spi: sprd: adi: Add a reset reason for watchdog mode
[linux/fpc-iii.git] / drivers / nvme / host / tcp.c
blob606b13d35d16f52be5152720b3b65d6bc46ea28e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
17 #include "nvme.h"
18 #include "fabrics.h"
20 struct nvme_tcp_queue;
22 enum nvme_tcp_send_state {
23 NVME_TCP_SEND_CMD_PDU = 0,
24 NVME_TCP_SEND_H2C_PDU,
25 NVME_TCP_SEND_DATA,
26 NVME_TCP_SEND_DDGST,
29 struct nvme_tcp_request {
30 struct nvme_request req;
31 void *pdu;
32 struct nvme_tcp_queue *queue;
33 u32 data_len;
34 u32 pdu_len;
35 u32 pdu_sent;
36 u16 ttag;
37 struct list_head entry;
38 __le32 ddgst;
40 struct bio *curr_bio;
41 struct iov_iter iter;
43 /* send state */
44 size_t offset;
45 size_t data_sent;
46 enum nvme_tcp_send_state state;
49 enum nvme_tcp_queue_flags {
50 NVME_TCP_Q_ALLOCATED = 0,
51 NVME_TCP_Q_LIVE = 1,
54 enum nvme_tcp_recv_state {
55 NVME_TCP_RECV_PDU = 0,
56 NVME_TCP_RECV_DATA,
57 NVME_TCP_RECV_DDGST,
60 struct nvme_tcp_ctrl;
61 struct nvme_tcp_queue {
62 struct socket *sock;
63 struct work_struct io_work;
64 int io_cpu;
66 spinlock_t lock;
67 struct list_head send_list;
69 /* recv state */
70 void *pdu;
71 int pdu_remaining;
72 int pdu_offset;
73 size_t data_remaining;
74 size_t ddgst_remaining;
76 /* send state */
77 struct nvme_tcp_request *request;
79 int queue_size;
80 size_t cmnd_capsule_len;
81 struct nvme_tcp_ctrl *ctrl;
82 unsigned long flags;
83 bool rd_enabled;
85 bool hdr_digest;
86 bool data_digest;
87 struct ahash_request *rcv_hash;
88 struct ahash_request *snd_hash;
89 __le32 exp_ddgst;
90 __le32 recv_ddgst;
92 struct page_frag_cache pf_cache;
94 void (*state_change)(struct sock *);
95 void (*data_ready)(struct sock *);
96 void (*write_space)(struct sock *);
99 struct nvme_tcp_ctrl {
100 /* read only in the hot path */
101 struct nvme_tcp_queue *queues;
102 struct blk_mq_tag_set tag_set;
104 /* other member variables */
105 struct list_head list;
106 struct blk_mq_tag_set admin_tag_set;
107 struct sockaddr_storage addr;
108 struct sockaddr_storage src_addr;
109 struct nvme_ctrl ctrl;
111 struct work_struct err_work;
112 struct delayed_work connect_work;
113 struct nvme_tcp_request async_req;
114 u32 io_queues[HCTX_MAX_TYPES];
117 static LIST_HEAD(nvme_tcp_ctrl_list);
118 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
119 static struct workqueue_struct *nvme_tcp_wq;
120 static struct blk_mq_ops nvme_tcp_mq_ops;
121 static struct blk_mq_ops nvme_tcp_admin_mq_ops;
123 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
125 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
128 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
130 return queue - queue->ctrl->queues;
133 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
135 u32 queue_idx = nvme_tcp_queue_id(queue);
137 if (queue_idx == 0)
138 return queue->ctrl->admin_tag_set.tags[queue_idx];
139 return queue->ctrl->tag_set.tags[queue_idx - 1];
142 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
144 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
147 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
149 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
152 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
154 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
157 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
159 return req == &req->queue->ctrl->async_req;
162 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
164 struct request *rq;
165 unsigned int bytes;
167 if (unlikely(nvme_tcp_async_req(req)))
168 return false; /* async events don't have a request */
170 rq = blk_mq_rq_from_pdu(req);
171 bytes = blk_rq_payload_bytes(rq);
173 return rq_data_dir(rq) == WRITE && bytes &&
174 bytes <= nvme_tcp_inline_data_size(req->queue);
177 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
179 return req->iter.bvec->bv_page;
182 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
184 return req->iter.bvec->bv_offset + req->iter.iov_offset;
187 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
189 return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
190 req->pdu_len - req->pdu_sent);
193 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
195 return req->iter.iov_offset;
198 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
200 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
201 req->pdu_len - req->pdu_sent : 0;
204 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
205 int len)
207 return nvme_tcp_pdu_data_left(req) <= len;
210 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
211 unsigned int dir)
213 struct request *rq = blk_mq_rq_from_pdu(req);
214 struct bio_vec *vec;
215 unsigned int size;
216 int nsegs;
217 size_t offset;
219 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
220 vec = &rq->special_vec;
221 nsegs = 1;
222 size = blk_rq_payload_bytes(rq);
223 offset = 0;
224 } else {
225 struct bio *bio = req->curr_bio;
227 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
228 nsegs = bio_segments(bio);
229 size = bio->bi_iter.bi_size;
230 offset = bio->bi_iter.bi_bvec_done;
233 iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
234 req->iter.iov_offset = offset;
237 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
238 int len)
240 req->data_sent += len;
241 req->pdu_sent += len;
242 iov_iter_advance(&req->iter, len);
243 if (!iov_iter_count(&req->iter) &&
244 req->data_sent < req->data_len) {
245 req->curr_bio = req->curr_bio->bi_next;
246 nvme_tcp_init_iter(req, WRITE);
250 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req)
252 struct nvme_tcp_queue *queue = req->queue;
254 spin_lock(&queue->lock);
255 list_add_tail(&req->entry, &queue->send_list);
256 spin_unlock(&queue->lock);
258 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
261 static inline struct nvme_tcp_request *
262 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
264 struct nvme_tcp_request *req;
266 spin_lock(&queue->lock);
267 req = list_first_entry_or_null(&queue->send_list,
268 struct nvme_tcp_request, entry);
269 if (req)
270 list_del(&req->entry);
271 spin_unlock(&queue->lock);
273 return req;
276 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
277 __le32 *dgst)
279 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
280 crypto_ahash_final(hash);
283 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
284 struct page *page, off_t off, size_t len)
286 struct scatterlist sg;
288 sg_init_marker(&sg, 1);
289 sg_set_page(&sg, page, len, off);
290 ahash_request_set_crypt(hash, &sg, NULL, len);
291 crypto_ahash_update(hash);
294 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
295 void *pdu, size_t len)
297 struct scatterlist sg;
299 sg_init_one(&sg, pdu, len);
300 ahash_request_set_crypt(hash, &sg, pdu + len, len);
301 crypto_ahash_digest(hash);
304 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
305 void *pdu, size_t pdu_len)
307 struct nvme_tcp_hdr *hdr = pdu;
308 __le32 recv_digest;
309 __le32 exp_digest;
311 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
312 dev_err(queue->ctrl->ctrl.device,
313 "queue %d: header digest flag is cleared\n",
314 nvme_tcp_queue_id(queue));
315 return -EPROTO;
318 recv_digest = *(__le32 *)(pdu + hdr->hlen);
319 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
320 exp_digest = *(__le32 *)(pdu + hdr->hlen);
321 if (recv_digest != exp_digest) {
322 dev_err(queue->ctrl->ctrl.device,
323 "header digest error: recv %#x expected %#x\n",
324 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
325 return -EIO;
328 return 0;
331 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
333 struct nvme_tcp_hdr *hdr = pdu;
334 u8 digest_len = nvme_tcp_hdgst_len(queue);
335 u32 len;
337 len = le32_to_cpu(hdr->plen) - hdr->hlen -
338 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
340 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
341 dev_err(queue->ctrl->ctrl.device,
342 "queue %d: data digest flag is cleared\n",
343 nvme_tcp_queue_id(queue));
344 return -EPROTO;
346 crypto_ahash_init(queue->rcv_hash);
348 return 0;
351 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
