spi: sprd: adi: Add a reset reason for watchdog mode
[linux/fpc-iii.git] / drivers / pci / pci.c
blob29ed5ec1ac27bf1c1d0b2d4028123a992594a513
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
38 DEFINE_MUTEX(pci_slot_mutex);
40 const char *pci_power_names[] = {
41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 EXPORT_SYMBOL_GPL(pci_power_names);
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
51 unsigned int pci_pm_d3_delay;
53 static void pci_pme_list_scan(struct work_struct *work);
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 unsigned int delay = dev->d3_delay;
70 if (delay < pci_pm_d3_delay)
71 delay = pci_pm_d3_delay;
73 if (delay)
74 msleep(delay);
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported = 1;
79 #endif
81 #define DEFAULT_CARDBUS_IO_SIZE (256)
82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87 #define DEFAULT_HOTPLUG_IO_SIZE (256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
93 #define DEFAULT_HOTPLUG_BUS_SIZE 1
94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
99 * The default CLS is used if arch didn't set CLS explicitly and not
100 * all pci devices agree on the same value. Arch can override either
101 * the dfl or actual value as it sees fit. Don't forget this is
102 * measured in 32-bit words, not bytes.
104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105 u8 pci_cache_line_size;
108 * If we set up a device for bus mastering, we need to check the latency
109 * timer as certain BIOSes forget to set it properly.
111 unsigned int pcibios_max_latency = 255;
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled;
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled;
119 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_early_dump;
122 bool pci_ats_disabled(void)
124 return pcie_ats_disabled;
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force;
132 static int __init pcie_port_pm_setup(char *str)
134 if (!strcmp(str, "off"))
135 pci_bridge_d3_disable = true;
136 else if (!strcmp(str, "force"))
137 pci_bridge_d3_force = true;
138 return 1;
140 __setup("pcie_port_pm=", pcie_port_pm_setup);
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147 * @bus: pointer to PCI bus structure to search
149 * Given a PCI bus, returns the highest PCI bus number present in the set
150 * including the given PCI bus and its list of child PCI buses.
152 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
154 struct pci_bus *tmp;
155 unsigned char max, n;
157 max = bus->busn_res.end;
158 list_for_each_entry(tmp, &bus->children, node) {
159 n = pci_bus_max_busnr(tmp);
160 if (n > max)
161 max = n;
163 return max;
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
170 struct resource *res = &pdev->resource[bar];
173 * Make sure the BAR is actually a memory resource, not an IO resource
175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 return NULL;
179 return ioremap_nocache(res->start, resource_size(res));
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
186 * Make sure the BAR is actually a memory resource, not an IO resource
188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 WARN_ON(1);
190 return NULL;
192 return ioremap_wc(pci_resource_start(pdev, bar),
193 pci_resource_len(pdev, bar));
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196 #endif
199 * pci_dev_str_match_path - test if a path string matches a device
200 * @dev: the PCI device to test
201 * @path: string to match the device against
202 * @endptr: pointer to the string after the match
204 * Test if a string (typically from a kernel parameter) formatted as a
205 * path of device/function addresses matches a PCI device. The string must
206 * be of the form:
208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
210 * A path for a device can be obtained using 'lspci -t'. Using a path
211 * is more robust against bus renumbering than using only a single bus,
212 * device and function address.
214 * Returns 1 if the string matches the device, 0 if it does not and
215 * a negative error code if it fails to parse the string.
217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 const char **endptr)
220 int ret;
221 int seg, bus, slot, func;
222 char *wpath, *p;
223 char end;
225 *endptr = strchrnul(path, ';');
227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 if (!wpath)
229 return -ENOMEM;
231 while (1) {
232 p = strrchr(wpath, '/');
233 if (!p)
234 break;
235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 if (ret != 2) {
237 ret = -EINVAL;
238 goto free_and_exit;
241 if (dev->devfn != PCI_DEVFN(slot, func)) {
242 ret = 0;
243 goto free_and_exit;
247 * Note: we don't need to get a reference to the upstream
248 * bridge because we hold a reference to the top level
249 * device which should hold a reference to the bridge,
250 * and so on.
252 dev = pci_upstream_bridge(dev);
253 if (!dev) {
254 ret = 0;
255 goto free_and_exit;
258 *p = 0;
261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 &func, &end);
263 if (ret != 4) {
264 seg = 0;
265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 if (ret != 3) {
267 ret = -EINVAL;
268 goto free_and_exit;
272 ret = (seg == pci_domain_nr(dev->bus) &&
273 bus == dev->bus->number &&
274 dev->devfn == PCI_DEVFN(slot, func));
276 free_and_exit:
277 kfree(wpath);
278 return ret;
282 * pci_dev_str_match - test if a string matches a device
283 * @dev: the PCI device to test
284 * @p: string to match the device against
285 * @endptr: pointer to the string after the match
287 * Test if a string (typically from a kernel parameter) matches a specified
288 * PCI device. The string may be of one of the following formats:
290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
293 * The first format specifies a PCI bus/device/function address which
294 * may change if new hardware is inserted, if motherboard firmware changes,
295 * or due to changes caused in kernel parameters. If the domain is
296 * left unspecified, it is taken to be 0. In order to be robust against
297 * bus renumbering issues, a path of PCI device/function numbers may be used
298 * to address the specific device. The path for a device can be determined
299 * through the use of 'lspci -t'.
301 * The second format matches devices using IDs in the configuration
302 * space which may match multiple devices in the system. A value of 0
303 * for any field will match all devices. (Note: this differs from
304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305 * legacy reasons and convenience so users don't have to specify
306 * FFFFFFFFs on the command line.)
308 * Returns 1 if the string matches the device, 0 if it does not and
309 * a negative error code if the string cannot be parsed.
311 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 const char **endptr)
314 int ret;
315 int count;
316 unsigned short vendor, device, subsystem_vendor, subsystem_device;
318 if (strncmp(p, "pci:", 4) == 0) {
319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 p += 4;
321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 &subsystem_vendor, &subsystem_device, &count);
323 if (ret != 4) {
324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 if (ret != 2)
326 return -EINVAL;
328 subsystem_vendor = 0;
329 subsystem_device = 0;
332 p += count;
334 if ((!vendor || vendor == dev->vendor) &&
335 (!device || device == dev->device) &&
336 (!subsystem_vendor ||
337 subsystem_vendor == dev->subsystem_vendor) &&
338 (!subsystem_device ||
339 subsystem_device == dev->subsystem_device))
340 goto found;
341 } else {
343 * PCI Bus, Device, Function IDs are specified
344 * (optionally, may include a path of devfns following it)
346 ret = pci_dev_str_match_path(dev, p, &p);
347 if (ret < 0)
348 return ret;
349 else if (ret)
350 goto found;
353 *endptr = p;
354 return 0;
356 found:
357 *endptr = p;
358 return 1;
361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 u8 pos, int cap, int *ttl)
364 u8 id;
365 u16 ent;
367 pci_bus_read_config_byte(bus, devfn, pos, &pos);
369 while ((*ttl)--) {
370 if (pos < 0x40)
371 break;
372 pos &= ~3;
373 pci_bus_read_config_word(bus, devfn, pos, &ent);
375 id = ent & 0xff;
376 if (id == 0xff)
377 break;
378 if (id == cap)
379 return pos;
380 pos = (ent >> 8);
382 return 0;
385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 u8 pos, int cap)
388 int ttl = PCI_FIND_CAP_TTL;
390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
395 return __pci_find_next_cap(dev->bus, dev->devfn,
396 pos + PCI_CAP_LIST_NEXT, cap);
398 EXPORT_SYMBOL_GPL(pci_find_next_capability);
400 static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 unsigned int devfn, u8 hdr_type)
403 u16 status;
405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 if (!(status & PCI_STATUS_CAP_LIST))
407 return 0;
409 switch (hdr_type) {
410 case PCI_HEADER_TYPE_NORMAL:
411 case PCI_HEADER_TYPE_BRIDGE:
412 return PCI_CAPABILITY_LIST;
413 case PCI_HEADER_TYPE_CARDBUS:
414 return PCI_CB_CAPABILITY_LIST;
417 return 0;
421 * pci_find_capability - query for devices' capabilities
422 * @dev: PCI device to query
423 * @cap: capability code
425 * Tell if a device supports a given PCI capability.
426 * Returns the address of the requested capability structure within the
427 * device's PCI configuration space or 0 in case the device does not
428 * support it. Possible values for @cap include:
430 * %PCI_CAP_ID_PM Power Management
431 * %PCI_CAP_ID_AGP Accelerated Graphics Port
432 * %PCI_CAP_ID_VPD Vital Product Data
433 * %PCI_CAP_ID_SLOTID Slot Identification
434 * %PCI_CAP_ID_MSI Message Signalled Interrupts
435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
436 * %PCI_CAP_ID_PCIX PCI-X
437 * %PCI_CAP_ID_EXP PCI Express
439 int pci_find_capability(struct pci_dev *dev, int cap)
441 int pos;
443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 if (pos)
445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
447 return pos;
449 EXPORT_SYMBOL(pci_find_capability);
452 * pci_bus_find_capability - query for devices' capabilities
453 * @bus: the PCI bus to query
454 * @devfn: PCI device to query
455 * @cap: capability code
457 * Like pci_find_capability() but works for PCI devices that do not have a
458 * pci_dev structure set up yet.
460 * Returns the address of the requested capability structure within the
461 * device's PCI configuration space or 0 in case the device does not
462 * support it.
464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
466 int pos;
467 u8 hdr_type;
469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 if (pos)
473 pos = __pci_find_next_cap(bus, devfn, pos, cap);
475 return pos;
477 EXPORT_SYMBOL(pci_bus_find_capability);
480 * pci_find_next_ext_capability - Find an extended capability
481 * @dev: PCI device to query
482 * @start: address at which to start looking (0 to start at beginning of list)
483 * @cap: capability code
485 * Returns the address of the next matching extended capability structure
486 * within the device's PCI configuration space or 0 if the device does
487 * not support it. Some capabilities can occur several times, e.g., the
488 * vendor-specific capability, and this provides a way to find them all.
490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
492 u32 header;
493 int ttl;
494 int pos = PCI_CFG_SPACE_SIZE;
496 /* minimum 8 bytes per capability */
497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 return 0;
502 if (start)
503 pos = start;
505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 return 0;
509 * If we have no capabilities, this is indicated by cap ID,
510 * cap version and next pointer all being 0.
512 if (header == 0)
513 return 0;
515 while (ttl-- > 0) {
516 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 return pos;
519 pos = PCI_EXT_CAP_NEXT(header);
520 if (pos < PCI_CFG_SPACE_SIZE)
521 break;
523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 break;
527 return 0;
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
532 * pci_find_ext_capability - Find an extended capability
533 * @dev: PCI device to query
534 * @cap: capability code
536 * Returns the address of the requested extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
538 * not support it. Possible values for @cap include:
540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
541 * %PCI_EXT_CAP_ID_VC Virtual Channel
542 * %PCI_EXT_CAP_ID_DSN Device Serial Number
543 * %PCI_EXT_CAP_ID_PWR Power Budgeting
545 int pci_find_ext_capability(struct pci_dev *dev, int cap)
547 return pci_find_next_ext_capability(dev, 0, cap);
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
553 int rc, ttl = PCI_FIND_CAP_TTL;
554 u8 cap, mask;
556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 mask = HT_3BIT_CAP_MASK;
558 else
559 mask = HT_5BIT_CAP_MASK;
561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 PCI_CAP_ID_HT, &ttl);
563 while (pos) {
564 rc = pci_read_config_byte(dev, pos + 3, &cap);
565 if (rc != PCIBIOS_SUCCESSFUL)
566 return 0;
568 if ((cap & mask) == ht_cap)
569 return pos;
571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 pos + PCI_CAP_LIST_NEXT,
573 PCI_CAP_ID_HT, &ttl);
576 return 0;
579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580 * @dev: PCI device to query
581 * @pos: Position from which to continue searching
582 * @ht_cap: Hypertransport capability code
584 * To be used in conjunction with pci_find_ht_capability() to search for
585 * all capabilities matching @ht_cap. @pos should always be a value returned
586 * from pci_find_ht_capability().
588 * NB. To be 100% safe against broken PCI devices, the caller should take
589 * steps to avoid an infinite loop.
591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
598 * pci_find_ht_capability - query a device's Hypertransport capabilities
599 * @dev: PCI device to query
600 * @ht_cap: Hypertransport capability code
602 * Tell if a device supports a given Hypertransport capability.
603 * Returns an address within the device's PCI configuration space
604 * or 0 in case the device does not support the request capability.
605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606 * which has a Hypertransport capability matching @ht_cap.
608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
610 int pos;
612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 if (pos)
614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
616 return pos;
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
621 * pci_find_parent_resource - return resource region of parent bus of given
622 * region
623 * @dev: PCI device structure contains resources to be searched
624 * @res: child resource record for which parent is sought
626 * For given resource region of given device, return the resource region of
627 * parent bus the given region is contained in.
629 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
630 struct resource *res)
632 const struct pci_bus *bus = dev->bus;
633 struct resource *r;
634 int i;
636 pci_bus_for_each_resource(bus, r, i) {
637 if (!r)
638 continue;
639 if (resource_contains(r, res)) {
642 * If the window is prefetchable but the BAR is
643 * not, the allocator made a mistake.
645 if (r->flags & IORESOURCE_PREFETCH &&
646 !(res->flags & IORESOURCE_PREFETCH))
647 return NULL;
650 * If we're below a transparent bridge, there may
651 * be both a positively-decoded aperture and a
652 * subtractively-decoded region that contain the BAR.
653 * We want the positively-decoded one, so this depends
654 * on pci_bus_for_each_resource() giving us those
655 * first.
657 return r;
660 return NULL;
662 EXPORT_SYMBOL(pci_find_parent_resource);
665 * pci_find_resource - Return matching PCI device resource
666 * @dev: PCI device to query
667 * @res: Resource to look for
669 * Goes over standard PCI resources (BARs) and checks if the given resource
670 * is partially or fully contained in any of them. In that case the
671 * matching resource is returned, %NULL otherwise.
673 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
675 int i;
677 for (i = 0; i < PCI_ROM_RESOURCE; i++) {
678 struct resource *r = &dev->resource[i];
680 if (r->start && resource_contains(r, res))
681 return r;
684 return NULL;
686 EXPORT_SYMBOL(pci_find_resource);
689 * pci_find_pcie_root_port - return PCIe Root Port
690 * @dev: PCI device to query
692 * Traverse up the parent chain and return the PCIe Root Port PCI Device
693 * for a given PCI Device.
695 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
697 struct pci_dev *bridge, *highest_pcie_bridge = dev;
699 bridge = pci_upstream_bridge(dev);
700 while (bridge && pci_is_pcie(bridge)) {
701 highest_pcie_bridge = bridge;
702 bridge = pci_upstream_bridge(bridge);
705 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
706 return NULL;
708 return highest_pcie_bridge;
710 EXPORT_SYMBOL(pci_find_pcie_root_port);
713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
714 * @dev: the PCI device to operate on
715 * @pos: config space offset of status word
716 * @mask: mask of bit(s) to care about in status word
718 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
720 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
722 int i;
724 /* Wait for Transaction Pending bit clean */
725 for (i = 0; i < 4; i++) {
726 u16 status;
727 if (i)
728 msleep((1 << (i - 1)) * 100);
730 pci_read_config_word(dev, pos, &status);
731 if (!(status & mask))
732 return 1;
735 return 0;
739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
740 * @dev: PCI device to have its BARs restored
742 * Restore the BAR values for a given device, so as to make it
743 * accessible by its driver.
745 static void pci_restore_bars(struct pci_dev *dev)
747 int i;
749 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
750 pci_update_resource(dev, i);
753 static const struct pci_platform_pm_ops *pci_platform_pm;
755 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
757 if (!ops->is_manageable || !ops->set_state || !ops->get_state ||
758 !ops->choose_state || !ops->set_wakeup || !ops->need_resume)
759 return -EINVAL;
760 pci_platform_pm = ops;
761 return 0;
764 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
766 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
769 static inline int platform_pci_set_power_state(struct pci_dev *dev,
770 pci_power_t t)
772 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
775 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
777 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
780 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
782 if (pci_platform_pm && pci_platform_pm->refresh_state)
783 pci_platform_pm->refresh_state(dev);
786 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
788 return pci_platform_pm ?
