() filters out zero pages, but there might
523 * still be PageReserved pages to skip, perhaps in a VDSO.
525 if (PageReserved(page))
526 continue;
527 if (!queue_pages_required(page, qp))
528 continue;
529 if (PageTransCompound(page) && !thp_migration_supported()) {
530 get_page(page);
531 pte_unmap_unlock(pte, ptl);
532 lock_page(page);
533 ret = split_huge_page(page);
534 unlock_page(page);
535 put_page(page);
536 /* Failed to split -- skip. */
537 if (ret) {
538 pte = pte_offset_map_lock(walk->mm, pmd,
539 addr, &ptl);
540 continue;
542 goto retry;
545 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
546 if (!vma_migratable(vma))
547 break;
548 migrate_page_add(page, qp->pagelist, flags);
549 } else
550 break;
552 pte_unmap_unlock(pte - 1, ptl);
553 cond_resched();
554 return addr != end ? -EIO : 0;
557 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
558 unsigned long addr, unsigned long end,
559 struct mm_walk *walk)
561 #ifdef CONFIG_HUGETLB_PAGE
562 struct queue_pages *qp = walk->private;
563 unsigned long flags = qp->flags;
564 struct page *page;
565 spinlock_t *ptl;
566 pte_t entry;
568 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
569 entry = huge_ptep_get(pte);
570 if (!pte_present(entry))
571 goto unlock;
572 page = pte_page(entry);
573 if (!queue_pages_required(page, qp))
574 goto unlock;
575 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
576 if (flags & (MPOL_MF_MOVE_ALL) ||
577 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
578 isolate_huge_page(page, qp->pagelist);
579 unlock:
580 spin_unlock(ptl);
581 #else
582 BUG();
583 #endif
584 return 0;
587 #ifdef CONFIG_NUMA_BALANCING
589 * This is used to mark a range of virtual addresses to be inaccessible.
590 * These are later cleared by a NUMA hinting fault. Depending on these
591 * faults, pages may be migrated for better NUMA placement.
593 * This is assuming that NUMA faults are handled using PROT_NONE. If
594 * an architecture makes a different choice, it will need further
595 * changes to the core.
597 unsigned long change_prot_numa(struct vm_area_struct *vma,
598 unsigned long addr, unsigned long end)
600 int nr_updated;
602 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
603 if (nr_updated)
604 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
606 return nr_updated;
608 #else
609 static unsigned long change_prot_numa(struct vm_area_struct *vma,
610 unsigned long addr, unsigned long end)
612 return 0;
614 #endif /* CONFIG_NUMA_BALANCING */
616 static int queue_pages_test_walk(unsigned long start, unsigned long end,
617 struct mm_walk *walk)
619 struct vm_area_struct *vma = walk->vma;
620 struct queue_pages *qp = walk->private;
621 unsigned long endvma = vma->vm_end;
622 unsigned long flags = qp->flags;
625 * Need check MPOL_MF_STRICT to return -EIO if possible
626 * regardless of vma_migratable
628 if (!vma_migratable(vma) &&
629 !(flags & MPOL_MF_STRICT))
630 return 1;
632 if (endvma > end)
633 endvma = end;
634 if (vma->vm_start > start)
635 start = vma->vm_start;
637 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
638 if (!vma->vm_next && vma->vm_end < end)
639 return -EFAULT;
640 if (qp->prev && qp->prev->vm_end < vma->vm_start)
641 return -EFAULT;
644 qp->prev = vma;
646 if (flags & MPOL_MF_LAZY) {
647 /* Similar to task_numa_work, skip inaccessible VMAs */
648 if (!is_vm_hugetlb_page(vma) &&
649 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
650 !(vma->vm_flags & VM_MIXEDMAP))
651 change_prot_numa(vma, start, endvma);
652 return 1;
655 /* queue pages from current vma */
656 if (flags & MPOL_MF_VALID)
657 return 0;
658 return 1;
662 * Walk through page tables and collect pages to be migrated.
664 * If pages found in a given range are on a set of nodes (determined by
665 * @nodes and @flags,) it's isolated and queued to the pagelist which is
666 * passed via @private.)
668 static int
669 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
670 nodemask_t *nodes, unsigned long flags,
671 struct list_head *pagelist)
673 struct queue_pages qp = {
674 .pagelist = pagelist,
675 .flags = flags,
676 .nmask = nodes,
677 .prev = NULL,
679 struct mm_walk queue_pages_walk = {
680 .hugetlb_entry = queue_pages_hugetlb,
681 .pmd_entry = queue_pages_pte_range,
682 .test_walk = queue_pages_test_walk,
683 .mm = mm,
684 .private = &qp,
687 return walk_page_range(start, end, &queue_pages_walk);
691 * Apply policy to a single VMA
692 * This must be called with the mmap_sem held for writing.
694 static int vma_replace_policy(struct vm_area_struct *vma,
695 struct mempolicy *pol)
697 int err;
698 struct mempolicy *old;
699 struct mempolicy *new;
701 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
702 vma->vm_start, vma->vm_end, vma->vm_pgoff,
703 vma->vm_ops, vma->vm_file,
704 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
706 new = mpol_dup(pol);
707 if (IS_ERR(new))
708 return PTR_ERR(new);
710 if (vma->vm_ops && vma->vm_ops->set_policy) {
711 err = vma->vm_ops->set_policy(vma, new);
712 if (err)
713 goto err_out;
716 old = vma->vm_policy;
717 vma->vm_policy = new; /* protected by mmap_sem */
718 mpol_put(old);
720 return 0;
721 err_out:
722 mpol_put(new);
723 return err;
726 /* Step 2: apply policy to a range and do splits. */
727 static int mbind_range(struct mm_struct *mm, unsigned long start,
728 unsigned long end, struct mempolicy *new_pol)
730 struct vm_area_struct *next;
731 struct vm_area_struct *prev;
732 struct vm_area_struct *vma;
733 int err = 0;
734 pgoff_t pgoff;
735 unsigned long vmstart;
736 unsigned long vmend;
738 vma = find_vma(mm, start);
739 if (!vma || vma->vm_start > start)
740 return -EFAULT;
742 prev = vma->vm_prev;
743 if (start > vma->vm_start)
744 prev = vma;
746 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
747 next = vma->vm_next;
748 vmstart = max(start, vma->vm_start);
749 vmend = min(end, vma->vm_end);
751 if (mpol_equal(vma_policy(vma), new_pol))
752 continue;
754 pgoff = vma->vm_pgoff +
755 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
756 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
757 vma->anon_vma, vma->vm_file, pgoff,
758 new_pol, vma->vm_userfaultfd_ctx);
759 if (prev) {
760 vma = prev;
761 next = vma->vm_next;
762 if (mpol_equal(vma_policy(vma), new_pol))
763 continue;
764 /* vma_merge() joined vma && vma->next, case 8 */
765 goto replace;
767 if (vma->vm_start != vmstart) {
768 err = split_vma(vma->vm_mm, vma, vmstart, 1);
769 if (err)
770 goto out;
772 if (vma->vm_end != vmend) {
773 err = split_vma(vma->vm_mm, vma, vmend, 0);
774 if (err)
775 goto out;
777 replace:
778 err = vma_replace_policy(vma, new_pol);
779 if (err)
780 goto out;
783 out:
784 return err;
787 /* Set the process memory policy */
788 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
789 nodemask_t *nodes)
791 struct mempolicy *new, *old;
792 NODEMASK_SCRATCH(scratch);
793 int ret;
795 if (!scratch)
796 return -ENOMEM;
798 new = mpol_new(mode, flags, nodes);
799 if (IS_ERR(new)) {
800 ret = PTR_ERR(new);
801 goto out;
804 task_lock(current);
805 ret = mpol_set_nodemask(new, nodes, scratch);
806 if (ret) {
807 task_unlock(current);
808 mpol_put(new);
809 goto out;
811 old = current->mempolicy;
812 current->mempolicy = new;
813 if (new && new->mode == MPOL_INTERLEAVE)
814 current->il_prev = MAX_NUMNODES-1;
815 task_unlock(current);
816 mpol_put(old);
817 ret = 0;
818 out:
819 NODEMASK_SCRATCH_FREE(scratch);
820 return ret;
824 * Return nodemask for policy for get_mempolicy() query
826 * Called with task's alloc_lock held
828 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
830 nodes_clear(*nodes);
831 if (p == &default_policy)
832 return;
834 switch (p->mode) {
835 case MPOL_BIND:
836 /* Fall through */
837 case MPOL_INTERLEAVE:
838 *nodes = p->v.nodes;
839 break;
840 case MPOL_PREFERRED:
841 if (!(p->flags & MPOL_F_LOCAL))
842 node_set(p->v.preferred_node, *nodes);
843 /* else return empty node mask for local allocation */
844 break;
845 default:
846 BUG();
850 static int lookup_node(unsigned long addr)
852 struct page *p;
853 int err;
855 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
856 if (err >= 0) {
857 err = page_to_nid(p);
858 put_page(p);
860 return err;
863 /* Retrieve NUMA policy */
864 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
865 unsigned long addr, unsigned long flags)
867 int err;
868 struct mm_struct *mm = current->mm;
869 struct vm_area_struct *vma = NULL;
870 struct mempolicy *pol = current->mempolicy;
872 if (flags &
873 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
874 return -EINVAL;
876 if (flags & MPOL_F_MEMS_ALLOWED) {
877 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
878 return -EINVAL;
879 *policy = 0; /* just so it's initialized */
880 task_lock(current);
881 *nmask = cpuset_current_mems_allowed;
882 task_unlock(current);
883 return 0;
886 if (flags & MPOL_F_ADDR) {
888 * Do NOT fall back to task policy if the
889 * vma/shared policy at addr is NULL. We
890 * want to return MPOL_DEFAULT in this case.