352 struct request *rq, unsigned int hctx_idx)
354 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
356 page_frag_free(req->pdu);
359 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
360 struct request *rq, unsigned int hctx_idx,
361 unsigned int numa_node)
363 struct nvme_tcp_ctrl *ctrl = set->driver_data;
364 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
365 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
366 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
367 u8 hdgst = nvme_tcp_hdgst_len(queue);
369 req->pdu = page_frag_alloc(&queue->pf_cache,
370 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
371 GFP_KERNEL | __GFP_ZERO);
372 if (!req->pdu)
373 return -ENOMEM;
375 req->queue = queue;
376 nvme_req(rq)->ctrl = &ctrl->ctrl;
378 return 0;
381 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
382 unsigned int hctx_idx)
384 struct nvme_tcp_ctrl *ctrl = data;
385 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
387 hctx->driver_data = queue;
388 return 0;
391 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
392 unsigned int hctx_idx)
394 struct nvme_tcp_ctrl *ctrl = data;
395 struct nvme_tcp_queue *queue = &ctrl->queues[0];
397 hctx->driver_data = queue;
398 return 0;
401 static enum nvme_tcp_recv_state
402 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
404 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
405 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
406 NVME_TCP_RECV_DATA;
409 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
411 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
412 nvme_tcp_hdgst_len(queue);
413 queue->pdu_offset = 0;
414 queue->data_remaining = -1;
415 queue->ddgst_remaining = 0;
418 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
420 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
421 return;
423 queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work);
426 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
427 struct nvme_completion *cqe)
429 struct request *rq;
431 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
432 if (!rq) {
433 dev_err(queue->ctrl->ctrl.device,
434 "queue %d tag 0x%x not found\n",
435 nvme_tcp_queue_id(queue), cqe->command_id);
436 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
437 return -EINVAL;
440 nvme_end_request(rq, cqe->status, cqe->result);
442 return 0;
445 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
446 struct nvme_tcp_data_pdu *pdu)
448 struct request *rq;
450 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
451 if (!rq) {
452 dev_err(queue->ctrl->ctrl.device,
453 "queue %d tag %#x not found\n",
454 nvme_tcp_queue_id(queue), pdu->command_id);
455 return -ENOENT;
458 if (!blk_rq_payload_bytes(rq)) {
459 dev_err(queue->ctrl->ctrl.device,
460 "queue %d tag %#x unexpected data\n",
461 nvme_tcp_queue_id(queue), rq->tag);
462 return -EIO;
465 queue->data_remaining = le32_to_cpu(pdu->data_length);
467 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
468 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
469 dev_err(queue->ctrl->ctrl.device,
470 "queue %d tag %#x SUCCESS set but not last PDU\n",
471 nvme_tcp_queue_id(queue), rq->tag);
472 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
473 return -EPROTO;
476 return 0;
479 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
480 struct nvme_tcp_rsp_pdu *pdu)
482 struct nvme_completion *cqe = &pdu->cqe;
483 int ret = 0;
486 * AEN requests are special as they don't time out and can
487 * survive any kind of queue freeze and often don't respond to
488 * aborts. We don't even bother to allocate a struct request
489 * for them but rather special case them here.
491 if (unlikely(nvme_tcp_queue_id(queue) == 0 &&
492 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
493 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
494 &cqe->result);
495 else
496 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
498 return ret;
501 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
502 struct nvme_tcp_r2t_pdu *pdu)
504 struct nvme_tcp_data_pdu *data = req->pdu;
505 struct nvme_tcp_queue *queue = req->queue;
506 struct request *rq = blk_mq_rq_from_pdu(req);
507 u8 hdgst = nvme_tcp_hdgst_len(queue);
508 u8 ddgst = nvme_tcp_ddgst_len(queue);
510 req->pdu_len = le32_to_cpu(pdu->r2t_length);
511 req->pdu_sent = 0;
513 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
514 dev_err(queue->ctrl->ctrl.device,
515 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
516 rq->tag, req->pdu_len, req->data_len,
517 req->data_sent);
518 return -EPROTO;
521 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
522 dev_err(queue->ctrl->ctrl.device,
523 "req %d unexpected r2t offset %u (expected %zu)\n",
524 rq->tag, le32_to_cpu(pdu->r2t_offset),
525 req->data_sent);
526 return -EPROTO;
529 memset(data, 0, sizeof(*data));
530 data->hdr.type = nvme_tcp_h2c_data;
531 data->hdr.flags = NVME_TCP_F_DATA_LAST;
532 if (queue->hdr_digest)
533 data->hdr.flags |= NVME_TCP_F_HDGST;
534 if (queue->data_digest)
535 data->hdr.flags |= NVME_TCP_F_DDGST;
536 data->hdr.hlen = sizeof(*data);
537 data->hdr.pdo = data->hdr.hlen + hdgst;
538 data->hdr.plen =
539 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
540 data->ttag = pdu->ttag;
541 data->command_id = rq->tag;
542 data->data_offset = cpu_to_le32(req->data_sent);
543 data->data_length = cpu_to_le32(req->pdu_len);
544 return 0;
547 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
548 struct nvme_tcp_r2t_pdu *pdu)
550 struct nvme_tcp_request *req;
551 struct request *rq;
552 int ret;
554 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
555 if (!rq) {
556 dev_err(queue->ctrl->ctrl.device,
557 "queue %d tag %#x not found\n",
558 nvme_tcp_queue_id(queue), pdu->command_id);
559 return -ENOENT;
561 req = blk_mq_rq_to_pdu(rq);
563 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
564 if (unlikely(ret))
565 return ret;
567 req->state = NVME_TCP_SEND_H2C_PDU;
568 req->offset = 0;
570 nvme_tcp_queue_request(req);
572 return 0;
575 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
576 unsigned int *offset, size_t *len)
578 struct nvme_tcp_hdr *hdr;
579 char *pdu = queue->pdu;
580 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
581 int ret;
583 ret = skb_copy_bits(skb, *offset,
584 &pdu[queue->pdu_offset], rcv_len);
585 if (unlikely(ret))
586 return ret;
588 queue->pdu_remaining -= rcv_len;
589 queue->pdu_offset += rcv_len;
590 *offset += rcv_len;
591 *len -= rcv_len;
592 if (queue->pdu_remaining)
593 return 0;
595 hdr = queue->pdu;
596 if (queue->hdr_digest) {
597 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
598 if (unlikely(ret))
599 return ret;
603 if (queue->data_digest) {
604 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
605 if (unlikely(ret))
606 return ret;
609 switch (hdr->type) {
610 case nvme_tcp_c2h_data:
611 ret = nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
612 break;
613 case nvme_tcp_rsp:
614 nvme_tcp_init_recv_ctx(queue);
615 ret = nvme_tcp_handle_comp(queue, (void *)queue->pdu);
616 break;
617 case nvme_tcp_r2t:
618 nvme_tcp_init_recv_ctx(queue);
619 ret = nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
620 break;
621 default:
622 dev_err(queue->ctrl->ctrl.device,
623 "unsupported pdu type (%d)\n", hdr->type);
624 return -EINVAL;
627 return ret;
630 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
632 union nvme_result res = {};
634 nvme_end_request(rq, cpu_to_le16(status << 1), res);
637 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
638 unsigned int *offset, size_t *len)
640 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
641 struct nvme_tcp_request *req;
642 struct request *rq;
644 rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
645 if (!rq) {
646 dev_err(queue->ctrl->ctrl.device,
647 "queue %d tag %#x not found\n",
648 nvme_tcp_queue_id(queue), pdu->command_id);
649 return -ENOENT;
651 req = blk_mq_rq_to_pdu(rq);
653 while (true) {
654 int recv_len, ret;
656 recv_len = min_t(size_t, *len, queue->data_remaining);
