2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
100 #include <linux/swapops.h>
102 #include <asm/tlbflush.h>
103 #include <linux/uaccess.h>
105 #include "internal.h"
108 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
109 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111 static struct kmem_cache
*policy_cache
;
112 static struct kmem_cache
*sn_cache
;
114 /* Highest zone. An specific allocation for a zone below that is not
116 enum zone_type policy_zone
= 0;
119 * run-time system-wide default policy => local allocation
121 static struct mempolicy default_policy
= {
122 .refcnt
= ATOMIC_INIT(1), /* never free it */
123 .mode
= MPOL_PREFERRED
,
124 .flags
= MPOL_F_LOCAL
,
127 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
129 struct mempolicy
*get_task_policy(struct task_struct
*p
)
131 struct mempolicy
*pol
= p
->mempolicy
;
137 node
= numa_node_id();
138 if (node
!= NUMA_NO_NODE
) {
139 pol
= &preferred_node_policy
[node
];
140 /* preferred_node_policy is not initialised early in boot */
145 return &default_policy
;
148 static const struct mempolicy_operations
{
149 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
150 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
151 } mpol_ops
[MPOL_MAX
];
153 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
155 return pol
->flags
& MPOL_MODE_FLAGS
;
158 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
159 const nodemask_t
*rel
)
162 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
163 nodes_onto(*ret
, tmp
, *rel
);
166 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
168 if (nodes_empty(*nodes
))
170 pol
->v
.nodes
= *nodes
;
174 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
177 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
178 else if (nodes_empty(*nodes
))
179 return -EINVAL
; /* no allowed nodes */
181 pol
->v
.preferred_node
= first_node(*nodes
);
185 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
187 if (nodes_empty(*nodes
))
189 pol
->v
.nodes
= *nodes
;
194 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
195 * any, for the new policy. mpol_new() has already validated the nodes
196 * parameter with respect to the policy mode and flags. But, we need to
197 * handle an empty nodemask with MPOL_PREFERRED here.
199 * Must be called holding task's alloc_lock to protect task's mems_allowed
200 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 static int mpol_set_nodemask(struct mempolicy
*pol
,
203 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
207 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
211 nodes_and(nsc
->mask1
,
212 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
215 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
216 nodes
= NULL
; /* explicit local allocation */
218 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
219 mpol_relative_nodemask(&nsc
->mask2
, nodes
, &nsc
->mask1
);
221 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
223 if (mpol_store_user_nodemask(pol
))
224 pol
->w
.user_nodemask
= *nodes
;
226 pol
->w
.cpuset_mems_allowed
=
227 cpuset_current_mems_allowed
;
231 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
233 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
238 * This function just creates a new policy, does some check and simple
239 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
244 struct mempolicy
*policy
;
246 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
247 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
249 if (mode
== MPOL_DEFAULT
) {
250 if (nodes
&& !nodes_empty(*nodes
))
251 return ERR_PTR(-EINVAL
);
257 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
258 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
259 * All other modes require a valid pointer to a non-empty nodemask.
261 if (mode
== MPOL_PREFERRED
) {
262 if (nodes_empty(*nodes
)) {
263 if (((flags
& MPOL_F_STATIC_NODES
) ||
264 (flags
& MPOL_F_RELATIVE_NODES
)))
265 return ERR_PTR(-EINVAL
);
267 } else if (mode
== MPOL_LOCAL
) {
268 if (!nodes_empty(*nodes
) ||
269 (flags
& MPOL_F_STATIC_NODES
) ||
270 (flags
& MPOL_F_RELATIVE_NODES
))
271 return ERR_PTR(-EINVAL
);
272 mode
= MPOL_PREFERRED
;
273 } else if (nodes_empty(*nodes
))
274 return ERR_PTR(-EINVAL
);
275 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
277 return ERR_PTR(-ENOMEM
);
278 atomic_set(&policy
->refcnt
, 1);
280 policy
->flags
= flags
;
285 /* Slow path of a mpol destructor. */
286 void __mpol_put(struct mempolicy
*p
)
288 if (!atomic_dec_and_test(&p
->refcnt
))
290 kmem_cache_free(policy_cache
, p
);
293 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
)
297 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
)
301 if (pol
->flags
& MPOL_F_STATIC_NODES
)
302 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
303 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
304 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
306 nodes_remap(tmp
, pol
->v
.nodes
,pol
->w
.cpuset_mems_allowed
,
308 pol
->w
.cpuset_mems_allowed
= tmp
;
311 if (nodes_empty(tmp
))
317 static void mpol_rebind_preferred(struct mempolicy
*pol
,
318 const nodemask_t
*nodes
)
322 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
323 int node
= first_node(pol
->w
.user_nodemask
);
325 if (node_isset(node
, *nodes
)) {
326 pol
->v
.preferred_node
= node
;
327 pol
->flags
&= ~MPOL_F_LOCAL
;
329 pol
->flags
|= MPOL_F_LOCAL
;
330 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
331 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
332 pol
->v
.preferred_node
= first_node(tmp
);
333 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
334 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
335 pol
->w
.cpuset_mems_allowed
,
337 pol
->w
.cpuset_mems_allowed
= *nodes
;
342 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 * Per-vma policies are protected by mmap_sem. Allocations using per-task
345 * policies are protected by task->mems_allowed_seq to prevent a premature
346 * OOM/allocation failure due to parallel nodemask modification.
348 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
)
352 if (!mpol_store_user_nodemask(pol
) && !(pol
->flags
& MPOL_F_LOCAL
) &&
353 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
356 mpol_ops
[pol
->mode
].rebind(pol
, newmask
);
360 * Wrapper for mpol_rebind_policy() that just requires task
361 * pointer, and updates task mempolicy.
363 * Called with task's alloc_lock held.
366 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new)
368 mpol_rebind_policy(tsk
->mempolicy
, new);
372 * Rebind each vma in mm to new nodemask.
374 * Call holding a reference to mm. Takes mm->mmap_sem during call.
377 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
379 struct vm_area_struct
*vma
;
381 down_write(&mm
->mmap_sem
);
382 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
383 mpol_rebind_policy(vma
->vm_policy
, new);
384 up_write(&mm
->mmap_sem
);
387 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
389 .rebind
= mpol_rebind_default
,
391 [MPOL_INTERLEAVE
] = {
392 .create
= mpol_new_interleave
,
393 .rebind
= mpol_rebind_nodemask
,
396 .create
= mpol_new_preferred
,
397 .rebind
= mpol_rebind_preferred
,
400 .create
= mpol_new_bind
,
401 .rebind
= mpol_rebind_nodemask
,
405 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
406 unsigned long flags
);
409 struct list_head
*pagelist
;
412 struct vm_area_struct
*prev
;
416 * Check if the page's nid is in qp->nmask.
418 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
419 * in the invert of qp->nmask.
421 static inline bool queue_pages_required(struct page
*page
,
422 struct queue_pages
*qp
)
424 int nid
= page_to_nid(page
);
425 unsigned long flags
= qp
->flags
;
427 return node_isset(nid
, *qp
->nmask
) == !(flags
& MPOL_MF_INVERT
);
431 * queue_pages_pmd() has three possible return values:
432 * 1 - pages are placed on the right node or queued successfully.
434 * -EIO - is migration entry or MPOL_MF_STRICT was specified and an existing
435 * page was already on a node that does not follow the policy.