892 down_read(&mm->mmap_sem);
893 vma = find_vma_intersection(mm, addr, addr+1);
894 if (!vma) {
895 up_read(&mm->mmap_sem);
896 return -EFAULT;
898 if (vma->vm_ops && vma->vm_ops->get_policy)
899 pol = vma->vm_ops->get_policy(vma, addr);
900 else
901 pol = vma->vm_policy;
902 } else if (addr)
903 return -EINVAL;
905 if (!pol)
906 pol = &default_policy; /* indicates default behavior */
908 if (flags & MPOL_F_NODE) {
909 if (flags & MPOL_F_ADDR) {
910 err = lookup_node(addr);
911 if (err < 0)
912 goto out;
913 *policy = err;
914 } else if (pol == current->mempolicy &&
915 pol->mode == MPOL_INTERLEAVE) {
916 *policy = next_node_in(current->il_prev, pol->v.nodes);
917 } else {
918 err = -EINVAL;
919 goto out;
921 } else {
922 *policy = pol == &default_policy ? MPOL_DEFAULT :
923 pol->mode;
925 * Internal mempolicy flags must be masked off before exposing
926 * the policy to userspace.
928 *policy |= (pol->flags & MPOL_MODE_FLAGS);
931 err = 0;
932 if (nmask) {
933 if (mpol_store_user_nodemask(pol)) {
934 *nmask = pol->w.user_nodemask;
935 } else {
936 task_lock(current);
937 get_policy_nodemask(pol, nmask);
938 task_unlock(current);
942 out:
943 mpol_cond_put(pol);
944 if (vma)
945 up_read(&current->mm->mmap_sem);
946 return err;
949 #ifdef CONFIG_MIGRATION
951 * page migration, thp tail pages can be passed.
953 static void migrate_page_add(struct page *page, struct list_head *pagelist,
954 unsigned long flags)
956 struct page *head = compound_head(page);
958 * Avoid migrating a page that is shared with others.
960 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
961 if (!isolate_lru_page(head)) {
962 list_add_tail(&head->lru, pagelist);
963 mod_node_page_state(page_pgdat(head),
964 NR_ISOLATED_ANON + page_is_file_cache(head),
965 hpage_nr_pages(head));
970 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
972 if (PageHuge(page))
973 return alloc_huge_page_node(page_hstate(compound_head(page)),
974 node);
975 else if (thp_migration_supported() && PageTransHuge(page)) {
976 struct page *thp;
978 thp = alloc_pages_node(node,
979 (GFP_TRANSHUGE | __GFP_THISNODE),
980 HPAGE_PMD_ORDER);
981 if (!thp)
982 return NULL;
983 prep_transhuge_page(thp);
984 return thp;
985 } else
986 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
987 __GFP_THISNODE, 0);
991 * Migrate pages from one node to a target node.
992 * Returns error or the number of pages not migrated.
994 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
995 int flags)
997 nodemask_t nmask;
998 LIST_HEAD(pagelist);
999 int err = 0;
1001 nodes_clear(nmask);
1002 node_set(source, nmask);
1005 * This does not "check" the range but isolates all pages that
1006 * need migration. Between passing in the full user address
1007 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1009 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1010 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1011 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1013 if (!list_empty(&pagelist)) {
1014 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1015 MIGRATE_SYNC, MR_SYSCALL);
1016 if (err)
1017 putback_movable_pages(&pagelist);
1020 return err;
1024 * Move pages between the two nodesets so as to preserve the physical
1025 * layout as much as possible.
1027 * Returns the number of page that could not be moved.
1029 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1030 const nodemask_t *to, int flags)
1032 int busy = 0;
1033 int err;
1034 nodemask_t tmp;
1036 err = migrate_prep();
1037 if (err)
1038 return err;
1040 down_read(&mm->mmap_sem);
1043 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1044 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1045 * bit in 'tmp', and return that <source, dest> pair for migration.
1046 * The pair of nodemasks 'to' and 'from' define the map.
1048 * If no pair of bits is found that way, fallback to picking some
1049 * pair of 'source' and 'dest' bits that are not the same. If the
1050 * 'source' and 'dest' bits are the same, this represents a node
1051 * that will be migrating to itself, so no pages need move.
1053 * If no bits are left in 'tmp', or if all remaining bits left
1054 * in 'tmp' correspond to the same bit in 'to', return false
1055 * (nothing left to migrate).
1057 * This lets us pick a pair of nodes to migrate between, such that
1058 * if possible the dest node is not already occupied by some other
1059 * source node, minimizing the risk of overloading the memory on a
1060 * node that would happen if we migrated incoming memory to a node
1061 * before migrating outgoing memory source that same node.
1063 * A single scan of tmp is sufficient. As we go, we remember the
1064 * most recent <s, d> pair that moved (s != d). If we find a pair
1065 * that not only moved, but what's better, moved to an empty slot
1066 * (d is not set in tmp), then we break out then, with that pair.
1067 * Otherwise when we finish scanning from_tmp, we at least have the
1068 * most recent <s, d> pair that moved. If we get all the way through
1069 * the scan of tmp without finding any node that moved, much less
1070 * moved to an empty node, then there is nothing left worth migrating.
1073 tmp = *from;
1074 while (!nodes_empty(tmp)) {
1075 int s,d;
1076 int source = NUMA_NO_NODE;
1077 int dest = 0;
1079 for_each_node_mask(s, tmp) {
1082 * do_migrate_pages() tries to maintain the relative
1083 * node relationship of the pages established between
1084 * threads and memory areas.
1086 * However if the number of source nodes is not equal to
1087 * the number of destination nodes we can not preserve
1088 * this node relative relationship. In that case, skip
1089 * copying memory from a node that is in the destination
1090 * mask.
1092 * Example: [2,3,4] -> [3,4,5] moves everything.
