1 // SPDX-License-Identifier: GPL-2.0
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
21 #include <asm/msidef.h>
27 #define PCI_REG_VMCAP 0x40
28 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
29 #define PCI_REG_VMCONFIG 0x44
30 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK 0x70
32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
36 * Device may contain registers which hint the physical location of the
37 * membars, in order to allow proper address translation during
38 * resource assignment to enable guest virtualization
40 VMD_FEAT_HAS_MEMBAR_SHADOW
= (1 << 0),
43 * Device may provide root port configuration information which limits
46 VMD_FEAT_HAS_BUS_RESTRICTIONS
= (1 << 1),
50 * Lock for manipulating VMD IRQ lists.
52 static DEFINE_RAW_SPINLOCK(list_lock
);
55 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
56 * @node: list item for parent traversal.
57 * @irq: back pointer to parent.
58 * @enabled: true if driver enabled IRQ
59 * @virq: the virtual IRQ value provided to the requesting driver.
61 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
62 * a VMD IRQ using this structure.
65 struct list_head node
;
66 struct vmd_irq_list
*irq
;
72 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
73 * @irq_list: the list of irq's the VMD one demuxes to.
74 * @srcu: SRCU struct for local synchronization.
75 * @count: number of child IRQs assigned to this vector; used to track
79 struct list_head irq_list
;
80 struct srcu_struct srcu
;
91 struct vmd_irq_list
*irqs
;
93 struct pci_sysdata sysdata
;
94 struct resource resources
[3];
95 struct irq_domain
*irq_domain
;
98 struct dma_map_ops dma_ops
;
99 struct dma_domain dma_domain
;
102 static inline struct vmd_dev
*vmd_from_bus(struct pci_bus
*bus
)
104 return container_of(bus
->sysdata
, struct vmd_dev
, sysdata
);
107 static inline unsigned int index_from_irqs(struct vmd_dev
*vmd
,
108 struct vmd_irq_list
*irqs
)
110 return irqs
- vmd
->irqs
;
114 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
115 * but the MSI entry for the hardware it's driving will be programmed with a
116 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
117 * domain into one of its own, and the VMD driver de-muxes these for the
118 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
119 * and irq_chip to set this up.
121 static void vmd_compose_msi_msg(struct irq_data
*data
, struct msi_msg
*msg
)
123 struct vmd_irq
*vmdirq
= data
->chip_data
;
124 struct vmd_irq_list
*irq
= vmdirq
->irq
;
125 struct vmd_dev
*vmd
= irq_data_get_irq_handler_data(data
);
127 msg
->address_hi
= MSI_ADDR_BASE_HI
;
128 msg
->address_lo
= MSI_ADDR_BASE_LO
|
129 MSI_ADDR_DEST_ID(index_from_irqs(vmd
, irq
));
134 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
136 static void vmd_irq_enable(struct irq_data
*data
)
138 struct vmd_irq
*vmdirq
= data
->chip_data
;
141 raw_spin_lock_irqsave(&list_lock
, flags
);
142 WARN_ON(vmdirq
->enabled
);
143 list_add_tail_rcu(&vmdirq
->node
, &vmdirq
->irq
->irq_list
);
144 vmdirq
->enabled
= true;
145 raw_spin_unlock_irqrestore(&list_lock
, flags
);
147 data
->chip
->irq_unmask(data
);
150 static void vmd_irq_disable(struct irq_data
*data
)
152 struct vmd_irq
*vmdirq
= data
->chip_data
;
155 data
->chip
->irq_mask(data
);
157 raw_spin_lock_irqsave(&list_lock
, flags
);
158 if (vmdirq
->enabled
) {
159 list_del_rcu(&vmdirq
->node
);
160 vmdirq
->enabled
= false;
162 raw_spin_unlock_irqrestore(&list_lock
, flags
);
166 * XXX: Stubbed until we develop acceptable way to not create conflicts with
167 * other devices sharing the same vector.