437 static int queue_pages_pmd(pmd_t
*pmd
, spinlock_t
*ptl
, unsigned long addr
,
438 unsigned long end
, struct mm_walk
*walk
)
442 struct queue_pages
*qp
= walk
->private;
445 if (unlikely(is_pmd_migration_entry(*pmd
))) {
449 page
= pmd_page(*pmd
);
450 if (is_huge_zero_page(page
)) {
452 __split_huge_pmd(walk
->vma
, pmd
, addr
, false, NULL
);
455 if (!thp_migration_supported()) {
459 ret
= split_huge_page(page
);
464 if (!queue_pages_required(page
, qp
)) {
471 /* go to thp migration */
472 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
473 if (!vma_migratable(walk
->vma
)) {
478 migrate_page_add(page
, qp
->pagelist
, flags
);
488 * Scan through pages checking if pages follow certain conditions,
489 * and move them to the pagelist if they do.
491 static int queue_pages_pte_range(pmd_t
*pmd
, unsigned long addr
,
492 unsigned long end
, struct mm_walk
*walk
)
494 struct vm_area_struct
*vma
= walk
->vma
;
496 struct queue_pages
*qp
= walk
->private;
497 unsigned long flags
= qp
->flags
;
502 ptl
= pmd_trans_huge_lock(pmd
, vma
);
504 ret
= queue_pages_pmd(pmd
, ptl
, addr
, end
, walk
);
511 if (pmd_trans_unstable(pmd
))
514 pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
515 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
516 if (!pte_present(*pte
))
518 page
= vm_normal_page(vma
, addr
, *pte
);
522 * vm_normal_page() filters out zero pages, but there might
523 * still be PageReserved pages to skip, perhaps in a VDSO.
525 if (PageReserved(page
))
527 if (!queue_pages_required(page
, qp
))
529 if (PageTransCompound(page
) && !thp_migration_supported()) {
531 pte_unmap_unlock(pte
, ptl
);
533 ret
= split_huge_page(page
);
536 /* Failed to split -- skip. */
538 pte
= pte_offset_map_lock(walk
->mm
, pmd
,
545 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
546 if (!vma_migratable(vma
))
548 migrate_page_add(page
, qp
->pagelist
, flags
);
552 pte_unmap_unlock(pte
- 1, ptl
);
554 return addr
!= end
? -EIO
: 0;
557 static int queue_pages_hugetlb(pte_t
*pte
, unsigned long hmask
,
558 unsigned long addr
, unsigned long end
,
559 struct mm_walk
*walk
)
561 #ifdef CONFIG_HUGETLB_PAGE
562 struct queue_pages
*qp
= walk
->private;
563 unsigned long flags
= qp
->flags
;
568 ptl
= huge_pte_lock(hstate_vma(walk
->vma
), walk
->mm
, pte
);
569 entry
= huge_ptep_get(pte
);
570 if (!pte_present(entry
))
572 page
= pte_page(entry
);
573 if (!queue_pages_required(page
, qp
))
575 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
576 if (flags
& (MPOL_MF_MOVE_ALL
) ||
577 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1))
578 isolate_huge_page(page
, qp
->pagelist
);
587 #ifdef CONFIG_NUMA_BALANCING
589 * This is used to mark a range of virtual addresses to be inaccessible.
590 * These are later cleared by a NUMA hinting fault. Depending on these
591 * faults, pages may be migrated for better NUMA placement.
593 * This is assuming that NUMA faults are handled using PROT_NONE. If
594 * an architecture makes a different choice, it will need further
595 * changes to the core.
597 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
598 unsigned long addr
, unsigned long end
)
602 nr_updated
= change_protection(vma
, addr
, end
, PAGE_NONE
, 0, 1);
604 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
609 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
610 unsigned long addr
, unsigned long end
)
614 #endif /* CONFIG_NUMA_BALANCING */
616 static int queue_pages_test_walk(unsigned long start
, unsigned long end
,
617 struct mm_walk
*walk
)
619 struct vm_area_struct
*vma
= walk
->vma
;
620 struct queue_pages
*qp
= walk
->private;
621 unsigned long endvma
= vma
->vm_end
;
622 unsigned long flags
= qp
->flags
;
625 * Need check MPOL_MF_STRICT to return -EIO if possible
626 * regardless of vma_migratable
628 if (!vma_migratable(vma
) &&
629 !(flags
& MPOL_MF_STRICT
))
634 if (vma
->vm_start
> start
)
635 start
= vma
->vm_start
;
637 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
638 if (!vma
->vm_next
&& vma
->vm_end
< end
)
640 if (qp
->prev
&& qp
->prev
->vm_end
< vma
->vm_start
)
646 if (flags
& MPOL_MF_LAZY
) {
647 /* Similar to task_numa_work, skip inaccessible VMAs */
648 if (!is_vm_hugetlb_page(vma
) &&
649 (vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)) &&
650 !(vma
->vm_flags
& VM_MIXEDMAP
))
651 change_prot_numa(vma
, start
, endvma
);
655 /* queue pages from current vma */
656 if (flags
& MPOL_MF_VALID
)
662 * Walk through page tables and collect pages to be migrated.
664 * If pages found in a given range are on a set of nodes (determined by
665 * @nodes and @flags,) it's isolated and queued to the pagelist which is
666 * passed via @private.)
669 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
670 nodemask_t
*nodes
, unsigned long flags
,
671 struct list_head
*pagelist
)
673 struct queue_pages qp
= {
674 .pagelist
= pagelist
,
679 struct mm_walk queue_pages_walk
= {
680 .hugetlb_entry
= queue_pages_hugetlb
,
681 .pmd_entry
= queue_pages_pte_range
,
682 .test_walk
= queue_pages_test_walk
,
687 return walk_page_range(start
, end
, &queue_pages_walk
);
691 * Apply policy to a single VMA
692 * This must be called with the mmap_sem held for writing.
694 static int vma_replace_policy(struct vm_area_struct
*vma
,
695 struct mempolicy
*pol
)
698 struct mempolicy
*old
;
699 struct mempolicy
*new;
701 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
702 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
703 vma
->vm_ops
, vma
->vm_file
,
704 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
710 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
711 err
= vma
->vm_ops
->set_policy(vma
, new);
716 old
= vma
->vm_policy
;
717 vma
->vm_policy
= new; /* protected by mmap_sem */
726 /* Step 2: apply policy to a range and do splits. */
727 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
728 unsigned long end
, struct mempolicy
*new_pol
)
730 struct vm_area_struct
*next
;
731 struct vm_area_struct
*prev
;
732 struct vm_area_struct
*vma
;
735 unsigned long vmstart
;
738 vma
= find_vma(mm
, start
);
739 if (!vma
|| vma
->vm_start
> start
)
743 if (start
> vma
->vm_start
)
746 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
748 vmstart
= max(start
, vma
->vm_start
);
749 vmend
= min(end
, vma
->vm_end
);
751 if (mpol_equal(vma_policy(vma
), new_pol
))
754 pgoff
= vma
->vm_pgoff
+
755 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
756 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
757 vma
->anon_vma
, vma
->vm_file
, pgoff
,
758 new_pol
, vma
->vm_userfaultfd_ctx
);
762 if (mpol_equal(vma_policy(vma
), new_pol
))
764 /* vma_merge() joined vma && vma->next, case 8 */
767 if (vma
->vm_start
!= vmstart
) {
768 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
772 if (vma
->vm_end
!= vmend
) {
773 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
778 err
= vma_replace_policy(vma
, new_pol
);
787 /* Set the process memory policy */
788 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
791 struct mempolicy
*new, *old
;
792 NODEMASK_SCRATCH(scratch
);
798 new = mpol_new(mode
, flags
, nodes
);
805 ret
= mpol_set_nodemask(new, nodes
, scratch
);
807 task_unlock(current
);
811 old
= current
->mempolicy
;
812 current
->mempolicy
= new;
813 if (new && new->mode
== MPOL_INTERLEAVE
)
814 current
->il_prev
= MAX_NUMNODES
-1;
815 task_unlock(current
);
819 NODEMASK_SCRATCH_FREE(scratch
);
824 * Return nodemask for policy for get_mempolicy() query
826 * Called with task's alloc_lock held
828 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
831 if (p
== &default_policy
)
837 case MPOL_INTERLEAVE
:
841 if (!(p
->flags
& MPOL_F_LOCAL
))
842 node_set(p
->v
.preferred_node
, *nodes
);
843 /* else return empty node mask for local allocation */
850 static int lookup_node(unsigned long addr
)
855 err
= get_user_pages(addr
& PAGE_MASK
, 1, 0, &p
, NULL
);
857 err
= page_to_nid(p
);
863 /* Retrieve NUMA policy */
864 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
865 unsigned long addr
, unsigned long flags
)
868 struct mm_struct
*mm
= current
->mm
;
869 struct vm_area_struct
*vma
= NULL
;
870 struct mempolicy
*pol
= current
->mempolicy
;
873 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
876 if (flags
& MPOL_F_MEMS_ALLOWED
) {
877 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
879 *policy
= 0; /* just so it's initialized */
881 *nmask
= cpuset_current_mems_allowed
;
882 task_unlock(current
);
886 if (flags
& MPOL_F_ADDR
) {
888 * Do NOT fall back to task policy if the
889 * vma/shared policy at addr is NULL. We
890 * want to return MPOL_DEFAULT in this case.