1093 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1096 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1097 (node_isset(s, *to)))
1098 continue;
1100 d = node_remap(s, *from, *to);
1101 if (s == d)
1102 continue;
1104 source = s; /* Node moved. Memorize */
1105 dest = d;
1107 /* dest not in remaining from nodes? */
1108 if (!node_isset(dest, tmp))
1109 break;
1111 if (source == NUMA_NO_NODE)
1112 break;
1114 node_clear(source, tmp);
1115 err = migrate_to_node(mm, source, dest, flags);
1116 if (err > 0)
1117 busy += err;
1118 if (err < 0)
1119 break;
1121 up_read(&mm->mmap_sem);
1122 if (err < 0)
1123 return err;
1124 return busy;
1129 * Allocate a new page for page migration based on vma policy.
1130 * Start by assuming the page is mapped by the same vma as contains @start.
1131 * Search forward from there, if not. N.B., this assumes that the
1132 * list of pages handed to migrate_pages()--which is how we get here--
1133 * is in virtual address order.
1135 static struct page *new_page(struct page *page, unsigned long start, int **x)
1137 struct vm_area_struct *vma;
1138 unsigned long uninitialized_var(address);
1140 vma = find_vma(current->mm, start);
1141 while (vma) {
1142 address = page_address_in_vma(page, vma);
1143 if (address != -EFAULT)
1144 break;
1145 vma = vma->vm_next;
1148 if (PageHuge(page)) {
1149 BUG_ON(!vma);
1150 return alloc_huge_page_noerr(vma, address, 1);
1151 } else if (thp_migration_supported() && PageTransHuge(page)) {
1152 struct page *thp;
1154 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1155 HPAGE_PMD_ORDER);
1156 if (!thp)
1157 return NULL;
1158 prep_transhuge_page(thp);
1159 return thp;
1162 * if !vma, alloc_page_vma() will use task or system default policy
1164 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1165 vma, address);
1167 #else
1169 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1170 unsigned long flags)
1174 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1175 const nodemask_t *to, int flags)
1177 return -ENOSYS;
1180 static struct page *new_page(struct page *page, unsigned long start, int **x)
1182 return NULL;
1184 #endif
1186 static long do_mbind(unsigned long start, unsigned long len,
1187 unsigned short mode, unsigned short mode_flags,
1188 nodemask_t *nmask, unsigned long flags)
1190 struct mm_struct *mm = current->mm;
1191 struct mempolicy *new;
1192 unsigned long end;
1193 int err;
1194 LIST_HEAD(pagelist);
1196 if (flags & ~(unsigned long)MPOL_MF_VALID)
1197 return -EINVAL;
1198 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1199 return -EPERM;
1201 if (start & ~PAGE_MASK)
1202 return -EINVAL;
1204 if (mode == MPOL_DEFAULT)
1205 flags &= ~MPOL_MF_STRICT;
1207 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1208 end = start + len;
1210 if (end < start)
1211 return -EINVAL;
1212 if (end == start)
1213 return 0;
1215 new = mpol_new(mode, mode_flags, nmask);
1216 if (IS_ERR(new))
1217 return PTR_ERR(new);
1219 if (flags & MPOL_MF_LAZY)
1220 new->flags |= MPOL_F_MOF;
1223 * If we are using the default policy then operation
1224 * on discontinuous address spaces is okay after all
1226 if (!new)
1227 flags |= MPOL_MF_DISCONTIG_OK;
1229 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1230 start, start + len, mode, mode_flags,
1231 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1233 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1235 err = migrate_prep();
1236 if (err)
1237 goto mpol_out;
1240 NODEMASK_SCRATCH(scratch);
1241 if (scratch) {
1242 down_write(&mm->mmap_sem);
1243 task_lock(current);
1244 err = mpol_set_nodemask(new, nmask, scratch);
1245 task_unlock(current);
1246 if (err)
1247 up_write(&mm->mmap_sem);
1248 } else
1249 err = -ENOMEM;
1250 NODEMASK_SCRATCH_FREE(scratch);
1252 if (err)
1253 goto mpol_out;
1255 err = queue_pages_range(mm, start, end, nmask,
1256 flags | MPOL_MF_INVERT, &pagelist);
1257 if (!err)
1258 err = mbind_range(mm, start, end, new);
1260 if (!err) {
1261 int nr_failed = 0;
1263 if (!list_empty(&pagelist)) {
1264 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1265 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1266 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1267 if (nr_failed)
1268 putback_movable_pages(&pagelist);
1271 if (nr_failed && (flags & MPOL_MF_STRICT))
1272 err = -EIO;
1273 } else
1274 putback_movable_pages(&pagelist);
1276 up_write(&mm->mmap_sem);
1277 mpol_out:
1278 mpol_put(new);
1279 return err;
1283 * User space interface with variable sized bitmaps for nodelists.
1286 /* Copy a node mask from user space. */
1287 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1288 unsigned long maxnode)
1290 unsigned long k;
1291 unsigned long t;
1292 unsigned long nlongs;
1293 unsigned long endmask;
1295 --maxnode;
1296 nodes_clear(*nodes);
1297 if (maxnode == 0 || !nmask)
1298 return 0;
1299 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1300 return -EINVAL;
1302 nlongs = BITS_TO_LONGS(maxnode);
1303 if ((maxnode % BITS_PER_LONG) == 0)
1304 endmask = ~0UL;
1305 else
1306 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1309 * When the user specified more nodes than supported just check
1310 * if the non supported part is all zero.
1312 * If maxnode have more longs than MAX_NUMNODES, check
1313 * the bits in that area first. And then go through to
1314 * check the rest bits which equal or bigger than MAX_NUMNODES.
1315 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1317 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1318 if (nlongs > PAGE_SIZE/sizeof(long))
1319 return -EINVAL;
1320 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1321 if (get_user(t, nmask + k))
1322 return -EFAULT;
1323 if (k == nlongs - 1) {
1324 if (t & endmask)
1325 return -EINVAL;
1326 } else if (t)
1327 return -EINVAL;
1329 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1330 endmask = ~0UL;
1333 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1334 unsigned long valid_mask = endmask;
1336 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1337 if (get_user(t, nmask + nlongs - 1))
1338 return -EFAULT;
1339 if (t & valid_mask)
1340 return -EINVAL;
1343 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1344 return -EFAULT;
1345 nodes_addr(*nodes)[nlongs-1] &= endmask;
1346 return 0;
1349 /* Copy a kernel node mask to user space */
1350 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1351 nodemask_t *nodes)
1353 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1354 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1356 if (copy > nbytes) {
1357 if (copy > PAGE_SIZE)
1358 return -EINVAL;
1359 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1360 return -EFAULT;
1361 copy = nbytes;
1363 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1366 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1367 unsigned long, mode, const unsigned long __user *, nmask,
1368 unsigned long, maxnode, unsigned, flags)
1370 nodemask_t nodes;
1371 int err;
1372 unsigned short mode_flags;
1374 mode_flags = mode & MPOL_MODE_FLAGS;
1375 mode &= ~MPOL_MODE_FLAGS;
1376 if (mode >= MPOL_MAX)
1377 return -EINVAL;
1378 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1379 (mode_flags & MPOL_F_RELATIVE_NODES))
1380 return -EINVAL;
1381 err = get_nodes(&nodes, nmask, maxnode);
1382 if (err)
1383 return err;
1384 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1387 /* Set the process memory policy */
1388 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1389 unsigned long, maxnode)
1391 int err;
1392 nodemask_t nodes;
1393 unsigned short flags;
1395 flags = mode & MPOL_MODE_FLAGS;
1396 mode &= ~MPOL_MODE_FLAGS;
1397 if ((unsigned int)mode >= MPOL_MAX)
1398 return -EINVAL;
1399 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1400 return -EINVAL;
1401 err = get_nodes(&nodes, nmask, maxnode);
1402 if (err)
1403 return err;
1404 return do_set_mempolicy(mode, flags, &nodes);
1407 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1408 const unsigned long __user *, old_nodes,
1409 const unsigned long __user *, new_nodes)
1411 const struct cred *cred = current_cred(), *tcred;
1412 struct mm_struct *mm = NULL;
1413 struct task_struct *task;
1414 nodemask_t task_nodes;
1415 int err;
1416 nodemask_t *old;
1417 nodemask_t *new;
1418 NODEMASK_SCRATCH(scratch);
1420 if (!scratch)
1421 return -ENOMEM;
1423 old = &scratch->mask1;
1424 new = &scratch->mask2;
1426 err = get_nodes(old, old_nodes, maxnode);
1427 if (err)
1428 goto out;
1430 err = get_nodes(new, new_nodes, maxnode);
1431 if (err)
1432 goto out;
1434 /* Find the mm_struct */
1435 rcu_read_lock();
1436 task = pid ? find_task_by_vpid(pid) : current;
1437 if (!task) {
1438 rcu_read_unlock();
1439 err = -ESRCH;
1440 goto out;
1442 get_task_struct(task);
1444 err = -EINVAL;
1447 * Check if this process has the right to modify the specified
1448 * process. The right exists if the process has administrative
1449 * capabilities, superuser privileges or the same
1450 * userid as the target process.