657 if (!recv_len)
658 break;
660 if (!iov_iter_count(&req->iter)) {
661 req->curr_bio = req->curr_bio->bi_next;
664 * If we don`t have any bios it means that controller
665 * sent more data than we requested, hence error
667 if (!req->curr_bio) {
668 dev_err(queue->ctrl->ctrl.device,
669 "queue %d no space in request %#x",
670 nvme_tcp_queue_id(queue), rq->tag);
671 nvme_tcp_init_recv_ctx(queue);
672 return -EIO;
674 nvme_tcp_init_iter(req, READ);
677 /* we can read only from what is left in this bio */
678 recv_len = min_t(size_t, recv_len,
679 iov_iter_count(&req->iter));
681 if (queue->data_digest)
682 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
683 &req->iter, recv_len, queue->rcv_hash);
684 else
685 ret = skb_copy_datagram_iter(skb, *offset,
686 &req->iter, recv_len);
687 if (ret) {
688 dev_err(queue->ctrl->ctrl.device,
689 "queue %d failed to copy request %#x data",
690 nvme_tcp_queue_id(queue), rq->tag);
691 return ret;
694 *len -= recv_len;
695 *offset += recv_len;
696 queue->data_remaining -= recv_len;
699 if (!queue->data_remaining) {
700 if (queue->data_digest) {
701 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
702 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
703 } else {
704 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS)
705 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
706 nvme_tcp_init_recv_ctx(queue);
710 return 0;
713 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
714 struct sk_buff *skb, unsigned int *offset, size_t *len)
716 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
717 char *ddgst = (char *)&queue->recv_ddgst;
718 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
719 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
720 int ret;
722 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
723 if (unlikely(ret))
724 return ret;
726 queue->ddgst_remaining -= recv_len;
727 *offset += recv_len;
728 *len -= recv_len;
729 if (queue->ddgst_remaining)
730 return 0;
732 if (queue->recv_ddgst != queue->exp_ddgst) {
733 dev_err(queue->ctrl->ctrl.device,
734 "data digest error: recv %#x expected %#x\n",
735 le32_to_cpu(queue->recv_ddgst),
736 le32_to_cpu(queue->exp_ddgst));
737 return -EIO;
740 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
741 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
742 pdu->command_id);
744 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
747 nvme_tcp_init_recv_ctx(queue);
748 return 0;
751 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
752 unsigned int offset, size_t len)
754 struct nvme_tcp_queue *queue = desc->arg.data;
755 size_t consumed = len;
756 int result;
758 while (len) {
759 switch (nvme_tcp_recv_state(queue)) {
760 case NVME_TCP_RECV_PDU:
761 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
762 break;
763 case NVME_TCP_RECV_DATA:
764 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
765 break;
766 case NVME_TCP_RECV_DDGST:
767 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
768 break;
769 default:
770 result = -EFAULT;
772 if (result) {
773 dev_err(queue->ctrl->ctrl.device,
774 "receive failed: %d\n", result);
775 queue->rd_enabled = false;
776 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
777 return result;
781 return consumed;
784 static void nvme_tcp_data_ready(struct sock *sk)
786 struct nvme_tcp_queue *queue;
788 read_lock(&sk->sk_callback_lock);
789 queue = sk->sk_user_data;
790 if (likely(queue && queue->rd_enabled))
791 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
792 read_unlock(&sk->sk_callback_lock);
795 static void nvme_tcp_write_space(struct sock *sk)
797 struct nvme_tcp_queue *queue;
799 read_lock_bh(&sk->sk_callback_lock);
800 queue = sk->sk_user_data;
801 if (likely(queue && sk_stream_is_writeable(sk))) {
802 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
803 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
805 read_unlock_bh(&sk->sk_callback_lock);
808 static void nvme_tcp_state_change(struct sock *sk)
810 struct nvme_tcp_queue *queue;
812 read_lock(&sk->sk_callback_lock);
813 queue = sk->sk_user_data;
814 if (!queue)
815 goto done;
817 switch (sk->sk_state) {
818 case TCP_CLOSE:
819 case TCP_CLOSE_WAIT:
820 case TCP_LAST_ACK:
821 case TCP_FIN_WAIT1:
822 case TCP_FIN_WAIT2:
823 /* fallthrough */
824 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
825 break;
826 default:
827 dev_info(queue->ctrl->ctrl.device,
828 "queue %d socket state %d\n",
829 nvme_tcp_queue_id(queue), sk->sk_state);
832 queue->state_change(sk);
833 done:
834 read_unlock(&sk->sk_callback_lock);
837 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
839 queue->request = NULL;
842 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
844 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_DATA_XFER_ERROR);
847 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
849 struct nvme_tcp_queue *queue = req->queue;
851 while (true) {
852 struct page *page = nvme_tcp_req_cur_page(req);
853 size_t offset = nvme_tcp_req_cur_offset(req);
854 size_t len = nvme_tcp_req_cur_length(req);
855 bool last = nvme_tcp_pdu_last_send(req, len);
856 int ret, flags = MSG_DONTWAIT;
858 if (last && !queue->data_digest)
859 flags |= MSG_EOR;
860 else
861 flags |= MSG_MORE;
863 /* can't zcopy slab pages */
864 if (unlikely(PageSlab(page))) {
865 ret = sock_no_sendpage(queue->sock, page, offset, len,
866 flags);
867 } else {
868 ret = kernel_sendpage(queue->sock, page, offset, len,
869 flags);
871 if (ret <= 0)
872 return ret;
874 nvme_tcp_advance_req(req, ret);
875 if (queue->data_digest)
876 nvme_tcp_ddgst_update(queue->snd_hash, page,
877 offset, ret);
879 /* fully successful last write*/
880 if (last && ret == len) {
881 if (queue->data_digest) {
882 nvme_tcp_ddgst_final(queue->snd_hash,
883 &req->ddgst);
884 req->state = NVME_TCP_SEND_DDGST;
885 req->offset = 0;
886 } else {
887 nvme_tcp_done_send_req(queue);
889 return 1;
892 return -EAGAIN;
895 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
897 struct nvme_tcp_queue *queue = req->queue;
898 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
899 bool inline_data = nvme_tcp_has_inline_data(req);
900 int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR);
901 u8 hdgst = nvme_tcp_hdgst_len(queue);
902 int len = sizeof(*pdu) + hdgst - req->offset;
903 int ret;
905 if (queue->hdr_digest && !req->offset)
906 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
908 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
909 offset_in_page(pdu) + req->offset, len, flags);
910 if (unlikely(ret <= 0))
911 return ret;
913 len -= ret;
914 if (!len) {
915 if (inline_data) {
916 req->state = NVME_TCP_SEND_DATA;
917 if (queue->data_digest)
918 crypto_ahash_init(queue->snd_hash);
919 nvme_tcp_init_iter(req, WRITE);
920 } else {
921 nvme_tcp_done_send_req(queue);
923 return 1;
925 req->offset += ret;
927 return -EAGAIN;
930 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
932 struct nvme_tcp_queue *queue = req->queue;
933 struct nvme_tcp_data_pdu *pdu = req->pdu;
934 u8 hdgst = nvme_tcp_hdgst_len(queue);
935 int len = sizeof(*pdu) - req->offset + hdgst;
936 int ret;
938 if (queue->hdr_digest && !req->offset)
939 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
941 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
942 offset_in_page(pdu) + req->offset, len,
943 MSG_DONTWAIT | MSG_MORE);
944 if (unlikely(ret <= 0))
945 return ret;
947 len -= ret;
948 if (!len) {
949 req->state = NVME_TCP_SEND_DATA;
950 if (queue->data_digest)
951 crypto_ahash_init(queue->snd_hash);
952 if (!req->data_sent)
953 nvme_tcp_init_iter(req, WRITE);
954 return 1;
956 req->offset += ret;
958 return -EAGAIN;
961 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
963 struct nvme_tcp_queue *queue = req->queue;
964 int ret;
965 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
966 struct kvec iov = {
967 .iov_base = &req->ddgst + req->offset,
968 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
971 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
972 if (unlikely(ret <= 0))
973 return ret;