789 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
792 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
794 return pci_platform_pm ?
795 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
798 static inline bool platform_pci_need_resume(struct pci_dev *dev)
800 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
803 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
805 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
810 * given PCI device
811 * @dev: PCI device to handle.
812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
814 * RETURN VALUE:
815 * -EINVAL if the requested state is invalid.
816 * -EIO if device does not support PCI PM or its PM capabilities register has a
817 * wrong version, or device doesn't support the requested state.
818 * 0 if device already is in the requested state.
819 * 0 if device's power state has been successfully changed.
821 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
823 u16 pmcsr;
824 bool need_restore = false;
826 /* Check if we're already there */
827 if (dev->current_state == state)
828 return 0;
830 if (!dev->pm_cap)
831 return -EIO;
833 if (state < PCI_D0 || state > PCI_D3hot)
834 return -EINVAL;
837 * Validate current state:
838 * Can enter D0 from any state, but if we can only go deeper
839 * to sleep if we're already in a low power state
841 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
842 && dev->current_state > state) {
843 pci_err(dev, "invalid power transition (from state %d to %d)\n",
844 dev->current_state, state);
845 return -EINVAL;
848 /* Check if this device supports the desired state */
849 if ((state == PCI_D1 && !dev->d1_support)
850 || (state == PCI_D2 && !dev->d2_support))
851 return -EIO;
853 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
856 * If we're (effectively) in D3, force entire word to 0.
857 * This doesn't affect PME_Status, disables PME_En, and
858 * sets PowerState to 0.
860 switch (dev->current_state) {
861 case PCI_D0:
862 case PCI_D1:
863 case PCI_D2:
864 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
865 pmcsr |= state;
866 break;
867 case PCI_D3hot:
868 case PCI_D3cold:
869 case PCI_UNKNOWN: /* Boot-up */
870 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
871 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
872 need_restore = true;
873 /* Fall-through - force to D0 */
874 default:
875 pmcsr = 0;
876 break;
879 /* Enter specified state */
880 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
883 * Mandatory power management transition delays; see PCI PM 1.1
884 * 5.6.1 table 18
886 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
887 pci_dev_d3_sleep(dev);
888 else if (state == PCI_D2 || dev->current_state == PCI_D2)
889 udelay(PCI_PM_D2_DELAY);
891 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
892 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
893 if (dev->current_state != state && printk_ratelimit())
894 pci_info(dev, "Refused to change power state, currently in D%d\n",
895 dev->current_state);
898 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
899 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
900 * from D3hot to D0 _may_ perform an internal reset, thereby
901 * going to "D0 Uninitialized" rather than "D0 Initialized".
902 * For example, at least some versions of the 3c905B and the
903 * 3c556B exhibit this behaviour.
905 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
906 * devices in a D3hot state at boot. Consequently, we need to
907 * restore at least the BARs so that the device will be
908 * accessible to its driver.
910 if (need_restore)
911 pci_restore_bars(dev);
913 if (dev->bus->self)
914 pcie_aspm_pm_state_change(dev->bus->self);
916 return 0;
920 * pci_update_current_state - Read power state of given device and cache it
921 * @dev: PCI device to handle.
922 * @state: State to cache in case the device doesn't have the PM capability
924 * The power state is read from the PMCSR register, which however is
925 * inaccessible in D3cold. The platform firmware is therefore queried first
926 * to detect accessibility of the register. In case the platform firmware
927 * reports an incorrect state or the device isn't power manageable by the
928 * platform at all, we try to detect D3cold by testing accessibility of the
929 * vendor ID in config space.
931 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
933 if (platform_pci_get_power_state(dev) == PCI_D3cold ||
934 !pci_device_is_present(dev)) {
935 dev->current_state = PCI_D3cold;
936 } else if (dev->pm_cap) {
937 u16 pmcsr;
939 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
940 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
941 } else {
942 dev->current_state = state;
947 * pci_refresh_power_state - Refresh the given device's power state data
948 * @dev: Target PCI device.
950 * Ask the platform to refresh the devices power state information and invoke
951 * pci_update_current_state() to update its current PCI power state.
953 void pci_refresh_power_state(struct pci_dev *dev)
955 if (platform_pci_power_manageable(dev))
956 platform_pci_refresh_power_state(dev);
958 pci_update_current_state(dev, dev->current_state);
962 * pci_power_up - Put the given device into D0 forcibly
963 * @dev: PCI device to power up
965 void pci_power_up(struct pci_dev *dev)
967 if (platform_pci_power_manageable(dev))
968 platform_pci_set_power_state(dev, PCI_D0);
970 pci_raw_set_power_state(dev, PCI_D0);
971 pci_update_current_state(dev, PCI_D0);
975 * pci_platform_power_transition - Use platform to change device power state
976 * @dev: PCI device to handle.
977 * @state: State to put the device into.
979 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
981 int error;
983 if (platform_pci_power_manageable(dev)) {
984 error = platform_pci_set_power_state(dev, state);
985 if (!error)
986 pci_update_current_state(dev, state);
987 } else
988 error = -ENODEV;
990 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
991 dev->current_state = PCI_D0;
993 return error;
997 * pci_wakeup - Wake up a PCI device
998 * @pci_dev: Device to handle.
999 * @ign: ignored parameter
1001 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1003 pci_wakeup_event(pci_dev);
1004 pm_request_resume(&pci_dev->dev);
1005 return 0;
1009 * pci_wakeup_bus - Walk given bus and wake up devices on it
1010 * @bus: Top bus of the subtree to walk.
1012 void pci_wakeup_bus(struct pci_bus *bus)
1014 if (bus)
1015 pci_walk_bus(bus, pci_wakeup, NULL);
1019 * __pci_start_power_transition - Start power transition of a PCI device
1020 * @dev: PCI device to handle.
1021 * @state: State to put the device into.
1023 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1025 if (state == PCI_D0) {
1026 pci_platform_power_transition(dev, PCI_D0);
1028 * Mandatory power management transition delays are
1029 * handled in the PCIe portdrv resume hooks.
1031 if (dev->runtime_d3cold) {
1033 * When powering on a bridge from D3cold, the
1034 * whole hierarchy may be powered on into
1035 * D0uninitialized state, resume them to give
1036 * them a chance to suspend again
1038 pci_wakeup_bus(dev->subordinate);
1044 * __pci_dev_set_current_state - Set current state of a PCI device
1045 * @dev: Device to handle
1046 * @data: pointer to state to be set
1048 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1050 pci_power_t state = *(pci_power_t *)data;
1052 dev->current_state = state;
1053 return 0;
1057 * pci_bus_set_current_state - Walk given bus and set current state of devices
1058 * @bus: Top bus of the subtree to walk.
1059 * @state: state to be set
1061 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1063 if (bus)
1064 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1068 * __pci_complete_power_transition - Complete power transition of a PCI device
1069 * @dev: PCI device to handle.
1070 * @state: State to put the device into.
1072 * This function should not be called directly by device drivers.
1074 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1076 int ret;
1078 if (state <= PCI_D0)
1079 return -EINVAL;
1080 ret = pci_platform_power_transition(dev, state);
1081 /* Power off the bridge may power off the whole hierarchy */
1082 if (!ret && state == PCI_D3cold)
1083 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1084 return ret;
1086 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1089 * pci_set_power_state - Set the power state of a PCI device
1090 * @dev: PCI device to handle.
1091 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1093 * Transition a device to a new power state, using the platform firmware and/or
1094 * the device's PCI PM registers.
1096 * RETURN VALUE:
1097 * -EINVAL if the requested state is invalid.
1098 * -EIO if device does not support PCI PM or its PM capabilities register has a
1099 * wrong version, or device doesn't support the requested state.
1100 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1101 * 0 if device already is in the requested state.
1102 * 0 if the transition is to D3 but D3 is not supported.
1103 * 0 if device's power state has been successfully changed.
1105 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1107 int error;
1109 /* Bound the state we're entering */
1110 if (state > PCI_D3cold)
1111 state = PCI_D3cold;
1112 else if (state < PCI_D0)
1113 state = PCI_D0;
1114 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1117 * If the device or the parent bridge do not support PCI
1118 * PM, ignore the request if we're doing anything other
1119 * than putting it into D0 (which would only happen on
1120 * boot).
1122 return 0;
1124 /* Check if we're already there */
1125 if (dev->current_state == state)
1126 return 0;
1128 __pci_start_power_transition(dev, state);
1131 * This device is quirked not to be put into D3, so don't put it in
1132 * D3
1134 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1135 return 0;
1138 * To put device in D3cold, we put device into D3hot in native
1139 * way, then put device into D3cold with platform ops
1141 error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1142 PCI_D3hot : state);
1144 if (!__pci_complete_power_transition(dev, state))
1145 error = 0;
1147 return error;
1149 EXPORT_SYMBOL(pci_set_power_state);
1152 * pci_choose_state - Choose the power state of a PCI device
1153 * @dev: PCI device to be suspended
1154 * @state: target sleep state for the whole system. This is the value
1155 * that is passed to suspend() function.
1157 * Returns PCI power state suitable for given device and given system
1158 * message.
1160 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1162 pci_power_t ret;
1164 if (!dev->pm_cap)
1165 return PCI_D0;
1167 ret = platform_pci_choose_state(dev);
1168 if (ret != PCI_POWER_ERROR)
1169 return ret;
1171 switch (state.event) {
1172 case PM_EVENT_ON:
1173 return PCI_D0;
1174 case PM_EVENT_FREEZE:
1175 case PM_EVENT_PRETHAW:
1176 /* REVISIT both freeze and pre-thaw "should" use D0 */
1177 case PM_EVENT_SUSPEND:
1178 case PM_EVENT_HIBERNATE:
1179 return PCI_D3hot;
1180 default:
1181 pci_info(dev, "unrecognized suspend event %d\n",
1182 state.event);
1183 BUG();
1185 return PCI_D0;
1187 EXPORT_SYMBOL(pci_choose_state);
1189 #define PCI_EXP_SAVE_REGS 7
1191 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1192 u16 cap, bool extended)
1194 struct pci_cap_saved_state *tmp;
1196 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1197 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1198 return tmp;
1200 return NULL;
1203 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1205 return _pci_find_saved_cap(dev, cap, false);
1208 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1210 return _pci_find_saved_cap(dev, cap, true);
1213 static int pci_save_pcie_state(struct pci_dev *dev)
1215 int i = 0;
1216 struct pci_cap_saved_state *save_state;
1217 u16 *cap;
1219 if (!pci_is_pcie(dev))
1220 return 0;
1222 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1223 if (!save_state) {
1224 pci_err(dev, "buffer not found in %s\n", __func__);
1225 return -ENOMEM;
1228 cap = (u16 *)&save_state->cap.data[0];
1229 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1230 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1231 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1232 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1233 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1234 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1235 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1237 return 0;
1240 static void pci_restore_pcie_state(struct pci_dev *dev)
1242 int i = 0;
1243 struct pci_cap_saved_state *save_state;
1244 u16 *cap;
1246 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1247 if (!save_state)
1248 return;
1250 cap = (u16 *)&save_state->cap.data[0];
1251 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1252 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1253 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1254 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1255 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1256 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1257 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1260 static int pci_save_pcix_state(struct pci_dev *dev)
1262 int pos;
1263 struct pci_cap_saved_state *save_state;
1265 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1266 if (!pos)
1267 return 0;
1269 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1270 if (!save_state) {
1271 pci_err(dev, "buffer not found in %s\n", __func__);
1272 return -ENOMEM;
1275 pci_read_config_word(dev, pos + PCI_X_CMD,
1276 (u16 *)save_state->cap.data);
1278 return 0;
1281 static void pci_restore_pcix_state(struct pci_dev *dev)
1283 int i = 0, pos;
1284 struct pci_cap_saved_state *save_state;
1285 u16 *cap;
1287 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1288 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1289 if (!save_state || !pos)
1290 return;
1291 cap = (u16 *)&save_state->cap.data[0];
1293 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1296 static void pci_save_ltr_state(struct pci_dev *dev)
1298 int ltr;
1299 struct pci_cap_saved_state *save_state;
1300 u16 *cap;
1302 if (!pci_is_pcie(dev))
1303 return;
1305 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1306 if (!ltr)
1307 return;
1309 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1310 if (!save_state) {
1311 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1312 return;
1315 cap = (u16 *)&save_state->cap.data[0];
1316 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1317 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1320 static void pci_restore_ltr_state(struct pci_dev *dev)
1322 struct pci_cap_saved_state *save_state;
1323 int ltr;
1324 u16 *cap;
1326 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1327 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1328 if (!save_state || !ltr)
1329 return;
1331 cap = (u16 *)&save_state->cap.data[0];
1332 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1333 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1337 * pci_save_state - save the PCI configuration space of a device before
1338 * suspending
1339 * @dev: PCI device that we're dealing with
1341 int pci_save_state(struct pci_dev *dev)
1343 int i;
1344 /* XXX: 100% dword access ok here? */
1345 for (i = 0; i < 16; i++)
1346 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1347 dev->state_saved = true;
1349 i = pci_save_pcie_state(dev);
1350 if (i != 0)
1351 return i;
1353 i = pci_save_pcix_state(dev);
1354 if (i != 0)
1355 return i;
1357 pci_save_ltr_state(dev);
1358 pci_save_dpc_state(dev);
1359 return pci_save_vc_state(dev);
1361 EXPORT_SYMBOL(pci_save_state);
1363 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1364 u32 saved_val, int retry, bool force)
1366 u32 val;
1368 pci_read_config_dword(pdev, offset, &val);
1369 if (!force && val == saved_val)
1370 return;
1372 for (;;) {
1373 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1374 offset, val, saved_val);
1375 pci_write_config_dword(pdev, offset, saved_val);
1376 if (retry-- <= 0)
1377 return;
1379 pci_read_config_dword(pdev, offset, &val);
1380 if (val == saved_val)
1381 return;
1383 mdelay(1);
1387 static void pci_restore_config_space_range(struct pci_dev *pdev,
1388 int start, int end, int retry,
1389 bool force)
1391 int index;
1393 for (index = end; index >= start; index--)
1394 pci_restore_config_dword(pdev, 4 * index,
1395 pdev->saved_config_space[index],
1396 retry, force);
1399 static void pci_restore_config_space(struct pci_dev *pdev)
1401 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1402 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1403 /* Restore BARs before the command register. */
1404 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1405 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1406 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1407 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1410 * Force rewriting of prefetch registers to avoid S3 resume
1411 * issues on Intel PCI bridges that occur when these
1412 * registers are not explicitly written.
1414 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1415 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1416 } else {
1417 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1421 static void pci_restore_rebar_state(struct pci_dev *pdev)
1423 unsigned int pos, nbars, i;
1424 u32 ctrl;
1426 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1427 if (!pos)
1428 return;
1430 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1431 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1432 PCI_REBAR_CTRL_NBAR_SHIFT;
1434 for (i = 0; i < nbars; i++, pos += 8) {
1435 struct resource *res;
1436 int bar_idx, size;
1438 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1439 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1440 res = pdev->resource + bar_idx;
1441 size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1442 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1443 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1444 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1449 * pci_restore_state - Restore the saved state of a PCI device
1450 * @dev: PCI device that we're dealing with
1452 void pci_restore_state(struct pci_dev *dev)
1454 if (!dev->state_saved)
1455 return;
1458 * Restore max latencies (in the LTR capability) before enabling
1459 * LTR itself (in the PCIe capability).
1461 pci_restore_ltr_state(dev);
1463 pci_restore_pcie_state(dev);
1464 pci_restore_pasid_state(dev);
1465 pci_restore_pri_state(dev);
1466 pci_restore_ats_state(dev);
1467 pci_restore_vc_state(dev);
1468 pci_restore_rebar_state(dev);
1469 pci_restore_dpc_state(dev);
1471 pci_cleanup_aer_error_status_regs(dev);
1473 pci_restore_config_space(dev);
1475 pci_restore_pcix_state(dev);
1476 pci_restore_msi_state(dev);
1478 /* Restore ACS and IOV configuration state */
1479 pci_enable_acs(dev);
1480 pci_restore_iov_state(dev);
1482 dev->state_saved = false;
1484 EXPORT_SYMBOL(pci_restore_state);
1486 struct pci_saved_state {
1487 u32 config_space[16];
1488 struct pci_cap_saved_data cap[0];
1492 * pci_store_saved_state - Allocate and return an opaque struct containing
1493 * the device saved state.