1452 tcred = __task_cred(task);
1453 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1454 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1455 !capable(CAP_SYS_NICE)) {
1456 rcu_read_unlock();
1457 err = -EPERM;
1458 goto out_put;
1460 rcu_read_unlock();
1462 task_nodes = cpuset_mems_allowed(task);
1463 /* Is the user allowed to access the target nodes? */
1464 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1465 err = -EPERM;
1466 goto out_put;
1469 task_nodes = cpuset_mems_allowed(current);
1470 nodes_and(*new, *new, task_nodes);
1471 if (nodes_empty(*new))
1472 goto out_put;
1474 nodes_and(*new, *new, node_states[N_MEMORY]);
1475 if (nodes_empty(*new))
1476 goto out_put;
1478 err = security_task_movememory(task);
1479 if (err)
1480 goto out_put;
1482 mm = get_task_mm(task);
1483 put_task_struct(task);
1485 if (!mm) {
1486 err = -EINVAL;
1487 goto out;
1490 err = do_migrate_pages(mm, old, new,
1491 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1493 mmput(mm);
1494 out:
1495 NODEMASK_SCRATCH_FREE(scratch);
1497 return err;
1499 out_put:
1500 put_task_struct(task);
1501 goto out;
1506 /* Retrieve NUMA policy */
1507 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1508 unsigned long __user *, nmask, unsigned long, maxnode,
1509 unsigned long, addr, unsigned long, flags)
1511 int err;
1512 int uninitialized_var(pval);
1513 nodemask_t nodes;
1515 if (nmask != NULL && maxnode < nr_node_ids)
1516 return -EINVAL;
1518 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1520 if (err)
1521 return err;
1523 if (policy && put_user(pval, policy))
1524 return -EFAULT;
1526 if (nmask)
1527 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1529 return err;
1532 #ifdef CONFIG_COMPAT
1534 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1535 compat_ulong_t __user *, nmask,
1536 compat_ulong_t, maxnode,
1537 compat_ulong_t, addr, compat_ulong_t, flags)
1539 long err;
1540 unsigned long __user *nm = NULL;
1541 unsigned long nr_bits, alloc_size;
1542 DECLARE_BITMAP(bm, MAX_NUMNODES);
1544 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1545 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1547 if (nmask)
1548 nm = compat_alloc_user_space(alloc_size);
1550 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1552 if (!err && nmask) {
1553 unsigned long copy_size;
1554 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1555 err = copy_from_user(bm, nm, copy_size);
1556 /* ensure entire bitmap is zeroed */
1557 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1558 err |= compat_put_bitmap(nmask, bm, nr_bits);
1561 return err;
1564 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1565 compat_ulong_t, maxnode)
1567 unsigned long __user *nm = NULL;
1568 unsigned long nr_bits, alloc_size;
1569 DECLARE_BITMAP(bm, MAX_NUMNODES);
1571 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1572 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1574 if (nmask) {
1575 if (compat_get_bitmap(bm, nmask, nr_bits))
1576 return -EFAULT;
1577 nm = compat_alloc_user_space(alloc_size);
1578 if (copy_to_user(nm, bm, alloc_size))
1579 return -EFAULT;
1582 return sys_set_mempolicy(mode, nm, nr_bits+1);
1585 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1586 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1587 compat_ulong_t, maxnode, compat_ulong_t, flags)
1589 unsigned long __user *nm = NULL;
1590 unsigned long nr_bits, alloc_size;
1591 nodemask_t bm;
1593 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1594 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1596 if (nmask) {
1597 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1598 return -EFAULT;
1599 nm = compat_alloc_user_space(alloc_size);
1600 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1601 return -EFAULT;
1604 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1607 #endif
1609 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1610 unsigned long addr)
1612 struct mempolicy *pol = NULL;
1614 if (vma) {
1615 if (vma->vm_ops && vma->vm_ops->get_policy) {
1616 pol = vma->vm_ops->get_policy(vma, addr);
1617 } else if (vma->vm_policy) {
1618 pol = vma->vm_policy;
1621 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1622 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1623 * count on these policies which will be dropped by
1624 * mpol_cond_put() later
1626 if (mpol_needs_cond_ref(pol))
1627 mpol_get(pol);
1631 return pol;
1635 * get_vma_policy(@vma, @addr)
1636 * @vma: virtual memory area whose policy is sought
1637 * @addr: address in @vma for shared policy lookup
1639 * Returns effective policy for a VMA at specified address.
1640 * Falls back to current->mempolicy or system default policy, as necessary.
1641 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1642 * count--added by the get_policy() vm_op, as appropriate--to protect against
1643 * freeing by another task. It is the caller's responsibility to free the
1644 * extra reference for shared policies.
1646 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1647 unsigned long addr)
1649 struct mempolicy *pol = __get_vma_policy(vma, addr);
1651 if (!pol)
1652 pol = get_task_policy(current);
1654 return pol;
1657 bool vma_policy_mof(struct vm_area_struct *vma)
1659 struct mempolicy *pol;
1661 if (vma->vm_ops && vma->vm_ops->get_policy) {
1662 bool ret = false;
1664 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1665 if (pol && (pol->flags & MPOL_F_MOF))
1666 ret = true;
1667 mpol_cond_put(pol);
1669 return ret;
1672 pol = vma->vm_policy;
1673 if (!pol)
1674 pol = get_task_policy(current);
1676 return pol->flags & MPOL_F_MOF;
1679 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1681 enum zone_type dynamic_policy_zone = policy_zone;
1683 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1686 * if policy->v.nodes has movable memory only,
1687 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1689 * policy->v.nodes is intersect with node_states[N_MEMORY].
1690 * so if the following test faile, it implies
1691 * policy->v.nodes has movable memory only.
1693 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1694 dynamic_policy_zone = ZONE_MOVABLE;
1696 return zone >= dynamic_policy_zone;
1700 * Return a nodemask representing a mempolicy for filtering nodes for
1701 * page allocation
1703 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1705 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1706 if (unlikely(policy->mode == MPOL_BIND) &&
1707 apply_policy_zone(policy, gfp_zone(gfp)) &&
1708 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1709 return &policy->v.nodes;
1711 return NULL;
1714 /* Return the node id preferred by the given mempolicy, or the given id */
1715 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1716 int nd)
1718 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1719 nd = policy->v.preferred_node;
1720 else {
1722 * __GFP_THISNODE shouldn't even be used with the bind policy
1723 * because we might easily break the expectation to stay on the
1724 * requested node and not break the policy.
1726 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1729 return nd;
1732 /* Do dynamic interleaving for a process */
1733 static unsigned interleave_nodes(struct mempolicy *policy)
1735 unsigned next;
1736 struct task_struct *me = current;
1738 next = next_node_in(me->il_prev, policy->v.nodes);
1739 if (next < MAX_NUMNODES)
1740 me->il_prev = next;
1741 return next;
1745 * Depending on the memory policy provide a node from which to allocate the
1746 * next slab entry.