169 static int vmd_irq_set_affinity(struct irq_data
*data
,
170 const struct cpumask
*dest
, bool force
)
175 static struct irq_chip vmd_msi_controller
= {
177 .irq_enable
= vmd_irq_enable
,
178 .irq_disable
= vmd_irq_disable
,
179 .irq_compose_msi_msg
= vmd_compose_msi_msg
,
180 .irq_set_affinity
= vmd_irq_set_affinity
,
183 static irq_hw_number_t
vmd_get_hwirq(struct msi_domain_info
*info
,
184 msi_alloc_info_t
*arg
)
190 * XXX: We can be even smarter selecting the best IRQ once we solve the
193 static struct vmd_irq_list
*vmd_next_irq(struct vmd_dev
*vmd
, struct msi_desc
*desc
)
198 if (vmd
->msix_count
== 1)
199 return &vmd
->irqs
[0];
202 * White list for fast-interrupt handlers. All others will share the
203 * "slow" interrupt vector.
205 switch (msi_desc_to_pci_dev(desc
)->class) {
206 case PCI_CLASS_STORAGE_EXPRESS
:
209 return &vmd
->irqs
[0];
212 raw_spin_lock_irqsave(&list_lock
, flags
);
213 for (i
= 1; i
< vmd
->msix_count
; i
++)
214 if (vmd
->irqs
[i
].count
< vmd
->irqs
[best
].count
)
216 vmd
->irqs
[best
].count
++;
217 raw_spin_unlock_irqrestore(&list_lock
, flags
);
219 return &vmd
->irqs
[best
];
222 static int vmd_msi_init(struct irq_domain
*domain
, struct msi_domain_info
*info
,
223 unsigned int virq
, irq_hw_number_t hwirq
,
224 msi_alloc_info_t
*arg
)
226 struct msi_desc
*desc
= arg
->desc
;
227 struct vmd_dev
*vmd
= vmd_from_bus(msi_desc_to_pci_dev(desc
)->bus
);
228 struct vmd_irq
*vmdirq
= kzalloc(sizeof(*vmdirq
), GFP_KERNEL
);
229 unsigned int index
, vector
;
234 INIT_LIST_HEAD(&vmdirq
->node
);
235 vmdirq
->irq
= vmd_next_irq(vmd
, desc
);
237 index
= index_from_irqs(vmd
, vmdirq
->irq
);
238 vector
= pci_irq_vector(vmd
->dev
, index
);
240 irq_domain_set_info(domain
, virq
, vector
, info
->chip
, vmdirq
,
241 handle_untracked_irq
, vmd
, NULL
);
245 static void vmd_msi_free(struct irq_domain
*domain
,
246 struct msi_domain_info
*info
, unsigned int virq
)
248 struct vmd_irq
*vmdirq
= irq_get_chip_data(virq
);
251 synchronize_srcu(&vmdirq
->irq
->srcu
);
253 /* XXX: Potential optimization to rebalance */
254 raw_spin_lock_irqsave(&list_lock
, flags
);
255 vmdirq
->irq
->count
--;
256 raw_spin_unlock_irqrestore(&list_lock
, flags
);
261 static int vmd_msi_prepare(struct irq_domain
*domain
, struct device
*dev
,
262 int nvec
, msi_alloc_info_t
*arg
)
264 struct pci_dev
*pdev
= to_pci_dev(dev
);
265 struct vmd_dev
*vmd
= vmd_from_bus(pdev
->bus
);
267 if (nvec
> vmd
->msix_count
)
268 return vmd
->msix_count
;
270 memset(arg
, 0, sizeof(*arg
));
274 static void vmd_set_desc(msi_alloc_info_t
*arg
, struct msi_desc
*desc
)
279 static struct msi_domain_ops vmd_msi_domain_ops
= {
280 .get_hwirq
= vmd_get_hwirq
,
281 .msi_init
= vmd_msi_init
,
282 .msi_free
= vmd_msi_free
,
283 .msi_prepare
= vmd_msi_prepare
,
284 .set_desc
= vmd_set_desc
,