1494 * @dev: PCI device that we're dealing with
1496 * Return NULL if no state or error.
1498 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1500 struct pci_saved_state *state;
1501 struct pci_cap_saved_state *tmp;
1502 struct pci_cap_saved_data *cap;
1503 size_t size;
1505 if (!dev->state_saved)
1506 return NULL;
1508 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1510 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1511 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1513 state = kzalloc(size, GFP_KERNEL);
1514 if (!state)
1515 return NULL;
1517 memcpy(state->config_space, dev->saved_config_space,
1518 sizeof(state->config_space));
1520 cap = state->cap;
1521 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1522 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1523 memcpy(cap, &tmp->cap, len);
1524 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1526 /* Empty cap_save terminates list */
1528 return state;
1530 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1533 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1534 * @dev: PCI device that we're dealing with
1535 * @state: Saved state returned from pci_store_saved_state()
1537 int pci_load_saved_state(struct pci_dev *dev,
1538 struct pci_saved_state *state)
1540 struct pci_cap_saved_data *cap;
1542 dev->state_saved = false;
1544 if (!state)
1545 return 0;
1547 memcpy(dev->saved_config_space, state->config_space,
1548 sizeof(state->config_space));
1550 cap = state->cap;
1551 while (cap->size) {
1552 struct pci_cap_saved_state *tmp;
1554 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1555 if (!tmp || tmp->cap.size != cap->size)
1556 return -EINVAL;
1558 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1559 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1560 sizeof(struct pci_cap_saved_data) + cap->size);
1563 dev->state_saved = true;
1564 return 0;
1566 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1569 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1570 * and free the memory allocated for it.
1571 * @dev: PCI device that we're dealing with
1572 * @state: Pointer to saved state returned from pci_store_saved_state()
1574 int pci_load_and_free_saved_state(struct pci_dev *dev,
1575 struct pci_saved_state **state)
1577 int ret = pci_load_saved_state(dev, *state);
1578 kfree(*state);
1579 *state = NULL;
1580 return ret;
1582 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1584 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1586 return pci_enable_resources(dev, bars);
1589 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1591 int err;
1592 struct pci_dev *bridge;
1593 u16 cmd;
1594 u8 pin;
1596 err = pci_set_power_state(dev, PCI_D0);
1597 if (err < 0 && err != -EIO)
1598 return err;
1600 bridge = pci_upstream_bridge(dev);
1601 if (bridge)
1602 pcie_aspm_powersave_config_link(bridge);
1604 err = pcibios_enable_device(dev, bars);
1605 if (err < 0)
1606 return err;
1607 pci_fixup_device(pci_fixup_enable, dev);
1609 if (dev->msi_enabled || dev->msix_enabled)
1610 return 0;
1612 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1613 if (pin) {
1614 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1615 if (cmd & PCI_COMMAND_INTX_DISABLE)
1616 pci_write_config_word(dev, PCI_COMMAND,
1617 cmd & ~PCI_COMMAND_INTX_DISABLE);
1620 return 0;
1624 * pci_reenable_device - Resume abandoned device
1625 * @dev: PCI device to be resumed
1627 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1628 * to be called by normal code, write proper resume handler and use it instead.
1630 int pci_reenable_device(struct pci_dev *dev)
1632 if (pci_is_enabled(dev))
1633 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1634 return 0;
1636 EXPORT_SYMBOL(pci_reenable_device);
1638 static void pci_enable_bridge(struct pci_dev *dev)
1640 struct pci_dev *bridge;
1641 int retval;
1643 bridge = pci_upstream_bridge(dev);
1644 if (bridge)
1645 pci_enable_bridge(bridge);
1647 if (pci_is_enabled(dev)) {
1648 if (!dev->is_busmaster)
1649 pci_set_master(dev);
1650 return;
1653 retval = pci_enable_device(dev);
1654 if (retval)
1655 pci_err(dev, "Error enabling bridge (%d), continuing\n",
1656 retval);
1657 pci_set_master(dev);
1660 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1662 struct pci_dev *bridge;
1663 int err;
1664 int i, bars = 0;
1667 * Power state could be unknown at this point, either due to a fresh
1668 * boot or a device removal call. So get the current power state
1669 * so that things like MSI message writing will behave as expected
1670 * (e.g. if the device really is in D0 at enable time).
1672 if (dev->pm_cap) {
1673 u16 pmcsr;
1674 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1675 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1678 if (atomic_inc_return(&dev->enable_cnt) > 1)
1679 return 0; /* already enabled */
1681 bridge = pci_upstream_bridge(dev);
1682 if (bridge)
1683 pci_enable_bridge(bridge);
1685 /* only skip sriov related */
1686 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1687 if (dev->resource[i].flags & flags)
1688 bars |= (1 << i);
1689 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1690 if (dev->resource[i].flags & flags)
1691 bars |= (1 << i);
1693 err = do_pci_enable_device(dev, bars);
1694 if (err < 0)
1695 atomic_dec(&dev->enable_cnt);
1696 return err;
1700 * pci_enable_device_io - Initialize a device for use with IO space
1701 * @dev: PCI device to be initialized
1703 * Initialize device before it's used by a driver. Ask low-level code
1704 * to enable I/O resources. Wake up the device if it was suspended.
1705 * Beware, this function can fail.
1707 int pci_enable_device_io(struct pci_dev *dev)
1709 return pci_enable_device_flags(dev, IORESOURCE_IO);
1711 EXPORT_SYMBOL(pci_enable_device_io);
1714 * pci_enable_device_mem - Initialize a device for use with Memory space
1715 * @dev: PCI device to be initialized
1717 * Initialize device before it's used by a driver. Ask low-level code
1718 * to enable Memory resources. Wake up the device if it was suspended.
1719 * Beware, this function can fail.
1721 int pci_enable_device_mem(struct pci_dev *dev)
1723 return pci_enable_device_flags(dev, IORESOURCE_MEM);
1725 EXPORT_SYMBOL(pci_enable_device_mem);
1728 * pci_enable_device - Initialize device before it's used by a driver.
1729 * @dev: PCI device to be initialized
1731 * Initialize device before it's used by a driver. Ask low-level code
1732 * to enable I/O and memory. Wake up the device if it was suspended.
1733 * Beware, this function can fail.
1735 * Note we don't actually enable the device many times if we call
1736 * this function repeatedly (we just increment the count).
1738 int pci_enable_device(struct pci_dev *dev)
1740 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1742 EXPORT_SYMBOL(pci_enable_device);
1745 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1746 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1747 * there's no need to track it separately. pci_devres is initialized
1748 * when a device is enabled using managed PCI device enable interface.
1750 struct pci_devres {
1751 unsigned int enabled:1;
1752 unsigned int pinned:1;
1753 unsigned int orig_intx:1;
1754 unsigned int restore_intx:1;
1755 unsigned int mwi:1;
1756 u32 region_mask;
1759 static void pcim_release(struct device *gendev, void *res)
1761 struct pci_dev *dev = to_pci_dev(gendev);
1762 struct pci_devres *this = res;
1763 int i;
1765 if (dev->msi_enabled)
1766 pci_disable_msi(dev);
1767 if (dev->msix_enabled)
1768 pci_disable_msix(dev);
1770 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1771 if (this->region_mask & (1 << i))
1772 pci_release_region(dev, i);
1774 if (this->mwi)
1775 pci_clear_mwi(dev);
1777 if (this->restore_intx)
1778 pci_intx(dev, this->orig_intx);
1780 if (this->enabled && !this->pinned)
1781 pci_disable_device(dev);
1784 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1786 struct pci_devres *dr, *new_dr;
1788 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1789 if (dr)
1790 return dr;
1792 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1793 if (!new_dr)
1794 return NULL;
1795 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1798 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1800 if (pci_is_managed(pdev))
1801 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1802 return NULL;
1806 * pcim_enable_device - Managed pci_enable_device()
1807 * @pdev: PCI device to be initialized
1809 * Managed pci_enable_device().
1811 int pcim_enable_device(struct pci_dev *pdev)
1813 struct pci_devres *dr;
1814 int rc;
1816 dr = get_pci_dr(pdev);
1817 if (unlikely(!dr))
1818 return -ENOMEM;
1819 if (dr->enabled)
1820 return 0;
1822 rc = pci_enable_device(pdev);
1823 if (!rc) {
1824 pdev->is_managed = 1;
1825 dr->enabled = 1;
1827 return rc;
1829 EXPORT_SYMBOL(pcim_enable_device);
1832 * pcim_pin_device - Pin managed PCI device
1833 * @pdev: PCI device to pin
1835 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1836 * driver detach. @pdev must have been enabled with
1837 * pcim_enable_device().
1839 void pcim_pin_device(struct pci_dev *pdev)
1841 struct pci_devres *dr;
1843 dr = find_pci_dr(pdev);
1844 WARN_ON(!dr || !dr->enabled);
1845 if (dr)
1846 dr->pinned = 1;
1848 EXPORT_SYMBOL(pcim_pin_device);
1851 * pcibios_add_device - provide arch specific hooks when adding device dev
1852 * @dev: the PCI device being added
1854 * Permits the platform to provide architecture specific functionality when
1855 * devices are added. This is the default implementation. Architecture
1856 * implementations can override this.
1858 int __weak pcibios_add_device(struct pci_dev *dev)
1860 return 0;
1864 * pcibios_release_device - provide arch specific hooks when releasing
1865 * device dev
1866 * @dev: the PCI device being released
1868 * Permits the platform to provide architecture specific functionality when
1869 * devices are released. This is the default implementation. Architecture
1870 * implementations can override this.
1872 void __weak pcibios_release_device(struct pci_dev *dev) {}
1875 * pcibios_disable_device - disable arch specific PCI resources for device dev
1876 * @dev: the PCI device to disable
1878 * Disables architecture specific PCI resources for the device. This
1879 * is the default implementation. Architecture implementations can
1880 * override this.
1882 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1885 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1886 * @irq: ISA IRQ to penalize
1887 * @active: IRQ active or not
1889 * Permits the platform to provide architecture-specific functionality when
1890 * penalizing ISA IRQs. This is the default implementation. Architecture
1891 * implementations can override this.
1893 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1895 static void do_pci_disable_device(struct pci_dev *dev)
1897 u16 pci_command;
1899 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1900 if (pci_command & PCI_COMMAND_MASTER) {
1901 pci_command &= ~PCI_COMMAND_MASTER;
1902 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1905 pcibios_disable_device(dev);
1909 * pci_disable_enabled_device - Disable device without updating enable_cnt
1910 * @dev: PCI device to disable
1912 * NOTE: This function is a backend of PCI power management routines and is
1913 * not supposed to be called drivers.
1915 void pci_disable_enabled_device(struct pci_dev *dev)
1917 if (pci_is_enabled(dev))
1918 do_pci_disable_device(dev);
1922 * pci_disable_device - Disable PCI device after use
1923 * @dev: PCI device to be disabled
1925 * Signal to the system that the PCI device is not in use by the system
1926 * anymore. This only involves disabling PCI bus-mastering, if active.
1928 * Note we don't actually disable the device until all callers of
1929 * pci_enable_device() have called pci_disable_device().
1931 void pci_disable_device(struct pci_dev *dev)
1933 struct pci_devres *dr;
1935 dr = find_pci_dr(dev);
1936 if (dr)
1937 dr->enabled = 0;
1939 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1940 "disabling already-disabled device");
1942 if (atomic_dec_return(&dev->enable_cnt) != 0)
1943 return;
1945 do_pci_disable_device(dev);
1947 dev->is_busmaster = 0;
1949 EXPORT_SYMBOL(pci_disable_device);
1952 * pcibios_set_pcie_reset_state - set reset state for device dev
1953 * @dev: the PCIe device reset
1954 * @state: Reset state to enter into
1956 * Set the PCIe reset state for the device. This is the default
1957 * implementation. Architecture implementations can override this.
1959 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1960 enum pcie_reset_state state)
1962 return -EINVAL;
1966 * pci_set_pcie_reset_state - set reset state for device dev
1967 * @dev: the PCIe device reset
1968 * @state: Reset state to enter into
1970 * Sets the PCI reset state for the device.
1972 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1974 return pcibios_set_pcie_reset_state(dev, state);
1976 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1979 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1980 * @dev: PCIe root port or event collector.
1982 void pcie_clear_root_pme_status(struct pci_dev *dev)
1984 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1988 * pci_check_pme_status - Check if given device has generated PME.
1989 * @dev: Device to check.
1991 * Check the PME status of the device and if set, clear it and clear PME enable
1992 * (if set). Return 'true' if PME status and PME enable were both set or
1993 * 'false' otherwise.
1995 bool pci_check_pme_status(struct pci_dev *dev)
1997 int pmcsr_pos;
1998 u16 pmcsr;
1999 bool ret = false;
2001 if (!dev->pm_cap)
2002 return false;
2004 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2005 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2006 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2007 return false;
2009 /* Clear PME status. */
2010 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2011 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2012 /* Disable PME to avoid interrupt flood. */
2013 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2014 ret = true;
2017 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2019 return ret;
2023 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2024 * @dev: Device to handle.
2025 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2027 * Check if @dev has generated PME and queue a resume request for it in that
2028 * case.
2030 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2032 if (pme_poll_reset && dev->pme_poll)
2033 dev->pme_poll = false;
2035 if (pci_check_pme_status(dev)) {
2036 pci_wakeup_event(dev);
2037 pm_request_resume(&dev->dev);
2039 return 0;
2043 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2044 * @bus: Top bus of the subtree to walk.
2046 void pci_pme_wakeup_bus(struct pci_bus *bus)
2048 if (bus)
2049 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2054 * pci_pme_capable - check the capability of PCI device to generate PME#
2055 * @dev: PCI device to handle.
2056 * @state: PCI state from which device will issue PME#.
2058 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2060 if (!dev->pm_cap)
2061 return false;
2063 return !!(dev->pme_support & (1 << state));
2065 EXPORT_SYMBOL(pci_pme_capable);
2067 static void pci_pme_list_scan(struct work_struct *work)
2069 struct pci_pme_device *pme_dev, *n;
2071 mutex_lock(&pci_pme_list_mutex);
2072 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2073 if (pme_dev->dev->pme_poll) {
2074 struct pci_dev *bridge;
2076 bridge = pme_dev->dev->bus->self;
2078 * If bridge is in low power state, the
2079 * configuration space of subordinate devices
2080 * may be not accessible
2082 if (bridge && bridge->current_state != PCI_D0)
2083 continue;
2085 * If the device is in D3cold it should not be
2086 * polled either.
2088 if (pme_dev->dev->current_state == PCI_D3cold)
2089 continue;
2091 pci_pme_wakeup(pme_dev->dev, NULL);
2092 } else {
2093 list_del(&pme_dev->list);
2094 kfree(pme_dev);
2097 if (!list_empty(&pci_pme_list))
2098 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2099 msecs_to_jiffies(PME_TIMEOUT));
2100 mutex_unlock(&pci_pme_list_mutex);
2103 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2105 u16 pmcsr;
2107 if (!dev->pme_support)
2108 return;
2110 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2111 /* Clear PME_Status by writing 1 to it and enable PME# */
2112 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2113 if (!enable)
2114 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2116 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2120 * pci_pme_restore - Restore PME configuration after config space restore.
2121 * @dev: PCI device to update.
2123 void pci_pme_restore(struct pci_dev *dev)
2125 u16 pmcsr;
2127 if (!dev->pme_support)
2128 return;
2130 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2131 if (dev->wakeup_prepared) {
2132 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2133 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2134 } else {
2135 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2136 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2138 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2142 * pci_pme_active - enable or disable PCI device's PME# function
2143 * @dev: PCI device to handle.
2144 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2146 * The caller must verify that the device is capable of generating PME# before
2147 * calling this function with @enable equal to 'true'.
2149 void pci_pme_active(struct pci_dev *dev, bool enable)
2151 __pci_pme_active(dev, enable);
2154 * PCI (as opposed to PCIe) PME requires that the device have
2155 * its PME# line hooked up correctly. Not all hardware vendors
2156 * do this, so the PME never gets delivered and the device
2157 * remains asleep. The easiest way around this is to
2158 * periodically walk the list of suspended devices and check
2159 * whether any have their PME flag set. The assumption is that
2160 * we'll wake up often enough anyway that this won't be a huge
2161 * hit, and the power savings from the devices will still be a
2162 * win.
