1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
20 struct nvme_tcp_queue
;
22 enum nvme_tcp_send_state
{
23 NVME_TCP_SEND_CMD_PDU
= 0,
24 NVME_TCP_SEND_H2C_PDU
,
29 struct nvme_tcp_request
{
30 struct nvme_request req
;
32 struct nvme_tcp_queue
*queue
;
37 struct list_head entry
;
46 enum nvme_tcp_send_state state
;
49 enum nvme_tcp_queue_flags
{
50 NVME_TCP_Q_ALLOCATED
= 0,
54 enum nvme_tcp_recv_state
{
55 NVME_TCP_RECV_PDU
= 0,
61 struct nvme_tcp_queue
{
63 struct work_struct io_work
;
67 struct list_head send_list
;
73 size_t data_remaining
;
74 size_t ddgst_remaining
;
77 struct nvme_tcp_request
*request
;
80 size_t cmnd_capsule_len
;
81 struct nvme_tcp_ctrl
*ctrl
;
87 struct ahash_request
*rcv_hash
;
88 struct ahash_request
*snd_hash
;
92 struct page_frag_cache pf_cache
;
94 void (*state_change
)(struct sock
*);
95 void (*data_ready
)(struct sock
*);
96 void (*write_space
)(struct sock
*);
99 struct nvme_tcp_ctrl
{
100 /* read only in the hot path */
101 struct nvme_tcp_queue
*queues
;
102 struct blk_mq_tag_set tag_set
;
104 /* other member variables */
105 struct list_head list
;
106 struct blk_mq_tag_set admin_tag_set
;
107 struct sockaddr_storage addr
;
108 struct sockaddr_storage src_addr
;
109 struct nvme_ctrl ctrl
;
111 struct work_struct err_work
;
112 struct delayed_work connect_work
;
113 struct nvme_tcp_request async_req
;
114 u32 io_queues
[HCTX_MAX_TYPES
];
117 static LIST_HEAD(nvme_tcp_ctrl_list
);
118 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex
);
119 static struct workqueue_struct
*nvme_tcp_wq
;
120 static struct blk_mq_ops nvme_tcp_mq_ops
;
121 static struct blk_mq_ops nvme_tcp_admin_mq_ops
;
123 static inline struct nvme_tcp_ctrl
*to_tcp_ctrl(struct nvme_ctrl
*ctrl
)
125 return container_of(ctrl
, struct nvme_tcp_ctrl
, ctrl
);
128 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue
*queue
)
130 return queue
- queue
->ctrl
->queues
;
133 static inline struct blk_mq_tags
*nvme_tcp_tagset(struct nvme_tcp_queue
*queue
)
135 u32 queue_idx
= nvme_tcp_queue_id(queue
);
138 return queue
->ctrl
->admin_tag_set
.tags
[queue_idx
];
139 return queue
->ctrl
->tag_set
.tags
[queue_idx
- 1];
142 static inline u8
nvme_tcp_hdgst_len(struct nvme_tcp_queue
*queue
)
144 return queue
->hdr_digest
? NVME_TCP_DIGEST_LENGTH
: 0;
147 static inline u8
nvme_tcp_ddgst_len(struct nvme_tcp_queue
*queue
)
149 return queue
->data_digest
? NVME_TCP_DIGEST_LENGTH
: 0;
152 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue
*queue
)
154 return queue
->cmnd_capsule_len
- sizeof(struct nvme_command
);
157 static inline bool nvme_tcp_async_req(struct nvme_tcp_request
*req
)
159 return req
== &req
->queue
->ctrl
->async_req
;
162 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request
*req
)
167 if (unlikely(nvme_tcp_async_req(req
)))
168 return false; /* async events don't have a request */
170 rq
= blk_mq_rq_from_pdu(req
);
171 bytes
= blk_rq_payload_bytes(rq
);
173 return rq_data_dir(rq
) == WRITE
&& bytes
&&
174 bytes
<= nvme_tcp_inline_data_size(req
->queue
);
177 static inline struct page
*nvme_tcp_req_cur_page(struct nvme_tcp_request
*req
)
179 return req
->iter
.bvec
->bv_page
;
182 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request
*req
)
184 return req
->iter
.bvec
->bv_offset
+ req
->iter
.iov_offset
;
187 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request
*req
)
189 return min_t(size_t, req
->iter
.bvec
->bv_len
- req
->iter
.iov_offset
,
190 req
->pdu_len
- req
->pdu_sent
);
193 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request
*req
)
195 return req
->iter
.iov_offset
;
198 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request
*req
)
200 return rq_data_dir(blk_mq_rq_from_pdu(req
)) == WRITE
?
201 req
->pdu_len
- req
->pdu_sent
: 0;
204 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request
*req
,
207 return nvme_tcp_pdu_data_left(req
) <= len
;
210 static void nvme_tcp_init_iter(struct nvme_tcp_request
*req
,
213 struct request
*rq
= blk_mq_rq_from_pdu(req
);
219 if (rq
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
220 vec
= &rq
->special_vec
;
222 size
= blk_rq_payload_bytes(rq
);
225 struct bio
*bio
= req
->curr_bio
;
227 vec
= __bvec_iter_bvec(bio
->bi_io_vec
, bio
->bi_iter
);
228 nsegs
= bio_segments(bio
);
229 size
= bio
->bi_iter
.bi_size
;
230 offset
= bio
->bi_iter
.bi_bvec_done
;
233 iov_iter_bvec(&req
->iter
, dir
, vec
, nsegs
, size
);
234 req
->iter
.iov_offset
= offset
;
237 static inline void nvme_tcp_advance_req(struct nvme_tcp_request
*req
,
240 req
->data_sent
+= len
;
241 req
->pdu_sent
+= len
;
242 iov_iter_advance(&req
->iter
, len
);
243 if (!iov_iter_count(&req
->iter
) &&
244 req
->data_sent
< req
->data_len
) {
245 req
->curr_bio
= req
->curr_bio
->bi_next
;
246 nvme_tcp_init_iter(req
, WRITE
);
250 static inline void nvme_tcp_queue_request(struct nvme_tcp_request
*req
)
252 struct nvme_tcp_queue
*queue
= req
->queue
;
254 spin_lock(&queue
->lock
);
255 list_add_tail(&req
->entry
, &queue
->send_list
);
256 spin_unlock(&queue
->lock
);
258 queue_work_on(queue
->io_cpu
, nvme_tcp_wq
, &queue
->io_work
);
261 static inline struct nvme_tcp_request
*
262 nvme_tcp_fetch_request(struct nvme_tcp_queue
*queue
)
264 struct nvme_tcp_request
*req
;
266 spin_lock(&queue
->lock
);
267 req
= list_first_entry_or_null(&queue
->send_list
,
268 struct nvme_tcp_request
, entry
);
270 list_del(&req
->entry
);
271 spin_unlock(&queue
->lock
);
276 static inline void nvme_tcp_ddgst_final(struct ahash_request
*hash
,
279 ahash_request_set_crypt(hash
, NULL
, (u8
*)dgst
, 0);
280 crypto_ahash_final(hash
);
283 static inline void nvme_tcp_ddgst_update(struct ahash_request
*hash
,
284 struct page
*page
, off_t off
, size_t len
)
286 struct scatterlist sg
;
288 sg_init_marker(&sg
, 1);
289 sg_set_page(&sg
, page
, len
, off
);
290 ahash_request_set_crypt(hash
, &sg
, NULL
, len
);
291 crypto_ahash_update(hash
);
294 static inline void nvme_tcp_hdgst(struct ahash_request
*hash
,
295 void *pdu
, size_t len
)
297 struct scatterlist sg
;
299 sg_init_one(&sg
, pdu
, len
);
300 ahash_request_set_crypt(hash
, &sg
, pdu
+ len
, len
);
301 crypto_ahash_digest(hash
);
304 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue
*queue
,
305 void *pdu
, size_t pdu_len
)
307 struct nvme_tcp_hdr
*hdr
= pdu
;
311 if (unlikely(!(hdr
->flags
& NVME_TCP_F_HDGST
))) {
312 dev_err(queue
->ctrl
->ctrl
.device
,
313 "queue %d: header digest flag is cleared\n",
314 nvme_tcp_queue_id(queue
));
318 recv_digest
= *(__le32
*)(pdu
+ hdr
->hlen
);
319 nvme_tcp_hdgst(queue
->rcv_hash
, pdu
, pdu_len
);
320 exp_digest
= *(__le32
*)(pdu
+ hdr
->hlen
);
321 if (recv_digest
!= exp_digest
) {
322 dev_err(queue
->ctrl
->ctrl
.device
,
323 "header digest error: recv %#x expected %#x\n",
324 le32_to_cpu(recv_digest
), le32_to_cpu(exp_digest
));
331 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue
*queue
, void *pdu
)
333 struct nvme_tcp_hdr
*hdr
= pdu
;
334 u8 digest_len
= nvme_tcp_hdgst_len(queue
);
337 len
= le32_to_cpu(hdr
->plen
) - hdr
->hlen
-
338 ((hdr
->flags
& NVME_TCP_F_HDGST
) ? digest_len
: 0);
340 if (unlikely(len
&& !(hdr
->flags
& NVME_TCP_F_DDGST
))) {
341 dev_err(queue
->ctrl
->ctrl
.device
,
342 "queue %d: data digest flag is cleared\n",
343 nvme_tcp_queue_id(queue
));
346 crypto_ahash_init(queue
->rcv_hash