287 static struct msi_domain_info vmd_msi_domain_info
= {
288 .flags
= MSI_FLAG_USE_DEF_DOM_OPS
| MSI_FLAG_USE_DEF_CHIP_OPS
|
290 .ops
= &vmd_msi_domain_ops
,
291 .chip
= &vmd_msi_controller
,
295 * VMD replaces the requester ID with its own. DMA mappings for devices in a
296 * VMD domain need to be mapped for the VMD, not the device requiring
299 static struct device
*to_vmd_dev(struct device
*dev
)
301 struct pci_dev
*pdev
= to_pci_dev(dev
);
302 struct vmd_dev
*vmd
= vmd_from_bus(pdev
->bus
);
304 return &vmd
->dev
->dev
;
307 static void *vmd_alloc(struct device
*dev
, size_t size
, dma_addr_t
*addr
,
308 gfp_t flag
, unsigned long attrs
)
310 return dma_alloc_attrs(to_vmd_dev(dev
), size
, addr
, flag
, attrs
);
313 static void vmd_free(struct device
*dev
, size_t size
, void *vaddr
,
314 dma_addr_t addr
, unsigned long attrs
)
316 return dma_free_attrs(to_vmd_dev(dev
), size
, vaddr
, addr
, attrs
);
319 static int vmd_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
320 void *cpu_addr
, dma_addr_t addr
, size_t size
,
323 return dma_mmap_attrs(to_vmd_dev(dev
), vma
, cpu_addr
, addr
, size
,
327 static int vmd_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
328 void *cpu_addr
, dma_addr_t addr
, size_t size
,
331 return dma_get_sgtable_attrs(to_vmd_dev(dev
), sgt
, cpu_addr
, addr
, size
,
335 static dma_addr_t
vmd_map_page(struct device
*dev
, struct page
*page
,
336 unsigned long offset
, size_t size
,
337 enum dma_data_direction dir
,
340 return dma_map_page_attrs(to_vmd_dev(dev
), page
, offset
, size
, dir
,
344 static void vmd_unmap_page(struct device
*dev
, dma_addr_t addr
, size_t size
,
345 enum dma_data_direction dir
, unsigned long attrs
)
347 dma_unmap_page_attrs(to_vmd_dev(dev
), addr
, size
, dir
, attrs
);
350 static int vmd_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
351 enum dma_data_direction dir
, unsigned long attrs
)
353 return dma_map_sg_attrs(to_vmd_dev(dev
), sg
, nents
, dir
, attrs
);
356 static void vmd_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
357 enum dma_data_direction dir
, unsigned long attrs
)
359 dma_unmap_sg_attrs(to_vmd_dev(dev
), sg
, nents
, dir
, attrs
);
362 static void vmd_sync_single_for_cpu(struct device
*dev
, dma_addr_t addr
,
363 size_t size
, enum dma_data_direction dir
)
365 dma_sync_single_for_cpu(to_vmd_dev(dev
), addr
, size
, dir
);
368 static void vmd_sync_single_for_device(struct device
*dev
, dma_addr_t addr
,
369 size_t size
, enum dma_data_direction dir
)
371 dma_sync_single_for_device(to_vmd_dev(dev
), addr
, size
, dir
);
374 static void vmd_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
375 int nents
, enum dma_data_direction dir
)
377 dma_sync_sg_for_cpu(to_vmd_dev(dev
), sg
, nents
, dir
);
380 static void vmd_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