2164 * Although PCIe uses in-band PME message instead of PME# line
2165 * to report PME, PME does not work for some PCIe devices in
2166 * reality. For example, there are devices that set their PME
2167 * status bits, but don't really bother to send a PME message;
2168 * there are PCI Express Root Ports that don't bother to
2169 * trigger interrupts when they receive PME messages from the
2170 * devices below. So PME poll is used for PCIe devices too.
2173 if (dev->pme_poll) {
2174 struct pci_pme_device *pme_dev;
2175 if (enable) {
2176 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2177 GFP_KERNEL);
2178 if (!pme_dev) {
2179 pci_warn(dev, "can't enable PME#\n");
2180 return;
2182 pme_dev->dev = dev;
2183 mutex_lock(&pci_pme_list_mutex);
2184 list_add(&pme_dev->list, &pci_pme_list);
2185 if (list_is_singular(&pci_pme_list))
2186 queue_delayed_work(system_freezable_wq,
2187 &pci_pme_work,
2188 msecs_to_jiffies(PME_TIMEOUT));
2189 mutex_unlock(&pci_pme_list_mutex);
2190 } else {
2191 mutex_lock(&pci_pme_list_mutex);
2192 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2193 if (pme_dev->dev == dev) {
2194 list_del(&pme_dev->list);
2195 kfree(pme_dev);
2196 break;
2199 mutex_unlock(&pci_pme_list_mutex);
2203 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2205 EXPORT_SYMBOL(pci_pme_active);
2208 * __pci_enable_wake - enable PCI device as wakeup event source
2209 * @dev: PCI device affected
2210 * @state: PCI state from which device will issue wakeup events
2211 * @enable: True to enable event generation; false to disable
2213 * This enables the device as a wakeup event source, or disables it.
2214 * When such events involves platform-specific hooks, those hooks are
2215 * called automatically by this routine.
2217 * Devices with legacy power management (no standard PCI PM capabilities)
2218 * always require such platform hooks.
2220 * RETURN VALUE:
2221 * 0 is returned on success
2222 * -EINVAL is returned if device is not supposed to wake up the system
2223 * Error code depending on the platform is returned if both the platform and
2224 * the native mechanism fail to enable the generation of wake-up events
2226 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2228 int ret = 0;
2231 * Bridges that are not power-manageable directly only signal
2232 * wakeup on behalf of subordinate devices which is set up
2233 * elsewhere, so skip them. However, bridges that are
2234 * power-manageable may signal wakeup for themselves (for example,
2235 * on a hotplug event) and they need to be covered here.
2237 if (!pci_power_manageable(dev))
2238 return 0;
2240 /* Don't do the same thing twice in a row for one device. */
2241 if (!!enable == !!dev->wakeup_prepared)
2242 return 0;
2245 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2246 * Anderson we should be doing PME# wake enable followed by ACPI wake
2247 * enable. To disable wake-up we call the platform first, for symmetry.
2250 if (enable) {
2251 int error;
2253 if (pci_pme_capable(dev, state))
2254 pci_pme_active(dev, true);
2255 else
2256 ret = 1;
2257 error = platform_pci_set_wakeup(dev, true);
2258 if (ret)
2259 ret = error;
2260 if (!ret)
2261 dev->wakeup_prepared = true;
2262 } else {
2263 platform_pci_set_wakeup(dev, false);
2264 pci_pme_active(dev, false);
2265 dev->wakeup_prepared = false;
2268 return ret;
2272 * pci_enable_wake - change wakeup settings for a PCI device
2273 * @pci_dev: Target device
2274 * @state: PCI state from which device will issue wakeup events
2275 * @enable: Whether or not to enable event generation
2277 * If @enable is set, check device_may_wakeup() for the device before calling
2278 * __pci_enable_wake() for it.
2280 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2282 if (enable && !device_may_wakeup(&pci_dev->dev))
2283 return -EINVAL;
2285 return __pci_enable_wake(pci_dev, state, enable);
2287 EXPORT_SYMBOL(pci_enable_wake);
2290 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2291 * @dev: PCI device to prepare
2292 * @enable: True to enable wake-up event generation; false to disable
2294 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2295 * and this function allows them to set that up cleanly - pci_enable_wake()
2296 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2297 * ordering constraints.
2299 * This function only returns error code if the device is not allowed to wake
2300 * up the system from sleep or it is not capable of generating PME# from both
2301 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2303 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2305 return pci_pme_capable(dev, PCI_D3cold) ?
2306 pci_enable_wake(dev, PCI_D3cold, enable) :
2307 pci_enable_wake(dev, PCI_D3hot, enable);
2309 EXPORT_SYMBOL(pci_wake_from_d3);
2312 * pci_target_state - find an appropriate low power state for a given PCI dev
2313 * @dev: PCI device
2314 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2316 * Use underlying platform code to find a supported low power state for @dev.
2317 * If the platform can't manage @dev, return the deepest state from which it
2318 * can generate wake events, based on any available PME info.
2320 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2322 pci_power_t target_state = PCI_D3hot;
2324 if (platform_pci_power_manageable(dev)) {
2326 * Call the platform to find the target state for the device.
2328 pci_power_t state = platform_pci_choose_state(dev);
2330 switch (state) {
2331 case PCI_POWER_ERROR:
2332 case PCI_UNKNOWN:
2333 break;
2334 case PCI_D1:
2335 case PCI_D2:
2336 if (pci_no_d1d2(dev))
2337 break;
2338 /* else, fall through */
2339 default:
2340 target_state = state;
2343 return target_state;
2346 if (!dev->pm_cap)
2347 target_state = PCI_D0;
2350 * If the device is in D3cold even though it's not power-manageable by
2351 * the platform, it may have been powered down by non-standard means.
2352 * Best to let it slumber.
2354 if (dev->current_state == PCI_D3cold)
2355 target_state = PCI_D3cold;
2357 if (wakeup) {
2359 * Find the deepest state from which the device can generate
2360 * PME#.
2362 if (dev->pme_support) {
2363 while (target_state
2364 && !(dev->pme_support & (1 << target_state)))
2365 target_state--;
2369 return target_state;
2373 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2374 * into a sleep state
2375 * @dev: Device to handle.
2377 * Choose the power state appropriate for the device depending on whether
2378 * it can wake up the system and/or is power manageable by the platform
2379 * (PCI_D3hot is the default) and put the device into that state.
2381 int pci_prepare_to_sleep(struct pci_dev *dev)
2383 bool wakeup = device_may_wakeup(&dev->dev);
2384 pci_power_t target_state = pci_target_state(dev, wakeup);
2385 int error;
2387 if (target_state == PCI_POWER_ERROR)
2388 return -EIO;
2390 pci_enable_wake(dev, target_state, wakeup);
2392 error = pci_set_power_state(dev, target_state);
2394 if (error)
2395 pci_enable_wake(dev, target_state, false);
2397 return error;
2399 EXPORT_SYMBOL(pci_prepare_to_sleep);
2402 * pci_back_from_sleep - turn PCI device on during system-wide transition
2403 * into working state
2404 * @dev: Device to handle.
2406 * Disable device's system wake-up capability and put it into D0.
2408 int pci_back_from_sleep(struct pci_dev *dev)
2410 pci_enable_wake(dev, PCI_D0, false);
2411 return pci_set_power_state(dev, PCI_D0);
2413 EXPORT_SYMBOL(pci_back_from_sleep);
2416 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2417 * @dev: PCI device being suspended.
2419 * Prepare @dev to generate wake-up events at run time and put it into a low
2420 * power state.
2422 int pci_finish_runtime_suspend(struct pci_dev *dev)
2424 pci_power_t target_state;
2425 int error;
2427 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2428 if (target_state == PCI_POWER_ERROR)
2429 return -EIO;
2431 dev->runtime_d3cold = target_state == PCI_D3cold;
2433 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2435 error = pci_set_power_state(dev, target_state);
2437 if (error) {
2438 pci_enable_wake(dev, target_state, false);
2439 dev->runtime_d3cold = false;
2442 return error;
2446 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2447 * @dev: Device to check.
2449 * Return true if the device itself is capable of generating wake-up events
2450 * (through the platform or using the native PCIe PME) or if the device supports
2451 * PME and one of its upstream bridges can generate wake-up events.
2453 bool pci_dev_run_wake(struct pci_dev *dev)
2455 struct pci_bus *bus = dev->bus;
2457 if (!dev->pme_support)
2458 return false;
2460 /* PME-capable in principle, but not from the target power state */
2461 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2462 return false;
2464 if (device_can_wakeup(&dev->dev))
2465 return true;
2467 while (bus->parent) {
2468 struct pci_dev *bridge = bus->self;
2470 if (device_can_wakeup(&bridge->dev))
2471 return true;
2473 bus = bus->parent;
2476 /* We have reached the root bus. */
2477 if (bus->bridge)
2478 return device_can_wakeup(bus->bridge);
2480 return false;
2482 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2485 * pci_dev_need_resume - Check if it is necessary to resume the device.
2486 * @pci_dev: Device to check.
2488 * Return 'true' if the device is not runtime-suspended or it has to be
2489 * reconfigured due to wakeup settings difference between system and runtime
2490 * suspend, or the current power state of it is not suitable for the upcoming
2491 * (system-wide) transition.
2493 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2495 struct device *dev = &pci_dev->dev;
2496 pci_power_t target_state;
2498 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2499 return true;
2501 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2504 * If the earlier platform check has not triggered, D3cold is just power
2505 * removal on top of D3hot, so no need to resume the device in that
2506 * case.
2508 return target_state != pci_dev->current_state &&
2509 target_state != PCI_D3cold &&
2510 pci_dev->current_state != PCI_D3hot;
2514 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2515 * @pci_dev: Device to check.
2517 * If the device is suspended and it is not configured for system wakeup,
2518 * disable PME for it to prevent it from waking up the system unnecessarily.
2520 * Note that if the device's power state is D3cold and the platform check in
2521 * pci_dev_need_resume() has not triggered, the device's configuration need not
2522 * be changed.
2524 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2526 struct device *dev = &pci_dev->dev;
2528 spin_lock_irq(&dev->power.lock);
2530 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2531 pci_dev->current_state < PCI_D3cold)
2532 __pci_pme_active(pci_dev, false);
2534 spin_unlock_irq(&dev->power.lock);
2538 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2539 * @pci_dev: Device to handle.
2541 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2542 * it might have been disabled during the prepare phase of system suspend if
2543 * the device was not configured for system wakeup.
2545 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2547 struct device *dev = &pci_dev->dev;
2549 if (!pci_dev_run_wake(pci_dev))
2550 return;
2552 spin_lock_irq(&dev->power.lock);
2554 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2555 __pci_pme_active(pci_dev, true);
2557 spin_unlock_irq(&dev->power.lock);
2560 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2562 struct device *dev = &pdev->dev;
2563 struct device *parent = dev->parent;
2565 if (parent)
2566 pm_runtime_get_sync(parent);
2567 pm_runtime_get_noresume(dev);
2569 * pdev->current_state is set to PCI_D3cold during suspending,
2570 * so wait until suspending completes
2572 pm_runtime_barrier(dev);
2574 * Only need to resume devices in D3cold, because config
2575 * registers are still accessible for devices suspended but
2576 * not in D3cold.
2578 if (pdev->current_state == PCI_D3cold)
2579 pm_runtime_resume(dev);
2582 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2584 struct device *dev = &pdev->dev;
2585 struct device *parent = dev->parent;
2587 pm_runtime_put(dev);
2588 if (parent)
2589 pm_runtime_put_sync(parent);
2592 static const struct dmi_system_id bridge_d3_blacklist[] = {
2593 #ifdef CONFIG_X86
2596 * Gigabyte X299 root port is not marked as hotplug capable
2597 * which allows Linux to power manage it. However, this
2598 * confuses the BIOS SMI handler so don't power manage root
2599 * ports on that system.
2601 .ident = "X299 DESIGNARE EX-CF",
2602 .matches = {
2603 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2604 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2607 #endif
2612 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2613 * @bridge: Bridge to check
2615 * This function checks if it is possible to move the bridge to D3.
2616 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2618 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2620 if (!pci_is_pcie(bridge))
2621 return false;
2623 switch (pci_pcie_type(bridge)) {
2624 case PCI_EXP_TYPE_ROOT_PORT:
2625 case PCI_EXP_TYPE_UPSTREAM:
2626 case PCI_EXP_TYPE_DOWNSTREAM:
2627 if (pci_bridge_d3_disable)
2628 return false;
2631 * Hotplug ports handled by firmware in System Management Mode
2632 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2634 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2635 return false;
2637 if (pci_bridge_d3_force)
2638 return true;
2640 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2641 if (bridge->is_thunderbolt)
2642 return true;
2644 /* Platform might know better if the bridge supports D3 */
2645 if (platform_pci_bridge_d3(bridge))
2646 return true;
2649 * Hotplug ports handled natively by the OS were not validated
2650 * by vendors for runtime D3 at least until 2018 because there
2651 * was no OS support.
2653 if (bridge->is_hotplug_bridge)
2654 return false;
2656 if (dmi_check_system(bridge_d3_blacklist))
2657 return false;
2660 * It should be safe to put PCIe ports from 2015 or newer
2661 * to D3.
2663 if (dmi_get_bios_year() >= 2015)
2664 return true;
2665 break;
2668 return false;
2671 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2673 bool *d3cold_ok = data;
2675 if (/* The device needs to be allowed to go D3cold ... */
2676 dev->no_d3cold || !dev->d3cold_allowed ||
2678 /* ... and if it is wakeup capable to do so from D3cold. */
2679 (device_may_wakeup(&dev->dev) &&
2680 !pci_pme_capable(dev, PCI_D3cold)) ||
2682 /* If it is a bridge it must be allowed to go to D3. */
2683 !pci_power_manageable(dev))
2685 *d3cold_ok = false;
2687 return !*d3cold_ok;
2691 * pci_bridge_d3_update - Update bridge D3 capabilities
2692 * @dev: PCI device which is changed
2694 * Update upstream bridge PM capabilities accordingly depending on if the
2695 * device PM configuration was changed or the device is being removed. The
2696 * change is also propagated upstream.
2698 void pci_bridge_d3_update(struct pci_dev *dev)
2700 bool remove = !device_is_registered(&dev->dev);
2701 struct pci_dev *bridge;
2702 bool d3cold_ok = true;
2704 bridge = pci_upstream_bridge(dev);
2705 if (!bridge || !pci_bridge_d3_possible(bridge))
2706 return;
2709 * If D3 is currently allowed for the bridge, removing one of its
2710 * children won't change that.
2712 if (remove && bridge->bridge_d3)
2713 return;
2716 * If D3 is currently allowed for the bridge and a child is added or
2717 * changed, disallowance of D3 can only be caused by that child, so
2718 * we only need to check that single device, not any of its siblings.
2720 * If D3 is currently not allowed for the bridge, checking the device
2721 * first may allow us to skip checking its siblings.
2723 if (!remove)
2724 pci_dev_check_d3cold(dev, &d3cold_ok);
2727 * If D3 is currently not allowed for the bridge, this may be caused
2728 * either by the device being changed/removed or any of its siblings,
2729 * so we need to go through all children to find out if one of them
2730 * continues to block D3.
2732 if (d3cold_ok && !bridge->bridge_d3)
2733 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2734 &d3cold_ok);
2736 if (bridge->bridge_d3 != d3cold_ok) {
2737 bridge->bridge_d3 = d3cold_ok;
2738 /* Propagate change to upstream bridges */
2739 pci_bridge_d3_update(bridge);
2744 * pci_d3cold_enable - Enable D3cold for device
2745 * @dev: PCI device to handle
2747 * This function can be used in drivers to enable D3cold from the device
2748 * they handle. It also updates upstream PCI bridge PM capabilities
2749 * accordingly.
2751 void pci_d3cold_enable(struct pci_dev *dev)
2753 if (dev->no_d3cold) {
2754 dev->no_d3cold = false;
2755 pci_bridge_d3_update(dev);
2758 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2761 * pci_d3cold_disable - Disable D3cold for device
2762 * @dev: PCI device to handle
2764 * This function can be used in drivers to disable D3cold from the device
2765 * they handle. It also updates upstream PCI bridge PM capabilities
2766 * accordingly.