);
351 static void nvme_tcp_exit_request(struct blk_mq_tag_set
*set
,
352 struct request
*rq
, unsigned int hctx_idx
)
354 struct nvme_tcp_request
*req
= blk_mq_rq_to_pdu(rq
);
356 page_frag_free(req
->pdu
);
359 static int nvme_tcp_init_request(struct blk_mq_tag_set
*set
,
360 struct request
*rq
, unsigned int hctx_idx
,
361 unsigned int numa_node
)
363 struct nvme_tcp_ctrl
*ctrl
= set
->driver_data
;
364 struct nvme_tcp_request
*req
= blk_mq_rq_to_pdu(rq
);
365 int queue_idx
= (set
== &ctrl
->tag_set
) ? hctx_idx
+ 1 : 0;
366 struct nvme_tcp_queue
*queue
= &ctrl
->queues
[queue_idx
];
367 u8 hdgst
= nvme_tcp_hdgst_len(queue
);
369 req
->pdu
= page_frag_alloc(&queue
->pf_cache
,
370 sizeof(struct nvme_tcp_cmd_pdu
) + hdgst
,
371 GFP_KERNEL
| __GFP_ZERO
);
376 nvme_req(rq
)->ctrl
= &ctrl
->ctrl
;
381 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
382 unsigned int hctx_idx
)
384 struct nvme_tcp_ctrl
*ctrl
= data
;
385 struct nvme_tcp_queue
*queue
= &ctrl
->queues
[hctx_idx
+ 1];
387 hctx
->driver_data
= queue
;
391 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx
*hctx
, void *data
,
392 unsigned int hctx_idx
)
394 struct nvme_tcp_ctrl
*ctrl
= data
;
395 struct nvme_tcp_queue
*queue
= &ctrl
->queues
[0];
397 hctx
->driver_data
= queue
;
401 static enum nvme_tcp_recv_state
402 nvme_tcp_recv_state(struct nvme_tcp_queue
*queue
)
404 return (queue
->pdu_remaining
) ? NVME_TCP_RECV_PDU
:
405 (queue
->ddgst_remaining
) ? NVME_TCP_RECV_DDGST
:
409 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue
*queue
)
411 queue
->pdu_remaining
= sizeof(struct nvme_tcp_rsp_pdu
) +
412 nvme_tcp_hdgst_len(queue
);
413 queue
->pdu_offset
= 0;
414 queue
->data_remaining
= -1;
415 queue
->ddgst_remaining
= 0;
418 static void nvme_tcp_error_recovery(struct nvme_ctrl
*ctrl
)
420 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_RESETTING
))
423 queue_work(nvme_wq
, &to_tcp_ctrl(ctrl
)->err_work
);
426 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue
*queue
,
427 struct nvme_completion
*cqe
)
431 rq
= blk_mq_tag_to_rq(nvme_tcp_tagset(queue
), cqe
->command_id
);
433 dev_err(queue
->ctrl
->ctrl
.device
,
434 "queue %d tag 0x%x not found\n",
435 nvme_tcp_queue_id(queue
), cqe
->command_id
);
436 nvme_tcp_error_recovery(&queue
->ctrl
->ctrl
);
440 nvme_end_request(rq
, cqe
->status
, cqe
->result
);
445 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue
*queue
,
446 struct nvme_tcp_data_pdu
*pdu
)
450 rq
= blk_mq_tag_to_rq(nvme_tcp_tagset(queue
), pdu
->command_id
);
452 dev_err(queue
->ctrl
->ctrl
.device
,
453 "queue %d tag %#x not found\n",
454 nvme_tcp_queue_id(queue
), pdu
->command_id
);
458 if (!blk_rq_payload_bytes(rq
)) {
459 dev_err(queue
->ctrl
->ctrl
.device
,
460 "queue %d tag %#x unexpected data\n",
461 nvme_tcp_queue_id(queue
), rq
->tag
);
465 queue
->data_remaining
= le32_to_cpu(pdu
->data_length
);
467 if (pdu
->hdr
.flags
& NVME_TCP_F_DATA_SUCCESS
&&
468 unlikely(!(pdu
->hdr
.flags
& NVME_TCP_F_DATA_LAST
))) {
469 dev_err(queue
->ctrl
->ctrl
.device
,
470 "queue %d tag %#x SUCCESS set but not last PDU\n",
471 nvme_tcp_queue_id(queue
), rq
->tag
);
472 nvme_tcp_error_recovery(&queue
->ctrl
->ctrl
);
479 static int nvme_tcp_handle_comp(struct nvme_tcp_queue
*queue
,
480 struct nvme_tcp_rsp_pdu
*pdu
)
482 struct nvme_completion
*cqe
= &pdu
->cqe
;
486 * AEN requests are special as they don't time out and can
487 * survive any kind of queue freeze and often don't respond to
488 * aborts. We don't even bother to allocate a struct request
489 * for them but rather special case them here.
491 if (unlikely(nvme_tcp_queue_id(queue
) == 0 &&
492 cqe
->command_id
>= NVME_AQ_BLK_MQ_DEPTH
))
493 nvme_complete_async_event(&queue
->ctrl
->ctrl
, cqe
->status
,
496 ret
= nvme_tcp_process_nvme_cqe(queue
, cqe
);
501 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request
*req
,
502 struct nvme_tcp_r2t_pdu
*pdu
)
504 struct nvme_tcp_data_pdu
*data
= req
->pdu
;
505 struct nvme_tcp_queue
*queue
= req
->queue
;
506 struct request
*rq
= blk_mq_rq_from_pdu(req
);
507 u8 hdgst
= nvme_tcp_hdgst_len(queue
);
508 u8 ddgst
= nvme_tcp_ddgst_len(queue
);
510 req
->pdu_len
= le32_to_cpu(pdu
->r2t_length
);
513 if (unlikely(req
->data_sent
+ req
->pdu_len
> req
->data_len
)) {
514 dev_err(queue
->ctrl
->ctrl
.device
,
515 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
516 rq
->tag
, req
->pdu_len
, req
->data_len
,
521 if (unlikely(le32_to_cpu(pdu
->r2t_offset
) < req
->data_sent
)) {
522 dev_err(queue
->ctrl
->ctrl
.device
,
523 "req %d unexpected r2t offset %u (expected %zu)\n",
524 rq
->tag
, le32_to_cpu(pdu
->r2t_offset
),
529 memset(data
, 0, sizeof(*data
));
530 data
->hdr
.type
= nvme_tcp_h2c_data
;
531 data
->hdr
.flags
= NVME_TCP_F_DATA_LAST
;
532 if (queue
->hdr_digest
)
533 data
->hdr
.flags
|= NVME_TCP_F_HDGST
;
534 if (queue
->data_digest
)
535 data
->hdr
.flags
|= NVME_TCP_F_DDGST
;
536 data
->hdr
.hlen
= sizeof(*data
);
537 data
->hdr
.pdo
= data
->hdr
.hlen
+ hdgst
;
539 cpu_to_le32(data
->hdr
.hlen
+ hdgst
+ req
->pdu_len
+ ddgst
);
540 data
->ttag
= pdu
->ttag
;
541 data
->command_id
= rq
->tag
;
542 data
->data_offset
= cpu_to_le32(req
->data_sent
);
543 data
->data_length
= cpu_to_le32(req
->pdu_len
);
547 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue
*queue
,
548 struct nvme_tcp_r2t_pdu
*pdu
)
550 struct nvme_tcp_request
*req
;
554 rq
= blk_mq_tag_to_rq(nvme_tcp_tagset(queue
), pdu
->command_id
);
556 dev_err(queue
->ctrl
->ctrl
.device
,
557 "queue %d tag %#x not found\n",
558 nvme_tcp_queue_id(queue
), pdu
->command_id
);
561 req
= blk_mq_rq_to_pdu(rq
);
563 ret
= nvme_tcp_setup_h2c_data_pdu(req
, pdu
);
567 req
->state
= NVME_TCP_SEND_H2C_PDU
;
570 nvme_tcp_queue_request(req
);
575 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue
*queue
, struct sk_buff
*skb
,
576 unsigned int *offset
, size_t *len
)
578 struct nvme_tcp_hdr
*hdr
;
579 char *pdu
= queue
->pdu
;
580 size_t rcv_len
= min_t(size_t, *len
, queue
->pdu_remaining
);
583 ret
= skb_copy_bits(skb
, *offset
,
584 &pdu
[queue
->pdu_offset
], rcv_len
);
588 queue
->pdu_remaining
-= rcv_len
;
589 queue
->pdu_offset
+= rcv_len
;
592 if (queue
->pdu_remaining
)
596 if (queue
->hdr_digest
) {
597 ret
= nvme_tcp_verify_hdgst(queue
, queue
->pdu
, hdr
->hlen
);
603 if (queue
->data_digest
) {
604 ret
= nvme_tcp_check_ddgst(queue
, queue
->pdu
);
610 case nvme_tcp_c2h_data
:
611 ret
= nvme_tcp_handle_c2h_data(queue
, (void *)queue
->pdu
);
614 nvme_tcp_init_recv_ctx(queue
);
615 ret
= nvme_tcp_handle_comp(queue
, (void *)queue
->pdu
);
618 nvme_tcp_init_recv_ctx(queue
);
619 ret
= nvme_tcp_handle_r2t(queue
, (void *)queue
->pdu
);
622 dev_err(queue
->ctrl
->ctrl
.device
,
623 "unsupported pdu type (%d)\n", hdr
->type
);
630 static inline void nvme_tcp_end_request(struct request
*rq
, u16 status
)
632 union nvme_result res
= {};
634 nvme_end_request(rq
, cpu_to_le16(status
<< 1), res
);
637 static int nvme_tcp_recv_data(struct nvme_tcp_queue
*queue
, struct sk_buff
*skb
,
638 unsigned int *offset
, size_t *len
)
640 struct nvme_tcp_data_pdu
*pdu
= (void *)queue
->pdu
;
641 struct nvme_tcp_request
*req
;
644 rq
= blk_mq_tag_to_rq(nvme_tcp_tagset(queue
), pdu
->command_id
);
646 dev_err(queue
->ctrl
->ctrl
.device
,
647 "queue %d tag %#x not found\n",
648 nvme_tcp_queue_id(queue
), pdu