975 if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
976 nvme_tcp_done_send_req(queue);
977 return 1;
980 req->offset += ret;
981 return -EAGAIN;
984 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
986 struct nvme_tcp_request *req;
987 int ret = 1;
989 if (!queue->request) {
990 queue->request = nvme_tcp_fetch_request(queue);
991 if (!queue->request)
992 return 0;
994 req = queue->request;
996 if (req->state == NVME_TCP_SEND_CMD_PDU) {
997 ret = nvme_tcp_try_send_cmd_pdu(req);
998 if (ret <= 0)
999 goto done;
1000 if (!nvme_tcp_has_inline_data(req))
1001 return ret;
1004 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1005 ret = nvme_tcp_try_send_data_pdu(req);
1006 if (ret <= 0)
1007 goto done;
1010 if (req->state == NVME_TCP_SEND_DATA) {
1011 ret = nvme_tcp_try_send_data(req);
1012 if (ret <= 0)
1013 goto done;
1016 if (req->state == NVME_TCP_SEND_DDGST)
1017 ret = nvme_tcp_try_send_ddgst(req);
1018 done:
1019 if (ret == -EAGAIN)
1020 ret = 0;
1021 return ret;
1024 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1026 struct sock *sk = queue->sock->sk;
1027 read_descriptor_t rd_desc;
1028 int consumed;
1030 rd_desc.arg.data = queue;
1031 rd_desc.count = 1;
1032 lock_sock(sk);
1033 consumed = tcp_read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1034 release_sock(sk);
1035 return consumed;
1038 static void nvme_tcp_io_work(struct work_struct *w)
1040 struct nvme_tcp_queue *queue =
1041 container_of(w, struct nvme_tcp_queue, io_work);
1042 unsigned long start = jiffies + msecs_to_jiffies(1);
1044 do {
1045 bool pending = false;
1046 int result;
1048 result = nvme_tcp_try_send(queue);
1049 if (result > 0) {
1050 pending = true;
1051 } else if (unlikely(result < 0)) {
1052 dev_err(queue->ctrl->ctrl.device,
1053 "failed to send request %d\n", result);
1054 if (result != -EPIPE)
1055 nvme_tcp_fail_request(queue->request);
1056 nvme_tcp_done_send_req(queue);
1057 return;
1060 result = nvme_tcp_try_recv(queue);
1061 if (result > 0)
1062 pending = true;
1064 if (!pending)
1065 return;
1067 } while (time_after(jiffies, start)); /* quota is exhausted */
1069 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1072 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1074 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1076 ahash_request_free(queue->rcv_hash);
1077 ahash_request_free(queue->snd_hash);
1078 crypto_free_ahash(tfm);
1081 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1083 struct crypto_ahash *tfm;
1085 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1086 if (IS_ERR(tfm))
1087 return PTR_ERR(tfm);
1089 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1090 if (!queue->snd_hash)
1091 goto free_tfm;
1092 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1094 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1095 if (!queue->rcv_hash)
1096 goto free_snd_hash;
1097 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1099 return 0;
1100 free_snd_hash:
1101 ahash_request_free(queue->snd_hash);
1102 free_tfm:
1103 crypto_free_ahash(tfm);
1104 return -ENOMEM;
1107 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1109 struct nvme_tcp_request *async = &ctrl->async_req;
1111 page_frag_free(async->pdu);
1114 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1116 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1117 struct nvme_tcp_request *async = &ctrl->async_req;
1118 u8 hdgst = nvme_tcp_hdgst_len(queue);
1120 async->pdu = page_frag_alloc(&queue->pf_cache,
1121 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1122 GFP_KERNEL | __GFP_ZERO);
1123 if (!async->pdu)
1124 return -ENOMEM;
1126 async->queue = &ctrl->queues[0];
1127 return 0;
1130 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1132 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1133 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1135 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1136 return;
1138 if (queue->hdr_digest || queue->data_digest)
1139 nvme_tcp_free_crypto(queue);
1141 sock_release(queue->sock);
1142 kfree(queue->pdu);
1145 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1147 struct nvme_tcp_icreq_pdu *icreq;
1148 struct nvme_tcp_icresp_pdu *icresp;
1149 struct msghdr msg = {};
1150 struct kvec iov;
1151 bool ctrl_hdgst, ctrl_ddgst;
1152 int ret;
1154 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1155 if (!icreq)
1156 return -ENOMEM;
1158 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1159 if (!icresp) {
1160 ret = -ENOMEM;
1161 goto free_icreq;
1164 icreq->hdr.type = nvme_tcp_icreq;
1165 icreq->hdr.hlen = sizeof(*icreq);
1166 icreq->hdr.pdo = 0;
1167 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1168 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1169 icreq->maxr2t = 0; /* single inflight r2t supported */
1170 icreq->hpda = 0; /* no alignment constraint */
1171 if (queue->hdr_digest)
1172 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1173 if (queue->data_digest)
1174 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1176 iov.iov_base = icreq;
1177 iov.iov_len = sizeof(*icreq);
1178 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1179 if (ret < 0)
1180 goto free_icresp;
1182 memset(&msg, 0, sizeof(msg));
1183 iov.iov_base = icresp;
1184 iov.iov_len = sizeof(*icresp);
1185 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1186 iov.iov_len, msg.msg_flags);
1187 if (ret < 0)
1188 goto free_icresp;
1190 ret = -EINVAL;
1191 if (icresp->hdr.type != nvme_tcp_icresp) {
1192 pr_err("queue %d: bad type returned %d\n",
1193 nvme_tcp_queue_id(queue), icresp->hdr.type);
1194 goto free_icresp;
1197 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1198 pr_err("queue %d: bad pdu length returned %d\n",
1199 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1200 goto free_icresp;
1203 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1204 pr_err("queue %d: bad pfv returned %d\n",
1205 nvme_tcp_queue_id(queue), icresp->pfv);
1206 goto free_icresp;
1209 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1210 if ((queue->data_digest && !ctrl_ddgst) ||
1211 (!queue->data_digest && ctrl_ddgst)) {
1212 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1213 nvme_tcp_queue_id(queue),
1214 queue->data_digest ? "enabled" : "disabled",
1215 ctrl_ddgst ? "enabled" : "disabled");
1216 goto free_icresp;
1219 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1220 if ((queue->hdr_digest && !ctrl_hdgst) ||
1221 (!queue->hdr_digest && ctrl_hdgst)) {
1222 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1223 nvme_tcp_queue_id(queue),
1224 queue->hdr_digest ? "enabled" : "disabled",
1225 ctrl_hdgst ? "enabled" : "disabled");
1226 goto free_icresp;
1229 if (icresp->cpda != 0) {
1230 pr_err("queue %d: unsupported cpda returned %d\n",
1231 nvme_tcp_queue_id(queue), icresp->cpda);
1232 goto free_icresp;
1235 ret = 0;
1236 free_icresp:
1237 kfree(icresp);
1238 free_icreq:
1239 kfree(icreq);
1240 return ret;
1243 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1244 int qid, size_t queue_size)
1246 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1247 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1248 struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1249 int ret, opt, rcv_pdu_size, n;
1251 queue->ctrl = ctrl;
1252 INIT_LIST_HEAD(&queue->send_list);
1253 spin_lock_init(&queue->lock);
1254 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1255 queue->queue_size = queue_size;
1257 if (qid > 0)
1258 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1259 else
1260 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1261 NVME_TCP_ADMIN_CCSZ;
1263 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1264 IPPROTO_TCP, &queue->sock);
1265 if (ret) {
1266 dev_err(ctrl->ctrl.device,
1267 "failed to create socket: %d\n", ret);
1268 return ret;
1271 /* Single syn retry */
1272 opt = 1;
1273 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT,
1274 (char *)&opt, sizeof(opt));
1275 if (ret) {
1276 dev_err(ctrl->ctrl.device,
1277 "failed to set TCP_SYNCNT sock opt %d\n", ret);
1278 goto err_sock;