2768 void pci_d3cold_disable(struct pci_dev *dev)
2770 if (!dev->no_d3cold) {
2771 dev->no_d3cold = true;
2772 pci_bridge_d3_update(dev);
2775 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2778 * pci_pm_init - Initialize PM functions of given PCI device
2779 * @dev: PCI device to handle.
2781 void pci_pm_init(struct pci_dev *dev)
2783 int pm;
2784 u16 status;
2785 u16 pmc;
2787 pm_runtime_forbid(&dev->dev);
2788 pm_runtime_set_active(&dev->dev);
2789 pm_runtime_enable(&dev->dev);
2790 device_enable_async_suspend(&dev->dev);
2791 dev->wakeup_prepared = false;
2793 dev->pm_cap = 0;
2794 dev->pme_support = 0;
2796 /* find PCI PM capability in list */
2797 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2798 if (!pm)
2799 return;
2800 /* Check device's ability to generate PME# */
2801 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2803 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2804 pci_err(dev, "unsupported PM cap regs version (%u)\n",
2805 pmc & PCI_PM_CAP_VER_MASK);
2806 return;
2809 dev->pm_cap = pm;
2810 dev->d3_delay = PCI_PM_D3_WAIT;
2811 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2812 dev->bridge_d3 = pci_bridge_d3_possible(dev);
2813 dev->d3cold_allowed = true;
2815 dev->d1_support = false;
2816 dev->d2_support = false;
2817 if (!pci_no_d1d2(dev)) {
2818 if (pmc & PCI_PM_CAP_D1)
2819 dev->d1_support = true;
2820 if (pmc & PCI_PM_CAP_D2)
2821 dev->d2_support = true;
2823 if (dev->d1_support || dev->d2_support)
2824 pci_info(dev, "supports%s%s\n",
2825 dev->d1_support ? " D1" : "",
2826 dev->d2_support ? " D2" : "");
2829 pmc &= PCI_PM_CAP_PME_MASK;
2830 if (pmc) {
2831 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2832 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2833 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2834 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2835 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2836 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2837 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2838 dev->pme_poll = true;
2840 * Make device's PM flags reflect the wake-up capability, but
2841 * let the user space enable it to wake up the system as needed.
2843 device_set_wakeup_capable(&dev->dev, true);
2844 /* Disable the PME# generation functionality */
2845 pci_pme_active(dev, false);
2848 pci_read_config_word(dev, PCI_STATUS, &status);
2849 if (status & PCI_STATUS_IMM_READY)
2850 dev->imm_ready = 1;
2853 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2855 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2857 switch (prop) {
2858 case PCI_EA_P_MEM:
2859 case PCI_EA_P_VF_MEM:
2860 flags |= IORESOURCE_MEM;
2861 break;
2862 case PCI_EA_P_MEM_PREFETCH:
2863 case PCI_EA_P_VF_MEM_PREFETCH:
2864 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2865 break;
2866 case PCI_EA_P_IO:
2867 flags |= IORESOURCE_IO;
2868 break;
2869 default:
2870 return 0;
2873 return flags;
2876 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2877 u8 prop)
2879 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2880 return &dev->resource[bei];
2881 #ifdef CONFIG_PCI_IOV
2882 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2883 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2884 return &dev->resource[PCI_IOV_RESOURCES +
2885 bei - PCI_EA_BEI_VF_BAR0];
2886 #endif
2887 else if (bei == PCI_EA_BEI_ROM)
2888 return &dev->resource[PCI_ROM_RESOURCE];
2889 else
2890 return NULL;
2893 /* Read an Enhanced Allocation (EA) entry */
2894 static int pci_ea_read(struct pci_dev *dev, int offset)
2896 struct resource *res;
2897 int ent_size, ent_offset = offset;
2898 resource_size_t start, end;
2899 unsigned long flags;
2900 u32 dw0, bei, base, max_offset;
2901 u8 prop;
2902 bool support_64 = (sizeof(resource_size_t) >= 8);
2904 pci_read_config_dword(dev, ent_offset, &dw0);
2905 ent_offset += 4;
2907 /* Entry size field indicates DWORDs after 1st */
2908 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2910 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2911 goto out;
2913 bei = (dw0 & PCI_EA_BEI) >> 4;
2914 prop = (dw0 & PCI_EA_PP) >> 8;
2917 * If the Property is in the reserved range, try the Secondary
2918 * Property instead.
2920 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2921 prop = (dw0 & PCI_EA_SP) >> 16;
2922 if (prop > PCI_EA_P_BRIDGE_IO)
2923 goto out;
2925 res = pci_ea_get_resource(dev, bei, prop);
2926 if (!res) {
2927 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2928 goto out;
2931 flags = pci_ea_flags(dev, prop);
2932 if (!flags) {
2933 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2934 goto out;
2937 /* Read Base */
2938 pci_read_config_dword(dev, ent_offset, &base);
2939 start = (base & PCI_EA_FIELD_MASK);
2940 ent_offset += 4;
2942 /* Read MaxOffset */
2943 pci_read_config_dword(dev, ent_offset, &max_offset);
2944 ent_offset += 4;
2946 /* Read Base MSBs (if 64-bit entry) */
2947 if (base & PCI_EA_IS_64) {
2948 u32 base_upper;
2950 pci_read_config_dword(dev, ent_offset, &base_upper);
2951 ent_offset += 4;
2953 flags |= IORESOURCE_MEM_64;
2955 /* entry starts above 32-bit boundary, can't use */
2956 if (!support_64 && base_upper)
2957 goto out;
2959 if (support_64)
2960 start |= ((u64)base_upper << 32);
2963 end = start + (max_offset | 0x03);
2965 /* Read MaxOffset MSBs (if 64-bit entry) */
2966 if (max_offset & PCI_EA_IS_64) {
2967 u32 max_offset_upper;
2969 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2970 ent_offset += 4;
2972 flags |= IORESOURCE_MEM_64;
2974 /* entry too big, can't use */
2975 if (!support_64 && max_offset_upper)
2976 goto out;
2978 if (support_64)
2979 end += ((u64)max_offset_upper << 32);
2982 if (end < start) {
2983 pci_err(dev, "EA Entry crosses address boundary\n");
2984 goto out;
2987 if (ent_size != ent_offset - offset) {
2988 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2989 ent_size, ent_offset - offset);
2990 goto out;
2993 res->name = pci_name(dev);
2994 res->start = start;
2995 res->end = end;
2996 res->flags = flags;
2998 if (bei <= PCI_EA_BEI_BAR5)
2999 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3000 bei, res, prop);
3001 else if (bei == PCI_EA_BEI_ROM)
3002 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3003 res, prop);
3004 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3005 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3006 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3007 else
3008 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3009 bei, res, prop);
3011 out:
3012 return offset + ent_size;
3015 /* Enhanced Allocation Initialization */
3016 void pci_ea_init(struct pci_dev *dev)
3018 int ea;
3019 u8 num_ent;
3020 int offset;
3021 int i;
3023 /* find PCI EA capability in list */
3024 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3025 if (!ea)
3026 return;
3028 /* determine the number of entries */
3029 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3030 &num_ent);
3031 num_ent &= PCI_EA_NUM_ENT_MASK;
3033 offset = ea + PCI_EA_FIRST_ENT;
3035 /* Skip DWORD 2 for type 1 functions */
3036 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3037 offset += 4;
3039 /* parse each EA entry */
3040 for (i = 0; i < num_ent; ++i)
3041 offset = pci_ea_read(dev, offset);
3044 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3045 struct pci_cap_saved_state *new_cap)
3047 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3051 * _pci_add_cap_save_buffer - allocate buffer for saving given
3052 * capability registers
3053 * @dev: the PCI device
3054 * @cap: the capability to allocate the buffer for
3055 * @extended: Standard or Extended capability ID
3056 * @size: requested size of the buffer
3058 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3059 bool extended, unsigned int size)
3061 int pos;
3062 struct pci_cap_saved_state *save_state;
3064 if (extended)
3065 pos = pci_find_ext_capability(dev, cap);
3066 else
3067 pos = pci_find_capability(dev, cap);
3069 if (!pos)
3070 return 0;
3072 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3073 if (!save_state)
3074 return -ENOMEM;
3076 save_state->cap.cap_nr = cap;
3077 save_state->cap.cap_extended = extended;
3078 save_state->cap.size = size;
3079 pci_add_saved_cap(dev, save_state);
3081 return 0;
3084 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3086 return _pci_add_cap_save_buffer(dev, cap, false, size);
3089 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3091 return _pci_add_cap_save_buffer(dev, cap, true, size);
3095 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3096 * @dev: the PCI device
3098 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3100 int error;
3102 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3103 PCI_EXP_SAVE_REGS * sizeof(u16));
3104 if (error)
3105 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3107 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3108 if (error)
3109 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3111 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3112 2 * sizeof(u16));
3113 if (error)
3114 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3116 pci_allocate_vc_save_buffers(dev);
3119 void pci_free_cap_save_buffers(struct pci_dev *dev)
3121 struct pci_cap_saved_state *tmp;
3122 struct hlist_node *n;
3124 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3125 kfree(tmp);
3129 * pci_configure_ari - enable or disable ARI forwarding
3130 * @dev: the PCI device
3132 * If @dev and its upstream bridge both support ARI, enable ARI in the
3133 * bridge. Otherwise, disable ARI in the bridge.
3135 void pci_configure_ari(struct pci_dev *dev)
3137 u32 cap;
3138 struct pci_dev *bridge;
3140 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3141 return;
3143 bridge = dev->bus->self;
3144 if (!bridge)
3145 return;
3147 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3148 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3149 return;
3151 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3152 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3153 PCI_EXP_DEVCTL2_ARI);
3154 bridge->ari_enabled = 1;
3155 } else {
3156 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3157 PCI_EXP_DEVCTL2_ARI);
3158 bridge->ari_enabled = 0;
3162 static int pci_acs_enable;
3165 * pci_request_acs - ask for ACS to be enabled if supported
3167 void pci_request_acs(void)
3169 pci_acs_enable = 1;
3172 static const char *disable_acs_redir_param;
3175 * pci_disable_acs_redir - disable ACS redirect capabilities
3176 * @dev: the PCI device
3178 * For only devices specified in the disable_acs_redir parameter.
3180 static void pci_disable_acs_redir(struct pci_dev *dev)
3182 int ret = 0;
3183 const char *p;
3184 int pos;
3185 u16 ctrl;
3187 if (!disable_acs_redir_param)
3188 return;
3190 p = disable_acs_redir_param;
3191 while (*p) {
3192 ret = pci_dev_str_match(dev, p, &p);
3193 if (ret < 0) {
3194 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3195 disable_acs_redir_param);
3197 break;
3198 } else if (ret == 1) {
3199 /* Found a match */
3200 break;
3203 if (*p != ';' && *p != ',') {
3204 /* End of param or invalid format */
3205 break;
3207 p++;
3210 if (ret != 1)
3211 return;
3213 if (!pci_dev_specific_disable_acs_redir(dev))
3214 return;
3216 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3217 if (!pos) {
3218 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3219 return;
3222 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3224 /* P2P Request & Completion Redirect */
3225 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3227 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3229 pci_info(dev, "disabled ACS redirect\n");
3233 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3234 * @dev: the PCI device
3236 static void pci_std_enable_acs(struct pci_dev *dev)
3238 int pos;
3239 u16 cap;
3240 u16 ctrl;
3242 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3243 if (!pos)
3244 return;
3246 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3247 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3249 /* Source Validation */
3250 ctrl |= (cap & PCI_ACS_SV);
3252 /* P2P Request Redirect */
3253 ctrl |= (cap & PCI_ACS_RR);
3255 /* P2P Completion Redirect */
3256 ctrl |= (cap & PCI_ACS_CR);
3258 /* Upstream Forwarding */
3259 ctrl |= (cap & PCI_ACS_UF);
3261 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3265 * pci_enable_acs - enable ACS if hardware support it
3266 * @dev: the PCI device
3268 void pci_enable_acs(struct pci_dev *dev)
3270 if (!pci_acs_enable)
3271 goto disable_acs_redir;
3273 if (!pci_dev_specific_enable_acs(dev))
3274 goto disable_acs_redir;
3276 pci_std_enable_acs(dev);
3278 disable_acs_redir:
3280 * Note: pci_disable_acs_redir() must be called even if ACS was not
3281 * enabled by the kernel because it may have been enabled by
3282 * platform firmware. So if we are told to disable it, we should
3283 * always disable it after setting the kernel's default
3284 * preferences.
3286 pci_disable_acs_redir(dev);
3289 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3291 int pos;
3292 u16 cap, ctrl;
3294 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3295 if (!pos)
3296 return false;
3299 * Except for egress control, capabilities are either required
3300 * or only required if controllable. Features missing from the
3301 * capability field can therefore be assumed as hard-wired enabled.
3303 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3304 acs_flags &= (cap | PCI_ACS_EC);
3306 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3307 return (ctrl & acs_flags) == acs_flags;
3311 * pci_acs_enabled - test ACS against required flags for a given device
3312 * @pdev: device to test
3313 * @acs_flags: required PCI ACS flags
3315 * Return true if the device supports the provided flags. Automatically
3316 * filters out flags that are not implemented on multifunction devices.
3318 * Note that this interface checks the effective ACS capabilities of the
3319 * device rather than the actual capabilities. For instance, most single
3320 * function endpoints are not required to support ACS because they have no
3321 * opportunity for peer-to-peer access. We therefore return 'true'
3322 * regardless of whether the device exposes an ACS capability. This makes
3323 * it much easier for callers of this function to ignore the actual type
3324 * or topology of the device when testing ACS support.
3326 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3328 int ret;
3330 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3331 if (ret >= 0)
3332 return ret > 0;
3335 * Conventional PCI and PCI-X devices never support ACS, either
3336 * effectively or actually. The shared bus topology implies that
3337 * any device on the bus can receive or snoop DMA.
3339 if (!pci_is_pcie(pdev))
3340 return false;
3342 switch (pci_pcie_type(pdev)) {
3344 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3345 * but since their primary interface is PCI/X, we conservatively
3346 * handle them as we would a non-PCIe device.
3348 case PCI_EXP_TYPE_PCIE_BRIDGE:
3350 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3351 * applicable... must never implement an ACS Extended Capability...".
3352 * This seems arbitrary, but we take a conservative interpretation
3353 * of this statement.
3355 case PCI_EXP_TYPE_PCI_BRIDGE:
3356 case PCI_EXP_TYPE_RC_EC:
3357 return false;
3359 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3360 * implement ACS in order to indicate their peer-to-peer capabilities,
3361 * regardless of whether they are single- or multi-function devices.
3363 case PCI_EXP_TYPE_DOWNSTREAM:
3364 case PCI_EXP_TYPE_ROOT_PORT:
3365 return pci_acs_flags_enabled(pdev, acs_flags);
3367 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3368 * implemented by the remaining PCIe types to indicate peer-to-peer
3369 * capabilities, but only when they are part of a multifunction
3370 * device. The footnote for section 6.12 indicates the specific
3371 * PCIe types included here.
3373 case PCI_EXP_TYPE_ENDPOINT:
3374 case PCI_EXP_TYPE_UPSTREAM:
3375 case PCI_EXP_TYPE_LEG_END:
3376 case PCI_EXP_TYPE_RC_END:
3377 if (!pdev->multifunction)
3378 break;
3380 return pci_acs_flags_enabled(pdev, acs_flags);
3384 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3385 * to single function devices with the exception of downstream ports.
3387 return true;
3391 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3392 * @start: starting downstream device
3393 * @end: ending upstream device or NULL to search to the root bus
3394 * @acs_flags: required flags
3396 * Walk up a device tree from start to end testing PCI ACS support. If
3397 * any step along the way does not support the required flags, return false.
3399 bool pci_acs_path_enabled(struct pci_dev *start,
3400 struct pci_dev *end, u16 acs_flags)
3402 struct pci_dev *pdev, *parent = start;
3404 do {
3405 pdev = parent;
3407 if (!pci_acs_enabled(pdev, acs_flags))
3408 return false;
3410 if (pci_is_root_bus(pdev->bus))
3411 return (end == NULL);
3413 parent = pdev->bus->self;
3414 } while (pdev != end);
3416 return true;
3420 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3421 * @pdev: PCI device
3422 * @bar: BAR to find
3424 * Helper to find the position of the ctrl register for a BAR.