1748 unsigned int mempolicy_slab_node(void)
1750 struct mempolicy *policy;
1751 int node = numa_mem_id();
1753 if (in_interrupt())
1754 return node;
1756 policy = current->mempolicy;
1757 if (!policy || policy->flags & MPOL_F_LOCAL)
1758 return node;
1760 switch (policy->mode) {
1761 case MPOL_PREFERRED:
1763 * handled MPOL_F_LOCAL above
1765 return policy->v.preferred_node;
1767 case MPOL_INTERLEAVE:
1768 return interleave_nodes(policy);
1770 case MPOL_BIND: {
1771 struct zoneref *z;
1774 * Follow bind policy behavior and start allocation at the
1775 * first node.
1777 struct zonelist *zonelist;
1778 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1779 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1780 z = first_zones_zonelist(zonelist, highest_zoneidx,
1781 &policy->v.nodes);
1782 return z->zone ? z->zone->node : node;
1785 default:
1786 BUG();
1791 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1792 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1793 * number of present nodes.
1795 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1797 unsigned nnodes = nodes_weight(pol->v.nodes);
1798 unsigned target;
1799 int i;
1800 int nid;
1802 if (!nnodes)
1803 return numa_node_id();
1804 target = (unsigned int)n % nnodes;
1805 nid = first_node(pol->v.nodes);
1806 for (i = 0; i < target; i++)
1807 nid = next_node(nid, pol->v.nodes);
1808 return nid;
1811 /* Determine a node number for interleave */
1812 static inline unsigned interleave_nid(struct mempolicy *pol,
1813 struct vm_area_struct *vma, unsigned long addr, int shift)
1815 if (vma) {
1816 unsigned long off;
1819 * for small pages, there is no difference between
1820 * shift and PAGE_SHIFT, so the bit-shift is safe.
1821 * for huge pages, since vm_pgoff is in units of small
1822 * pages, we need to shift off the always 0 bits to get
1823 * a useful offset.
1825 BUG_ON(shift < PAGE_SHIFT);
1826 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1827 off += (addr - vma->vm_start) >> shift;
1828 return offset_il_node(pol, off);
1829 } else
1830 return interleave_nodes(pol);
1833 #ifdef CONFIG_HUGETLBFS
1835 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1836 * @vma: virtual memory area whose policy is sought
1837 * @addr: address in @vma for shared policy lookup and interleave policy
1838 * @gfp_flags: for requested zone
1839 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1840 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1842 * Returns a nid suitable for a huge page allocation and a pointer
1843 * to the struct mempolicy for conditional unref after allocation.
1844 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1845 * @nodemask for filtering the zonelist.
1847 * Must be protected by read_mems_allowed_begin()
1849 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1850 struct mempolicy **mpol, nodemask_t **nodemask)
1852 int nid;
1854 *mpol = get_vma_policy(vma, addr);
1855 *nodemask = NULL; /* assume !MPOL_BIND */
1857 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1858 nid = interleave_nid(*mpol, vma, addr,
1859 huge_page_shift(hstate_vma(vma)));
1860 } else {
1861 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1862 if ((*mpol)->mode == MPOL_BIND)
1863 *nodemask = &(*mpol)->v.nodes;
1865 return nid;
1869 * init_nodemask_of_mempolicy
1871 * If the current task's mempolicy is "default" [NULL], return 'false'
1872 * to indicate default policy. Otherwise, extract the policy nodemask
1873 * for 'bind' or 'interleave' policy into the argument nodemask, or
1874 * initialize the argument nodemask to contain the single node for
1875 * 'preferred' or 'local' policy and return 'true' to indicate presence
1876 * of non-default mempolicy.
1878 * We don't bother with reference counting the mempolicy [mpol_get/put]
1879 * because the current task is examining it's own mempolicy and a task's
1880 * mempolicy is only ever changed by the task itself.
1882 * N.B., it is the caller's responsibility to free a returned nodemask.
1884 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1886 struct mempolicy *mempolicy;
1887 int nid;
1889 if (!(mask && current->mempolicy))
1890 return false;
1892 task_lock(current);
1893 mempolicy = current->mempolicy;
1894 switch (mempolicy->mode) {
1895 case MPOL_PREFERRED:
1896 if (mempolicy->flags & MPOL_F_LOCAL)
1897 nid = numa_node_id();
1898 else
1899 nid = mempolicy->v.preferred_node;
1900 init_nodemask_of_node(mask, nid);
1901 break;
1903 case MPOL_BIND:
1904 /* Fall through */
1905 case MPOL_INTERLEAVE:
1906 *mask = mempolicy->v.nodes;
1907 break;
1909 default:
1910 BUG();
1912 task_unlock(current);
1914 return true;
1916 #endif
1919 * mempolicy_nodemask_intersects
1921 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1922 * policy. Otherwise, check for intersection between mask and the policy
1923 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1924 * policy, always return true since it may allocate elsewhere on fallback.
1926 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1928 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1929 const nodemask_t *mask)
1931 struct mempolicy *mempolicy;
1932 bool ret = true;
1934 if (!mask)
1935 return ret;
1936 task_lock(tsk);
1937 mempolicy = tsk->mempolicy;
1938 if (!mempolicy)
1939 goto out;
1941 switch (mempolicy->mode) {
1942 case MPOL_PREFERRED:
1944 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1945 * allocate from, they may fallback to other nodes when oom.
1946 * Thus, it's possible for tsk to have allocated memory from
1947 * nodes in mask.
1949 break;
1950 case MPOL_BIND:
1951 case MPOL_INTERLEAVE:
1952 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1953 break;
1954 default:
1955 BUG();
1957 out:
1958 task_unlock(tsk);
1959 return ret;
1962 /* Allocate a page in interleaved policy.
1963 Own path because it needs to do special accounting. */
1964 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1965 unsigned nid)
1967 struct page *page;
1969 page = __alloc_pages(gfp, order, nid);
1970 if (page && page_to_nid(page) == nid) {
1971 preempt_disable();
1972 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1973 preempt_enable();
1975 return page;
1979 * alloc_pages_vma - Allocate a page for a VMA.
1981 * @gfp:
1982 * %GFP_USER user allocation.
1983 * %GFP_KERNEL kernel allocations,
1984 * %GFP_HIGHMEM highmem/user allocations,
1985 * %GFP_FS allocation should not call back into a file system.
1986 * %GFP_ATOMIC don't sleep.
1988 * @order:Order of the GFP allocation.
1989 * @vma: Pointer to VMA or NULL if not available.
1990 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1991 * @node: Which node to prefer for allocation (modulo policy).
1992 * @hugepage: for hugepages try only the preferred node if possible
1994 * This function allocates a page from the kernel page pool and applies
1995 * a NUMA policy associated with the VMA or the current process.
1996 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1997 * mm_struct of the VMA to prevent it from going away. Should be used for
1998 * all allocations for pages that will be mapped into user space. Returns
1999 * NULL when no page can be allocated.
2001 struct page *
2002 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2003 unsigned long addr, int node, bool hugepage)
2005 struct mempolicy *pol;
2006 struct page *page;
2007 int preferred_nid;
2008 nodemask_t *nmask;
2010 pol = get_vma_policy(vma, addr);
2012 if (pol->mode == MPOL_INTERLEAVE) {
2013 unsigned nid;
2015 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2016 mpol_cond_put(pol);
2017 page = alloc_page_interleave(gfp, order, nid);
2018 goto out;
2021 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2022 int hpage_node = node;
2025 * For hugepage allocation and non-interleave policy which
2026 * allows the current node (or other explicitly preferred
2027 * node) we only try to allocate from the current/preferred
2028 * node and don't fall back to other nodes, as the cost of
2029 * remote accesses would likely offset THP benefits.
2031 * If the policy is interleave, or does not allow the current
2032 * node in its nodemask, we allocate the standard way.