381 int nents
, enum dma_data_direction dir
)
383 dma_sync_sg_for_device(to_vmd_dev(dev
), sg
, nents
, dir
);
386 static int vmd_dma_supported(struct device
*dev
, u64 mask
)
388 return dma_supported(to_vmd_dev(dev
), mask
);
391 static u64
vmd_get_required_mask(struct device
*dev
)
393 return dma_get_required_mask(to_vmd_dev(dev
));
396 static void vmd_teardown_dma_ops(struct vmd_dev
*vmd
)
398 struct dma_domain
*domain
= &vmd
->dma_domain
;
400 if (get_dma_ops(&vmd
->dev
->dev
))
401 del_dma_domain(domain
);
404 #define ASSIGN_VMD_DMA_OPS(source, dest, fn) \
407 dest->fn = vmd_##fn; \
410 static void vmd_setup_dma_ops(struct vmd_dev
*vmd
)
412 const struct dma_map_ops
*source
= get_dma_ops(&vmd
->dev
->dev
);
413 struct dma_map_ops
*dest
= &vmd
->dma_ops
;
414 struct dma_domain
*domain
= &vmd
->dma_domain
;
416 domain
->domain_nr
= vmd
->sysdata
.domain
;
417 domain
->dma_ops
= dest
;
421 ASSIGN_VMD_DMA_OPS(source
, dest
, alloc
);
422 ASSIGN_VMD_DMA_OPS(source
, dest
, free
);
423 ASSIGN_VMD_DMA_OPS(source
, dest
, mmap
);
424 ASSIGN_VMD_DMA_OPS(source
, dest
, get_sgtable
);
425 ASSIGN_VMD_DMA_OPS(source
, dest
, map_page
);
426 ASSIGN_VMD_DMA_OPS(source
, dest
, unmap_page
);
427 ASSIGN_VMD_DMA_OPS(source
, dest
, map_sg
);
428 ASSIGN_VMD_DMA_OPS(source
, dest
, unmap_sg
);
429 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_single_for_cpu
);
430 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_single_for_device
);
431 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_sg_for_cpu
);
432 ASSIGN_VMD_DMA_OPS(source
, dest
, sync_sg_for_device
);
433 ASSIGN_VMD_DMA_OPS(source
, dest
, dma_supported
);
434 ASSIGN_VMD_DMA_OPS(source
, dest
, get_required_mask
);
435 add_dma_domain(domain
);
437 #undef ASSIGN_VMD_DMA_OPS
439 static char __iomem
*vmd_cfg_addr(struct vmd_dev
*vmd
, struct pci_bus
*bus
,
440 unsigned int devfn
, int reg
, int len
)
442 char __iomem
*addr
= vmd
->cfgbar
+
443 (bus
->number
<< 20) + (devfn
<< 12) + reg
;
445 if ((addr
- vmd
->cfgbar
) + len
>=
446 resource_size(&vmd
->dev
->resource
[VMD_CFGBAR
]))
453 * CPU may deadlock if config space is not serialized on some versions of this
454 * hardware, so all config space access is done under a spinlock.
456 static int vmd_pci_read(struct pci_bus
*bus
, unsigned int devfn
, int reg
,
459 struct vmd_dev
*vmd
= vmd_from_bus(bus
);
460 char __iomem
*addr
= vmd_cfg_addr(vmd
, bus
, devfn
, reg
, len
);
467 spin_lock_irqsave(&vmd
->cfg_lock
, flags
);
470 *value
= readb(addr
);
473 *value
= readw(addr
);
476 *value
= readl(addr
);
482 spin_unlock_irqrestore(&vmd
->cfg_lock
, flags
);
487 * VMD h/w converts non-posted config writes to posted memory writes. The
488 * read-back in this function forces the completion so it returns only after
489 * the config space was written, as expected.