3425 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3426 * Returns -ENOENT if no ctrl register for the BAR could be found.
3428 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3430 unsigned int pos, nbars, i;
3431 u32 ctrl;
3433 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3434 if (!pos)
3435 return -ENOTSUPP;
3437 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3438 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3439 PCI_REBAR_CTRL_NBAR_SHIFT;
3441 for (i = 0; i < nbars; i++, pos += 8) {
3442 int bar_idx;
3444 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3445 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3446 if (bar_idx == bar)
3447 return pos;
3450 return -ENOENT;
3454 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3455 * @pdev: PCI device
3456 * @bar: BAR to query
3458 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3459 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3461 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3463 int pos;
3464 u32 cap;
3466 pos = pci_rebar_find_pos(pdev, bar);
3467 if (pos < 0)
3468 return 0;
3470 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3471 return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3475 * pci_rebar_get_current_size - get the current size of a BAR
3476 * @pdev: PCI device
3477 * @bar: BAR to set size to
3479 * Read the size of a BAR from the resizable BAR config.
3480 * Returns size if found or negative error code.
3482 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3484 int pos;
3485 u32 ctrl;
3487 pos = pci_rebar_find_pos(pdev, bar);
3488 if (pos < 0)
3489 return pos;
3491 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3492 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3496 * pci_rebar_set_size - set a new size for a BAR
3497 * @pdev: PCI device
3498 * @bar: BAR to set size to
3499 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3501 * Set the new size of a BAR as defined in the spec.
3502 * Returns zero if resizing was successful, error code otherwise.
3504 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3506 int pos;
3507 u32 ctrl;
3509 pos = pci_rebar_find_pos(pdev, bar);
3510 if (pos < 0)
3511 return pos;
3513 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3514 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3515 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3516 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3517 return 0;
3521 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3522 * @dev: the PCI device
3523 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3524 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3525 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3526 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3528 * Return 0 if all upstream bridges support AtomicOp routing, egress
3529 * blocking is disabled on all upstream ports, and the root port supports
3530 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3531 * AtomicOp completion), or negative otherwise.
3533 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3535 struct pci_bus *bus = dev->bus;
3536 struct pci_dev *bridge;
3537 u32 cap, ctl2;
3539 if (!pci_is_pcie(dev))
3540 return -EINVAL;
3543 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3544 * AtomicOp requesters. For now, we only support endpoints as
3545 * requesters and root ports as completers. No endpoints as
3546 * completers, and no peer-to-peer.
3549 switch (pci_pcie_type(dev)) {
3550 case PCI_EXP_TYPE_ENDPOINT:
3551 case PCI_EXP_TYPE_LEG_END:
3552 case PCI_EXP_TYPE_RC_END:
3553 break;
3554 default:
3555 return -EINVAL;
3558 while (bus->parent) {
3559 bridge = bus->self;
3561 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3563 switch (pci_pcie_type(bridge)) {
3564 /* Ensure switch ports support AtomicOp routing */
3565 case PCI_EXP_TYPE_UPSTREAM:
3566 case PCI_EXP_TYPE_DOWNSTREAM:
3567 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3568 return -EINVAL;
3569 break;
3571 /* Ensure root port supports all the sizes we care about */
3572 case PCI_EXP_TYPE_ROOT_PORT:
3573 if ((cap & cap_mask) != cap_mask)
3574 return -EINVAL;
3575 break;
3578 /* Ensure upstream ports don't block AtomicOps on egress */
3579 if (!bridge->has_secondary_link) {
3580 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3581 &ctl2);
3582 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3583 return -EINVAL;
3586 bus = bus->parent;
3589 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3590 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3591 return 0;
3593 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3596 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3597 * @dev: the PCI device
3598 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3600 * Perform INTx swizzling for a device behind one level of bridge. This is
3601 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3602 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3603 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3604 * the PCI Express Base Specification, Revision 2.1)
3606 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3608 int slot;
3610 if (pci_ari_enabled(dev->bus))
3611 slot = 0;
3612 else
3613 slot = PCI_SLOT(dev->devfn);
3615 return (((pin - 1) + slot) % 4) + 1;
3618 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3620 u8 pin;
3622 pin = dev->pin;
3623 if (!pin)
3624 return -1;
3626 while (!pci_is_root_bus(dev->bus)) {
3627 pin = pci_swizzle_interrupt_pin(dev, pin);
3628 dev = dev->bus->self;
3630 *bridge = dev;
3631 return pin;
3635 * pci_common_swizzle - swizzle INTx all the way to root bridge
3636 * @dev: the PCI device
3637 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3639 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3640 * bridges all the way up to a PCI root bus.
3642 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3644 u8 pin = *pinp;
3646 while (!pci_is_root_bus(dev->bus)) {
3647 pin = pci_swizzle_interrupt_pin(dev, pin);
3648 dev = dev->bus->self;
3650 *pinp = pin;
3651 return PCI_SLOT(dev->devfn);
3653 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3656 * pci_release_region - Release a PCI bar
3657 * @pdev: PCI device whose resources were previously reserved by
3658 * pci_request_region()
3659 * @bar: BAR to release
3661 * Releases the PCI I/O and memory resources previously reserved by a
3662 * successful call to pci_request_region(). Call this function only
3663 * after all use of the PCI regions has ceased.
3665 void pci_release_region(struct pci_dev *pdev, int bar)
3667 struct pci_devres *dr;
3669 if (pci_resource_len(pdev, bar) == 0)
3670 return;
3671 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3672 release_region(pci_resource_start(pdev, bar),
3673 pci_resource_len(pdev, bar));
3674 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3675 release_mem_region(pci_resource_start(pdev, bar),
3676 pci_resource_len(pdev, bar));
3678 dr = find_pci_dr(pdev);
3679 if (dr)
3680 dr->region_mask &= ~(1 << bar);
3682 EXPORT_SYMBOL(pci_release_region);
3685 * __pci_request_region - Reserved PCI I/O and memory resource
3686 * @pdev: PCI device whose resources are to be reserved
3687 * @bar: BAR to be reserved
3688 * @res_name: Name to be associated with resource.
3689 * @exclusive: whether the region access is exclusive or not
3691 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3692 * being reserved by owner @res_name. Do not access any
3693 * address inside the PCI regions unless this call returns
3694 * successfully.
3696 * If @exclusive is set, then the region is marked so that userspace
3697 * is explicitly not allowed to map the resource via /dev/mem or
3698 * sysfs MMIO access.
3700 * Returns 0 on success, or %EBUSY on error. A warning
3701 * message is also printed on failure.
3703 static int __pci_request_region(struct pci_dev *pdev, int bar,
3704 const char *res_name, int exclusive)
3706 struct pci_devres *dr;
3708 if (pci_resource_len(pdev, bar) == 0)
3709 return 0;
3711 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3712 if (!request_region(pci_resource_start(pdev, bar),
3713 pci_resource_len(pdev, bar), res_name))
3714 goto err_out;
3715 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3716 if (!__request_mem_region(pci_resource_start(pdev, bar),
3717 pci_resource_len(pdev, bar), res_name,
3718 exclusive))
3719 goto err_out;
3722 dr = find_pci_dr(pdev);
3723 if (dr)
3724 dr->region_mask |= 1 << bar;
3726 return 0;
3728 err_out:
3729 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3730 &pdev->resource[bar]);
3731 return -EBUSY;
3735 * pci_request_region - Reserve PCI I/O and memory resource
3736 * @pdev: PCI device whose resources are to be reserved
3737 * @bar: BAR to be reserved
3738 * @res_name: Name to be associated with resource
3740 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3741 * being reserved by owner @res_name. Do not access any
3742 * address inside the PCI regions unless this call returns
3743 * successfully.
3745 * Returns 0 on success, or %EBUSY on error. A warning
3746 * message is also printed on failure.
3748 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3750 return __pci_request_region(pdev, bar, res_name, 0);
3752 EXPORT_SYMBOL(pci_request_region);
3755 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3756 * @pdev: PCI device whose resources were previously reserved
3757 * @bars: Bitmask of BARs to be released
3759 * Release selected PCI I/O and memory resources previously reserved.
3760 * Call this function only after all use of the PCI regions has ceased.
3762 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3764 int i;
3766 for (i = 0; i < 6; i++)
3767 if (bars & (1 << i))
3768 pci_release_region(pdev, i);
3770 EXPORT_SYMBOL(pci_release_selected_regions);
3772 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3773 const char *res_name, int excl)
3775 int i;
3777 for (i = 0; i < 6; i++)
3778 if (bars & (1 << i))
3779 if (__pci_request_region(pdev, i, res_name, excl))
3780 goto err_out;
3781 return 0;
3783 err_out:
3784 while (--i >= 0)
3785 if (bars & (1 << i))
3786 pci_release_region(pdev, i);
3788 return -EBUSY;
3793 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3794 * @pdev: PCI device whose resources are to be reserved
3795 * @bars: Bitmask of BARs to be requested
3796 * @res_name: Name to be associated with resource
3798 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3799 const char *res_name)
3801 return __pci_request_selected_regions(pdev, bars, res_name, 0);
3803 EXPORT_SYMBOL(pci_request_selected_regions);
3805 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3806 const char *res_name)
3808 return __pci_request_selected_regions(pdev, bars, res_name,
3809 IORESOURCE_EXCLUSIVE);
3811 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3814 * pci_release_regions - Release reserved PCI I/O and memory resources
3815 * @pdev: PCI device whose resources were previously reserved by
3816 * pci_request_regions()
3818 * Releases all PCI I/O and memory resources previously reserved by a
3819 * successful call to pci_request_regions(). Call this function only
3820 * after all use of the PCI regions has ceased.
3823 void pci_release_regions(struct pci_dev *pdev)
3825 pci_release_selected_regions(pdev, (1 << 6) - 1);
3827 EXPORT_SYMBOL(pci_release_regions);
3830 * pci_request_regions - Reserve PCI I/O and memory resources
3831 * @pdev: PCI device whose resources are to be reserved
3832 * @res_name: Name to be associated with resource.
3834 * Mark all PCI regions associated with PCI device @pdev as
3835 * being reserved by owner @res_name. Do not access any
3836 * address inside the PCI regions unless this call returns
3837 * successfully.
3839 * Returns 0 on success, or %EBUSY on error. A warning
3840 * message is also printed on failure.
3842 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3844 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3846 EXPORT_SYMBOL(pci_request_regions);
3849 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3850 * @pdev: PCI device whose resources are to be reserved
3851 * @res_name: Name to be associated with resource.
3853 * Mark all PCI regions associated with PCI device @pdev as being reserved
3854 * by owner @res_name. Do not access any address inside the PCI regions
3855 * unless this call returns successfully.
3857 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3858 * and the sysfs MMIO access will not be allowed.
3860 * Returns 0 on success, or %EBUSY on error. A warning message is also
3861 * printed on failure.
3863 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3865 return pci_request_selected_regions_exclusive(pdev,
3866 ((1 << 6) - 1), res_name);
3868 EXPORT_SYMBOL(pci_request_regions_exclusive);
3871 * Record the PCI IO range (expressed as CPU physical address + size).
3872 * Return a negative value if an error has occurred, zero otherwise
3874 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3875 resource_size_t size)
3877 int ret = 0;
3878 #ifdef PCI_IOBASE
3879 struct logic_pio_hwaddr *range;
3881 if (!size || addr + size < addr)
3882 return -EINVAL;
3884 range = kzalloc(sizeof(*range), GFP_ATOMIC);
3885 if (!range)
3886 return -ENOMEM;
3888 range->fwnode = fwnode;
3889 range->size = size;
3890 range->hw_start = addr;
3891 range->flags = LOGIC_PIO_CPU_MMIO;
3893 ret = logic_pio_register_range(range);
3894 if (ret)
3895 kfree(range);
3896 #endif
3898 return ret;
3901 phys_addr_t pci_pio_to_address(unsigned long pio)
3903 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3905 #ifdef PCI_IOBASE
3906 if (pio >= MMIO_UPPER_LIMIT)
3907 return address;
3909 address = logic_pio_to_hwaddr(pio);
3910 #endif
3912 return address;
3915 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3917 #ifdef PCI_IOBASE
3918 return logic_pio_trans_cpuaddr(address);
3919 #else
3920 if (address > IO_SPACE_LIMIT)
3921 return (unsigned long)-1;
3923 return (unsigned long) address;
3924 #endif
3928 * pci_remap_iospace - Remap the memory mapped I/O space
3929 * @res: Resource describing the I/O space
3930 * @phys_addr: physical address of range to be mapped
3932 * Remap the memory mapped I/O space described by the @res and the CPU
3933 * physical address @phys_addr into virtual address space. Only
3934 * architectures that have memory mapped IO functions defined (and the
3935 * PCI_IOBASE value defined) should call this function.
3937 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3939 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3940 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3942 if (!(res->flags & IORESOURCE_IO))
3943 return -EINVAL;
3945 if (res->end > IO_SPACE_LIMIT)
3946 return -EINVAL;
3948 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3949 pgprot_device(PAGE_KERNEL));
3950 #else
3952 * This architecture does not have memory mapped I/O space,
3953 * so this function should never be called
3955 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3956 return -ENODEV;
3957 #endif
3959 EXPORT_SYMBOL(pci_remap_iospace);
3962 * pci_unmap_iospace - Unmap the memory mapped I/O space
3963 * @res: resource to be unmapped
3965 * Unmap the CPU virtual address @res from virtual address space. Only
3966 * architectures that have memory mapped IO functions defined (and the
3967 * PCI_IOBASE value defined) should call this function.
3969 void pci_unmap_iospace(struct resource *res)
3971 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3972 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3974 unmap_kernel_range(vaddr, resource_size(res));
3975 #endif
3977 EXPORT_SYMBOL(pci_unmap_iospace);
3979 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3981 struct resource **res = ptr;
3983 pci_unmap_iospace(*res);
3987 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3988 * @dev: Generic device to remap IO address for
3989 * @res: Resource describing the I/O space
3990 * @phys_addr: physical address of range to be mapped
3992 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3993 * detach.
3995 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3996 phys_addr_t phys_addr)
3998 const struct resource **ptr;
3999 int error;
4001 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4002 if (!ptr)
4003 return -ENOMEM;
4005 error = pci_remap_iospace(res, phys_addr);
4006 if (error) {
4007 devres_free(ptr);
4008 } else {
4009 *ptr = res;
4010 devres_add(dev, ptr);
4013 return error;
4015 EXPORT_SYMBOL(devm_pci_remap_iospace);
4018 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4019 * @dev: Generic device to remap IO address for
4020 * @offset: Resource address to map
4021 * @size: Size of map
4023 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4024 * detach.
4026 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4027 resource_size_t offset,
4028 resource_size_t size)
4030 void __iomem **ptr, *addr;
4032 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4033 if (!ptr)
4034 return NULL;
4036 addr = pci_remap_cfgspace(offset, size);
4037 if (addr) {
4038 *ptr = addr;
4039 devres_add(dev, ptr);
4040 } else
4041 devres_free(ptr);
4043 return addr;
4045 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4048 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4049 * @dev: generic device to handle the resource for
4050 * @res: configuration space resource to be handled
4052 * Checks that a resource is a valid memory region, requests the memory
4053 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4054 * proper PCI configuration space memory attributes are guaranteed.
4056 * All operations are managed and will be undone on driver detach.
4058 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4059 * on failure. Usage example::
4061 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4062 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4063 * if (IS_ERR(base))
4064 * return PTR_ERR(base);
4066 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4067 struct resource *res)
4069 resource_size_t size;
4070 const char *name;
4071 void __iomem *dest_ptr;
4073 BUG_ON(!dev);
4075 if (!res || resource_type(res) != IORESOURCE_MEM) {
4076 dev_err(dev, "invalid resource\n");
4077 return IOMEM_ERR_PTR(-EINVAL);
4080 size = resource_size(res);
4081 name = res->name ?: dev_name(dev);
4083 if (!devm_request_mem_region(dev, res->start, size, name)) {
4084 dev_err(dev, "can't request region for resource %pR\n", res);
4085 return IOMEM_ERR_PTR(-EBUSY);
4088 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4089 if (!dest_ptr) {
4090 dev_err(dev, "ioremap failed for resource %pR\n", res);
4091 devm_release_mem_region(dev, res->start, size);
4092 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4095 return dest_ptr;
4097 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4099 static void __pci_set_master(struct pci_dev *dev, bool enable)
4101 u16 old_cmd, cmd;
4103 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4104 if (enable)
4105 cmd = old_cmd | PCI_COMMAND_MASTER;
4106 else
4107 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4108 if (cmd != old_cmd) {
4109 pci_dbg(dev, "%s bus mastering\n",
4110 enable ? "enabling" : "disabling");
4111 pci_write_config_word(dev, PCI_COMMAND, cmd);
4113 dev->is_busmaster = enable;
4117 * pcibios_setup - process "pci=" kernel boot arguments
4118 * @str: string used to pass in "pci=" kernel boot arguments
4120 * Process kernel boot arguments. This is the default implementation.