->command_id
);
651 req
= blk_mq_rq_to_pdu(rq
);
656 recv_len
= min_t(size_t, *len
, queue
->data_remaining
);
660 if (!iov_iter_count(&req
->iter
)) {
661 req
->curr_bio
= req
->curr_bio
->bi_next
;
664 * If we don`t have any bios it means that controller
665 * sent more data than we requested, hence error
667 if (!req
->curr_bio
) {
668 dev_err(queue
->ctrl
->ctrl
.device
,
669 "queue %d no space in request %#x",
670 nvme_tcp_queue_id(queue
), rq
->tag
);
671 nvme_tcp_init_recv_ctx(queue
);
674 nvme_tcp_init_iter(req
, READ
);
677 /* we can read only from what is left in this bio */
678 recv_len
= min_t(size_t, recv_len
,
679 iov_iter_count(&req
->iter
));
681 if (queue
->data_digest
)
682 ret
= skb_copy_and_hash_datagram_iter(skb
, *offset
,
683 &req
->iter
, recv_len
, queue
->rcv_hash
);
685 ret
= skb_copy_datagram_iter(skb
, *offset
,
686 &req
->iter
, recv_len
);
688 dev_err(queue
->ctrl
->ctrl
.device
,
689 "queue %d failed to copy request %#x data",
690 nvme_tcp_queue_id(queue
), rq
->tag
);
696 queue
->data_remaining
-= recv_len
;
699 if (!queue
->data_remaining
) {
700 if (queue
->data_digest
) {
701 nvme_tcp_ddgst_final(queue
->rcv_hash
, &queue
->exp_ddgst
);
702 queue
->ddgst_remaining
= NVME_TCP_DIGEST_LENGTH
;
704 if (pdu
->hdr
.flags
& NVME_TCP_F_DATA_SUCCESS
)
705 nvme_tcp_end_request(rq
, NVME_SC_SUCCESS
);
706 nvme_tcp_init_recv_ctx(queue
);
713 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue
*queue
,
714 struct sk_buff
*skb
, unsigned int *offset
, size_t *len
)
716 struct nvme_tcp_data_pdu
*pdu
= (void *)queue
->pdu
;
717 char *ddgst
= (char *)&queue
->recv_ddgst
;
718 size_t recv_len
= min_t(size_t, *len
, queue
->ddgst_remaining
);
719 off_t off
= NVME_TCP_DIGEST_LENGTH
- queue
->ddgst_remaining
;
722 ret
= skb_copy_bits(skb
, *offset
, &ddgst
[off
], recv_len
);
726 queue
->ddgst_remaining
-= recv_len
;
729 if (queue
->ddgst_remaining
)
732 if (queue
->recv_ddgst
!= queue
->exp_ddgst
) {
733 dev_err(queue
->ctrl
->ctrl
.device
,
734 "data digest error: recv %#x expected %#x\n",
735 le32_to_cpu(queue
->recv_ddgst
),
736 le32_to_cpu(queue
->exp_ddgst
));
740 if (pdu
->hdr
.flags
& NVME_TCP_F_DATA_SUCCESS
) {
741 struct request
*rq
= blk_mq_tag_to_rq(nvme_tcp_tagset(queue
),
744 nvme_tcp_end_request(rq
, NVME_SC_SUCCESS
);
747 nvme_tcp_init_recv_ctx(queue
);
751 static int nvme_tcp_recv_skb(read_descriptor_t
*desc
, struct sk_buff
*skb
,
752 unsigned int offset
, size_t len
)
754 struct nvme_tcp_queue
*queue
= desc
->arg
.data
;
755 size_t consumed
= len
;
759 switch (nvme_tcp_recv_state(queue
)) {
760 case NVME_TCP_RECV_PDU
:
761 result
= nvme_tcp_recv_pdu(queue
, skb
, &offset
, &len
);
763 case NVME_TCP_RECV_DATA
:
764 result
= nvme_tcp_recv_data(queue
, skb
, &offset
, &len
);
766 case NVME_TCP_RECV_DDGST
:
767 result
= nvme_tcp_recv_ddgst(queue
, skb
, &offset
, &len
);
773 dev_err(queue
->ctrl
->ctrl
.device
,
774 "receive failed: %d\n", result
);
775 queue
->rd_enabled
= false;
776 nvme_tcp_error_recovery(&queue
->ctrl
->ctrl
);
784 static void nvme_tcp_data_ready(struct sock
*sk
)
786 struct nvme_tcp_queue
*queue
;
788 read_lock(&sk
->sk_callback_lock
);
789 queue
= sk
->sk_user_data
;
790 if (likely(queue
&& queue
->rd_enabled
))
791 queue_work_on(queue
->io_cpu
, nvme_tcp_wq
, &queue
->io_work
);
792 read_unlock(&sk
->sk_callback_lock
);
795 static void nvme_tcp_write_space(struct sock
*sk
)
797 struct nvme_tcp_queue
*queue
;
799 read_lock_bh(&sk
->sk_callback_lock
);
800 queue
= sk
->sk_user_data
;
801 if (likely(queue
&& sk_stream_is_writeable(sk
))) {
802 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
803 queue_work_on(queue
->io_cpu
, nvme_tcp_wq
, &queue
->io_work
);
805 read_unlock_bh(&sk
->sk_callback_lock
);
808 static void nvme_tcp_state_change(struct sock
*sk
)
810 struct nvme_tcp_queue
*queue
;
812 read_lock(&sk
->sk_callback_lock
);
813 queue
= sk
->sk_user_data
;
817 switch (sk
->sk_state
) {
824 nvme_tcp_error_recovery(&queue
->ctrl
->ctrl
);
827 dev_info(queue
->ctrl
->ctrl
.device
,
828 "queue %d socket state %d\n",
829 nvme_tcp_queue_id(queue
), sk
->sk_state
);
832 queue
->state_change(sk
);
834 read_unlock(&sk
->sk_callback_lock
);
837 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue
*queue
)
839 queue
->request
= NULL
;
842 static void nvme_tcp_fail_request(struct nvme_tcp_request
*req
)
844 nvme_tcp_end_request(blk_mq_rq_from_pdu(req
), NVME_SC_DATA_XFER_ERROR
);
847 static int nvme_tcp_try_send_data(struct nvme_tcp_request
*req
)
849 struct nvme_tcp_queue
*queue
= req
->queue
;
852 struct page
*page
= nvme_tcp_req_cur_page(req
);
853 size_t offset
= nvme_tcp_req_cur_offset(req
);
854 size_t len
= nvme_tcp_req_cur_length(req
);
855 bool last
= nvme_tcp_pdu_last_send(req
, len
);
856 int ret
, flags
= MSG_DONTWAIT
;
858 if (last
&& !queue
->data_digest
)
863 /* can't zcopy slab pages */
864 if (unlikely(PageSlab(page
))) {
865 ret
= sock_no_sendpage(queue
->sock
, page
, offset
, len
,
868 ret
= kernel_sendpage(queue
->sock
, page
, offset
, len
,
874 nvme_tcp_advance_req(req
, ret
);
875 if (queue
->data_digest
)
876 nvme_tcp_ddgst_update(queue
->snd_hash
, page
,
879 /* fully successful last write*/
880 if (last
&& ret
== len
) {
881 if (queue
->data_digest
) {
882 nvme_tcp_ddgst_final(queue
->snd_hash
,
884 req
->state
= NVME_TCP_SEND_DDGST
;
887 nvme_tcp_done_send_req(queue
);
895 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request
*req
)
897 struct nvme_tcp_queue
*queue
= req
->queue
;
898 struct nvme_tcp_cmd_pdu
*pdu
= req
->pdu
;
899 bool inline_data
= nvme_tcp_has_inline_data(req
);
900 int flags
= MSG_DONTWAIT
| (inline_data
? MSG_MORE
: MSG_EOR
);
901 u8 hdgst
= nvme_tcp_hdgst_len(queue
);
902 int len
= sizeof(*pdu
) + hdgst
- req
->offset
;
905 if (queue
->hdr_digest
&& !req
->offset
)
906 nvme_tcp_hdgst(queue
->snd_hash
, pdu
, sizeof(*pdu
));
908 ret
= kernel_sendpage(queue
->sock
, virt_to_page(pdu
),
909 offset_in_page(pdu
) + req
->offset
, len
, flags
);
910 if (unlikely(ret
<= 0))
916 req
->state
= NVME_TCP_SEND_DATA
;
917 if (queue
->data_digest
)
918 crypto_ahash_init(queue
->snd_hash
);
919 nvme_tcp_init_iter(req
, WRITE
);
921 nvme_tcp_done_send_req(queue
);
930 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request
*req
)
932 struct nvme_tcp_queue
*queue
= req
->queue
;
933 struct nvme_tcp_data_pdu
*pdu
= req
->pdu
;
934 u8 hdgst
= nvme_tcp_hdgst_len(queue
);
935 int len
= sizeof(*pdu
) - req
->offset
+ hdgst
;
938 if (queue
->hdr_digest
&& !req
->offset
)
939 nvme_tcp_hdgst(queue
->snd_hash
, pdu
, sizeof(*pdu
));
941 ret
= kernel_sendpage(queue
->sock
, virt_to_page(pdu
),
942 offset_in_page(pdu
) + req
->offset
, len
,
943 MSG_DONTWAIT
| MSG_MORE
);
944 if (unlikely(ret
<= 0))
949 req
->state
= NVME_TCP_SEND_DATA
;
950 if (queue
->data_digest
)
951 crypto_ahash_init(queue
->snd_hash
);
953 nvme_tcp_init_iter(req
, WRITE
);
961 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request
*req
)
963 struct nvme_tcp_queue
*queue
= req
->queue
;
965 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_EOR
};
967 .iov_base
= &req
->ddgst
+ req
->offset
,
968 .iov_len
= NVME_TCP_DIGEST_LENGTH
- req
->offset
971 ret
= kernel_sendmsg(queue
->sock
, &msg
, &iov
, 1, iov
.iov_len
);
972 if (unlikely(ret
<= 0))
975 if (req
->offset
+ ret
== NVME_TCP_DIGEST_LENGTH
) {