491 static int vmd_pci_write(struct pci_bus
*bus
, unsigned int devfn
, int reg
,
494 struct vmd_dev
*vmd
= vmd_from_bus(bus
);
495 char __iomem
*addr
= vmd_cfg_addr(vmd
, bus
, devfn
, reg
, len
);
502 spin_lock_irqsave(&vmd
->cfg_lock
, flags
);
520 spin_unlock_irqrestore(&vmd
->cfg_lock
, flags
);
524 static struct pci_ops vmd_ops
= {
525 .read
= vmd_pci_read
,
526 .write
= vmd_pci_write
,
529 static void vmd_attach_resources(struct vmd_dev
*vmd
)
531 vmd
->dev
->resource
[VMD_MEMBAR1
].child
= &vmd
->resources
[1];
532 vmd
->dev
->resource
[VMD_MEMBAR2
].child
= &vmd
->resources
[2];
535 static void vmd_detach_resources(struct vmd_dev
*vmd
)
537 vmd
->dev
->resource
[VMD_MEMBAR1
].child
= NULL
;
538 vmd
->dev
->resource
[VMD_MEMBAR2
].child
= NULL
;
542 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
543 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
544 * 16 bits are the PCI Segment Group (domain) number. Other bits are
545 * currently reserved.
547 static int vmd_find_free_domain(void)
550 struct pci_bus
*bus
= NULL
;
552 while ((bus
= pci_find_next_bus(bus
)) != NULL
)
553 domain
= max_t(int, domain
, pci_domain_nr(bus
));
557 static int vmd_enable_domain(struct vmd_dev
*vmd
, unsigned long features
)
559 struct pci_sysdata
*sd
= &vmd
->sysdata
;
560 struct fwnode_handle
*fn
;
561 struct resource
*res
;
564 LIST_HEAD(resources
);
565 resource_size_t offset
[2] = {0};
566 resource_size_t membar2_offset
= 0x2000, busn_start
= 0;
567 struct pci_bus
*child
;
570 * Shadow registers may exist in certain VMD device ids which allow
571 * guests to correctly assign host physical addresses to the root ports
572 * and child devices. These registers will either return the host value
573 * or 0, depending on an enable bit in the VMD device.
575 if (features
& VMD_FEAT_HAS_MEMBAR_SHADOW
) {
579 membar2_offset
= 0x2018;
580 ret
= pci_read_config_dword(vmd
->dev
, PCI_REG_VMLOCK
, &vmlock
);
581 if (ret
|| vmlock
== ~0)
584 if (MB2_SHADOW_EN(vmlock
)) {
585 void __iomem
*membar2
;
587 membar2
= pci_iomap(vmd
->dev
, VMD_MEMBAR2
, 0);
590 offset
[0] = vmd
->dev
->resource
[VMD_MEMBAR1
].start
-
591 readq(membar2
+ 0x2008);
592 offset
[1] = vmd
->dev
->resource
[VMD_MEMBAR2
].start
-
593 readq(membar2
+ 0x2010);
594 pci_iounmap(vmd
->dev
, membar2
);
599 * Certain VMD devices may have a root port configuration option which
600 * limits the bus range to between 0-127 or 128-255
602 if (features
& VMD_FEAT_HAS_BUS_RESTRICTIONS
) {
605 pci_read_config_dword(vmd
->dev
, PCI_REG_VMCAP
, &vmcap
);
606 pci_read_config_dword(vmd
->dev
, PCI_REG_VMCONFIG
, &vmconfig
);
607 if (BUS_RESTRICT_CAP(vmcap
) &&
608 (BUS_RESTRICT_CFG(vmconfig
) == 0x1))
612 res
= &vmd
->dev
->resource
[VMD_CFGBAR
];
613 vmd
->resources
[0] = (struct resource
) {
614 .name
= "VMD CFGBAR",
616 .end
= busn_start
+ (resource_size(res
) >> 20) - 1,
617 .flags
= IORESOURCE_BUS
| IORESOURCE_PCI_FIXED
,
621 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
622 * put 32-bit resources in the window.
624 * There's no hardware reason why a 64-bit window *couldn't*
625 * contain a 32-bit resource, but pbus_size_mem() computes the
626 * bridge window size assuming a 64-bit window will contain no
627 * 32-bit resources. __pci_assign_resource() enforces that
628 * artificial restriction to make sure everything will fit.
630 * The only way we could use a 64-bit non-prefetchable MEMBAR is
631 * if its address is <4GB so that we can convert it to a 32-bit
632 * resource. To be visible to the host OS, all VMD endpoints must
633 * be initially configured by platform BIOS, which includes setting
634 * up these resources. We can assume the device is configured
635 * according to the platform needs.