4121 * Architecture specific implementations can override this as necessary.
4123 char * __weak __init pcibios_setup(char *str)
4125 return str;
4129 * pcibios_set_master - enable PCI bus-mastering for device dev
4130 * @dev: the PCI device to enable
4132 * Enables PCI bus-mastering for the device. This is the default
4133 * implementation. Architecture specific implementations can override
4134 * this if necessary.
4136 void __weak pcibios_set_master(struct pci_dev *dev)
4138 u8 lat;
4140 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4141 if (pci_is_pcie(dev))
4142 return;
4144 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4145 if (lat < 16)
4146 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4147 else if (lat > pcibios_max_latency)
4148 lat = pcibios_max_latency;
4149 else
4150 return;
4152 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4156 * pci_set_master - enables bus-mastering for device dev
4157 * @dev: the PCI device to enable
4159 * Enables bus-mastering on the device and calls pcibios_set_master()
4160 * to do the needed arch specific settings.
4162 void pci_set_master(struct pci_dev *dev)
4164 __pci_set_master(dev, true);
4165 pcibios_set_master(dev);
4167 EXPORT_SYMBOL(pci_set_master);
4170 * pci_clear_master - disables bus-mastering for device dev
4171 * @dev: the PCI device to disable
4173 void pci_clear_master(struct pci_dev *dev)
4175 __pci_set_master(dev, false);
4177 EXPORT_SYMBOL(pci_clear_master);
4180 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4181 * @dev: the PCI device for which MWI is to be enabled
4183 * Helper function for pci_set_mwi.
4184 * Originally copied from drivers/net/acenic.c.
4185 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4187 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4189 int pci_set_cacheline_size(struct pci_dev *dev)
4191 u8 cacheline_size;
4193 if (!pci_cache_line_size)
4194 return -EINVAL;
4196 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4197 equal to or multiple of the right value. */
4198 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4199 if (cacheline_size >= pci_cache_line_size &&
4200 (cacheline_size % pci_cache_line_size) == 0)
4201 return 0;
4203 /* Write the correct value. */
4204 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4205 /* Read it back. */
4206 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4207 if (cacheline_size == pci_cache_line_size)
4208 return 0;
4210 pci_info(dev, "cache line size of %d is not supported\n",
4211 pci_cache_line_size << 2);
4213 return -EINVAL;
4215 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4218 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4219 * @dev: the PCI device for which MWI is enabled
4221 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4223 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4225 int pci_set_mwi(struct pci_dev *dev)
4227 #ifdef PCI_DISABLE_MWI
4228 return 0;
4229 #else
4230 int rc;
4231 u16 cmd;
4233 rc = pci_set_cacheline_size(dev);
4234 if (rc)
4235 return rc;
4237 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4238 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4239 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4240 cmd |= PCI_COMMAND_INVALIDATE;
4241 pci_write_config_word(dev, PCI_COMMAND, cmd);
4243 return 0;
4244 #endif
4246 EXPORT_SYMBOL(pci_set_mwi);
4249 * pcim_set_mwi - a device-managed pci_set_mwi()
4250 * @dev: the PCI device for which MWI is enabled
4252 * Managed pci_set_mwi().
4254 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4256 int pcim_set_mwi(struct pci_dev *dev)
4258 struct pci_devres *dr;
4260 dr = find_pci_dr(dev);
4261 if (!dr)
4262 return -ENOMEM;
4264 dr->mwi = 1;
4265 return pci_set_mwi(dev);
4267 EXPORT_SYMBOL(pcim_set_mwi);
4270 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4271 * @dev: the PCI device for which MWI is enabled
4273 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4274 * Callers are not required to check the return value.
4276 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4278 int pci_try_set_mwi(struct pci_dev *dev)
4280 #ifdef PCI_DISABLE_MWI
4281 return 0;
4282 #else
4283 return pci_set_mwi(dev);
4284 #endif
4286 EXPORT_SYMBOL(pci_try_set_mwi);
4289 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4290 * @dev: the PCI device to disable
4292 * Disables PCI Memory-Write-Invalidate transaction on the device
4294 void pci_clear_mwi(struct pci_dev *dev)
4296 #ifndef PCI_DISABLE_MWI
4297 u16 cmd;
4299 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4300 if (cmd & PCI_COMMAND_INVALIDATE) {
4301 cmd &= ~PCI_COMMAND_INVALIDATE;
4302 pci_write_config_word(dev, PCI_COMMAND, cmd);
4304 #endif
4306 EXPORT_SYMBOL(pci_clear_mwi);
4309 * pci_intx - enables/disables PCI INTx for device dev
4310 * @pdev: the PCI device to operate on
4311 * @enable: boolean: whether to enable or disable PCI INTx
4313 * Enables/disables PCI INTx for device @pdev
4315 void pci_intx(struct pci_dev *pdev, int enable)
4317 u16 pci_command, new;
4319 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4321 if (enable)
4322 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4323 else
4324 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4326 if (new != pci_command) {
4327 struct pci_devres *dr;
4329 pci_write_config_word(pdev, PCI_COMMAND, new);
4331 dr = find_pci_dr(pdev);
4332 if (dr && !dr->restore_intx) {
4333 dr->restore_intx = 1;
4334 dr->orig_intx = !enable;
4338 EXPORT_SYMBOL_GPL(pci_intx);
4340 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4342 struct pci_bus *bus = dev->bus;
4343 bool mask_updated = true;
4344 u32 cmd_status_dword;
4345 u16 origcmd, newcmd;
4346 unsigned long flags;
4347 bool irq_pending;
4350 * We do a single dword read to retrieve both command and status.
4351 * Document assumptions that make this possible.
4353 BUILD_BUG_ON(PCI_COMMAND % 4);
4354 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4356 raw_spin_lock_irqsave(&pci_lock, flags);
4358 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4360 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4363 * Check interrupt status register to see whether our device
4364 * triggered the interrupt (when masking) or the next IRQ is
4365 * already pending (when unmasking).
4367 if (mask != irq_pending) {
4368 mask_updated = false;
4369 goto done;
4372 origcmd = cmd_status_dword;
4373 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4374 if (mask)
4375 newcmd |= PCI_COMMAND_INTX_DISABLE;
4376 if (newcmd != origcmd)
4377 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4379 done:
4380 raw_spin_unlock_irqrestore(&pci_lock, flags);
4382 return mask_updated;
4386 * pci_check_and_mask_intx - mask INTx on pending interrupt
4387 * @dev: the PCI device to operate on
4389 * Check if the device dev has its INTx line asserted, mask it and return
4390 * true in that case. False is returned if no interrupt was pending.
4392 bool pci_check_and_mask_intx(struct pci_dev *dev)
4394 return pci_check_and_set_intx_mask(dev, true);
4396 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4399 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4400 * @dev: the PCI device to operate on
4402 * Check if the device dev has its INTx line asserted, unmask it if not and
4403 * return true. False is returned and the mask remains active if there was
4404 * still an interrupt pending.
4406 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4408 return pci_check_and_set_intx_mask(dev, false);
4410 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4413 * pci_wait_for_pending_transaction - wait for pending transaction
4414 * @dev: the PCI device to operate on
4416 * Return 0 if transaction is pending 1 otherwise.
4418 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4420 if (!pci_is_pcie(dev))
4421 return 1;
4423 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4424 PCI_EXP_DEVSTA_TRPND);
4426 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4428 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4430 int delay = 1;
4431 u32 id;
4434 * After reset, the device should not silently discard config
4435 * requests, but it may still indicate that it needs more time by
4436 * responding to them with CRS completions. The Root Port will
4437 * generally synthesize ~0 data to complete the read (except when
4438 * CRS SV is enabled and the read was for the Vendor ID; in that
4439 * case it synthesizes 0x0001 data).
4441 * Wait for the device to return a non-CRS completion. Read the
4442 * Command register instead of Vendor ID so we don't have to
4443 * contend with the CRS SV value.
4445 pci_read_config_dword(dev, PCI_COMMAND, &id);
4446 while (id == ~0) {
4447 if (delay > timeout) {
4448 pci_warn(dev, "not ready %dms after %s; giving up\n",
4449 delay - 1, reset_type);
4450 return -ENOTTY;
4453 if (delay > 1000)
4454 pci_info(dev, "not ready %dms after %s; waiting\n",
4455 delay - 1, reset_type);
4457 msleep(delay);
4458 delay *= 2;
4459 pci_read_config_dword(dev, PCI_COMMAND, &id);
4462 if (delay > 1000)
4463 pci_info(dev, "ready %dms after %s\n", delay - 1,
4464 reset_type);
4466 return 0;
4470 * pcie_has_flr - check if a device supports function level resets
4471 * @dev: device to check
4473 * Returns true if the device advertises support for PCIe function level
4474 * resets.
4476 bool pcie_has_flr(struct pci_dev *dev)
4478 u32 cap;
4480 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4481 return false;
4483 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4484 return cap & PCI_EXP_DEVCAP_FLR;
4486 EXPORT_SYMBOL_GPL(pcie_has_flr);
4489 * pcie_flr - initiate a PCIe function level reset
4490 * @dev: device to reset
4492 * Initiate a function level reset on @dev. The caller should ensure the
4493 * device supports FLR before calling this function, e.g. by using the
4494 * pcie_has_flr() helper.
4496 int pcie_flr(struct pci_dev *dev)
4498 if (!pci_wait_for_pending_transaction(dev))
4499 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4501 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4503 if (dev->imm_ready)
4504 return 0;
4507 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4508 * 100ms, but may silently discard requests while the FLR is in
4509 * progress. Wait 100ms before trying to access the device.
4511 msleep(100);
4513 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4515 EXPORT_SYMBOL_GPL(pcie_flr);
4517 static int pci_af_flr(struct pci_dev *dev, int probe)
4519 int pos;
4520 u8 cap;
4522 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4523 if (!pos)
4524 return -ENOTTY;
4526 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4527 return -ENOTTY;
4529 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4530 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4531 return -ENOTTY;
4533 if (probe)
4534 return 0;
4537 * Wait for Transaction Pending bit to clear. A word-aligned test
4538 * is used, so we use the control offset rather than status and shift
4539 * the test bit to match.
4541 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4542 PCI_AF_STATUS_TP << 8))
4543 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4545 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4547 if (dev->imm_ready)
4548 return 0;
4551 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4552 * updated 27 July 2006; a device must complete an FLR within
4553 * 100ms, but may silently discard requests while the FLR is in
4554 * progress. Wait 100ms before trying to access the device.
4556 msleep(100);
4558 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4562 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4563 * @dev: Device to reset.
4564 * @probe: If set, only check if the device can be reset this way.
4566 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4567 * unset, it will be reinitialized internally when going from PCI_D3hot to
4568 * PCI_D0. If that's the case and the device is not in a low-power state
4569 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4571 * NOTE: This causes the caller to sleep for twice the device power transition
4572 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4573 * by default (i.e. unless the @dev's d3_delay field has a different value).
4574 * Moreover, only devices in D0 can be reset by this function.
4576 static int pci_pm_reset(struct pci_dev *dev, int probe)
4578 u16 csr;
4580 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4581 return -ENOTTY;
4583 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4584 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4585 return -ENOTTY;
4587 if (probe)
4588 return 0;
4590 if (dev->current_state != PCI_D0)
4591 return -EINVAL;
4593 csr &= ~PCI_PM_CTRL_STATE_MASK;
4594 csr |= PCI_D3hot;
4595 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4596 pci_dev_d3_sleep(dev);
4598 csr &= ~PCI_PM_CTRL_STATE_MASK;
4599 csr |= PCI_D0;
4600 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4601 pci_dev_d3_sleep(dev);
4603 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4607 * pcie_wait_for_link_delay - Wait until link is active or inactive
4608 * @pdev: Bridge device
4609 * @active: waiting for active or inactive?
4610 * @delay: Delay to wait after link has become active (in ms)
4612 * Use this to wait till link becomes active or inactive.
4614 bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, int delay)
4616 int timeout = 1000;
4617 bool ret;
4618 u16 lnk_status;
4621 * Some controllers might not implement link active reporting. In this
4622 * case, we wait for 1000 + 100 ms.
4624 if (!pdev->link_active_reporting) {
4625 msleep(1100);
4626 return true;
4630 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4631 * after which we should expect an link active if the reset was
4632 * successful. If so, software must wait a minimum 100ms before sending
4633 * configuration requests to devices downstream this port.
4635 * If the link fails to activate, either the device was physically
4636 * removed or the link is permanently failed.
4638 if (active)
4639 msleep(20);
4640 for (;;) {
4641 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4642 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4643 if (ret == active)
4644 break;
4645 if (timeout <= 0)
4646 break;
4647 msleep(10);
4648 timeout -= 10;
4650 if (active && ret)
4651 msleep(delay);
4652 else if (ret != active)
4653 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4654 active ? "set" : "cleared");
4655 return ret == active;
4659 * pcie_wait_for_link - Wait until link is active or inactive
4660 * @pdev: Bridge device
4661 * @active: waiting for active or inactive?
4663 * Use this to wait till link becomes active or inactive.
4665 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4667 return pcie_wait_for_link_delay(pdev, active, 100);
4670 void pci_reset_secondary_bus(struct pci_dev *dev)
4672 u16 ctrl;
4674 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4675 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4676 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4679 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4680 * this to 2ms to ensure that we meet the minimum requirement.
4682 msleep(2);
4684 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4685 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4688 * Trhfa for conventional PCI is 2^25 clock cycles.
4689 * Assuming a minimum 33MHz clock this results in a 1s
4690 * delay before we can consider subordinate devices to
4691 * be re-initialized. PCIe has some ways to shorten this,
4692 * but we don't make use of them yet.
4694 ssleep(1);
4697 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4699 pci_reset_secondary_bus(dev);
4703 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4704 * @dev: Bridge device
4706 * Use the bridge control register to assert reset on the secondary bus.
4707 * Devices on the secondary bus are left in power-on state.
4709 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4711 pcibios_reset_secondary_bus(dev);
4713 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4715 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4717 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4719 struct pci_dev *pdev;
4721 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4722 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4723 return -ENOTTY;
4725 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4726 if (pdev != dev)
4727 return -ENOTTY;
4729 if (probe)
4730 return 0;
4732 return pci_bridge_secondary_bus_reset(dev->bus->self);
4735 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4737 int rc = -ENOTTY;
4739 if (!hotplug || !try_module_get(hotplug->owner))
4740 return rc;
4742 if (hotplug->ops->reset_slot)
4743 rc = hotplug->ops->reset_slot(hotplug, probe);
4745 module_put(hotplug->owner);
4747 return rc;
4750 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4752 struct pci_dev *pdev;
4754 if (dev->subordinate || !dev->slot ||
4755 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4756 return -ENOTTY;
4758 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4759 if (pdev != dev && pdev->slot == dev->slot)
4760 return -ENOTTY;
4762 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4765 static void pci_dev_lock(struct pci_dev *dev)
4767 pci_cfg_access_lock(dev);
4768 /* block PM suspend, driver probe, etc. */
4769 device_lock(&dev->dev);
4772 /* Return 1 on successful lock, 0 on contention */
4773 static int pci_dev_trylock(struct pci_dev *dev)
4775 if (pci_cfg_access_trylock(dev)) {
4776 if (device_trylock(&dev->dev))
4777 return 1;
4778 pci_cfg_access_unlock(dev);
4781 return 0;
4784 static void pci_dev_unlock(struct pci_dev *dev)
4786 device_unlock(&dev->dev);
4787 pci_cfg_access_unlock(dev);
4790 static void pci_dev_save_and_disable(struct pci_dev *dev)
4792 const struct pci_error_handlers *err_handler =
4793 dev->driver ? dev->driver->err_handler : NULL;
4796 * dev->driver->err_handler->reset_prepare() is protected against
4797 * races with ->remove() by the device lock, which must be held by
4798 * the caller.