976 nvme_tcp_done_send_req(queue
);
984 static int nvme_tcp_try_send(struct nvme_tcp_queue
*queue
)
986 struct nvme_tcp_request
*req
;
989 if (!queue
->request
) {
990 queue
->request
= nvme_tcp_fetch_request(queue
);
994 req
= queue
->request
;
996 if (req
->state
== NVME_TCP_SEND_CMD_PDU
) {
997 ret
= nvme_tcp_try_send_cmd_pdu(req
);
1000 if (!nvme_tcp_has_inline_data(req
))
1004 if (req
->state
== NVME_TCP_SEND_H2C_PDU
) {
1005 ret
= nvme_tcp_try_send_data_pdu(req
);
1010 if (req
->state
== NVME_TCP_SEND_DATA
) {
1011 ret
= nvme_tcp_try_send_data(req
);
1016 if (req
->state
== NVME_TCP_SEND_DDGST
)
1017 ret
= nvme_tcp_try_send_ddgst(req
);
1024 static int nvme_tcp_try_recv(struct nvme_tcp_queue
*queue
)
1026 struct sock
*sk
= queue
->sock
->sk
;
1027 read_descriptor_t rd_desc
;
1030 rd_desc
.arg
.data
= queue
;
1033 consumed
= tcp_read_sock(sk
, &rd_desc
, nvme_tcp_recv_skb
);
1038 static void nvme_tcp_io_work(struct work_struct
*w
)
1040 struct nvme_tcp_queue
*queue
=
1041 container_of(w
, struct nvme_tcp_queue
, io_work
);
1042 unsigned long start
= jiffies
+ msecs_to_jiffies(1);
1045 bool pending
= false;
1048 result
= nvme_tcp_try_send(queue
);
1051 } else if (unlikely(result
< 0)) {
1052 dev_err(queue
->ctrl
->ctrl
.device
,
1053 "failed to send request %d\n", result
);
1054 if (result
!= -EPIPE
)
1055 nvme_tcp_fail_request(queue
->request
);
1056 nvme_tcp_done_send_req(queue
);
1060 result
= nvme_tcp_try_recv(queue
);
1067 } while (time_after(jiffies
, start
)); /* quota is exhausted */
1069 queue_work_on(queue
->io_cpu
, nvme_tcp_wq
, &queue
->io_work
);
1072 static void nvme_tcp_free_crypto(struct nvme_tcp_queue
*queue
)
1074 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(queue
->rcv_hash
);
1076 ahash_request_free(queue
->rcv_hash
);
1077 ahash_request_free(queue
->snd_hash
);
1078 crypto_free_ahash(tfm
);
1081 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue
*queue
)
1083 struct crypto_ahash
*tfm
;
1085 tfm
= crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC
);
1087 return PTR_ERR(tfm
);
1089 queue
->snd_hash
= ahash_request_alloc(tfm
, GFP_KERNEL
);
1090 if (!queue
->snd_hash
)
1092 ahash_request_set_callback(queue
->snd_hash
, 0, NULL
, NULL
);
1094 queue
->rcv_hash
= ahash_request_alloc(tfm
, GFP_KERNEL
);
1095 if (!queue
->rcv_hash
)
1097 ahash_request_set_callback(queue
->rcv_hash
, 0, NULL
, NULL
);
1101 ahash_request_free(queue
->snd_hash
);
1103 crypto_free_ahash(tfm
);
1107 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl
*ctrl
)
1109 struct nvme_tcp_request
*async
= &ctrl
->async_req
;
1111 page_frag_free(async
->pdu
);
1114 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl
*ctrl
)
1116 struct nvme_tcp_queue
*queue
= &ctrl
->queues
[0];
1117 struct nvme_tcp_request
*async
= &ctrl
->async_req
;
1118 u8 hdgst
= nvme_tcp_hdgst_len(queue
);
1120 async
->pdu
= page_frag_alloc(&queue
->pf_cache
,
1121 sizeof(struct nvme_tcp_cmd_pdu
) + hdgst
,
1122 GFP_KERNEL
| __GFP_ZERO
);
1126 async
->queue
= &ctrl
->queues
[0];
1130 static void nvme_tcp_free_queue(struct nvme_ctrl
*nctrl
, int qid
)
1132 struct nvme_tcp_ctrl
*ctrl
= to_tcp_ctrl(nctrl
);
1133 struct nvme_tcp_queue
*queue
= &ctrl
->queues
[qid
];
1135 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED
, &queue
->flags
))
1138 if (queue
->hdr_digest
|| queue
->data_digest
)
1139 nvme_tcp_free_crypto(queue
);
1141 sock_release(queue
->sock
);
1145 static int nvme_tcp_init_connection(struct nvme_tcp_queue
*queue
)
1147 struct nvme_tcp_icreq_pdu
*icreq
;
1148 struct nvme_tcp_icresp_pdu
*icresp
;
1149 struct msghdr msg
= {};
1151 bool ctrl_hdgst
, ctrl_ddgst
;
1154 icreq
= kzalloc(sizeof(*icreq
), GFP_KERNEL
);
1158 icresp
= kzalloc(sizeof(*icresp
), GFP_KERNEL
);
1164 icreq
->hdr
.type
= nvme_tcp_icreq
;
1165 icreq
->hdr
.hlen
= sizeof(*icreq
);
1167 icreq
->hdr
.plen
= cpu_to_le32(icreq
->hdr
.hlen
);
1168 icreq
->pfv
= cpu_to_le16(NVME_TCP_PFV_1_0
);
1169 icreq
->maxr2t
= 0; /* single inflight r2t supported */
1170 icreq
->hpda
= 0; /* no alignment constraint */
1171 if (queue
->hdr_digest
)
1172 icreq
->digest
|= NVME_TCP_HDR_DIGEST_ENABLE
;
1173 if (queue
->data_digest
)
1174 icreq
->digest
|= NVME_TCP_DATA_DIGEST_ENABLE
;
1176 iov
.iov_base
= icreq
;
1177 iov
.iov_len
= sizeof(*icreq
);
1178 ret
= kernel_sendmsg(queue
->sock
, &msg
, &iov
, 1, iov
.iov_len
);
1182 memset(&msg
, 0, sizeof(msg
));
1183 iov
.iov_base
= icresp
;
1184 iov
.iov_len
= sizeof(*icresp
);
1185 ret
= kernel_recvmsg(queue
->sock
, &msg
, &iov
, 1,
1186 iov
.iov_len
, msg
.msg_flags
);
1191 if (icresp
->hdr
.type
!= nvme_tcp_icresp
) {
1192 pr_err("queue %d: bad type returned %d\n",
1193 nvme_tcp_queue_id(queue
), icresp
->hdr
.type
);
1197 if (le32_to_cpu(icresp
->hdr
.plen
) != sizeof(*icresp
)) {
1198 pr_err("queue %d: bad pdu length returned %d\n",
1199 nvme_tcp_queue_id(queue
), icresp
->hdr
.plen
);
1203 if (icresp
->pfv
!= NVME_TCP_PFV_1_0
) {
1204 pr_err("queue %d: bad pfv returned %d\n",
1205 nvme_tcp_queue_id(queue
), icresp
->pfv
);
1209 ctrl_ddgst
= !!(icresp
->digest
& NVME_TCP_DATA_DIGEST_ENABLE
);
1210 if ((queue
->data_digest
&& !ctrl_ddgst
) ||
1211 (!queue
->data_digest
&& ctrl_ddgst
)) {
1212 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1213 nvme_tcp_queue_id(queue
),
1214 queue
->data_digest
? "enabled" : "disabled",
1215 ctrl_ddgst
? "enabled" : "disabled");
1219 ctrl_hdgst
= !!(icresp
->digest
& NVME_TCP_HDR_DIGEST_ENABLE
);
1220 if ((queue
->hdr_digest
&& !ctrl_hdgst
) ||
1221 (!queue
->hdr_digest
&& ctrl_hdgst
)) {
1222 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1223 nvme_tcp_queue_id(queue
),
1224 queue
->hdr_digest
? "enabled" : "disabled",
1225 ctrl_hdgst
? "enabled" : "disabled");
1229 if (icresp
->cpda
!= 0) {
1230 pr_err("queue %d: unsupported cpda returned %d\n",
1231 nvme_tcp_queue_id(queue
), icresp
->cpda
);
1243 static int nvme_tcp_alloc_queue(struct nvme_ctrl
*nctrl
,
1244 int qid
, size_t queue_size
)
1246 struct nvme_tcp_ctrl
*ctrl
= to_tcp_ctrl(nctrl
);
1247 struct nvme_tcp_queue
*queue
= &ctrl
->queues
[qid
];
1248 struct linger sol
= { .l_onoff
= 1, .l_linger
= 0 };
1249 int ret
, opt
, rcv_pdu_size
, n
;
1252 INIT_LIST_HEAD(&queue
->send_list
);
1253 spin_lock_init(&queue
->lock
);
1254 INIT_WORK(&queue
->io_work
, nvme_tcp_io_work
);
1255 queue
->queue_size
= queue_size
;
1258 queue
->cmnd_capsule_len
= ctrl
->ctrl
.ioccsz
* 16;
1260 queue
->cmnd_capsule_len
= sizeof(struct nvme_command
) +
1261 NVME_TCP_ADMIN_CCSZ
;
1263 ret
= sock_create(ctrl
->addr
.ss_family
, SOCK_STREAM
,
1264 IPPROTO_TCP
, &queue
->sock
);
1266 dev_err(ctrl
->ctrl
.device
,
1267 "failed to create socket: %d\n", ret
);
1271 /* Single syn retry */
1273 ret
= kernel_setsockopt(queue
->sock
, IPPROTO_TCP
, TCP_SYNCNT
,
1274 (char *)&opt
, sizeof(opt
));
1276 dev_err(ctrl
->ctrl
.device
,
1277 "failed to set TCP_SYNCNT sock opt %d\n", ret
);
1281 /* Set TCP no delay */
1283 ret
= kernel_setsockopt(queue
->sock
, IPPROTO_TCP
,
1284 TCP_NODELAY
, (char *)&opt
, sizeof(opt
));
1286 dev_err(ctrl
->ctrl
.device
,
1287 "failed to set TCP_NODELAY sock opt %d\n", ret
);
1292 * Cleanup whatever is sitting in the TCP transmit queue on socket
1293 * close. This is done to prevent stale data from being sent should
1294 * the network connection be restored before TCP times out.