637 res
= &vmd
->dev
->resource
[VMD_MEMBAR1
];
638 upper_bits
= upper_32_bits(res
->end
);
639 flags
= res
->flags
& ~IORESOURCE_SIZEALIGN
;
641 flags
&= ~IORESOURCE_MEM_64
;
642 vmd
->resources
[1] = (struct resource
) {
643 .name
= "VMD MEMBAR1",
650 res
= &vmd
->dev
->resource
[VMD_MEMBAR2
];
651 upper_bits
= upper_32_bits(res
->end
);
652 flags
= res
->flags
& ~IORESOURCE_SIZEALIGN
;
654 flags
&= ~IORESOURCE_MEM_64
;
655 vmd
->resources
[2] = (struct resource
) {
656 .name
= "VMD MEMBAR2",
657 .start
= res
->start
+ membar2_offset
,
663 sd
->vmd_domain
= true;
664 sd
->domain
= vmd_find_free_domain();
668 sd
->node
= pcibus_to_node(vmd
->dev
->bus
);
670 fn
= irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd
->sysdata
.domain
);
674 vmd
->irq_domain
= pci_msi_create_irq_domain(fn
, &vmd_msi_domain_info
,
676 irq_domain_free_fwnode(fn
);
677 if (!vmd
->irq_domain
)
680 pci_add_resource(&resources
, &vmd
->resources
[0]);
681 pci_add_resource_offset(&resources
, &vmd
->resources
[1], offset
[0]);
682 pci_add_resource_offset(&resources
, &vmd
->resources
[2], offset
[1]);
684 vmd
->bus
= pci_create_root_bus(&vmd
->dev
->dev
, busn_start
, &vmd_ops
,
687 pci_free_resource_list(&resources
);
688 irq_domain_remove(vmd
->irq_domain
);
692 vmd_attach_resources(vmd
);
693 vmd_setup_dma_ops(vmd
);
694 dev_set_msi_domain(&vmd
->bus
->dev
, vmd
->irq_domain
);
696 pci_scan_child_bus(vmd
->bus
);
697 pci_assign_unassigned_bus_resources(vmd
->bus
);
700 * VMD root buses are virtual and don't return true on pci_is_pcie()
701 * and will fail pcie_bus_configure_settings() early. It can instead be
702 * run on each of the real root ports.
704 list_for_each_entry(child
, &vmd
->bus
->children
, node
)
705 pcie_bus_configure_settings(child
);
707 pci_bus_add_devices(vmd
->bus
);
709 WARN(sysfs_create_link(&vmd
->dev
->dev
.kobj
, &vmd
->bus
->dev
.kobj
,
710 "domain"), "Can't create symlink to domain\n");
714 static irqreturn_t
vmd_irq(int irq
, void *data
)
716 struct vmd_irq_list
*irqs
= data
;
717 struct vmd_irq
*vmdirq
;
720 idx
= srcu_read_lock(&irqs
->srcu
);
721 list_for_each_entry_rcu(vmdirq
, &irqs
->irq_list
, node
)
722 generic_handle_irq(vmdirq
->virq
);
723 srcu_read_unlock(&irqs
->srcu
, idx
);
728 static int vmd_probe(struct pci_dev
*dev
, const struct pci_device_id
*id
)
733 if (resource_size(&dev
->resource
[VMD_CFGBAR
]) < (1 << 20))
736 vmd
= devm_kzalloc(&dev
->dev
, sizeof(*vmd
), GFP_KERNEL
);
741 err
= pcim_enable_device(dev
);
745 vmd
->cfgbar
= pcim_iomap(dev
, VMD_CFGBAR
, 0);
750 if (dma_set_mask_and_coherent(&dev
->dev
, DMA_BIT_MASK(64)) &&
751 dma_set_mask_and_coherent(&dev