892 down_read(&mm
->mmap_sem
);
893 vma
= find_vma_intersection(mm
, addr
, addr
+1);
895 up_read(&mm
->mmap_sem
);
898 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
899 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
901 pol
= vma
->vm_policy
;
906 pol
= &default_policy
; /* indicates default behavior */
908 if (flags
& MPOL_F_NODE
) {
909 if (flags
& MPOL_F_ADDR
) {
910 err
= lookup_node(addr
);
914 } else if (pol
== current
->mempolicy
&&
915 pol
->mode
== MPOL_INTERLEAVE
) {
916 *policy
= next_node_in(current
->il_prev
, pol
->v
.nodes
);
922 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
925 * Internal mempolicy flags must be masked off before exposing
926 * the policy to userspace.
928 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
933 if (mpol_store_user_nodemask(pol
)) {
934 *nmask
= pol
->w
.user_nodemask
;
937 get_policy_nodemask(pol
, nmask
);
938 task_unlock(current
);
945 up_read(¤t
->mm
->mmap_sem
);
949 #ifdef CONFIG_MIGRATION
951 * page migration, thp tail pages can be passed.
953 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
956 struct page
*head
= compound_head(page
);
958 * Avoid migrating a page that is shared with others.
960 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(head
) == 1) {
961 if (!isolate_lru_page(head
)) {
962 list_add_tail(&head
->lru
, pagelist
);
963 mod_node_page_state(page_pgdat(head
),
964 NR_ISOLATED_ANON
+ page_is_file_cache(head
),
965 hpage_nr_pages(head
));
970 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
973 return alloc_huge_page_node(page_hstate(compound_head(page
)),
975 else if (thp_migration_supported() && PageTransHuge(page
)) {
978 thp
= alloc_pages_node(node
,
979 (GFP_TRANSHUGE
| __GFP_THISNODE
),
983 prep_transhuge_page(thp
);
986 return __alloc_pages_node(node
, GFP_HIGHUSER_MOVABLE
|
991 * Migrate pages from one node to a target node.
992 * Returns error or the number of pages not migrated.
994 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
1002 node_set(source
, nmask
);
1005 * This does not "check" the range but isolates all pages that
1006 * need migration. Between passing in the full user address
1007 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1009 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
1010 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
1011 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
1013 if (!list_empty(&pagelist
)) {
1014 err
= migrate_pages(&pagelist
, new_node_page
, NULL
, dest
,
1015 MIGRATE_SYNC
, MR_SYSCALL
);
1017 putback_movable_pages(&pagelist
);
1024 * Move pages between the two nodesets so as to preserve the physical
1025 * layout as much as possible.
1027 * Returns the number of page that could not be moved.
1029 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1030 const nodemask_t
*to
, int flags
)
1036 err
= migrate_prep();
1040 down_read(&mm
->mmap_sem
);
1043 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1044 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1045 * bit in 'tmp', and return that <source, dest> pair for migration.
1046 * The pair of nodemasks 'to' and 'from' define the map.
1048 * If no pair of bits is found that way, fallback to picking some
1049 * pair of 'source' and 'dest' bits that are not the same. If the
1050 * 'source' and 'dest' bits are the same, this represents a node
1051 * that will be migrating to itself, so no pages need move.
1053 * If no bits are left in 'tmp', or if all remaining bits left
1054 * in 'tmp' correspond to the same bit in 'to', return false
1055 * (nothing left to migrate).
1057 * This lets us pick a pair of nodes to migrate between, such that
1058 * if possible the dest node is not already occupied by some other
1059 * source node, minimizing the risk of overloading the memory on a
1060 * node that would happen if we migrated incoming memory to a node
1061 * before migrating outgoing memory source that same node.
1063 * A single scan of tmp is sufficient. As we go, we remember the
1064 * most recent <s, d> pair that moved (s != d). If we find a pair
1065 * that not only moved, but what's better, moved to an empty slot
1066 * (d is not set in tmp), then we break out then, with that pair.
1067 * Otherwise when we finish scanning from_tmp, we at least have the
1068 * most recent <s, d> pair that moved. If we get all the way through
1069 * the scan of tmp without finding any node that moved, much less
1070 * moved to an empty node, then there is nothing left worth migrating.
1074 while (!nodes_empty(tmp
)) {
1076 int source
= NUMA_NO_NODE
;
1079 for_each_node_mask(s
, tmp
) {
1082 * do_migrate_pages() tries to maintain the relative
1083 * node relationship of the pages established between
1084 * threads and memory areas.
1086 * However if the number of source nodes is not equal to
1087 * the number of destination nodes we can not preserve
1088 * this node relative relationship. In that case, skip
1089 * copying memory from a node that is in the destination
1092 * Example: [2,3,4] -> [3,4,5] moves everything.
1093 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1096 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1097 (node_isset(s
, *to
)))
1100 d
= node_remap(s
, *from
, *to
);
1104 source
= s
; /* Node moved. Memorize */
1107 /* dest not in remaining from nodes? */
1108 if (!node_isset(dest
, tmp
))
1111 if (source
== NUMA_NO_NODE
)
1114 node_clear(source
, tmp
);
1115 err
= migrate_to_node(mm
, source
, dest
, flags
);
1121 up_read(&mm
->mmap_sem
);
1129 * Allocate a new page for page migration based on vma policy.
1130 * Start by assuming the page is mapped by the same vma as contains @start.
1131 * Search forward from there, if not. N.B., this assumes that the
1132 * list of pages handed to migrate_pages()--which is how we get here--
1133 * is in virtual address order.