1296 ret
= kernel_setsockopt(queue
->sock
, SOL_SOCKET
, SO_LINGER
,
1297 (char *)&sol
, sizeof(sol
));
1299 dev_err(ctrl
->ctrl
.device
,
1300 "failed to set SO_LINGER sock opt %d\n", ret
);
1304 queue
->sock
->sk
->sk_allocation
= GFP_ATOMIC
;
1308 n
= (qid
- 1) % num_online_cpus();
1309 queue
->io_cpu
= cpumask_next_wrap(n
- 1, cpu_online_mask
, -1, false);
1310 queue
->request
= NULL
;
1311 queue
->data_remaining
= 0;
1312 queue
->ddgst_remaining
= 0;
1313 queue
->pdu_remaining
= 0;
1314 queue
->pdu_offset
= 0;
1315 sk_set_memalloc(queue
->sock
->sk
);
1317 if (ctrl
->ctrl
.opts
->mask
& NVMF_OPT_HOST_TRADDR
) {
1318 ret
= kernel_bind(queue
->sock
, (struct sockaddr
*)&ctrl
->src_addr
,
1319 sizeof(ctrl
->src_addr
));
1321 dev_err(ctrl
->ctrl
.device
,
1322 "failed to bind queue %d socket %d\n",
1328 queue
->hdr_digest
= nctrl
->opts
->hdr_digest
;
1329 queue
->data_digest
= nctrl
->opts
->data_digest
;
1330 if (queue
->hdr_digest
|| queue
->data_digest
) {
1331 ret
= nvme_tcp_alloc_crypto(queue
);
1333 dev_err(ctrl
->ctrl
.device
,
1334 "failed to allocate queue %d crypto\n", qid
);
1339 rcv_pdu_size
= sizeof(struct nvme_tcp_rsp_pdu
) +
1340 nvme_tcp_hdgst_len(queue
);
1341 queue
->pdu
= kmalloc(rcv_pdu_size
, GFP_KERNEL
);
1347 dev_dbg(ctrl
->ctrl
.device
, "connecting queue %d\n",
1348 nvme_tcp_queue_id(queue
));
1350 ret
= kernel_connect(queue
->sock
, (struct sockaddr
*)&ctrl
->addr
,
1351 sizeof(ctrl
->addr
), 0);
1353 dev_err(ctrl
->ctrl
.device
,
1354 "failed to connect socket: %d\n", ret
);
1358 ret
= nvme_tcp_init_connection(queue
);
1360 goto err_init_connect
;
1362 queue
->rd_enabled
= true;
1363 set_bit(NVME_TCP_Q_ALLOCATED
, &queue
->flags
);
1364 nvme_tcp_init_recv_ctx(queue
);
1366 write_lock_bh(&queue
->sock
->sk
->sk_callback_lock
);
1367 queue
->sock
->sk
->sk_user_data
= queue
;
1368 queue
->state_change
= queue
->sock
->sk
->sk_state_change
;
1369 queue
->data_ready
= queue
->sock
->sk
->sk_data_ready
;
1370 queue
->write_space
= queue
->sock
->sk
->sk_write_space
;
1371 queue
->sock
->sk
->sk_data_ready
= nvme_tcp_data_ready
;
1372 queue
->sock
->sk
->sk_state_change
= nvme_tcp_state_change
;
1373 queue
->sock
->sk
->sk_write_space
= nvme_tcp_write_space
;
1374 write_unlock_bh(&queue
->sock
->sk
->sk_callback_lock
);
1379 kernel_sock_shutdown(queue
->sock
, SHUT_RDWR
);
1383 if (queue
->hdr_digest
|| queue
->data_digest
)
1384 nvme_tcp_free_crypto(queue
);
1386 sock_release(queue
->sock
);
1391 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue
*queue
)
1393 struct socket
*sock
= queue
->sock
;
1395 write_lock_bh(&sock
->sk
->sk_callback_lock
);
1396 sock
->sk
->sk_user_data
= NULL
;
1397 sock
->sk
->sk_data_ready
= queue
->data_ready
;
1398 sock
->sk
->sk_state_change
= queue
->state_change
;
1399 sock
->sk
->sk_write_space
= queue
->write_space
;
1400 write_unlock_bh(&sock
->sk
->sk_callback_lock
);
1403 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue
*queue
)
1405 kernel_sock_shutdown(queue
->sock
, SHUT_RDWR
);
1406 nvme_tcp_restore_sock_calls(queue
);
1407 cancel_work_sync(&queue
->io_work
);
1410 static void nvme_tcp_stop_queue(struct nvme_ctrl
*nctrl
, int qid
)
1412 struct nvme_tcp_ctrl
*ctrl
= to_tcp_ctrl(nctrl
);
1413 struct nvme_tcp_queue
*queue
= &ctrl
->queues
[qid
];
1415 if (!test_and_clear_bit(NVME_TCP_Q_LIVE
, &queue
->flags
))
1418 __nvme_tcp_stop_queue(queue
);
1421 static int nvme_tcp_start_queue(struct nvme_ctrl
*nctrl
, int idx
)
1423 struct nvme_tcp_ctrl
*ctrl
= to_tcp_ctrl(nctrl
);
1427 ret
= nvmf_connect_io_queue(nctrl
, idx
, false);
1429 ret
= nvmf_connect_admin_queue(nctrl
);
1432 set_bit(NVME_TCP_Q_LIVE
, &ctrl
->queues
[idx
].flags
);
1434 if (test_bit(NVME_TCP_Q_ALLOCATED
, &ctrl
->queues
[idx
].flags
))
1435 __nvme_tcp_stop_queue(&ctrl
->queues
[idx
]);
1436 dev_err(nctrl
->device
,
1437 "failed to connect queue: %d ret=%d\n", idx
, ret
);
1442 static struct blk_mq_tag_set
*nvme_tcp_alloc_tagset(struct nvme_ctrl
*nctrl
,
1445 struct nvme_tcp_ctrl
*ctrl
= to_tcp_ctrl(nctrl
);
1446 struct blk_mq_tag_set
*set
;
1450 set
= &ctrl
->admin_tag_set
;
1451 memset(set
, 0, sizeof(*set
));
1452 set
->ops
= &nvme_tcp_admin_mq_ops
;
1453 set
->queue_depth
= NVME_AQ_MQ_TAG_DEPTH
;
1454 set
->reserved_tags
= 2; /* connect + keep-alive */
1455 set
->numa_node
= NUMA_NO_NODE
;
1456 set
->cmd_size
= sizeof(struct nvme_tcp_request
);
1457 set
->driver_data
= ctrl
;
1458 set
->nr_hw_queues
= 1;
1459 set
->timeout
= ADMIN_TIMEOUT
;
1461 set
= &ctrl
->tag_set
;
1462 memset(set
, 0, sizeof(*set
));
1463 set
->ops
= &nvme_tcp_mq_ops
;
1464 set
->queue_depth
= nctrl
->sqsize
+ 1;
1465 set
->reserved_tags
= 1; /* fabric connect */
1466 set
->numa_node
= NUMA_NO_NODE
;
1467 set
->flags
= BLK_MQ_F_SHOULD_MERGE
;
1468 set
->cmd_size
= sizeof(struct nvme_tcp_request
);
1469 set
->driver_data
= ctrl
;
1470 set
->nr_hw_queues
= nctrl
->queue_count
- 1;
1471 set
->timeout
= NVME_IO_TIMEOUT
;
1472 set
->nr_maps
= 2 /* default + read */;
1475 ret
= blk_mq_alloc_tag_set(set
);
1477 return ERR_PTR(ret
);
1482 static void nvme_tcp_free_admin_queue(struct nvme_ctrl
*ctrl
)
1484 if (to_tcp_ctrl(ctrl
)->async_req
.pdu
) {
1485 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl
));
1486 to_tcp_ctrl(ctrl
)->async_req
.pdu
= NULL
;
1489 nvme_tcp_free_queue(ctrl
, 0);
1492 static void nvme_tcp_free_io_queues(struct nvme_ctrl
*ctrl
)
1496 for (i
= 1; i
< ctrl
->queue_count
; i
++)
1497 nvme_tcp_free_queue(ctrl
, i
);
1500 static void nvme_tcp_stop_io_queues(struct nvme_ctrl
*ctrl
)
1504 for (i
= 1; i
< ctrl
->queue_count
; i
++)
1505 nvme_tcp_stop_queue(ctrl
, i
);
1508 static int nvme_tcp_start_io_queues(struct nvme_ctrl
*ctrl
)
1512 for (i
= 1; i
< ctrl
->queue_count
; i
++) {
1513 ret
= nvme_tcp_start_queue(ctrl
, i
);
1515 goto out_stop_queues
;
1521 for (i
--; i
>= 1; i
--)
1522 nvme_tcp_stop_queue(ctrl
, i
);
1526 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl
*ctrl
)
1530 ret
= nvme_tcp_alloc_queue(ctrl
, 0, NVME_AQ_DEPTH
);
1534 ret
= nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl
));
1536 goto out_free_queue
;
1541 nvme_tcp_free_queue(ctrl
, 0);
1545 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl
*ctrl
)
1549 for (i
= 1; i
< ctrl
->queue_count
; i
++) {
1550 ret
= nvme_tcp_alloc_queue(ctrl
, i
,
1553 goto out_free_queues
;
1559 for (i
--; i
>= 1; i
--)
1560 nvme_tcp_free_queue(ctrl
, i
);
1565 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl
*ctrl
)
1567 unsigned int nr_io_queues
;
1569 nr_io_queues
= min(ctrl
->opts
->nr_io_queues
, num_online_cpus());
1570 nr_io_queues
+= min(ctrl
->opts
->nr_write_queues
, num_online_cpus());
1572 return nr_io_queues
;
1575 static void nvme_tcp_set_io_queues(struct nvme_ctrl
*nctrl
,
1576 unsigned int nr_io_queues
)
1578 struct nvme_tcp_ctrl
*ctrl
= to_tcp_ctrl(nctrl
);
1579 struct nvmf_ctrl_options
*opts
= nctrl
->opts
;
1581 if (opts
->nr_write_queues
&& opts
->nr_io_queues
< nr_io_queues
) {
1583 * separate read/write queues
1584 * hand out dedicated default queues only after we have
1585 * sufficient read queues.