1281 /* Set TCP no delay */
1282 opt = 1;
1283 ret = kernel_setsockopt(queue->sock, IPPROTO_TCP,
1284 TCP_NODELAY, (char *)&opt, sizeof(opt));
1285 if (ret) {
1286 dev_err(ctrl->ctrl.device,
1287 "failed to set TCP_NODELAY sock opt %d\n", ret);
1288 goto err_sock;
1292 * Cleanup whatever is sitting in the TCP transmit queue on socket
1293 * close. This is done to prevent stale data from being sent should
1294 * the network connection be restored before TCP times out.
1296 ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER,
1297 (char *)&sol, sizeof(sol));
1298 if (ret) {
1299 dev_err(ctrl->ctrl.device,
1300 "failed to set SO_LINGER sock opt %d\n", ret);
1301 goto err_sock;
1304 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1305 if (!qid)
1306 n = 0;
1307 else
1308 n = (qid - 1) % num_online_cpus();
1309 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1310 queue->request = NULL;
1311 queue->data_remaining = 0;
1312 queue->ddgst_remaining = 0;
1313 queue->pdu_remaining = 0;
1314 queue->pdu_offset = 0;
1315 sk_set_memalloc(queue->sock->sk);
1317 if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1318 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1319 sizeof(ctrl->src_addr));
1320 if (ret) {
1321 dev_err(ctrl->ctrl.device,
1322 "failed to bind queue %d socket %d\n",
1323 qid, ret);
1324 goto err_sock;
1328 queue->hdr_digest = nctrl->opts->hdr_digest;
1329 queue->data_digest = nctrl->opts->data_digest;
1330 if (queue->hdr_digest || queue->data_digest) {
1331 ret = nvme_tcp_alloc_crypto(queue);
1332 if (ret) {
1333 dev_err(ctrl->ctrl.device,
1334 "failed to allocate queue %d crypto\n", qid);
1335 goto err_sock;
1339 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1340 nvme_tcp_hdgst_len(queue);
1341 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1342 if (!queue->pdu) {
1343 ret = -ENOMEM;
1344 goto err_crypto;
1347 dev_dbg(ctrl->ctrl.device, "connecting queue %d\n",
1348 nvme_tcp_queue_id(queue));
1350 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1351 sizeof(ctrl->addr), 0);
1352 if (ret) {
1353 dev_err(ctrl->ctrl.device,
1354 "failed to connect socket: %d\n", ret);
1355 goto err_rcv_pdu;
1358 ret = nvme_tcp_init_connection(queue);
1359 if (ret)
1360 goto err_init_connect;
1362 queue->rd_enabled = true;
1363 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1364 nvme_tcp_init_recv_ctx(queue);
1366 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1367 queue->sock->sk->sk_user_data = queue;
1368 queue->state_change = queue->sock->sk->sk_state_change;
1369 queue->data_ready = queue->sock->sk->sk_data_ready;
1370 queue->write_space = queue->sock->sk->sk_write_space;
1371 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1372 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1373 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1374 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1376 return 0;
1378 err_init_connect:
1379 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1380 err_rcv_pdu:
1381 kfree(queue->pdu);
1382 err_crypto:
1383 if (queue->hdr_digest || queue->data_digest)
1384 nvme_tcp_free_crypto(queue);
1385 err_sock:
1386 sock_release(queue->sock);
1387 queue->sock = NULL;
1388 return ret;
1391 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1393 struct socket *sock = queue->sock;
1395 write_lock_bh(&sock->sk->sk_callback_lock);
1396 sock->sk->sk_user_data = NULL;
1397 sock->sk->sk_data_ready = queue->data_ready;
1398 sock->sk->sk_state_change = queue->state_change;
1399 sock->sk->sk_write_space = queue->write_space;
1400 write_unlock_bh(&sock->sk->sk_callback_lock);
1403 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1405 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1406 nvme_tcp_restore_sock_calls(queue);
1407 cancel_work_sync(&queue->io_work);
1410 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1412 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1413 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1415 if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1416 return;
1418 __nvme_tcp_stop_queue(queue);
1421 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1423 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1424 int ret;
1426 if (idx)
1427 ret = nvmf_connect_io_queue(nctrl, idx, false);
1428 else
1429 ret = nvmf_connect_admin_queue(nctrl);
1431 if (!ret) {
1432 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1433 } else {
1434 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1435 __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1436 dev_err(nctrl->device,
1437 "failed to connect queue: %d ret=%d\n", idx, ret);
1439 return ret;
1442 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1443 bool admin)
1445 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1446 struct blk_mq_tag_set *set;
1447 int ret;
1449 if (admin) {
1450 set = &ctrl->admin_tag_set;
1451 memset(set, 0, sizeof(*set));
1452 set->ops = &nvme_tcp_admin_mq_ops;
1453 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1454 set->reserved_tags = 2; /* connect + keep-alive */
1455 set->numa_node = NUMA_NO_NODE;
1456 set->cmd_size = sizeof(struct nvme_tcp_request);
1457 set->driver_data = ctrl;
1458 set->nr_hw_queues = 1;
1459 set->timeout = ADMIN_TIMEOUT;
1460 } else {
1461 set = &ctrl->tag_set;
1462 memset(set, 0, sizeof(*set));
1463 set->ops = &nvme_tcp_mq_ops;
1464 set->queue_depth = nctrl->sqsize + 1;
1465 set->reserved_tags = 1; /* fabric connect */
1466 set->numa_node = NUMA_NO_NODE;
1467 set->flags = BLK_MQ_F_SHOULD_MERGE;
1468 set->cmd_size = sizeof(struct nvme_tcp_request);
1469 set->driver_data = ctrl;
1470 set->nr_hw_queues = nctrl->queue_count - 1;
1471 set->timeout = NVME_IO_TIMEOUT;
1472 set->nr_maps = 2 /* default + read */;
1475 ret = blk_mq_alloc_tag_set(set);
1476 if (ret)
1477 return ERR_PTR(ret);
1479 return set;
1482 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1484 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1485 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1486 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1489 nvme_tcp_free_queue(ctrl, 0);
1492 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1494 int i;
1496 for (i = 1; i < ctrl->queue_count; i++)
1497 nvme_tcp_free_queue(ctrl, i);
1500 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1502 int i;
1504 for (i = 1; i < ctrl->queue_count; i++)
1505 nvme_tcp_stop_queue(ctrl, i);
1508 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1510 int i, ret = 0;
1512 for (i = 1; i < ctrl->queue_count; i++) {
1513 ret = nvme_tcp_start_queue(ctrl, i);
1514 if (ret)
1515 goto out_stop_queues;
1518 return 0;
1520 out_stop_queues:
1521 for (i--; i >= 1; i--)
1522 nvme_tcp_stop_queue(ctrl, i);
1523 return ret;
1526 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1528 int ret;
1530 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1531 if (ret)
1532 return ret;
1534 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1535 if (ret)
1536 goto out_free_queue;
1538 return 0;
1540 out_free_queue:
1541 nvme_tcp_free_queue(ctrl, 0);
1542 return ret;
1545 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1547 int i, ret;
1549 for (i = 1; i < ctrl->queue_count; i++) {
1550 ret = nvme_tcp_alloc_queue(ctrl, i,
1551 ctrl->sqsize + 1);
1552 if (ret)
1553 goto out_free_queues;
1556 return 0;
1558 out_free_queues:
1559 for (i--; i >= 1; i--)
1560 nvme_tcp_free_queue(ctrl, i);
1562 return ret;
1565 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1567 unsigned int nr_io_queues;
1569 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1570 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1572 return nr_io_queues;
1575 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1576 unsigned int nr_io_queues)
1578 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1579 struct nvmf_ctrl_options *opts = nctrl->opts;
1581 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1583 * separate read/write queues
1584 * hand out dedicated default queues only after we have
1585 * sufficient read queues.