1135 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1137 struct vm_area_struct
*vma
;
1138 unsigned long uninitialized_var(address
);
1140 vma
= find_vma(current
->mm
, start
);
1142 address
= page_address_in_vma(page
, vma
);
1143 if (address
!= -EFAULT
)
1148 if (PageHuge(page
)) {
1150 return alloc_huge_page_noerr(vma
, address
, 1);
1151 } else if (thp_migration_supported() && PageTransHuge(page
)) {
1154 thp
= alloc_hugepage_vma(GFP_TRANSHUGE
, vma
, address
,
1158 prep_transhuge_page(thp
);
1162 * if !vma, alloc_page_vma() will use task or system default policy
1164 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
| __GFP_RETRY_MAYFAIL
,
1169 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1170 unsigned long flags
)
1174 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1175 const nodemask_t
*to
, int flags
)
1180 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1186 static long do_mbind(unsigned long start
, unsigned long len
,
1187 unsigned short mode
, unsigned short mode_flags
,
1188 nodemask_t
*nmask
, unsigned long flags
)
1190 struct mm_struct
*mm
= current
->mm
;
1191 struct mempolicy
*new;
1194 LIST_HEAD(pagelist
);
1196 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1198 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1201 if (start
& ~PAGE_MASK
)
1204 if (mode
== MPOL_DEFAULT
)
1205 flags
&= ~MPOL_MF_STRICT
;
1207 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1215 new = mpol_new(mode
, mode_flags
, nmask
);
1217 return PTR_ERR(new);
1219 if (flags
& MPOL_MF_LAZY
)
1220 new->flags
|= MPOL_F_MOF
;
1223 * If we are using the default policy then operation
1224 * on discontinuous address spaces is okay after all
1227 flags
|= MPOL_MF_DISCONTIG_OK
;
1229 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1230 start
, start
+ len
, mode
, mode_flags
,
1231 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1233 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1235 err
= migrate_prep();
1240 NODEMASK_SCRATCH(scratch
);
1242 down_write(&mm
->mmap_sem
);
1244 err
= mpol_set_nodemask(new, nmask
, scratch
);
1245 task_unlock(current
);
1247 up_write(&mm
->mmap_sem
);
1250 NODEMASK_SCRATCH_FREE(scratch
);
1255 err
= queue_pages_range(mm
, start
, end
, nmask
,
1256 flags
| MPOL_MF_INVERT
, &pagelist
);
1258 err
= mbind_range(mm
, start
, end
, new);
1263 if (!list_empty(&pagelist
)) {
1264 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1265 nr_failed
= migrate_pages(&pagelist
, new_page
, NULL
,
1266 start
, MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1268 putback_movable_pages(&pagelist
);
1271 if (nr_failed
&& (flags
& MPOL_MF_STRICT
))
1274 putback_movable_pages(&pagelist
);
1276 up_write(&mm
->mmap_sem
);
1283 * User space interface with variable sized bitmaps for nodelists.
1286 /* Copy a node mask from user space. */
1287 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1288 unsigned long maxnode
)
1292 unsigned long nlongs
;
1293 unsigned long endmask
;
1296 nodes_clear(*nodes
);
1297 if (maxnode
== 0 || !nmask
)
1299 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1302 nlongs
= BITS_TO_LONGS(maxnode
);
1303 if ((maxnode
% BITS_PER_LONG
) == 0)
1306 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1309 * When the user specified more nodes than supported just check
1310 * if the non supported part is all zero.
1312 * If maxnode have more longs than MAX_NUMNODES, check
1313 * the bits in that area first. And then go through to
1314 * check the rest bits which equal or bigger than MAX_NUMNODES.
1315 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1317 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1318 if (nlongs
> PAGE_SIZE
/sizeof(long))
1320 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1321 if (get_user(t
, nmask
+ k
))
1323 if (k
== nlongs
- 1) {
1329 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1333 if (maxnode
> MAX_NUMNODES
&& MAX_NUMNODES
% BITS_PER_LONG
!= 0) {
1334 unsigned long valid_mask
= endmask
;
1336 valid_mask
&= ~((1UL << (MAX_NUMNODES
% BITS_PER_LONG
)) - 1);
1337 if (get_user(t
, nmask
+ nlongs
- 1))
1343 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1345 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1349 /* Copy a kernel node mask to user space */
1350 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1353 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1354 unsigned int nbytes
= BITS_TO_LONGS(nr_node_ids
) * sizeof(long);
1356 if (copy
> nbytes
) {
1357 if (copy
> PAGE_SIZE
)
1359 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1363 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1366 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1367 unsigned long, mode
, const unsigned long __user
*, nmask
,
1368 unsigned long, maxnode
, unsigned, flags
)
1372 unsigned short mode_flags
;
1374 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1375 mode
&= ~MPOL_MODE_FLAGS
;
1376 if (mode
>= MPOL_MAX
)
1378 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1379 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1381 err
= get_nodes(&nodes
, nmask
, maxnode
);
1384 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1387 /* Set the process memory policy */
1388 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, const unsigned long __user
*, nmask
,
1389 unsigned long, maxnode
)
1393 unsigned short flags
;
1395 flags
= mode
& MPOL_MODE_FLAGS
;
1396 mode
&= ~MPOL_MODE_FLAGS
;
1397 if ((unsigned int)mode
>= MPOL_MAX
)
1399 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1401 err
= get_nodes(&nodes
, nmask
, maxnode
);
1404 return do_set_mempolicy(mode
, flags
, &nodes
);
1407 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1408 const unsigned long __user
*, old_nodes
,
1409 const unsigned long __user
*, new_nodes
)
1411 const struct cred
*cred
= current_cred(), *tcred
;
1412 struct mm_struct
*mm
= NULL
;
1413 struct task_struct
*task
;
1414 nodemask_t task_nodes
;
1418 NODEMASK_SCRATCH(scratch
);
1423 old
= &scratch
->mask1
;
1424 new = &scratch
->mask2
;
1426 err
= get_nodes(old
, old_nodes
, maxnode
);
1430 err
= get_nodes(new, new_nodes
, maxnode
);
1434 /* Find the mm_struct */
1436 task
= pid
? find_task_by_vpid(pid
) : current
;
1442 get_task_struct(task
);
1447 * Check if this process has the right to modify the specified
1448 * process. The right exists if the process has administrative
1449 * capabilities, superuser privileges or the same
1450 * userid as the target process.