2034 if (pol->mode == MPOL_PREFERRED &&
2035 !(pol->flags & MPOL_F_LOCAL))
2036 hpage_node = pol->v.preferred_node;
2038 nmask = policy_nodemask(gfp, pol);
2039 if (!nmask || node_isset(hpage_node, *nmask)) {
2040 mpol_cond_put(pol);
2042 * We cannot invoke reclaim if __GFP_THISNODE
2043 * is set. Invoking reclaim with
2044 * __GFP_THISNODE set, would cause THP
2045 * allocations to trigger heavy swapping
2046 * despite there may be tons of free memory
2047 * (including potentially plenty of THP
2048 * already available in the buddy) on all the
2049 * other NUMA nodes.
2051 * At most we could invoke compaction when
2052 * __GFP_THISNODE is set (but we would need to
2053 * refrain from invoking reclaim even if
2054 * compaction returned COMPACT_SKIPPED because
2055 * there wasn't not enough memory to succeed
2056 * compaction). For now just avoid
2057 * __GFP_THISNODE instead of limiting the
2058 * allocation path to a strict and single
2059 * compaction invocation.
2061 * Supposedly if direct reclaim was enabled by
2062 * the caller, the app prefers THP regardless
2063 * of the node it comes from so this would be
2064 * more desiderable behavior than only
2065 * providing THP originated from the local
2066 * node in such case.
2068 if (!(gfp & __GFP_DIRECT_RECLAIM))
2069 gfp |= __GFP_THISNODE;
2070 page = __alloc_pages_node(hpage_node, gfp, order);
2071 goto out;
2075 nmask = policy_nodemask(gfp, pol);
2076 preferred_nid = policy_node(gfp, pol, node);
2077 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2078 mpol_cond_put(pol);
2079 out:
2080 return page;
2084 * alloc_pages_current - Allocate pages.
2086 * @gfp:
2087 * %GFP_USER user allocation,
2088 * %GFP_KERNEL kernel allocation,
2089 * %GFP_HIGHMEM highmem allocation,
2090 * %GFP_FS don't call back into a file system.
2091 * %GFP_ATOMIC don't sleep.
2092 * @order: Power of two of allocation size in pages. 0 is a single page.
2094 * Allocate a page from the kernel page pool. When not in
2095 * interrupt context and apply the current process NUMA policy.
2096 * Returns NULL when no page can be allocated.
2098 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2100 struct mempolicy *pol = &default_policy;
2101 struct page *page;
2103 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2104 pol = get_task_policy(current);
2107 * No reference counting needed for current->mempolicy
2108 * nor system default_policy
2110 if (pol->mode == MPOL_INTERLEAVE)
2111 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2112 else
2113 page = __alloc_pages_nodemask(gfp, order,
2114 policy_node(gfp, pol, numa_node_id()),
2115 policy_nodemask(gfp, pol));
2117 return page;
2119 EXPORT_SYMBOL(alloc_pages_current);
2121 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2123 struct mempolicy *pol = mpol_dup(vma_policy(src));
2125 if (IS_ERR(pol))
2126 return PTR_ERR(pol);
2127 dst->vm_policy = pol;
2128 return 0;
2132 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2133 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2134 * with the mems_allowed returned by cpuset_mems_allowed(). This
2135 * keeps mempolicies cpuset relative after its cpuset moves. See
2136 * further kernel/cpuset.c update_nodemask().
2138 * current's mempolicy may be rebinded by the other task(the task that changes
2139 * cpuset's mems), so we needn't do rebind work for current task.
2142 /* Slow path of a mempolicy duplicate */
2143 struct mempolicy *__mpol_dup(struct mempolicy *old)
2145 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2147 if (!new)
2148 return ERR_PTR(-ENOMEM);
2150 /* task's mempolicy is protected by alloc_lock */
2151 if (old == current->mempolicy) {
2152 task_lock(current);
2153 *new = *old;
2154 task_unlock(current);
2155 } else
2156 *new = *old;
2158 if (current_cpuset_is_being_rebound()) {
2159 nodemask_t mems = cpuset_mems_allowed(current);
2160 mpol_rebind_policy(new, &mems);
2162 atomic_set(&new->refcnt, 1);
2163 return new;
2166 /* Slow path of a mempolicy comparison */
2167 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2169 if (!a || !b)
2170 return false;
2171 if (a->mode != b->mode)
2172 return false;
2173 if (a->flags != b->flags)
2174 return false;
2175 if (mpol_store_user_nodemask(a))
2176 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2177 return false;
2179 switch (a->mode) {
2180 case MPOL_BIND:
2181 /* Fall through */
2182 case MPOL_INTERLEAVE:
2183 return !!nodes_equal(a->v.nodes, b->v.nodes);
2184 case MPOL_PREFERRED:
2185 /* a's ->flags is the same as b's */
2186 if (a->flags & MPOL_F_LOCAL)
2187 return true;
2188 return a->v.preferred_node == b->v.preferred_node;
2189 default:
2190 BUG();
2191 return false;
2196 * Shared memory backing store policy support.
2198 * Remember policies even when nobody has shared memory mapped.
2199 * The policies are kept in Red-Black tree linked from the inode.
2200 * They are protected by the sp->lock rwlock, which should be held
2201 * for any accesses to the tree.
2205 * lookup first element intersecting start-end. Caller holds sp->lock for
2206 * reading or for writing
2208 static struct sp_node *
2209 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2211 struct rb_node *n = sp->root.rb_node;
2213 while (n) {
2214 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2216 if (start >= p->end)
2217 n = n->rb_right;
2218 else if (end <= p->start)
2219 n = n->rb_left;
2220 else
2221 break;
2223 if (!n)
2224 return NULL;
2225 for (;;) {
2226 struct sp_node *w = NULL;
2227 struct rb_node *prev = rb_prev(n);
2228 if (!prev)
2229 break;
2230 w = rb_entry(prev, struct sp_node, nd);
2231 if (w->end <= start)
2232 break;
2233 n = prev;
2235 return rb_entry(n, struct sp_node, nd);
2239 * Insert a new shared policy into the list. Caller holds sp->lock for
2240 * writing.
2242 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2244 struct rb_node **p = &sp->root.rb_node;
2245 struct rb_node *parent = NULL;
2246 struct sp_node *nd;
2248 while (*p) {
2249 parent = *p;
2250 nd = rb_entry(parent, struct sp_node, nd);
2251 if (new->start < nd->start)
2252 p = &(*p)->rb_left;
2253 else if (new->end > nd->end)
2254 p = &(*p)->rb_right;
2255 else
2256 BUG();
2258 rb_link_node(&new->nd, parent, p);
2259 rb_insert_color(&new->nd, &sp->root);
2260 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2261 new->policy ? new->policy->mode : 0);
2264 /* Find shared policy intersecting idx */
2265 struct mempolicy *
2266 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2268 struct mempolicy *pol = NULL;
2269 struct sp_node *sn;
2271 if (!sp->root.rb_node)
2272 return NULL;
2273 read_lock(&sp->lock);
2274 sn = sp_lookup(sp, idx, idx+1);
2275 if (sn) {
2276 mpol_get(sn->policy);
2277 pol = sn->policy;
2279 read_unlock(&sp->lock);
2280 return pol;
2283 static void sp_free(struct sp_node *n)
2285 mpol_put(n->policy);
2286 kmem_cache_free(sn_cache, n);
2290 * mpol_misplaced - check whether current page node is valid in policy
2292 * @page: page to be checked
2293 * @vma: vm area where page mapped
2294 * @addr: virtual address where page mapped
2296 * Lookup current policy node id for vma,addr and "compare to" page's
2297 * node id.
2299 * Returns:
2300 * -1 - not misplaced, page is in the right node
2301 * node - node id where the page should be
2303 * Policy determination "mimics" alloc_page_vma().
2304 * Called from fault path where we know the vma and faulting address.