1587 ctrl
->io_queues
[HCTX_TYPE_READ
] = opts
->nr_io_queues
;
1588 nr_io_queues
-= ctrl
->io_queues
[HCTX_TYPE_READ
];
1589 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
] =
1590 min(opts
->nr_write_queues
, nr_io_queues
);
1591 nr_io_queues
-= ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
1594 * shared read/write queues
1595 * either no write queues were requested, or we don't have
1596 * sufficient queue count to have dedicated default queues.
1598 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
] =
1599 min(opts
->nr_io_queues
, nr_io_queues
);
1600 nr_io_queues
-= ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
1604 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl
*ctrl
)
1606 unsigned int nr_io_queues
;
1609 nr_io_queues
= nvme_tcp_nr_io_queues(ctrl
);
1610 ret
= nvme_set_queue_count(ctrl
, &nr_io_queues
);
1614 ctrl
->queue_count
= nr_io_queues
+ 1;
1615 if (ctrl
->queue_count
< 2)
1618 dev_info(ctrl
->device
,
1619 "creating %d I/O queues.\n", nr_io_queues
);
1621 nvme_tcp_set_io_queues(ctrl
, nr_io_queues
);
1623 return __nvme_tcp_alloc_io_queues(ctrl
);
1626 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl
*ctrl
, bool remove
)
1628 nvme_tcp_stop_io_queues(ctrl
);
1630 blk_cleanup_queue(ctrl
->connect_q
);
1631 blk_mq_free_tag_set(ctrl
->tagset
);
1633 nvme_tcp_free_io_queues(ctrl
);
1636 static int nvme_tcp_configure_io_queues(struct nvme_ctrl
*ctrl
, bool new)
1640 ret
= nvme_tcp_alloc_io_queues(ctrl
);
1645 ctrl
->tagset
= nvme_tcp_alloc_tagset(ctrl
, false);
1646 if (IS_ERR(ctrl
->tagset
)) {
1647 ret
= PTR_ERR(ctrl
->tagset
);
1648 goto out_free_io_queues
;
1651 ctrl
->connect_q
= blk_mq_init_queue(ctrl
->tagset
);
1652 if (IS_ERR(ctrl
->connect_q
)) {
1653 ret
= PTR_ERR(ctrl
->connect_q
);
1654 goto out_free_tag_set
;
1657 blk_mq_update_nr_hw_queues(ctrl
->tagset
,
1658 ctrl
->queue_count
- 1);
1661 ret
= nvme_tcp_start_io_queues(ctrl
);
1663 goto out_cleanup_connect_q
;
1667 out_cleanup_connect_q
:
1669 blk_cleanup_queue(ctrl
->connect_q
);
1672 blk_mq_free_tag_set(ctrl
->tagset
);
1674 nvme_tcp_free_io_queues(ctrl
);
1678 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl
*ctrl
, bool remove
)
1680 nvme_tcp_stop_queue(ctrl
, 0);
1682 blk_cleanup_queue(ctrl
->admin_q
);
1683 blk_mq_free_tag_set(ctrl
->admin_tagset
);
1685 nvme_tcp_free_admin_queue(ctrl
);
1688 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl
*ctrl
, bool new)
1692 error
= nvme_tcp_alloc_admin_queue(ctrl
);
1697 ctrl
->admin_tagset
= nvme_tcp_alloc_tagset(ctrl
, true);
1698 if (IS_ERR(ctrl
->admin_tagset
)) {
1699 error
= PTR_ERR(ctrl
->admin_tagset
);
1700 goto out_free_queue
;
1703 ctrl
->admin_q
= blk_mq_init_queue(ctrl
->admin_tagset
);
1704 if (IS_ERR(ctrl
->admin_q
)) {
1705 error
= PTR_ERR(ctrl
->admin_q
);
1706 goto out_free_tagset
;
1710 error
= nvme_tcp_start_queue(ctrl
, 0);
1712 goto out_cleanup_queue
;
1714 error
= ctrl
->ops
->reg_read64(ctrl
, NVME_REG_CAP
, &ctrl
->cap
);
1716 dev_err(ctrl
->device
,
1717 "prop_get NVME_REG_CAP failed\n");
1718 goto out_stop_queue
;
1721 ctrl
->sqsize
= min_t(int, NVME_CAP_MQES(ctrl
->cap
), ctrl
->sqsize
);
1723 error
= nvme_enable_ctrl(ctrl
, ctrl
->cap
);
1725 goto out_stop_queue
;
1727 error
= nvme_init_identify(ctrl
);
1729 goto out_stop_queue
;
1734 nvme_tcp_stop_queue(ctrl
, 0);
1737 blk_cleanup_queue(ctrl
->admin_q
);
1740 blk_mq_free_tag_set(ctrl
->admin_tagset
);
1742 nvme_tcp_free_admin_queue(ctrl
);
1746 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl
*ctrl
,
1749 blk_mq_quiesce_queue(ctrl
->admin_q
);
1750 nvme_tcp_stop_queue(ctrl
, 0);
1751 if (ctrl
->admin_tagset
)
1752 blk_mq_tagset_busy_iter(ctrl
->admin_tagset
,
1753 nvme_cancel_request
, ctrl
);
1754 blk_mq_unquiesce_queue(ctrl
->admin_q
);
1755 nvme_tcp_destroy_admin_queue(ctrl
, remove
);
1758 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl
*ctrl
,
1761 if (ctrl
->queue_count
<= 1)
1763 nvme_stop_queues(ctrl
);
1764 nvme_tcp_stop_io_queues(ctrl
);
1766 blk_mq_tagset_busy_iter(ctrl
->tagset
,
1767 nvme_cancel_request
, ctrl
);
1769 nvme_start_queues(ctrl
);
1770 nvme_tcp_destroy_io_queues(ctrl
, remove
);
1773 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl
*ctrl
)
1775 /* If we are resetting/deleting then do nothing */
1776 if (ctrl
->state
!= NVME_CTRL_CONNECTING
) {
1777 WARN_ON_ONCE(ctrl
->state
== NVME_CTRL_NEW
||
1778 ctrl
->state
== NVME_CTRL_LIVE
);
1782 if (nvmf_should_reconnect(ctrl
)) {
1783 dev_info(ctrl
->device
, "Reconnecting in %d seconds...\n",
1784 ctrl
->opts
->reconnect_delay
);
1785 queue_delayed_work(nvme_wq
, &to_tcp_ctrl(ctrl
)->connect_work
,
1786 ctrl
->opts
->reconnect_delay
* HZ
);
1788 dev_info(ctrl
->device
, "Removing controller...\n");
1789 nvme_delete_ctrl(ctrl
);
1793 static int nvme_tcp_setup_ctrl(struct nvme_ctrl
*ctrl
, bool new)
1795 struct nvmf_ctrl_options
*opts
= ctrl
->opts
;
1798 ret
= nvme_tcp_configure_admin_queue(ctrl
, new);
1803 dev_err(ctrl
->device
, "icdoff is not supported!\n");
1807 if (opts
->queue_size
> ctrl
->sqsize
+ 1)
1808 dev_warn(ctrl
->device
,
1809 "queue_size %zu > ctrl sqsize %u, clamping down\n",
1810 opts
->queue_size
, ctrl
->sqsize
+ 1);
1812 if (ctrl
->sqsize
+ 1 > ctrl
->maxcmd
) {
1813 dev_warn(ctrl
->device
,
1814 "sqsize %u > ctrl maxcmd %u, clamping down\n",
1815 ctrl
->sqsize
+ 1, ctrl
->maxcmd
);
1816 ctrl
->sqsize
= ctrl
->maxcmd
- 1;
1819 if (ctrl
->queue_count
> 1) {
1820 ret
= nvme_tcp_configure_io_queues(ctrl
, new);
1825 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_LIVE
)) {
1826 /* state change failure is ok if we're in DELETING state */
1827 WARN_ON_ONCE(ctrl
->state
!= NVME_CTRL_DELETING
);
1832 nvme_start_ctrl(ctrl
);
1836 if (ctrl
->queue_count
> 1)
1837 nvme_tcp_destroy_io_queues(ctrl
, new);
1839 nvme_tcp_stop_queue(ctrl
, 0);
1840 nvme_tcp_destroy_admin_queue(ctrl
, new);
1844 static void nvme_tcp_reconnect_ctrl_work(struct work_struct
*work
)
1846 struct nvme_tcp_ctrl
*tcp_ctrl
= container_of(to_delayed_work(work
),
1847 struct nvme_tcp_ctrl
, connect_work
);
1848 struct nvme_ctrl
*ctrl
= &tcp_ctrl
->ctrl
;
1850 ++ctrl
->nr_reconnects
;
1852 if (nvme_tcp_setup_ctrl(ctrl
, false))
1855 dev_info(ctrl
->device
, "Successfully reconnected (%d attempt)\n",
1856 ctrl
->nr_reconnects
);
1858 ctrl
->nr_reconnects
= 0;
1863 dev_info(ctrl
->device
, "Failed reconnect attempt %d\n",
1864 ctrl
->nr_reconnects
);
1865 nvme_tcp_reconnect_or_remove(ctrl
);
1868 static void nvme_tcp_error_recovery_work(struct work_struct