1452 tcred
= __task_cred(task
);
1453 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1454 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1455 !capable(CAP_SYS_NICE
)) {
1462 task_nodes
= cpuset_mems_allowed(task
);
1463 /* Is the user allowed to access the target nodes? */
1464 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1469 task_nodes
= cpuset_mems_allowed(current
);
1470 nodes_and(*new, *new, task_nodes
);
1471 if (nodes_empty(*new))
1474 nodes_and(*new, *new, node_states
[N_MEMORY
]);
1475 if (nodes_empty(*new))
1478 err
= security_task_movememory(task
);
1482 mm
= get_task_mm(task
);
1483 put_task_struct(task
);
1490 err
= do_migrate_pages(mm
, old
, new,
1491 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1495 NODEMASK_SCRATCH_FREE(scratch
);
1500 put_task_struct(task
);
1506 /* Retrieve NUMA policy */
1507 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1508 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1509 unsigned long, addr
, unsigned long, flags
)
1512 int uninitialized_var(pval
);
1515 if (nmask
!= NULL
&& maxnode
< nr_node_ids
)
1518 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1523 if (policy
&& put_user(pval
, policy
))
1527 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1532 #ifdef CONFIG_COMPAT
1534 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1535 compat_ulong_t __user
*, nmask
,
1536 compat_ulong_t
, maxnode
,
1537 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1540 unsigned long __user
*nm
= NULL
;
1541 unsigned long nr_bits
, alloc_size
;
1542 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1544 nr_bits
= min_t(unsigned long, maxnode
-1, nr_node_ids
);
1545 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1548 nm
= compat_alloc_user_space(alloc_size
);
1550 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1552 if (!err
&& nmask
) {
1553 unsigned long copy_size
;
1554 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1555 err
= copy_from_user(bm
, nm
, copy_size
);
1556 /* ensure entire bitmap is zeroed */
1557 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1558 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1564 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1565 compat_ulong_t
, maxnode
)
1567 unsigned long __user
*nm
= NULL
;
1568 unsigned long nr_bits
, alloc_size
;
1569 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1571 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1572 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1575 if (compat_get_bitmap(bm
, nmask
, nr_bits
))
1577 nm
= compat_alloc_user_space(alloc_size
);
1578 if (copy_to_user(nm
, bm
, alloc_size
))
1582 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1585 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1586 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1587 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1589 unsigned long __user
*nm
= NULL
;
1590 unsigned long nr_bits
, alloc_size
;
1593 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1594 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1597 if (compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
))
1599 nm
= compat_alloc_user_space(alloc_size
);
1600 if (copy_to_user(nm
, nodes_addr(bm
), alloc_size
))
1604 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1609 struct mempolicy
*__get_vma_policy(struct vm_area_struct
*vma
,
1612 struct mempolicy
*pol
= NULL
;
1615 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1616 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1617 } else if (vma
->vm_policy
) {
1618 pol
= vma
->vm_policy
;
1621 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1622 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1623 * count on these policies which will be dropped by
1624 * mpol_cond_put() later
1626 if (mpol_needs_cond_ref(pol
))
1635 * get_vma_policy(@vma, @addr)
1636 * @vma: virtual memory area whose policy is sought
1637 * @addr: address in @vma for shared policy lookup
1639 * Returns effective policy for a VMA at specified address.
1640 * Falls back to current->mempolicy or system default policy, as necessary.
1641 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1642 * count--added by the get_policy() vm_op, as appropriate--to protect against
1643 * freeing by another task. It is the caller's responsibility to free the
1644 * extra reference for shared policies.
1646 static struct mempolicy
*get_vma_policy(struct vm_area_struct
*vma
,
1649 struct mempolicy
*pol
= __get_vma_policy(vma
, addr
);
1652 pol
= get_task_policy(current
);
1657 bool vma_policy_mof(struct vm_area_struct
*vma
)
1659 struct mempolicy
*pol
;
1661 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1664 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1665 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1672 pol
= vma
->vm_policy
;
1674 pol
= get_task_policy(current
);
1676 return pol
->flags
& MPOL_F_MOF
;
1679 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1681 enum zone_type dynamic_policy_zone
= policy_zone
;
1683 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1686 * if policy->v.nodes has movable memory only,
1687 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1689 * policy->v.nodes is intersect with node_states[N_MEMORY].
1690 * so if the following test faile, it implies
1691 * policy->v.nodes has movable memory only.
1693 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1694 dynamic_policy_zone
= ZONE_MOVABLE
;
1696 return zone
>= dynamic_policy_zone
;
1700 * Return a nodemask representing a mempolicy for filtering nodes for
1703 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1705 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1706 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1707 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1708 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1709 return &policy
->v
.nodes
;
1714 /* Return the node id preferred by the given mempolicy, or the given id */
1715 static int policy_node(gfp_t gfp
, struct mempolicy
*policy
,
1718 if (policy
->mode
== MPOL_PREFERRED
&& !(policy
->flags
& MPOL_F_LOCAL
))
1719 nd
= policy
->v
.preferred_node
;
1722 * __GFP_THISNODE shouldn't even be used with the bind policy
1723 * because we might easily break the expectation to stay on the
1724 * requested node and not break the policy.
1726 WARN_ON_ONCE(policy
->mode
== MPOL_BIND
&& (gfp
& __GFP_THISNODE
));
1732 /* Do dynamic interleaving for a process */
1733 static unsigned interleave_nodes(struct mempolicy
*policy
)
1736 struct task_struct
*me
= current
;
1738 next
= next_node_in(me
->il_prev
, policy
->v
.nodes
);
1739 if (next
< MAX_NUMNODES
)
1745 * Depending on the memory policy provide a node from which to allocate the
1748 unsigned int mempolicy_slab_node(void)
1750 struct mempolicy
*policy
;
1751 int node
= numa_mem_id();
1756 policy
= current
->mempolicy
;
1757 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1760 switch (policy
->mode
) {
1761 case MPOL_PREFERRED
:
1763 * handled MPOL_F_LOCAL above
1765 return policy
->v
.preferred_node
;
1767 case MPOL_INTERLEAVE
:
1768 return interleave_nodes(policy
);
1774 * Follow bind policy behavior and start allocation at the
1777 struct zonelist
*zonelist
;
1778 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1779 zonelist
= &NODE_DATA(node
)->node_zonelists
[ZONELIST_FALLBACK
];
1780 z
= first_zones_zonelist(zonelist
, highest_zoneidx
,
1782 return z
->zone
? z
->zone
->node
: node
;
1791 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1792 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1793 * number of present nodes.
1795 static unsigned offset_il_node(struct mempolicy
*pol
, unsigned long n
)
1797 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1803 return numa_node_id();
1804 target
= (unsigned int)n
% nnodes
;
1805 nid
= first_node(pol
->v
.nodes
);
1806 for (i
= 0; i
< target
; i
++)
1807 nid
= next_node(nid
, pol
->v
.nodes
);
1811 /* Determine a node number for interleave */
1812 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1813 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1819 * for small pages, there is no difference between
1820 * shift and PAGE_SHIFT, so the bit-shift is safe.
1821 * for huge pages, since vm_pgoff is in units of small
1822 * pages, we need to shift off the always 0 bits to get
1825 BUG_ON(shift
< PAGE_SHIFT
);
1826 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1827 off
+= (addr
- vma
->vm_start
) >> shift
;
1828 return offset_il_node(pol
, off
);
1830 return interleave_nodes(pol
);
1833 #ifdef CONFIG_HUGETLBFS
1835 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1836 * @vma: virtual memory area whose policy is sought
1837 * @addr: address in @vma for shared policy lookup and interleave policy
1838 * @gfp_flags: for requested zone
1839 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1840 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1842 * Returns a nid suitable for a huge page allocation and a pointer
1843 * to the struct mempolicy for conditional unref after allocation.
1844 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1845 * @nodemask for filtering the zonelist.
1847 * Must be protected by read_mems_allowed_begin()
1849 int huge_node(struct vm_area_struct
*vma
, unsigned long addr
, gfp_t gfp_flags
,
1850 struct mempolicy
**mpol
, nodemask_t
**nodemask
)
1854 *mpol
= get_vma_policy(vma
, addr
);
1855 *nodemask
= NULL
; /* assume !MPOL_BIND */
1857 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1858 nid
= interleave_nid(*mpol
, vma
, addr
,
1859 huge_page_shift(hstate_vma(vma
)));
1861 nid
= policy_node(gfp_flags
, *mpol
, numa_node_id());
1862 if ((*mpol
)->mode
== MPOL_BIND
)
1863 *nodemask
= &(*mpol
)->v
.nodes
;
1869 * init_nodemask_of_mempolicy
1871 * If the current task's mempolicy is "default" [NULL], return 'false'
1872 * to indicate default policy. Otherwise, extract the policy nodemask
1873 * for 'bind' or 'interleave' policy into the argument nodemask, or
1874 * initialize the argument nodemask to contain the single node for
1875 * 'preferred' or 'local' policy and return 'true' to indicate presence
1876 * of non-default mempolicy.