2306 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2308 struct mempolicy *pol;
2309 struct zoneref *z;
2310 int curnid = page_to_nid(page);
2311 unsigned long pgoff;
2312 int thiscpu = raw_smp_processor_id();
2313 int thisnid = cpu_to_node(thiscpu);
2314 int polnid = -1;
2315 int ret = -1;
2317 pol = get_vma_policy(vma, addr);
2318 if (!(pol->flags & MPOL_F_MOF))
2319 goto out;
2321 switch (pol->mode) {
2322 case MPOL_INTERLEAVE:
2323 pgoff = vma->vm_pgoff;
2324 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2325 polnid = offset_il_node(pol, pgoff);
2326 break;
2328 case MPOL_PREFERRED:
2329 if (pol->flags & MPOL_F_LOCAL)
2330 polnid = numa_node_id();
2331 else
2332 polnid = pol->v.preferred_node;
2333 break;
2335 case MPOL_BIND:
2338 * allows binding to multiple nodes.
2339 * use current page if in policy nodemask,
2340 * else select nearest allowed node, if any.
2341 * If no allowed nodes, use current [!misplaced].
2343 if (node_isset(curnid, pol->v.nodes))
2344 goto out;
2345 z = first_zones_zonelist(
2346 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2347 gfp_zone(GFP_HIGHUSER),
2348 &pol->v.nodes);
2349 polnid = z->zone->node;
2350 break;
2352 default:
2353 BUG();
2356 /* Migrate the page towards the node whose CPU is referencing it */
2357 if (pol->flags & MPOL_F_MORON) {
2358 polnid = thisnid;
2360 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2361 goto out;
2364 if (curnid != polnid)
2365 ret = polnid;
2366 out:
2367 mpol_cond_put(pol);
2369 return ret;
2373 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2374 * dropped after task->mempolicy is set to NULL so that any allocation done as
2375 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2376 * policy.
2378 void mpol_put_task_policy(struct task_struct *task)
2380 struct mempolicy *pol;
2382 task_lock(task);
2383 pol = task->mempolicy;
2384 task->mempolicy = NULL;
2385 task_unlock(task);
2386 mpol_put(pol);
2389 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2391 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2392 rb_erase(&n->nd, &sp->root);
2393 sp_free(n);
2396 static void sp_node_init(struct sp_node *node, unsigned long start,
2397 unsigned long end, struct mempolicy *pol)
2399 node->start = start;
2400 node->end = end;
2401 node->policy = pol;
2404 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2405 struct mempolicy *pol)
2407 struct sp_node *n;
2408 struct mempolicy *newpol;
2410 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2411 if (!n)
2412 return NULL;
2414 newpol = mpol_dup(pol);
2415 if (IS_ERR(newpol)) {
2416 kmem_cache_free(sn_cache, n);
2417 return NULL;
2419 newpol->flags |= MPOL_F_SHARED;
2420 sp_node_init(n, start, end, newpol);
2422 return n;
2425 /* Replace a policy range. */
2426 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2427 unsigned long end, struct sp_node *new)
2429 struct sp_node *n;
2430 struct sp_node *n_new = NULL;
2431 struct mempolicy *mpol_new = NULL;
2432 int ret = 0;
2434 restart:
2435 write_lock(&sp->lock);
2436 n = sp_lookup(sp, start, end);
2437 /* Take care of old policies in the same range. */
2438 while (n && n->start < end) {
2439 struct rb_node *next = rb_next(&n->nd);
2440 if (n->start >= start) {
2441 if (n->end <= end)
2442 sp_delete(sp, n);
2443 else
2444 n->start = end;
2445 } else {
2446 /* Old policy spanning whole new range. */
2447 if (n->end > end) {
2448 if (!n_new)
2449 goto alloc_new;
2451 *mpol_new = *n->policy;
2452 atomic_set(&mpol_new->refcnt, 1);
2453 sp_node_init(n_new, end, n->end, mpol_new);
2454 n->end = start;
2455 sp_insert(sp, n_new);
2456 n_new = NULL;
2457 mpol_new = NULL;
2458 break;
2459 } else
2460 n->end = start;
2462 if (!next)
2463 break;
2464 n = rb_entry(next, struct sp_node, nd);
2466 if (new)
2467 sp_insert(sp, new);
2468 write_unlock(&sp->lock);
2469 ret = 0;
2471 err_out:
2472 if (mpol_new)
2473 mpol_put(mpol_new);
2474 if (n_new)
2475 kmem_cache_free(sn_cache, n_new);
2477 return ret;
2479 alloc_new:
2480 write_unlock(&sp->lock);
2481 ret = -ENOMEM;
2482 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2483 if (!n_new)
2484 goto err_out;
2485 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2486 if (!mpol_new)
2487 goto err_out;
2488 goto restart;
2492 * mpol_shared_policy_init - initialize shared policy for inode
2493 * @sp: pointer to inode shared policy
2494 * @mpol: struct mempolicy to install
2496 * Install non-NULL @mpol in inode's shared policy rb-tree.
2497 * On entry, the current task has a reference on a non-NULL @mpol.
2498 * This must be released on exit.
2499 * This is called at get_inode() calls and we can use GFP_KERNEL.
2501 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2503 int ret;
2505 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2506 rwlock_init(&sp->lock);
2508 if (mpol) {
2509 struct vm_area_struct pvma;
2510 struct mempolicy *new;
2511 NODEMASK_SCRATCH(scratch);
2513 if (!scratch)
2514 goto put_mpol;
2515 /* contextualize the tmpfs mount point mempolicy */
2516 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2517 if (IS_ERR(new))
2518 goto free_scratch; /* no valid nodemask intersection */
2520 task_lock(current);
2521 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2522 task_unlock(current);
2523 if (ret)
2524 goto put_new;
2526 /* Create pseudo-vma that contains just the policy */
2527 memset(&pvma, 0, sizeof(struct vm_area_struct));
2528 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2529 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2531 put_new:
2532 mpol_put(new); /* drop initial ref */
2533 free_scratch:
2534 NODEMASK_SCRATCH_FREE(scratch);
2535 put_mpol:
2536 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2540 int mpol_set_shared_policy(struct shared_policy *info,
2541 struct vm_area_struct *vma, struct mempolicy *npol)
2543 int err;
2544 struct sp_node *new = NULL;
2545 unsigned long sz = vma_pages(vma);
2547 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2548 vma->vm_pgoff,
2549 sz, npol ? npol->mode : -1,
2550 npol ? npol->flags : -1,
2551 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2553 if (npol) {
2554 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2555 if (!new)
2556 return -ENOMEM;
2558 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2559 if (err && new)
2560 sp_free(new);
2561 return err;
2564 /* Free a backing policy store on inode delete. */
2565 void mpol_free_shared_policy(struct shared_policy *p)
2567 struct sp_node *n;
2568 struct rb_node *next;
2570 if (!p->root.rb_node)
2571 return;
2572 write_lock(&p->lock);
2573 next = rb_first(&p->root);
2574 while (next) {
2575 n = rb_entry(next, struct sp_node, nd);
2576 next = rb_next(&n->nd);
2577 sp_delete(p, n);
2579 write_unlock(&p->lock);
2582 #ifdef CONFIG_NUMA_BALANCING
2583 static int __initdata numabalancing_override;
2585 static void __init check_numabalancing_enable(void)
2587 bool numabalancing_default = false;
2589 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2590 numabalancing_default = true;
2592 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2593 if (numabalancing_override)
2594 set_numabalancing_state(numabalancing_override == 1);
2596 if (num_online_nodes() > 1 && !numabalancing_override) {
2597 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2598 numabalancing_default ? "Enabling" : "Disabling");
2599 set_numabalancing_state(numabalancing_default);
2603 static int __init setup_numabalancing(char *str)
2605 int ret = 0;
2606 if (!str)
2607 goto out;
2609 if (!strcmp(str, "enable")) {
2610 numabalancing_override = 1;
2611 ret = 1;
2612 } else if (!strcmp(str, "disable")) {
2613 numabalancing_override = -1;
2614 ret = 1;
2616 out:
2617 if (!ret)
2618 pr_warn("Unable to parse numa_balancing=\n");
2620 return ret;
2622 __setup("numa_balancing=", setup_numabalancing);
2623 #else
2624 static inline void __init check_numabalancing_enable(void)
2627 #endif /* CONFIG_NUMA_BALANCING */
2629 /* assumes fs == KERNEL_DS */
2630 void __init numa_policy_init(void)
2632 nodemask_t interleave_nodes;
2633 unsigned long largest = 0;
2634 int nid, prefer = 0;
2636 policy_cache = kmem_cache_create("numa_policy",
2637 sizeof(struct mempolicy),
2638 0, SLAB_PANIC, NULL);
2640 sn_cache = kmem_cache_create("shared_policy_node",
2641 sizeof(struct sp_node),
2642 0, SLAB_PANIC, NULL);
2644 for_each_node(nid) {
2645 preferred_node_policy[nid] = (struct mempolicy) {
2646 .refcnt = ATOMIC_INIT(1),
2647 .mode = MPOL_PREFERRED,
2648 .flags = MPOL_F_MOF | MPOL_F_MORON,
2649 .v = { .preferred_node = nid, },
2654 * Set interleaving policy for system init. Interleaving is only
2655 * enabled across suitably sized nodes (default is >= 16MB), or
2656 * fall back to the largest node if they're all smaller.