1587 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1588 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1589 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1590 min(opts->nr_write_queues, nr_io_queues);
1591 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1592 } else {
1594 * shared read/write queues
1595 * either no write queues were requested, or we don't have
1596 * sufficient queue count to have dedicated default queues.
1598 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1599 min(opts->nr_io_queues, nr_io_queues);
1600 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1604 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1606 unsigned int nr_io_queues;
1607 int ret;
1609 nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1610 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1611 if (ret)
1612 return ret;
1614 ctrl->queue_count = nr_io_queues + 1;
1615 if (ctrl->queue_count < 2)
1616 return 0;
1618 dev_info(ctrl->device,
1619 "creating %d I/O queues.\n", nr_io_queues);
1621 nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1623 return __nvme_tcp_alloc_io_queues(ctrl);
1626 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1628 nvme_tcp_stop_io_queues(ctrl);
1629 if (remove) {
1630 blk_cleanup_queue(ctrl->connect_q);
1631 blk_mq_free_tag_set(ctrl->tagset);
1633 nvme_tcp_free_io_queues(ctrl);
1636 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1638 int ret;
1640 ret = nvme_tcp_alloc_io_queues(ctrl);
1641 if (ret)
1642 return ret;
1644 if (new) {
1645 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1646 if (IS_ERR(ctrl->tagset)) {
1647 ret = PTR_ERR(ctrl->tagset);
1648 goto out_free_io_queues;
1651 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1652 if (IS_ERR(ctrl->connect_q)) {
1653 ret = PTR_ERR(ctrl->connect_q);
1654 goto out_free_tag_set;
1656 } else {
1657 blk_mq_update_nr_hw_queues(ctrl->tagset,
1658 ctrl->queue_count - 1);
1661 ret = nvme_tcp_start_io_queues(ctrl);
1662 if (ret)
1663 goto out_cleanup_connect_q;
1665 return 0;
1667 out_cleanup_connect_q:
1668 if (new)
1669 blk_cleanup_queue(ctrl->connect_q);
1670 out_free_tag_set:
1671 if (new)
1672 blk_mq_free_tag_set(ctrl->tagset);
1673 out_free_io_queues:
1674 nvme_tcp_free_io_queues(ctrl);
1675 return ret;
1678 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1680 nvme_tcp_stop_queue(ctrl, 0);
1681 if (remove) {
1682 blk_cleanup_queue(ctrl->admin_q);
1683 blk_mq_free_tag_set(ctrl->admin_tagset);
1685 nvme_tcp_free_admin_queue(ctrl);
1688 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1690 int error;
1692 error = nvme_tcp_alloc_admin_queue(ctrl);
1693 if (error)
1694 return error;
1696 if (new) {
1697 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1698 if (IS_ERR(ctrl->admin_tagset)) {
1699 error = PTR_ERR(ctrl->admin_tagset);
1700 goto out_free_queue;
1703 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1704 if (IS_ERR(ctrl->admin_q)) {
1705 error = PTR_ERR(ctrl->admin_q);
1706 goto out_free_tagset;
1710 error = nvme_tcp_start_queue(ctrl, 0);
1711 if (error)
1712 goto out_cleanup_queue;
1714 error = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
1715 if (error) {
1716 dev_err(ctrl->device,
1717 "prop_get NVME_REG_CAP failed\n");
1718 goto out_stop_queue;
1721 ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
1723 error = nvme_enable_ctrl(ctrl, ctrl->cap);
1724 if (error)
1725 goto out_stop_queue;
1727 error = nvme_init_identify(ctrl);
1728 if (error)
1729 goto out_stop_queue;
1731 return 0;
1733 out_stop_queue:
1734 nvme_tcp_stop_queue(ctrl, 0);
1735 out_cleanup_queue:
1736 if (new)
1737 blk_cleanup_queue(ctrl->admin_q);
1738 out_free_tagset:
1739 if (new)
1740 blk_mq_free_tag_set(ctrl->admin_tagset);
1741 out_free_queue:
1742 nvme_tcp_free_admin_queue(ctrl);
1743 return error;
1746 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1747 bool remove)
1749 blk_mq_quiesce_queue(ctrl->admin_q);
1750 nvme_tcp_stop_queue(ctrl, 0);
1751 if (ctrl->admin_tagset)
1752 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1753 nvme_cancel_request, ctrl);
1754 blk_mq_unquiesce_queue(ctrl->admin_q);
1755 nvme_tcp_destroy_admin_queue(ctrl, remove);
1758 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1759 bool remove)
1761 if (ctrl->queue_count <= 1)
1762 return;
1763 nvme_stop_queues(ctrl);
1764 nvme_tcp_stop_io_queues(ctrl);
1765 if (ctrl->tagset)
1766 blk_mq_tagset_busy_iter(ctrl->tagset,
1767 nvme_cancel_request, ctrl);
1768 if (remove)
1769 nvme_start_queues(ctrl);
1770 nvme_tcp_destroy_io_queues(ctrl, remove);
1773 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1775 /* If we are resetting/deleting then do nothing */
1776 if (ctrl->state != NVME_CTRL_CONNECTING) {
1777 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1778 ctrl->state == NVME_CTRL_LIVE);
1779 return;
1782 if (nvmf_should_reconnect(ctrl)) {
1783 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1784 ctrl->opts->reconnect_delay);
1785 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1786 ctrl->opts->reconnect_delay * HZ);
1787 } else {
1788 dev_info(ctrl->device, "Removing controller...\n");
1789 nvme_delete_ctrl(ctrl);
1793 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1795 struct nvmf_ctrl_options *opts = ctrl->opts;
1796 int ret = -EINVAL;
1798 ret = nvme_tcp_configure_admin_queue(ctrl, new);
1799 if (ret)
1800 return ret;
1802 if (ctrl->icdoff) {
1803 dev_err(ctrl->device, "icdoff is not supported!\n");
1804 goto destroy_admin;
1807 if (opts->queue_size > ctrl->sqsize + 1)
1808 dev_warn(ctrl->device,
1809 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1810 opts->queue_size, ctrl->sqsize + 1);
1812 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1813 dev_warn(ctrl->device,
1814 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1815 ctrl->sqsize + 1, ctrl->maxcmd);