1878 * We don't bother with reference counting the mempolicy [mpol_get/put]
1879 * because the current task is examining it's own mempolicy and a task's
1880 * mempolicy is only ever changed by the task itself.
1882 * N.B., it is the caller's responsibility to free a returned nodemask.
1884 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1886 struct mempolicy
*mempolicy
;
1889 if (!(mask
&& current
->mempolicy
))
1893 mempolicy
= current
->mempolicy
;
1894 switch (mempolicy
->mode
) {
1895 case MPOL_PREFERRED
:
1896 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1897 nid
= numa_node_id();
1899 nid
= mempolicy
->v
.preferred_node
;
1900 init_nodemask_of_node(mask
, nid
);
1905 case MPOL_INTERLEAVE
:
1906 *mask
= mempolicy
->v
.nodes
;
1912 task_unlock(current
);
1919 * mempolicy_nodemask_intersects
1921 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1922 * policy. Otherwise, check for intersection between mask and the policy
1923 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1924 * policy, always return true since it may allocate elsewhere on fallback.
1926 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1928 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1929 const nodemask_t
*mask
)
1931 struct mempolicy
*mempolicy
;
1937 mempolicy
= tsk
->mempolicy
;
1941 switch (mempolicy
->mode
) {
1942 case MPOL_PREFERRED
:
1944 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1945 * allocate from, they may fallback to other nodes when oom.
1946 * Thus, it's possible for tsk to have allocated memory from
1951 case MPOL_INTERLEAVE
:
1952 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1962 /* Allocate a page in interleaved policy.
1963 Own path because it needs to do special accounting. */
1964 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1969 page
= __alloc_pages(gfp
, order
, nid
);
1970 if (page
&& page_to_nid(page
) == nid
) {
1972 __inc_numa_state(page_zone(page
), NUMA_INTERLEAVE_HIT
);
1979 * alloc_pages_vma - Allocate a page for a VMA.
1982 * %GFP_USER user allocation.
1983 * %GFP_KERNEL kernel allocations,
1984 * %GFP_HIGHMEM highmem/user allocations,
1985 * %GFP_FS allocation should not call back into a file system.
1986 * %GFP_ATOMIC don't sleep.
1988 * @order:Order of the GFP allocation.
1989 * @vma: Pointer to VMA or NULL if not available.
1990 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1991 * @node: Which node to prefer for allocation (modulo policy).
1992 * @hugepage: for hugepages try only the preferred node if possible
1994 * This function allocates a page from the kernel page pool and applies
1995 * a NUMA policy associated with the VMA or the current process.
1996 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1997 * mm_struct of the VMA to prevent it from going away. Should be used for
1998 * all allocations for pages that will be mapped into user space. Returns
1999 * NULL when no page can be allocated.
2002 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
2003 unsigned long addr
, int node
, bool hugepage
)
2005 struct mempolicy
*pol
;
2010 pol
= get_vma_policy(vma
, addr
);
2012 if (pol
->mode
== MPOL_INTERLEAVE
) {
2015 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
2017 page
= alloc_page_interleave(gfp
, order
, nid
);
2021 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) && hugepage
)) {
2022 int hpage_node
= node
;
2025 * For hugepage allocation and non-interleave policy which
2026 * allows the current node (or other explicitly preferred
2027 * node) we only try to allocate from the current/preferred
2028 * node and don't fall back to other nodes, as the cost of
2029 * remote accesses would likely offset THP benefits.
2031 * If the policy is interleave, or does not allow the current
2032 * node in its nodemask, we allocate the standard way.
2034 if (pol
->mode
== MPOL_PREFERRED
&&
2035 !(pol
->flags
& MPOL_F_LOCAL
))
2036 hpage_node
= pol
->v
.preferred_node
;
2038 nmask
= policy_nodemask(gfp
, pol
);
2039 if (!nmask
|| node_isset(hpage_node
, *nmask
)) {
2042 * We cannot invoke reclaim if __GFP_THISNODE
2043 * is set. Invoking reclaim with
2044 * __GFP_THISNODE set, would cause THP
2045 * allocations to trigger heavy swapping
2046 * despite there may be tons of free memory
2047 * (including potentially plenty of THP
2048 * already available in the buddy) on all the
2051 * At most we could invoke compaction when
2052 * __GFP_THISNODE is set (but we would need to
2053 * refrain from invoking reclaim even if
2054 * compaction returned COMPACT_SKIPPED because
2055 * there wasn't not enough memory to succeed
2056 * compaction). For now just avoid
2057 * __GFP_THISNODE instead of limiting the
2058 * allocation path to a strict and single
2059 * compaction invocation.
2061 * Supposedly if direct reclaim was enabled by
2062 * the caller, the app prefers THP regardless
2063 * of the node it comes from so this would be
2064 * more desiderable behavior than only
2065 * providing THP originated from the local
2066 * node in such case.
2068 if (!(gfp
& __GFP_DIRECT_RECLAIM
))
2069 gfp
|= __GFP_THISNODE
;
2070 page
= __alloc_pages_node(hpage_node
, gfp
, order
);
2075 nmask
= policy_nodemask(gfp
, pol
);
2076 preferred_nid
= policy_node(gfp
, pol
, node
);
2077 page
= __alloc_pages_nodemask(gfp
, order
, preferred_nid
, nmask
);
2084 * alloc_pages_current - Allocate pages.
2087 * %GFP_USER user allocation,
2088 * %GFP_KERNEL kernel allocation,
2089 * %GFP_HIGHMEM highmem allocation,
2090 * %GFP_FS don't call back into a file system.
2091 * %GFP_ATOMIC don't sleep.
2092 * @order: Power of two of allocation size in pages. 0 is a single page.
2094 * Allocate a page from the kernel page pool. When not in
2095 * interrupt context and apply the current process NUMA policy.
2096 * Returns NULL when no page can be allocated.
2098 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
2100 struct mempolicy
*pol
= &default_policy
;
2103 if (!in_interrupt() && !(gfp
& __GFP_THISNODE
))
2104 pol
= get_task_policy(current
);
2107 * No reference counting needed for current->mempolicy
2108 * nor system default_policy
2110 if (pol
->mode
== MPOL_INTERLEAVE
)
2111 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
2113 page
= __alloc_pages_nodemask(gfp
, order
,
2114 policy_node(gfp
, pol
, numa_node_id()),
2115 policy_nodemask(gfp
, pol
));
2119 EXPORT_SYMBOL(alloc_pages_current
);
2121 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
2123 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
2126 return PTR_ERR(pol
);
2127 dst
->vm_policy
= pol
;
2132 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2133 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2134 * with the mems_allowed returned by cpuset_mems_allowed(). This
2135 * keeps mempolicies cpuset relative after its cpuset moves. See
2136 * further kernel/cpuset.c update_nodemask().
2138 * current's mempolicy may be rebinded by the other task(the task that changes
2139 * cpuset's mems), so we needn't do rebind work for current task.