*work
)
1870 struct nvme_tcp_ctrl
*tcp_ctrl
= container_of(work
,
1871 struct nvme_tcp_ctrl
, err_work
);
1872 struct nvme_ctrl
*ctrl
= &tcp_ctrl
->ctrl
;
1874 nvme_stop_keep_alive(ctrl
);
1875 nvme_tcp_teardown_io_queues(ctrl
, false);
1876 /* unquiesce to fail fast pending requests */
1877 nvme_start_queues(ctrl
);
1878 nvme_tcp_teardown_admin_queue(ctrl
, false);
1880 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_CONNECTING
)) {
1881 /* state change failure is ok if we're in DELETING state */
1882 WARN_ON_ONCE(ctrl
->state
!= NVME_CTRL_DELETING
);
1886 nvme_tcp_reconnect_or_remove(ctrl
);
1889 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl
*ctrl
, bool shutdown
)
1891 cancel_work_sync(&to_tcp_ctrl(ctrl
)->err_work
);
1892 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl
)->connect_work
);
1894 nvme_tcp_teardown_io_queues(ctrl
, shutdown
);
1896 nvme_shutdown_ctrl(ctrl
);
1898 nvme_disable_ctrl(ctrl
, ctrl
->cap
);
1899 nvme_tcp_teardown_admin_queue(ctrl
, shutdown
);
1902 static void nvme_tcp_delete_ctrl(struct nvme_ctrl
*ctrl
)
1904 nvme_tcp_teardown_ctrl(ctrl
, true);
1907 static void nvme_reset_ctrl_work(struct work_struct
*work
)
1909 struct nvme_ctrl
*ctrl
=
1910 container_of(work
, struct nvme_ctrl
, reset_work
);
1912 nvme_stop_ctrl(ctrl
);
1913 nvme_tcp_teardown_ctrl(ctrl
, false);
1915 if (!nvme_change_ctrl_state(ctrl
, NVME_CTRL_CONNECTING
)) {
1916 /* state change failure is ok if we're in DELETING state */
1917 WARN_ON_ONCE(ctrl
->state
!= NVME_CTRL_DELETING
);
1921 if (nvme_tcp_setup_ctrl(ctrl
, false))
1927 ++ctrl
->nr_reconnects
;
1928 nvme_tcp_reconnect_or_remove(ctrl
);
1931 static void nvme_tcp_free_ctrl(struct nvme_ctrl
*nctrl
)
1933 struct nvme_tcp_ctrl
*ctrl
= to_tcp_ctrl(nctrl
);
1935 if (list_empty(&ctrl
->list
))
1938 mutex_lock(&nvme_tcp_ctrl_mutex
);
1939 list_del(&ctrl
->list
);
1940 mutex_unlock(&nvme_tcp_ctrl_mutex
);
1942 nvmf_free_options(nctrl
->opts
);
1944 kfree(ctrl
->queues
);
1948 static void nvme_tcp_set_sg_null(struct nvme_command
*c
)
1950 struct nvme_sgl_desc
*sg
= &c
->common
.dptr
.sgl
;
1954 sg
->type
= (NVME_TRANSPORT_SGL_DATA_DESC
<< 4) |
1955 NVME_SGL_FMT_TRANSPORT_A
;
1958 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue
*queue
,
1959 struct nvme_command
*c
, u32 data_len
)
1961 struct nvme_sgl_desc
*sg
= &c
->common
.dptr
.sgl
;
1963 sg
->addr
= cpu_to_le64(queue
->ctrl
->ctrl
.icdoff
);
1964 sg
->length
= cpu_to_le32(data_len
);
1965 sg
->type
= (NVME_SGL_FMT_DATA_DESC
<< 4) | NVME_SGL_FMT_OFFSET
;
1968 static void nvme_tcp_set_sg_host_data(struct nvme_command
*c
,
1971 struct nvme_sgl_desc
*sg
= &c
->common
.dptr
.sgl
;
1974 sg
->length
= cpu_to_le32(data_len
);
1975 sg
->type
= (NVME_TRANSPORT_SGL_DATA_DESC
<< 4) |
1976 NVME_SGL_FMT_TRANSPORT_A
;
1979 static void nvme_tcp_submit_async_event(struct nvme_ctrl
*arg
)
1981 struct nvme_tcp_ctrl
*ctrl
= to_tcp_ctrl(arg
);
1982 struct nvme_tcp_queue
*queue
= &ctrl
->queues
[0];
1983 struct nvme_tcp_cmd_pdu
*pdu
= ctrl
->async_req
.pdu
;
1984 struct nvme_command
*cmd
= &pdu
->cmd
;
1985 u8 hdgst
= nvme_tcp_hdgst_len(queue
);
1987 memset(pdu
, 0, sizeof(*pdu
));
1988 pdu
->hdr
.type
= nvme_tcp_cmd
;
1989 if (queue
->hdr_digest
)
1990 pdu
->hdr
.flags
|= NVME_TCP_F_HDGST
;
1991 pdu
->hdr
.hlen
= sizeof(*pdu
);
1992 pdu
->hdr
.plen
= cpu_to_le32(pdu
->hdr
.hlen
+ hdgst
);
1994 cmd
->common
.opcode
= nvme_admin_async_event
;
1995 cmd
->common
.command_id
= NVME_AQ_BLK_MQ_DEPTH
;
1996 cmd
->common
.flags
|= NVME_CMD_SGL_METABUF
;
1997 nvme_tcp_set_sg_null(cmd
);
1999 ctrl
->async_req
.state
= NVME_TCP_SEND_CMD_PDU
;
2000 ctrl
->async_req
.offset
= 0;
2001 ctrl
->async_req
.curr_bio
= NULL
;
2002 ctrl
->async_req
.data_len
= 0;
2004 nvme_tcp_queue_request(&ctrl
->async_req
);
2007 static enum blk_eh_timer_return
2008 nvme_tcp_timeout(struct request
*rq
, bool reserved
)
2010 struct nvme_tcp_request
*req
= blk_mq_rq_to_pdu(rq
);
2011 struct nvme_tcp_ctrl
*ctrl
= req
->queue
->ctrl
;
2012 struct nvme_tcp_cmd_pdu
*pdu
= req
->pdu
;
2014 dev_warn(ctrl
->ctrl
.device
,
2015 "queue %d: timeout request %#x type %d\n",
2016 nvme_tcp_queue_id(req
->queue
), rq
->tag
, pdu
->hdr
.type
);
2018 if (ctrl
->ctrl
.state
!= NVME_CTRL_LIVE
) {
2020 * Teardown immediately if controller times out while starting
2021 * or we are already started error recovery. all outstanding
2022 * requests are completed on shutdown, so we return BLK_EH_DONE.
2024 flush_work(&ctrl
->err_work
);
2025 nvme_tcp_teardown_io_queues(&ctrl
->ctrl
, false);
2026 nvme_tcp_teardown_admin_queue(&ctrl
->ctrl
, false);
2030 dev_warn(ctrl
->ctrl
.device
, "starting error recovery\n");
2031 nvme_tcp_error_recovery(&ctrl
->ctrl
);
2033 return BLK_EH_RESET_TIMER
;
2036 static blk_status_t
nvme_tcp_map_data(struct nvme_tcp_queue
*queue
,
2039 struct nvme_tcp_request
*req
= blk_mq_rq_to_pdu(rq
);
2040 struct nvme_tcp_cmd_pdu
*pdu
= req
->pdu
;
2041 struct nvme_command
*c
= &pdu
->cmd
;
2043 c
->common
.flags
|= NVME_CMD_SGL_METABUF
;
2045 if (rq_data_dir(rq
) == WRITE
&& req
->data_len
&&
2046 req
->data_len
<= nvme_tcp_inline_data_size(queue
))
2047 nvme_tcp_set_sg_inline(queue
, c
, req
->data_len
);
2049 nvme_tcp_set_sg_host_data(c
, req
->data_len
);
2054 static blk_status_t
nvme_tcp_setup_cmd_pdu(struct nvme_ns
*ns
,
2057 struct nvme_tcp_request
*req
= blk_mq_rq_to_pdu(rq
);
2058 struct nvme_tcp_cmd_pdu
*pdu
= req
->pdu
;
2059 struct nvme_tcp_queue
*queue
= req
->queue
;
2060 u8 hdgst
= nvme_tcp_hdgst_len(queue
), ddgst
= 0;
2063 ret
= nvme_setup_cmd(ns
, rq
, &pdu
->cmd
);
2067 req
->state
= NVME_TCP_SEND_CMD_PDU
;
2072 req
->data_len
= blk_rq_payload_bytes(rq
);
2073 req
->curr_bio
= rq
->bio
;
2075 if (rq_data_dir(rq
) == WRITE
&&
2076 req
->data_len
<= nvme_tcp_inline_data_size(queue
))
2077 req
->pdu_len
= req
->data_len
;
2078 else if (req
->curr_bio
)
2079 nvme_tcp_init_iter(req
, READ
);
2081 pdu
->hdr
.type
= nvme_tcp_cmd
;
2083 if (queue
->hdr_digest
)
2084 pdu
->hdr
.flags
|= NVME_TCP_F_HDGST
;
2085 if (queue
->data_digest
&& req
->pdu_len
) {
2086 pdu
->hdr
.flags
|= NVME_TCP_F_DDGST
;
2087 ddgst
= nvme_tcp_ddgst_len(queue
);
2089 pdu
->hdr
.hlen
= sizeof(*pdu
);
2090 pdu
->hdr
.pdo
= req
->pdu_len
? pdu
->hdr
.hlen
+ hdgst
: 0;
2092 cpu_to_le32(pdu
->hdr
.hlen
+ hdgst
+ req
->pdu_len
+ ddgst
);
2094 ret
= nvme_tcp_map_data(queue
, rq
);
2095 if (unlikely(ret
)) {
2096 dev_err(queue
->ctrl
->ctrl
.device
,
2097 "Failed to map data (%d)\n", ret
);
2104 static blk_status_t
nvme_tcp_queue_rq(struct blk_mq_hw_ctx