1816 ctrl->sqsize = ctrl->maxcmd - 1;
1819 if (ctrl->queue_count > 1) {
1820 ret = nvme_tcp_configure_io_queues(ctrl, new);
1821 if (ret)
1822 goto destroy_admin;
1825 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1826 /* state change failure is ok if we're in DELETING state */
1827 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1828 ret = -EINVAL;
1829 goto destroy_io;
1832 nvme_start_ctrl(ctrl);
1833 return 0;
1835 destroy_io:
1836 if (ctrl->queue_count > 1)
1837 nvme_tcp_destroy_io_queues(ctrl, new);
1838 destroy_admin:
1839 nvme_tcp_stop_queue(ctrl, 0);
1840 nvme_tcp_destroy_admin_queue(ctrl, new);
1841 return ret;
1844 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1846 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1847 struct nvme_tcp_ctrl, connect_work);
1848 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1850 ++ctrl->nr_reconnects;
1852 if (nvme_tcp_setup_ctrl(ctrl, false))
1853 goto requeue;
1855 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1856 ctrl->nr_reconnects);
1858 ctrl->nr_reconnects = 0;
1860 return;
1862 requeue:
1863 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
1864 ctrl->nr_reconnects);
1865 nvme_tcp_reconnect_or_remove(ctrl);
1868 static void nvme_tcp_error_recovery_work(struct work_struct *work)
1870 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
1871 struct nvme_tcp_ctrl, err_work);
1872 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1874 nvme_stop_keep_alive(ctrl);
1875 nvme_tcp_teardown_io_queues(ctrl, false);
1876 /* unquiesce to fail fast pending requests */
1877 nvme_start_queues(ctrl);
1878 nvme_tcp_teardown_admin_queue(ctrl, false);
1880 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1881 /* state change failure is ok if we're in DELETING state */
1882 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1883 return;
1886 nvme_tcp_reconnect_or_remove(ctrl);
1889 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
1891 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
1892 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
1894 nvme_tcp_teardown_io_queues(ctrl, shutdown);
1895 if (shutdown)
1896 nvme_shutdown_ctrl(ctrl);
1897 else
1898 nvme_disable_ctrl(ctrl, ctrl->cap);
1899 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
1902 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
1904 nvme_tcp_teardown_ctrl(ctrl, true);
1907 static void nvme_reset_ctrl_work(struct work_struct *work)
1909 struct nvme_ctrl *ctrl =
1910 container_of(work, struct nvme_ctrl, reset_work);
1912 nvme_stop_ctrl(ctrl);
1913 nvme_tcp_teardown_ctrl(ctrl, false);
1915 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1916 /* state change failure is ok if we're in DELETING state */
1917 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1918 return;
1921 if (nvme_tcp_setup_ctrl(ctrl, false))
1922 goto out_fail;
1924 return;
1926 out_fail:
1927 ++ctrl->nr_reconnects;
1928 nvme_tcp_reconnect_or_remove(ctrl);
1931 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
1933 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1935 if (list_empty(&ctrl->list))
1936 goto free_ctrl;
1938 mutex_lock(&nvme_tcp_ctrl_mutex);
1939 list_del(&ctrl->list);
1940 mutex_unlock(&nvme_tcp_ctrl_mutex);
1942 nvmf_free_options(nctrl->opts);
1943 free_ctrl:
1944 kfree(ctrl->queues);
1945 kfree(ctrl);
1948 static void nvme_tcp_set_sg_null(struct nvme_command *c)
1950 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1952 sg->addr = 0;
1953 sg->length = 0;
1954 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1955 NVME_SGL_FMT_TRANSPORT_A;
1958 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
1959 struct nvme_command *c, u32 data_len)
1961 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1963 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1964 sg->length = cpu_to_le32(data_len);
1965 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1968 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
1969 u32 data_len)
1971 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1973 sg->addr = 0;
1974 sg->length = cpu_to_le32(data_len);
1975 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1976 NVME_SGL_FMT_TRANSPORT_A;
1979 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
1981 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
1982 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1983 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
1984 struct nvme_command *cmd = &pdu->cmd;
1985 u8 hdgst = nvme_tcp_hdgst_len(queue);
1987 memset(pdu, 0, sizeof(*pdu));
1988 pdu->hdr.type = nvme_tcp_cmd;
1989 if (queue->hdr_digest)
1990 pdu->hdr.flags |= NVME_TCP_F_HDGST;
1991 pdu->hdr.hlen = sizeof(*pdu);
1992 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
1994 cmd->common.opcode = nvme_admin_async_event;
1995 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1996 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1997 nvme_tcp_set_sg_null(cmd);
1999 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2000 ctrl->async_req.offset = 0;
2001 ctrl->async_req.curr_bio = NULL;
2002 ctrl->async_req.data_len = 0;
2004 nvme_tcp_queue_request(&ctrl->async_req);
2007 static enum blk_eh_timer_return
2008 nvme_tcp_timeout(struct request *rq, bool reserved)
2010 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2011 struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
2012 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2014 dev_warn(ctrl->ctrl.device,
2015 "queue %d: timeout request %#x type %d\n",
2016 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2018 if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2020 * Teardown immediately if controller times out while starting
2021 * or we are already started error recovery. all outstanding
2022 * requests are completed on shutdown, so we return BLK_EH_DONE.