2142 /* Slow path of a mempolicy duplicate */
2143 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2145 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2148 return ERR_PTR(-ENOMEM
);
2150 /* task's mempolicy is protected by alloc_lock */
2151 if (old
== current
->mempolicy
) {
2154 task_unlock(current
);
2158 if (current_cpuset_is_being_rebound()) {
2159 nodemask_t mems
= cpuset_mems_allowed(current
);
2160 mpol_rebind_policy(new, &mems
);
2162 atomic_set(&new->refcnt
, 1);
2166 /* Slow path of a mempolicy comparison */
2167 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2171 if (a
->mode
!= b
->mode
)
2173 if (a
->flags
!= b
->flags
)
2175 if (mpol_store_user_nodemask(a
))
2176 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2182 case MPOL_INTERLEAVE
:
2183 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2184 case MPOL_PREFERRED
:
2185 /* a's ->flags is the same as b's */
2186 if (a
->flags
& MPOL_F_LOCAL
)
2188 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2196 * Shared memory backing store policy support.
2198 * Remember policies even when nobody has shared memory mapped.
2199 * The policies are kept in Red-Black tree linked from the inode.
2200 * They are protected by the sp->lock rwlock, which should be held
2201 * for any accesses to the tree.
2205 * lookup first element intersecting start-end. Caller holds sp->lock for
2206 * reading or for writing
2208 static struct sp_node
*
2209 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2211 struct rb_node
*n
= sp
->root
.rb_node
;
2214 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2216 if (start
>= p
->end
)
2218 else if (end
<= p
->start
)
2226 struct sp_node
*w
= NULL
;
2227 struct rb_node
*prev
= rb_prev(n
);
2230 w
= rb_entry(prev
, struct sp_node
, nd
);
2231 if (w
->end
<= start
)
2235 return rb_entry(n
, struct sp_node
, nd
);
2239 * Insert a new shared policy into the list. Caller holds sp->lock for
2242 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2244 struct rb_node
**p
= &sp
->root
.rb_node
;
2245 struct rb_node
*parent
= NULL
;
2250 nd
= rb_entry(parent
, struct sp_node
, nd
);
2251 if (new->start
< nd
->start
)
2253 else if (new->end
> nd
->end
)
2254 p
= &(*p
)->rb_right
;
2258 rb_link_node(&new->nd
, parent
, p
);
2259 rb_insert_color(&new->nd
, &sp
->root
);
2260 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2261 new->policy
? new->policy
->mode
: 0);
2264 /* Find shared policy intersecting idx */
2266 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2268 struct mempolicy
*pol
= NULL
;
2271 if (!sp
->root
.rb_node
)
2273 read_lock(&sp
->lock
);
2274 sn
= sp_lookup(sp
, idx
, idx
+1);
2276 mpol_get(sn
->policy
);
2279 read_unlock(&sp
->lock
);
2283 static void sp_free(struct sp_node
*n
)
2285 mpol_put(n
->policy
);
2286 kmem_cache_free(sn_cache
, n
);
2290 * mpol_misplaced - check whether current page node is valid in policy
2292 * @page: page to be checked
2293 * @vma: vm area where page mapped
2294 * @addr: virtual address where page mapped
2296 * Lookup current policy node id for vma,addr and "compare to" page's
2300 * -1 - not misplaced, page is in the right node
2301 * node - node id where the page should be
2303 * Policy determination "mimics" alloc_page_vma().
2304 * Called from fault path where we know the vma and faulting address.
2306 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2308 struct mempolicy
*pol
;
2310 int curnid
= page_to_nid(page
);
2311 unsigned long pgoff
;
2312 int thiscpu
= raw_smp_processor_id();
2313 int thisnid
= cpu_to_node(thiscpu
);
2317 pol
= get_vma_policy(vma
, addr
);
2318 if (!(pol
->flags
& MPOL_F_MOF
))
2321 switch (pol
->mode
) {
2322 case MPOL_INTERLEAVE
:
2323 pgoff
= vma
->vm_pgoff
;
2324 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2325 polnid
= offset_il_node(pol
, pgoff
);
2328 case MPOL_PREFERRED
:
2329 if (pol
->flags
& MPOL_F_LOCAL
)
2330 polnid
= numa_node_id();
2332 polnid
= pol
->v
.preferred_node
;
2338 * allows binding to multiple nodes.
2339 * use current page if in policy nodemask,
2340 * else select nearest allowed node, if any.
2341 * If no allowed nodes, use current [!misplaced].
2343 if (node_isset(curnid
, pol
->v
.nodes
))
2345 z
= first_zones_zonelist(
2346 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2347 gfp_zone(GFP_HIGHUSER
),
2349 polnid
= z
->zone
->node
;
2356 /* Migrate the page towards the node whose CPU is referencing it */
2357 if (pol
->flags
& MPOL_F_MORON
) {
2360 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2364 if (curnid
!= polnid
)
2373 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2374 * dropped after task->mempolicy is set to NULL so that any allocation done as
2375 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2378 void mpol_put_task_policy(struct task_struct
*task
)
2380 struct mempolicy
*pol
;
2383 pol
= task
->mempolicy
;
2384 task
->mempolicy
= NULL
;
2389 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2391 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2392 rb_erase(&n
->nd
, &sp
->root
);
2396 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2397 unsigned long end
, struct mempolicy
*pol
)
2399 node
->start
= start
;
2404 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2405 struct mempolicy
*pol
)
2408 struct mempolicy
*newpol
;
2410 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2414 newpol
= mpol_dup(pol
);
2415 if (IS_ERR(newpol
)) {
2416 kmem_cache_free(sn_cache
, n
);
2419 newpol
->flags
|= MPOL_F_SHARED
;
2420 sp_node_init(n
, start
, end
, newpol
);
2425 /* Replace a policy range. */
2426 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2427 unsigned long end
, struct sp_node
*new)
2430 struct sp_node
*n_new
= NULL
;
2431 struct mempolicy
*mpol_new
= NULL
;
2435 write_lock(&sp
->lock
);
2436 n
= sp_lookup(sp
, start
, end
);
2437 /* Take care of old policies in the same range. */
2438 while (n
&& n
->start
< end
) {
2439 struct rb_node
*next
= rb_next(&n
->nd
);
2440 if (n
->start
>= start
) {
2446 /* Old policy spanning whole new range. */
2451 *mpol_new
= *n
->policy
;
2452 atomic_set(&mpol_new
->refcnt
, 1);
2453 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2455 sp_insert(sp
, n_new
);
2464 n
= rb_entry(next
, struct sp_node
, nd
);
2468 write_unlock(&sp
->lock
);
2475 kmem_cache_free(sn_cache
, n_new
);
2480 write_unlock(&sp
->lock
);
2482 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2485 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2492 * mpol_shared_policy_init - initialize shared policy for inode
2493 * @sp: pointer to inode shared policy
2494 * @mpol: struct mempolicy to install
2496 * Install non-NULL @mpol in inode's shared policy rb-tree.
2497 * On entry, the current task has a reference on a non-NULL @mpol.
2498 * This must be released on exit.
2499 * This is called at get_inode() calls and we can use GFP_KERNEL.