*hctx
,
2105 const struct blk_mq_queue_data
*bd
)
2107 struct nvme_ns
*ns
= hctx
->queue
->queuedata
;
2108 struct nvme_tcp_queue
*queue
= hctx
->driver_data
;
2109 struct request
*rq
= bd
->rq
;
2110 struct nvme_tcp_request
*req
= blk_mq_rq_to_pdu(rq
);
2111 bool queue_ready
= test_bit(NVME_TCP_Q_LIVE
, &queue
->flags
);
2114 if (!nvmf_check_ready(&queue
->ctrl
->ctrl
, rq
, queue_ready
))
2115 return nvmf_fail_nonready_command(&queue
->ctrl
->ctrl
, rq
);
2117 ret
= nvme_tcp_setup_cmd_pdu(ns
, rq
);
2121 blk_mq_start_request(rq
);
2123 nvme_tcp_queue_request(req
);
2128 static int nvme_tcp_map_queues(struct blk_mq_tag_set
*set
)
2130 struct nvme_tcp_ctrl
*ctrl
= set
->driver_data
;
2131 struct nvmf_ctrl_options
*opts
= ctrl
->ctrl
.opts
;
2133 if (opts
->nr_write_queues
&& ctrl
->io_queues
[HCTX_TYPE_READ
]) {
2134 /* separate read/write queues */
2135 set
->map
[HCTX_TYPE_DEFAULT
].nr_queues
=
2136 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
2137 set
->map
[HCTX_TYPE_DEFAULT
].queue_offset
= 0;
2138 set
->map
[HCTX_TYPE_READ
].nr_queues
=
2139 ctrl
->io_queues
[HCTX_TYPE_READ
];
2140 set
->map
[HCTX_TYPE_READ
].queue_offset
=
2141 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
2143 /* shared read/write queues */
2144 set
->map
[HCTX_TYPE_DEFAULT
].nr_queues
=
2145 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
2146 set
->map
[HCTX_TYPE_DEFAULT
].queue_offset
= 0;
2147 set
->map
[HCTX_TYPE_READ
].nr_queues
=
2148 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
];
2149 set
->map
[HCTX_TYPE_READ
].queue_offset
= 0;
2151 blk_mq_map_queues(&set
->map
[HCTX_TYPE_DEFAULT
]);
2152 blk_mq_map_queues(&set
->map
[HCTX_TYPE_READ
]);
2154 dev_info(ctrl
->ctrl
.device
,
2155 "mapped %d/%d default/read queues.\n",
2156 ctrl
->io_queues
[HCTX_TYPE_DEFAULT
],
2157 ctrl
->io_queues
[HCTX_TYPE_READ
]);
2162 static struct blk_mq_ops nvme_tcp_mq_ops
= {
2163 .queue_rq
= nvme_tcp_queue_rq
,
2164 .complete
= nvme_complete_rq
,
2165 .init_request
= nvme_tcp_init_request
,
2166 .exit_request
= nvme_tcp_exit_request
,
2167 .init_hctx
= nvme_tcp_init_hctx
,
2168 .timeout
= nvme_tcp_timeout
,
2169 .map_queues
= nvme_tcp_map_queues
,
2172 static struct blk_mq_ops nvme_tcp_admin_mq_ops
= {
2173 .queue_rq
= nvme_tcp_queue_rq
,
2174 .complete
= nvme_complete_rq
,
2175 .init_request
= nvme_tcp_init_request
,
2176 .exit_request
= nvme_tcp_exit_request
,
2177 .init_hctx
= nvme_tcp_init_admin_hctx
,
2178 .timeout
= nvme_tcp_timeout
,
2181 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops
= {
2183 .module
= THIS_MODULE
,
2184 .flags
= NVME_F_FABRICS
,
2185 .reg_read32
= nvmf_reg_read32
,
2186 .reg_read64
= nvmf_reg_read64
,
2187 .reg_write32
= nvmf_reg_write32
,
2188 .free_ctrl
= nvme_tcp_free_ctrl
,
2189 .submit_async_event
= nvme_tcp_submit_async_event
,
2190 .delete_ctrl
= nvme_tcp_delete_ctrl
,
2191 .get_address
= nvmf_get_address
,
2195 nvme_tcp_existing_controller(struct nvmf_ctrl_options
*opts
)
2197 struct nvme_tcp_ctrl
*ctrl
;
2200 mutex_lock(&nvme_tcp_ctrl_mutex
);
2201 list_for_each_entry(ctrl
, &nvme_tcp_ctrl_list
, list
) {
2202 found
= nvmf_ip_options_match(&ctrl
->ctrl
, opts
);
2206 mutex_unlock(&nvme_tcp_ctrl_mutex
);
2211 static struct nvme_ctrl
*nvme_tcp_create_ctrl(struct device
*dev
,
2212 struct nvmf_ctrl_options
*opts
)
2214 struct nvme_tcp_ctrl
*ctrl
;
2217 ctrl
= kzalloc(sizeof(*ctrl
), GFP_KERNEL
);
2219 return ERR_PTR(-ENOMEM
);
2221 INIT_LIST_HEAD(&ctrl
->list
);
2222 ctrl
->ctrl
.opts
= opts
;
2223 ctrl
->ctrl
.queue_count
= opts
->nr_io_queues
+ opts
->nr_write_queues
+ 1;
2224 ctrl
->ctrl
.sqsize
= opts
->queue_size
- 1;
2225 ctrl
->ctrl
.kato
= opts
->kato
;
2227 INIT_DELAYED_WORK(&ctrl
->connect_work
,
2228 nvme_tcp_reconnect_ctrl_work
);
2229 INIT_WORK(&ctrl
->err_work
, nvme_tcp_error_recovery_work
);
2230 INIT_WORK(&ctrl
->ctrl
.reset_work
, nvme_reset_ctrl_work
);
2232 if (!(opts
->mask
& NVMF_OPT_TRSVCID
)) {
2234 kstrdup(__stringify(NVME_TCP_DISC_PORT
), GFP_KERNEL
);
2235 if (!opts
->trsvcid
) {
2239 opts
->mask
|= NVMF_OPT_TRSVCID
;
2242 ret
= inet_pton_with_scope(&init_net
, AF_UNSPEC
,
2243 opts
->traddr
, opts
->trsvcid
, &ctrl
->addr
);
2245 pr_err("malformed address passed: %s:%s\n",
2246 opts
->traddr
, opts
->trsvcid
);
2250 if (opts
->mask
& NVMF_OPT_HOST_TRADDR
) {
2251 ret
= inet_pton_with_scope(&init_net
, AF_UNSPEC
,
2252 opts
->host_traddr
, NULL
, &ctrl
->src_addr
);
2254 pr_err("malformed src address passed: %s\n",
2260 if (!opts
->duplicate_connect
&& nvme_tcp_existing_controller(opts
)) {
2265 ctrl
->queues
= kcalloc(ctrl
->ctrl
.queue_count
, sizeof(*ctrl
->queues
),
2267 if (!ctrl
->queues
) {
2272 ret
= nvme_init_ctrl(&ctrl
->ctrl
, dev
, &nvme_tcp_ctrl_ops
, 0);
2274 goto out_kfree_queues
;
2276 if (!nvme_change_ctrl_state(&ctrl
->ctrl
, NVME_CTRL_CONNECTING
)) {
2279 goto out_uninit_ctrl
;
2282 ret
= nvme_tcp_setup_ctrl(&ctrl
->ctrl
, true);
2284 goto out_uninit_ctrl
;
2286 dev_info(ctrl
->ctrl
.device
, "new ctrl: NQN \"%s\", addr %pISp\n",
2287 ctrl
->ctrl
.opts
->subsysnqn
, &ctrl
->addr
);
2289 nvme_get_ctrl(&ctrl
->ctrl
);
2291 mutex_lock(&nvme_tcp_ctrl_mutex
);
2292 list_add_tail(&ctrl
->list
, &nvme_tcp_ctrl_list
);
2293 mutex_unlock(&nvme_tcp_ctrl_mutex
);
2298 nvme_uninit_ctrl(&ctrl
->ctrl
);
2299 nvme_put_ctrl(&ctrl
->ctrl
);
2302 return ERR_PTR(ret
);
2304 kfree(ctrl
->queues
);
2307 return ERR_PTR(ret
);
2310 static struct nvmf_transport_ops nvme_tcp_transport
= {
2312 .module
= THIS_MODULE
,
2313 .required_opts
= NVMF_OPT_TRADDR
,
2314 .allowed_opts
= NVMF_OPT_TRSVCID
| NVMF_OPT_RECONNECT_DELAY
|
2315 NVMF_OPT_HOST_TRADDR
| NVMF_OPT_CTRL_LOSS_TMO
|
2316 NVMF_OPT_HDR_DIGEST
| NVMF_OPT_DATA_DIGEST
|
2317 NVMF_OPT_NR_WRITE_QUEUES
,
2318 .create_ctrl
= nvme_tcp_create_ctrl
,
2321 static int __init
nvme_tcp_init_module(void)
2323 nvme_tcp_wq
= alloc_workqueue("nvme_tcp_wq",
2324 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
2328 nvmf_register_transport(&nvme_tcp_transport
);
2332 static void __exit
nvme_tcp_cleanup_module(void)
2334 struct nvme_tcp_ctrl
*ctrl
;
2336 nvmf_unregister_transport(&nvme_tcp_transport
);
2338 mutex_lock(&nvme_tcp_ctrl_mutex
);
2339 list_for_each_entry(ctrl
, &nvme_tcp_ctrl_list
, list
)
2340 nvme_delete_ctrl(&ctrl
->ctrl
);
2341 mutex_unlock(&nvme_tcp_ctrl_mutex
);
2342 flush_workqueue(nvme_delete_wq
);
2344 destroy_workqueue(nvme_tcp_wq
);
2347 module_init(nvme_tcp_init_module
);
2348 module_exit(nvme_tcp_cleanup_module
);
2350 MODULE_LICENSE("GPL v2");