2024 flush_work(&ctrl->err_work);
2025 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
2026 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
2027 return BLK_EH_DONE;
2030 dev_warn(ctrl->ctrl.device, "starting error recovery\n");
2031 nvme_tcp_error_recovery(&ctrl->ctrl);
2033 return BLK_EH_RESET_TIMER;
2036 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2037 struct request *rq)
2039 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2040 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2041 struct nvme_command *c = &pdu->cmd;
2043 c->common.flags |= NVME_CMD_SGL_METABUF;
2045 if (rq_data_dir(rq) == WRITE && req->data_len &&
2046 req->data_len <= nvme_tcp_inline_data_size(queue))
2047 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2048 else
2049 nvme_tcp_set_sg_host_data(c, req->data_len);
2051 return 0;
2054 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2055 struct request *rq)
2057 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2058 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2059 struct nvme_tcp_queue *queue = req->queue;
2060 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2061 blk_status_t ret;
2063 ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2064 if (ret)
2065 return ret;
2067 req->state = NVME_TCP_SEND_CMD_PDU;
2068 req->offset = 0;
2069 req->data_sent = 0;
2070 req->pdu_len = 0;
2071 req->pdu_sent = 0;
2072 req->data_len = blk_rq_payload_bytes(rq);
2073 req->curr_bio = rq->bio;
2075 if (rq_data_dir(rq) == WRITE &&
2076 req->data_len <= nvme_tcp_inline_data_size(queue))
2077 req->pdu_len = req->data_len;
2078 else if (req->curr_bio)
2079 nvme_tcp_init_iter(req, READ);
2081 pdu->hdr.type = nvme_tcp_cmd;
2082 pdu->hdr.flags = 0;
2083 if (queue->hdr_digest)
2084 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2085 if (queue->data_digest && req->pdu_len) {
2086 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2087 ddgst = nvme_tcp_ddgst_len(queue);
2089 pdu->hdr.hlen = sizeof(*pdu);
2090 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2091 pdu->hdr.plen =
2092 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2094 ret = nvme_tcp_map_data(queue, rq);
2095 if (unlikely(ret)) {
2096 dev_err(queue->ctrl->ctrl.device,
2097 "Failed to map data (%d)\n", ret);
2098 return ret;
2101 return 0;
2104 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2105 const struct blk_mq_queue_data *bd)
2107 struct nvme_ns *ns = hctx->queue->queuedata;
2108 struct nvme_tcp_queue *queue = hctx->driver_data;
2109 struct request *rq = bd->rq;
2110 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2111 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2112 blk_status_t ret;
2114 if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2115 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2117 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2118 if (unlikely(ret))
2119 return ret;
2121 blk_mq_start_request(rq);
2123 nvme_tcp_queue_request(req);
2125 return BLK_STS_OK;
2128 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2130 struct nvme_tcp_ctrl *ctrl = set->driver_data;
2131 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2133 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2134 /* separate read/write queues */
2135 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2136 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2137 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2138 set->map[HCTX_TYPE_READ].nr_queues =
2139 ctrl->io_queues[HCTX_TYPE_READ];
2140 set->map[HCTX_TYPE_READ].queue_offset =
2141 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2142 } else {
2143 /* shared read/write queues */
2144 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2145 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2146 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2147 set->map[HCTX_TYPE_READ].nr_queues =
2148 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2149 set->map[HCTX_TYPE_READ].queue_offset = 0;
2151 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2152 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2154 dev_info(ctrl->ctrl.device,
2155 "mapped %d/%d default/read queues.\n",
2156 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2157 ctrl->io_queues[HCTX_TYPE_READ]);
2159 return 0;
2162 static struct blk_mq_ops nvme_tcp_mq_ops = {
2163 .queue_rq = nvme_tcp_queue_rq,
2164 .complete = nvme_complete_rq,
2165 .init_request = nvme_tcp_init_request,
2166 .exit_request = nvme_tcp_exit_request,
2167 .init_hctx = nvme_tcp_init_hctx,
2168 .timeout = nvme_tcp_timeout,
2169 .map_queues = nvme_tcp_map_queues,
2172 static struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2173 .queue_rq = nvme_tcp_queue_rq,
2174 .complete = nvme_complete_rq,
2175 .init_request = nvme_tcp_init_request,
2176 .exit_request = nvme_tcp_exit_request,
2177 .init_hctx = nvme_tcp_init_admin_hctx,
2178 .timeout = nvme_tcp_timeout,
2181 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2182 .name = "tcp",
2183 .module = THIS_MODULE,
2184 .flags = NVME_F_FABRICS,
2185 .reg_read32 = nvmf_reg_read32,
2186 .reg_read64 = nvmf_reg_read64,
2187 .reg_write32 = nvmf_reg_write32,
2188 .free_ctrl = nvme_tcp_free_ctrl,
2189 .submit_async_event = nvme_tcp_submit_async_event,
2190 .delete_ctrl = nvme_tcp_delete_ctrl,
2191 .get_address = nvmf_get_address,
2194 static bool
2195 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2197 struct nvme_tcp_ctrl *ctrl;
2198 bool found = false;
2200 mutex_lock(&nvme_tcp_ctrl_mutex);
2201 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2202 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2203 if (found)
2204 break;
2206 mutex_unlock(&nvme_tcp_ctrl_mutex);
2208 return found;
2211 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2212 struct nvmf_ctrl_options *opts)
2214 struct nvme_tcp_ctrl *ctrl;
2215 int ret;
2217 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2218 if (!ctrl)
2219 return ERR_PTR(-ENOMEM);
2221 INIT_LIST_HEAD(&ctrl->list);
2222 ctrl->ctrl.opts = opts;
2223 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1;
2224 ctrl->ctrl.sqsize = opts->queue_size - 1;
2225 ctrl->ctrl.kato = opts->kato;
2227 INIT_DELAYED_WORK(&ctrl->connect_work,
2228 nvme_tcp_reconnect_ctrl_work);
2229 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2230 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2232 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2233 opts->trsvcid =
2234 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2235 if (!opts->trsvcid) {
2236 ret = -ENOMEM;
2237 goto out_free_ctrl;
2239 opts->mask |= NVMF_OPT_TRSVCID;
2242 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2243 opts->traddr, opts->trsvcid, &ctrl->addr);
2244 if (ret) {
2245 pr_err("malformed address passed: %s:%s\n",
2246 opts->traddr, opts->trsvcid);
2247 goto out_free_ctrl;
2250 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2251 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2252 opts->host_traddr, NULL, &ctrl->src_addr);
2253 if (ret) {
2254 pr_err("malformed src address passed: %s\n",
2255 opts->host_traddr);
2256 goto out_free_ctrl;
2260 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2261 ret = -EALREADY;
2262 goto out_free_ctrl;
2265 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2266 GFP_KERNEL);
2267 if (!ctrl->queues) {
2268 ret = -ENOMEM;
2269 goto out_free_ctrl;
2272 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2273 if (ret)
2274 goto out_kfree_queues;
2276 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2277 WARN_ON_ONCE(1);
2278 ret = -EINTR;
2279 goto out_uninit_ctrl;
2282 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2283 if (ret)
2284 goto out_uninit_ctrl;
2286 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2287 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2289 nvme_get_ctrl(&ctrl->ctrl);
2291 mutex_lock(&nvme_tcp_ctrl_mutex);
2292 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2293 mutex_unlock(&nvme_tcp_ctrl_mutex);
2295 return &ctrl->ctrl;
2297 out_uninit_ctrl:
2298 nvme_uninit_ctrl(&ctrl->ctrl);
2299 nvme_put_ctrl(&ctrl->ctrl);
2300 if (ret > 0)
2301 ret = -EIO;
2302 return ERR_PTR(ret);
2303 out_kfree_queues:
2304 kfree(ctrl->queues);
2305 out_free_ctrl:
2306 kfree(ctrl);
2307 return ERR_PTR(ret);
2310 static struct nvmf_transport_ops nvme_tcp_transport = {
2311 .name = "tcp",
2312 .module = THIS_MODULE,
2313 .required_opts = NVMF_OPT_TRADDR,
2314 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2315 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2316 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2317 NVMF_OPT_NR_WRITE_QUEUES,
2318 .create_ctrl = nvme_tcp_create_ctrl,
2321 static int __init nvme_tcp_init_module(void)
2323 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2324 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2325 if (!nvme_tcp_wq)
2326 return -ENOMEM;
2328 nvmf_register_transport(&nvme_tcp_transport);
2329 return 0;
2332 static void __exit nvme_tcp_cleanup_module(void)
2334 struct nvme_tcp_ctrl *ctrl;
2336 nvmf_unregister_transport(&nvme_tcp_transport);
2338 mutex_lock(&nvme_tcp_ctrl_mutex);
2339 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2340 nvme_delete_ctrl(&ctrl->ctrl);
2341 mutex_unlock(&nvme_tcp_ctrl_mutex);
2342 flush_workqueue(nvme_delete_wq);
2344 destroy_workqueue(nvme_tcp_wq);
2347 module_init(nvme_tcp_init_module);
2348 module_exit(nvme_tcp_cleanup_module);
2350 MODULE_LICENSE("GPL v2");