->dev
, DMA_BIT_MASK(32)))
754 vmd
->msix_count
= pci_msix_vec_count(dev
);
755 if (vmd
->msix_count
< 0)
758 vmd
->msix_count
= pci_alloc_irq_vectors(dev
, 1, vmd
->msix_count
,
760 if (vmd
->msix_count
< 0)
761 return vmd
->msix_count
;
763 vmd
->irqs
= devm_kcalloc(&dev
->dev
, vmd
->msix_count
, sizeof(*vmd
->irqs
),
768 for (i
= 0; i
< vmd
->msix_count
; i
++) {
769 err
= init_srcu_struct(&vmd
->irqs
[i
].srcu
);
773 INIT_LIST_HEAD(&vmd
->irqs
[i
].irq_list
);
774 err
= devm_request_irq(&dev
->dev
, pci_irq_vector(dev
, i
),
775 vmd_irq
, IRQF_NO_THREAD
,
776 "vmd", &vmd
->irqs
[i
]);
781 spin_lock_init(&vmd
->cfg_lock
);
782 pci_set_drvdata(dev
, vmd
);
783 err
= vmd_enable_domain(vmd
, (unsigned long) id
->driver_data
);
787 dev_info(&vmd
->dev
->dev
, "Bound to PCI domain %04x\n",
788 vmd
->sysdata
.domain
);
792 static void vmd_cleanup_srcu(struct vmd_dev
*vmd
)
796 for (i
= 0; i
< vmd
->msix_count
; i
++)
797 cleanup_srcu_struct(&vmd
->irqs
[i
].srcu
);
800 static void vmd_remove(struct pci_dev
*dev
)
802 struct vmd_dev
*vmd
= pci_get_drvdata(dev
);
804 sysfs_remove_link(&vmd
->dev
->dev
.kobj
, "domain");
805 pci_stop_root_bus(vmd
->bus
);
806 pci_remove_root_bus(vmd
->bus
);
807 vmd_cleanup_srcu(vmd
);
808 vmd_teardown_dma_ops(vmd
);
809 vmd_detach_resources(vmd
);
810 irq_domain_remove(vmd
->irq_domain
);
813 #ifdef CONFIG_PM_SLEEP
814 static int vmd_suspend(struct device
*dev
)
816 struct pci_dev
*pdev
= to_pci_dev(dev
);
817 struct vmd_dev
*vmd
= pci_get_drvdata(pdev
);
820 for (i
= 0; i
< vmd
->msix_count
; i
++)
821 devm_free_irq(dev
, pci_irq_vector(pdev
, i
), &vmd
->irqs
[i
]);
823 pci_save_state(pdev
);
827 static int vmd_resume(struct device
*dev
)
829 struct pci_dev
*pdev
= to_pci_dev(dev
);
830 struct vmd_dev
*vmd
= pci_get_drvdata(pdev
);
833 for (i
= 0; i
< vmd
->msix_count
; i
++) {
834 err
= devm_request_irq(dev
, pci_irq_vector(pdev
, i
),
835 vmd_irq
, IRQF_NO_THREAD
,
836 "vmd", &vmd
->irqs
[i
]);
841 pci_restore_state(pdev
);
845 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops
, vmd_suspend
, vmd_resume
);
847 static const struct pci_device_id vmd_ids
[] = {
848 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_VMD_201D
),},
849 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_VMD_28C0
),
850 .driver_data
= VMD_FEAT_HAS_MEMBAR_SHADOW
|
851 VMD_FEAT_HAS_BUS_RESTRICTIONS
,},
854 MODULE_DEVICE_TABLE(pci
, vmd_ids
);
856 static struct pci_driver vmd_drv
= {
860 .remove
= vmd_remove
,
862 .pm
= &vmd_dev_pm_ops
,
865 module_pci_driver(vmd_drv
);
867 MODULE_AUTHOR("Intel Corporation");
868 MODULE_LICENSE("GPL v2");
869 MODULE_VERSION("0.6");