2501 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2505 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2506 rwlock_init(&sp
->lock
);
2509 struct vm_area_struct pvma
;
2510 struct mempolicy
*new;
2511 NODEMASK_SCRATCH(scratch
);
2515 /* contextualize the tmpfs mount point mempolicy */
2516 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2518 goto free_scratch
; /* no valid nodemask intersection */
2521 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2522 task_unlock(current
);
2526 /* Create pseudo-vma that contains just the policy */
2527 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2528 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2529 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2532 mpol_put(new); /* drop initial ref */
2534 NODEMASK_SCRATCH_FREE(scratch
);
2536 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2540 int mpol_set_shared_policy(struct shared_policy
*info
,
2541 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2544 struct sp_node
*new = NULL
;
2545 unsigned long sz
= vma_pages(vma
);
2547 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2549 sz
, npol
? npol
->mode
: -1,
2550 npol
? npol
->flags
: -1,
2551 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2554 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2558 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2564 /* Free a backing policy store on inode delete. */
2565 void mpol_free_shared_policy(struct shared_policy
*p
)
2568 struct rb_node
*next
;
2570 if (!p
->root
.rb_node
)
2572 write_lock(&p
->lock
);
2573 next
= rb_first(&p
->root
);
2575 n
= rb_entry(next
, struct sp_node
, nd
);
2576 next
= rb_next(&n
->nd
);
2579 write_unlock(&p
->lock
);
2582 #ifdef CONFIG_NUMA_BALANCING
2583 static int __initdata numabalancing_override
;
2585 static void __init
check_numabalancing_enable(void)
2587 bool numabalancing_default
= false;
2589 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2590 numabalancing_default
= true;
2592 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2593 if (numabalancing_override
)
2594 set_numabalancing_state(numabalancing_override
== 1);
2596 if (num_online_nodes() > 1 && !numabalancing_override
) {
2597 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2598 numabalancing_default
? "Enabling" : "Disabling");
2599 set_numabalancing_state(numabalancing_default
);
2603 static int __init
setup_numabalancing(char *str
)
2609 if (!strcmp(str
, "enable")) {
2610 numabalancing_override
= 1;
2612 } else if (!strcmp(str
, "disable")) {
2613 numabalancing_override
= -1;
2618 pr_warn("Unable to parse numa_balancing=\n");
2622 __setup("numa_balancing=", setup_numabalancing
);
2624 static inline void __init
check_numabalancing_enable(void)
2627 #endif /* CONFIG_NUMA_BALANCING */
2629 /* assumes fs == KERNEL_DS */
2630 void __init
numa_policy_init(void)
2632 nodemask_t interleave_nodes
;
2633 unsigned long largest
= 0;
2634 int nid
, prefer
= 0;
2636 policy_cache
= kmem_cache_create("numa_policy",
2637 sizeof(struct mempolicy
),
2638 0, SLAB_PANIC
, NULL
);
2640 sn_cache
= kmem_cache_create("shared_policy_node",
2641 sizeof(struct sp_node
),
2642 0, SLAB_PANIC
, NULL
);
2644 for_each_node(nid
) {
2645 preferred_node_policy
[nid
] = (struct mempolicy
) {
2646 .refcnt
= ATOMIC_INIT(1),
2647 .mode
= MPOL_PREFERRED
,
2648 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2649 .v
= { .preferred_node
= nid
, },
2654 * Set interleaving policy for system init. Interleaving is only
2655 * enabled across suitably sized nodes (default is >= 16MB), or
2656 * fall back to the largest node if they're all smaller.
2658 nodes_clear(interleave_nodes
);
2659 for_each_node_state(nid
, N_MEMORY
) {
2660 unsigned long total_pages
= node_present_pages(nid
);
2662 /* Preserve the largest node */
2663 if (largest
< total_pages
) {
2664 largest
= total_pages
;
2668 /* Interleave this node? */
2669 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2670 node_set(nid
, interleave_nodes
);
2673 /* All too small, use the largest */
2674 if (unlikely(nodes_empty(interleave_nodes
)))
2675 node_set(prefer
, interleave_nodes
);
2677 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2678 pr_err("%s: interleaving failed\n", __func__
);
2680 check_numabalancing_enable();
2683 /* Reset policy of current process to default */
2684 void numa_default_policy(void)
2686 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2690 * Parse and format mempolicy from/to strings
2694 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2696 static const char * const policy_modes
[] =
2698 [MPOL_DEFAULT
] = "default",
2699 [MPOL_PREFERRED
] = "prefer",
2700 [MPOL_BIND
] = "bind",
2701 [MPOL_INTERLEAVE
] = "interleave",
2702 [MPOL_LOCAL
] = "local",
2708 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2709 * @str: string containing mempolicy to parse
2710 * @mpol: pointer to struct mempolicy pointer, returned on success.
2713 * <mode>[=<flags>][:<nodelist>]
2715 * On success, returns 0, else 1
2717 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2719 struct mempolicy
*new = NULL
;
2720 unsigned short mode
;
2721 unsigned short mode_flags
;
2723 char *nodelist
= strchr(str
, ':');
2724 char *flags
= strchr(str
, '=');
2728 /* NUL-terminate mode or flags string */
2730 if (nodelist_parse(nodelist
, nodes
))
2732 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2738 *flags
++ = '\0'; /* terminate mode string */
2740 for (mode
= 0; mode
< MPOL_MAX
; mode
++) {
2741 if (!strcmp(str
, policy_modes
[mode
])) {
2745 if (mode
>= MPOL_MAX
)
2749 case MPOL_PREFERRED
:
2751 * Insist on a nodelist of one node only
2754 char *rest
= nodelist
;
2755 while (isdigit(*rest
))
2761 case MPOL_INTERLEAVE
:
2763 * Default to online nodes with memory if no nodelist
2766 nodes
= node_states
[N_MEMORY
];
2770 * Don't allow a nodelist; mpol_new() checks flags
2774 mode
= MPOL_PREFERRED
;
2778 * Insist on a empty nodelist
2785 * Insist on a nodelist
2794 * Currently, we only support two mutually exclusive
2797 if (!strcmp(flags
, "static"))
2798 mode_flags
|= MPOL_F_STATIC_NODES
;
2799 else if (!strcmp(flags
, "relative"))
2800 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2805 new = mpol_new(mode
, mode_flags
, &nodes
);
2810 * Save nodes for mpol_to_str() to show the tmpfs mount options
2811 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2813 if (mode
!= MPOL_PREFERRED
)
2814 new->v
.nodes
= nodes
;
2816 new->v
.preferred_node
= first_node(nodes
);
2818 new->flags
|= MPOL_F_LOCAL
;
2821 * Save nodes for contextualization: this will be used to "clone"
2822 * the mempolicy in a specific context [cpuset] at a later time.
2824 new->w
.user_nodemask
= nodes
;
2829 /* Restore string for error message */
2838 #endif /* CONFIG_TMPFS */
2841 * mpol_to_str - format a mempolicy structure for printing
2842 * @buffer: to contain formatted mempolicy string
2843 * @maxlen: length of @buffer
2844 * @pol: pointer to mempolicy to be formatted
2846 * Convert @pol into a string. If @buffer is too short, truncate the string.
2847 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2848 * longest flag, "relative", and to display at least a few node ids.
2850 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
2853 nodemask_t nodes
= NODE_MASK_NONE
;
2854 unsigned short mode
= MPOL_DEFAULT
;
2855 unsigned short flags
= 0;
2857 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
2865 case MPOL_PREFERRED
:
2866 if (flags
& MPOL_F_LOCAL
)
2869 node_set(pol
->v
.preferred_node
, nodes
);
2872 case MPOL_INTERLEAVE
:
2873 nodes
= pol
->v
.nodes
;
2877 snprintf(p
, maxlen
, "unknown");
2881 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
2883 if (flags
& MPOL_MODE_FLAGS
) {
2884 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
2887 * Currently, the only defined flags are mutually exclusive
2889 if (flags
& MPOL_F_STATIC_NODES
)
2890 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2891 else if (flags
& MPOL_F_RELATIVE_NODES
)
2892 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2895 if (!nodes_empty(nodes
))
2896 p
+= scnprintf(p
, buffer
+ maxlen
- p
, ":%*pbl",
2897 nodemask_pr_args(&nodes
));