2658 nodes_clear(interleave_nodes);
2659 for_each_node_state(nid, N_MEMORY) {
2660 unsigned long total_pages = node_present_pages(nid);
2662 /* Preserve the largest node */
2663 if (largest < total_pages) {
2664 largest = total_pages;
2665 prefer = nid;
2668 /* Interleave this node? */
2669 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2670 node_set(nid, interleave_nodes);
2673 /* All too small, use the largest */
2674 if (unlikely(nodes_empty(interleave_nodes)))
2675 node_set(prefer, interleave_nodes);
2677 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2678 pr_err("%s: interleaving failed\n", __func__);
2680 check_numabalancing_enable();
2683 /* Reset policy of current process to default */
2684 void numa_default_policy(void)
2686 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2690 * Parse and format mempolicy from/to strings
2694 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2696 static const char * const policy_modes[] =
2698 [MPOL_DEFAULT] = "default",
2699 [MPOL_PREFERRED] = "prefer",
2700 [MPOL_BIND] = "bind",
2701 [MPOL_INTERLEAVE] = "interleave",
2702 [MPOL_LOCAL] = "local",
2706 #ifdef CONFIG_TMPFS
2708 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2709 * @str: string containing mempolicy to parse
2710 * @mpol: pointer to struct mempolicy pointer, returned on success.
2712 * Format of input:
2713 * <mode>[=<flags>][:<nodelist>]
2715 * On success, returns 0, else 1
2717 int mpol_parse_str(char *str, struct mempolicy **mpol)
2719 struct mempolicy *new = NULL;
2720 unsigned short mode;
2721 unsigned short mode_flags;
2722 nodemask_t nodes;
2723 char *nodelist = strchr(str, ':');
2724 char *flags = strchr(str, '=');
2725 int err = 1;
2727 if (nodelist) {
2728 /* NUL-terminate mode or flags string */
2729 *nodelist++ = '\0';
2730 if (nodelist_parse(nodelist, nodes))
2731 goto out;
2732 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2733 goto out;
2734 } else
2735 nodes_clear(nodes);
2737 if (flags)
2738 *flags++ = '\0'; /* terminate mode string */
2740 for (mode = 0; mode < MPOL_MAX; mode++) {
2741 if (!strcmp(str, policy_modes[mode])) {
2742 break;
2745 if (mode >= MPOL_MAX)
2746 goto out;
2748 switch (mode) {
2749 case MPOL_PREFERRED:
2751 * Insist on a nodelist of one node only
2753 if (nodelist) {
2754 char *rest = nodelist;
2755 while (isdigit(*rest))
2756 rest++;
2757 if (*rest)
2758 goto out;
2760 break;
2761 case MPOL_INTERLEAVE:
2763 * Default to online nodes with memory if no nodelist
2765 if (!nodelist)
2766 nodes = node_states[N_MEMORY];
2767 break;
2768 case MPOL_LOCAL:
2770 * Don't allow a nodelist; mpol_new() checks flags
2772 if (nodelist)
2773 goto out;
2774 mode = MPOL_PREFERRED;
2775 break;
2776 case MPOL_DEFAULT:
2778 * Insist on a empty nodelist
2780 if (!nodelist)
2781 err = 0;
2782 goto out;
2783 case MPOL_BIND:
2785 * Insist on a nodelist
2787 if (!nodelist)
2788 goto out;
2791 mode_flags = 0;
2792 if (flags) {
2794 * Currently, we only support two mutually exclusive
2795 * mode flags.
2797 if (!strcmp(flags, "static"))
2798 mode_flags |= MPOL_F_STATIC_NODES;
2799 else if (!strcmp(flags, "relative"))
2800 mode_flags |= MPOL_F_RELATIVE_NODES;
2801 else
2802 goto out;
2805 new = mpol_new(mode, mode_flags, &nodes);
2806 if (IS_ERR(new))
2807 goto out;
2810 * Save nodes for mpol_to_str() to show the tmpfs mount options
2811 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2813 if (mode != MPOL_PREFERRED)
2814 new->v.nodes = nodes;
2815 else if (nodelist)
2816 new->v.preferred_node = first_node(nodes);
2817 else
2818 new->flags |= MPOL_F_LOCAL;
2821 * Save nodes for contextualization: this will be used to "clone"
2822 * the mempolicy in a specific context [cpuset] at a later time.
2824 new->w.user_nodemask = nodes;
2826 err = 0;
2828 out:
2829 /* Restore string for error message */
2830 if (nodelist)
2831 *--nodelist = ':';
2832 if (flags)
2833 *--flags = '=';
2834 if (!err)
2835 *mpol = new;
2836 return err;
2838 #endif /* CONFIG_TMPFS */
2841 * mpol_to_str - format a mempolicy structure for printing
2842 * @buffer: to contain formatted mempolicy string
2843 * @maxlen: length of @buffer
2844 * @pol: pointer to mempolicy to be formatted
2846 * Convert @pol into a string. If @buffer is too short, truncate the string.
2847 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2848 * longest flag, "relative", and to display at least a few node ids.
2850 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2852 char *p = buffer;
2853 nodemask_t nodes = NODE_MASK_NONE;
2854 unsigned short mode = MPOL_DEFAULT;
2855 unsigned short flags = 0;
2857 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2858 mode = pol->mode;
2859 flags = pol->flags;
2862 switch (mode) {
2863 case MPOL_DEFAULT:
2864 break;
2865 case MPOL_PREFERRED:
2866 if (flags & MPOL_F_LOCAL)
2867 mode = MPOL_LOCAL;
2868 else
2869 node_set(pol->v.preferred_node, nodes);
2870 break;
2871 case MPOL_BIND:
2872 case MPOL_INTERLEAVE:
2873 nodes = pol->v.nodes;
2874 break;
2875 default:
2876 WARN_ON_ONCE(1);
2877 snprintf(p, maxlen, "unknown");
2878 return;
2881 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2883 if (flags & MPOL_MODE_FLAGS) {
2884 p += snprintf(p, buffer + maxlen - p, "=");
2887 * Currently, the only defined flags are mutually exclusive
2889 if (flags & MPOL_F_STATIC_NODES)
2890 p += snprintf(p, buffer + maxlen - p, "static");
2891 else if (flags & MPOL_F_RELATIVE_NODES)
2892 p += snprintf(p, buffer + maxlen - p, "relative");
2895 if (!nodes_empty(nodes))
2896 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2897 nodemask_pr_args(&nodes));