4800 if (err_handler && err_handler->reset_prepare)
4801 err_handler->reset_prepare(dev);
4804 * Wake-up device prior to save. PM registers default to D0 after
4805 * reset and a simple register restore doesn't reliably return
4806 * to a non-D0 state anyway.
4808 pci_set_power_state(dev, PCI_D0);
4810 pci_save_state(dev);
4812 * Disable the device by clearing the Command register, except for
4813 * INTx-disable which is set. This not only disables MMIO and I/O port
4814 * BARs, but also prevents the device from being Bus Master, preventing
4815 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4816 * compliant devices, INTx-disable prevents legacy interrupts.
4818 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4821 static void pci_dev_restore(struct pci_dev *dev)
4823 const struct pci_error_handlers *err_handler =
4824 dev->driver ? dev->driver->err_handler : NULL;
4826 pci_restore_state(dev);
4829 * dev->driver->err_handler->reset_done() is protected against
4830 * races with ->remove() by the device lock, which must be held by
4831 * the caller.
4833 if (err_handler && err_handler->reset_done)
4834 err_handler->reset_done(dev);
4838 * __pci_reset_function_locked - reset a PCI device function while holding
4839 * the @dev mutex lock.
4840 * @dev: PCI device to reset
4842 * Some devices allow an individual function to be reset without affecting
4843 * other functions in the same device. The PCI device must be responsive
4844 * to PCI config space in order to use this function.
4846 * The device function is presumed to be unused and the caller is holding
4847 * the device mutex lock when this function is called.
4849 * Resetting the device will make the contents of PCI configuration space
4850 * random, so any caller of this must be prepared to reinitialise the
4851 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4852 * etc.
4854 * Returns 0 if the device function was successfully reset or negative if the
4855 * device doesn't support resetting a single function.
4857 int __pci_reset_function_locked(struct pci_dev *dev)
4859 int rc;
4861 might_sleep();
4864 * A reset method returns -ENOTTY if it doesn't support this device
4865 * and we should try the next method.
4867 * If it returns 0 (success), we're finished. If it returns any
4868 * other error, we're also finished: this indicates that further
4869 * reset mechanisms might be broken on the device.
4871 rc = pci_dev_specific_reset(dev, 0);
4872 if (rc != -ENOTTY)
4873 return rc;
4874 if (pcie_has_flr(dev)) {
4875 rc = pcie_flr(dev);
4876 if (rc != -ENOTTY)
4877 return rc;
4879 rc = pci_af_flr(dev, 0);
4880 if (rc != -ENOTTY)
4881 return rc;
4882 rc = pci_pm_reset(dev, 0);
4883 if (rc != -ENOTTY)
4884 return rc;
4885 rc = pci_dev_reset_slot_function(dev, 0);
4886 if (rc != -ENOTTY)
4887 return rc;
4888 return pci_parent_bus_reset(dev, 0);
4890 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4893 * pci_probe_reset_function - check whether the device can be safely reset
4894 * @dev: PCI device to reset
4896 * Some devices allow an individual function to be reset without affecting
4897 * other functions in the same device. The PCI device must be responsive
4898 * to PCI config space in order to use this function.
4900 * Returns 0 if the device function can be reset or negative if the
4901 * device doesn't support resetting a single function.
4903 int pci_probe_reset_function(struct pci_dev *dev)
4905 int rc;
4907 might_sleep();
4909 rc = pci_dev_specific_reset(dev, 1);
4910 if (rc != -ENOTTY)
4911 return rc;
4912 if (pcie_has_flr(dev))
4913 return 0;
4914 rc = pci_af_flr(dev, 1);
4915 if (rc != -ENOTTY)
4916 return rc;
4917 rc = pci_pm_reset(dev, 1);
4918 if (rc != -ENOTTY)
4919 return rc;
4920 rc = pci_dev_reset_slot_function(dev, 1);
4921 if (rc != -ENOTTY)
4922 return rc;
4924 return pci_parent_bus_reset(dev, 1);
4928 * pci_reset_function - quiesce and reset a PCI device function
4929 * @dev: PCI device to reset
4931 * Some devices allow an individual function to be reset without affecting
4932 * other functions in the same device. The PCI device must be responsive
4933 * to PCI config space in order to use this function.
4935 * This function does not just reset the PCI portion of a device, but
4936 * clears all the state associated with the device. This function differs
4937 * from __pci_reset_function_locked() in that it saves and restores device state
4938 * over the reset and takes the PCI device lock.
4940 * Returns 0 if the device function was successfully reset or negative if the
4941 * device doesn't support resetting a single function.
4943 int pci_reset_function(struct pci_dev *dev)
4945 int rc;
4947 if (!dev->reset_fn)
4948 return -ENOTTY;
4950 pci_dev_lock(dev);
4951 pci_dev_save_and_disable(dev);
4953 rc = __pci_reset_function_locked(dev);
4955 pci_dev_restore(dev);
4956 pci_dev_unlock(dev);
4958 return rc;
4960 EXPORT_SYMBOL_GPL(pci_reset_function);
4963 * pci_reset_function_locked - quiesce and reset a PCI device function
4964 * @dev: PCI device to reset
4966 * Some devices allow an individual function to be reset without affecting
4967 * other functions in the same device. The PCI device must be responsive
4968 * to PCI config space in order to use this function.
4970 * This function does not just reset the PCI portion of a device, but
4971 * clears all the state associated with the device. This function differs
4972 * from __pci_reset_function_locked() in that it saves and restores device state
4973 * over the reset. It also differs from pci_reset_function() in that it
4974 * requires the PCI device lock to be held.
4976 * Returns 0 if the device function was successfully reset or negative if the
4977 * device doesn't support resetting a single function.
4979 int pci_reset_function_locked(struct pci_dev *dev)
4981 int rc;
4983 if (!dev->reset_fn)
4984 return -ENOTTY;
4986 pci_dev_save_and_disable(dev);
4988 rc = __pci_reset_function_locked(dev);
4990 pci_dev_restore(dev);
4992 return rc;
4994 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4997 * pci_try_reset_function - quiesce and reset a PCI device function
4998 * @dev: PCI device to reset
5000 * Same as above, except return -EAGAIN if unable to lock device.
5002 int pci_try_reset_function(struct pci_dev *dev)
5004 int rc;
5006 if (!dev->reset_fn)
5007 return -ENOTTY;
5009 if (!pci_dev_trylock(dev))
5010 return -EAGAIN;
5012 pci_dev_save_and_disable(dev);
5013 rc = __pci_reset_function_locked(dev);
5014 pci_dev_restore(dev);
5015 pci_dev_unlock(dev);
5017 return rc;
5019 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5021 /* Do any devices on or below this bus prevent a bus reset? */
5022 static bool pci_bus_resetable(struct pci_bus *bus)
5024 struct pci_dev *dev;
5027 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5028 return false;
5030 list_for_each_entry(dev, &bus->devices, bus_list) {
5031 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5032 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5033 return false;
5036 return true;
5039 /* Lock devices from the top of the tree down */
5040 static void pci_bus_lock(struct pci_bus *bus)
5042 struct pci_dev *dev;
5044 list_for_each_entry(dev, &bus->devices, bus_list) {
5045 pci_dev_lock(dev);
5046 if (dev->subordinate)
5047 pci_bus_lock(dev->subordinate);
5051 /* Unlock devices from the bottom of the tree up */
5052 static void pci_bus_unlock(struct pci_bus *bus)
5054 struct pci_dev *dev;
5056 list_for_each_entry(dev, &bus->devices, bus_list) {
5057 if (dev->subordinate)
5058 pci_bus_unlock(dev->subordinate);
5059 pci_dev_unlock(dev);
5063 /* Return 1 on successful lock, 0 on contention */
5064 static int pci_bus_trylock(struct pci_bus *bus)
5066 struct pci_dev *dev;
5068 list_for_each_entry(dev, &bus->devices, bus_list) {
5069 if (!pci_dev_trylock(dev))
5070 goto unlock;
5071 if (dev->subordinate) {
5072 if (!pci_bus_trylock(dev->subordinate)) {
5073 pci_dev_unlock(dev);
5074 goto unlock;
5078 return 1;
5080 unlock:
5081 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5082 if (dev->subordinate)
5083 pci_bus_unlock(dev->subordinate);
5084 pci_dev_unlock(dev);
5086 return 0;
5089 /* Do any devices on or below this slot prevent a bus reset? */
5090 static bool pci_slot_resetable(struct pci_slot *slot)
5092 struct pci_dev *dev;
5094 if (slot->bus->self &&
5095 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5096 return false;
5098 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5099 if (!dev->slot || dev->slot != slot)
5100 continue;
5101 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5102 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5103 return false;
5106 return true;
5109 /* Lock devices from the top of the tree down */
5110 static void pci_slot_lock(struct pci_slot *slot)
5112 struct pci_dev *dev;
5114 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5115 if (!dev->slot || dev->slot != slot)
5116 continue;
5117 pci_dev_lock(dev);
5118 if (dev->subordinate)
5119 pci_bus_lock(dev->subordinate);
5123 /* Unlock devices from the bottom of the tree up */
5124 static void pci_slot_unlock(struct pci_slot *slot)
5126 struct pci_dev *dev;
5128 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5129 if (!dev->slot || dev->slot != slot)
5130 continue;
5131 if (dev->subordinate)
5132 pci_bus_unlock(dev->subordinate);
5133 pci_dev_unlock(dev);
5137 /* Return 1 on successful lock, 0 on contention */
5138 static int pci_slot_trylock(struct pci_slot *slot)
5140 struct pci_dev *dev;
5142 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5143 if (!dev->slot || dev->slot != slot)
5144 continue;
5145 if (!pci_dev_trylock(dev))
5146 goto unlock;
5147 if (dev->subordinate) {
5148 if (!pci_bus_trylock(dev->subordinate)) {
5149 pci_dev_unlock(dev);
5150 goto unlock;
5154 return 1;
5156 unlock:
5157 list_for_each_entry_continue_reverse(dev,
5158 &slot->bus->devices, bus_list) {
5159 if (!dev->slot || dev->slot != slot)
5160 continue;
5161 if (dev->subordinate)
5162 pci_bus_unlock(dev->subordinate);
5163 pci_dev_unlock(dev);
5165 return 0;
5169 * Save and disable devices from the top of the tree down while holding
5170 * the @dev mutex lock for the entire tree.
5172 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5174 struct pci_dev *dev;
5176 list_for_each_entry(dev, &bus->devices, bus_list) {
5177 pci_dev_save_and_disable(dev);
5178 if (dev->subordinate)
5179 pci_bus_save_and_disable_locked(dev->subordinate);
5184 * Restore devices from top of the tree down while holding @dev mutex lock
5185 * for the entire tree. Parent bridges need to be restored before we can
5186 * get to subordinate devices.
5188 static void pci_bus_restore_locked(struct pci_bus *bus)
5190 struct pci_dev *dev;
5192 list_for_each_entry(dev, &bus->devices, bus_list) {
5193 pci_dev_restore(dev);
5194 if (dev->subordinate)
5195 pci_bus_restore_locked(dev->subordinate);
5200 * Save and disable devices from the top of the tree down while holding
5201 * the @dev mutex lock for the entire tree.
5203 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5205 struct pci_dev *dev;
5207 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5208 if (!dev->slot || dev->slot != slot)
5209 continue;
5210 pci_dev_save_and_disable(dev);
5211 if (dev->subordinate)
5212 pci_bus_save_and_disable_locked(dev->subordinate);
5217 * Restore devices from top of the tree down while holding @dev mutex lock
5218 * for the entire tree. Parent bridges need to be restored before we can
5219 * get to subordinate devices.
5221 static void pci_slot_restore_locked(struct pci_slot *slot)
5223 struct pci_dev *dev;
5225 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5226 if (!dev->slot || dev->slot != slot)
5227 continue;
5228 pci_dev_restore(dev);
5229 if (dev->subordinate)
5230 pci_bus_restore_locked(dev->subordinate);
5234 static int pci_slot_reset(struct pci_slot *slot, int probe)
5236 int rc;
5238 if (!slot || !pci_slot_resetable(slot))
5239 return -ENOTTY;
5241 if (!probe)
5242 pci_slot_lock(slot);
5244 might_sleep();
5246 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5248 if (!probe)
5249 pci_slot_unlock(slot);
5251 return rc;
5255 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5256 * @slot: PCI slot to probe
5258 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5260 int pci_probe_reset_slot(struct pci_slot *slot)
5262 return pci_slot_reset(slot, 1);
5264 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5267 * __pci_reset_slot - Try to reset a PCI slot
5268 * @slot: PCI slot to reset
5270 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5271 * independent of other slots. For instance, some slots may support slot power
5272 * control. In the case of a 1:1 bus to slot architecture, this function may
5273 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5274 * Generally a slot reset should be attempted before a bus reset. All of the
5275 * function of the slot and any subordinate buses behind the slot are reset
5276 * through this function. PCI config space of all devices in the slot and
5277 * behind the slot is saved before and restored after reset.
5279 * Same as above except return -EAGAIN if the slot cannot be locked
5281 static int __pci_reset_slot(struct pci_slot *slot)
5283 int rc;
5285 rc = pci_slot_reset(slot, 1);
5286 if (rc)
5287 return rc;
5289 if (pci_slot_trylock(slot)) {
5290 pci_slot_save_and_disable_locked(slot);
5291 might_sleep();
5292 rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5293 pci_slot_restore_locked(slot);
5294 pci_slot_unlock(slot);
5295 } else
5296 rc = -EAGAIN;
5298 return rc;
5301 static int pci_bus_reset(struct pci_bus *bus, int probe)
5303 int ret;
5305 if (!bus->self || !pci_bus_resetable(bus))
5306 return -ENOTTY;
5308 if (probe)
5309 return 0;
5311 pci_bus_lock(bus);
5313 might_sleep();
5315 ret = pci_bridge_secondary_bus_reset(bus->self);
5317 pci_bus_unlock(bus);
5319 return ret;
5323 * pci_bus_error_reset - reset the bridge's subordinate bus
5324 * @bridge: The parent device that connects to the bus to reset
5326 * This function will first try to reset the slots on this bus if the method is
5327 * available. If slot reset fails or is not available, this will fall back to a
5328 * secondary bus reset.
5330 int pci_bus_error_reset(struct pci_dev *bridge)
5332 struct pci_bus *bus = bridge->subordinate;
5333 struct pci_slot *slot;
5335 if (!bus)
5336 return -ENOTTY;
5338 mutex_lock(&pci_slot_mutex);
5339 if (list_empty(&bus->slots))
5340 goto bus_reset;
5342 list_for_each_entry(slot, &bus->slots, list)
5343 if (pci_probe_reset_slot(slot))
5344 goto bus_reset;
5346 list_for_each_entry(slot, &bus->slots, list)
5347 if (pci_slot_reset(slot, 0))
5348 goto bus_reset;
5350 mutex_unlock(&pci_slot_mutex);
5351 return 0;
5352 bus_reset:
5353 mutex_unlock(&pci_slot_mutex);
5354 return pci_bus_reset(bridge->subordinate, 0);
5358 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5359 * @bus: PCI bus to probe
5361 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5363 int pci_probe_reset_bus(struct pci_bus *bus)
5365 return pci_bus_reset(bus, 1);
5367 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5370 * __pci_reset_bus - Try to reset a PCI bus
5371 * @bus: top level PCI bus to reset
5373 * Same as above except return -EAGAIN if the bus cannot be locked
5375 static int __pci_reset_bus(struct pci_bus *bus)
5377 int rc;
5379 rc = pci_bus_reset(bus, 1);
5380 if (rc)
5381 return rc;
5383 if (pci_bus_trylock(bus)) {
5384 pci_bus_save_and_disable_locked(bus);
5385 might_sleep();
5386 rc = pci_bridge_secondary_bus_reset(bus->self);
5387 pci_bus_restore_locked(bus);
5388 pci_bus_unlock(bus);
5389 } else
5390 rc = -EAGAIN;
5392 return rc;
5396 * pci_reset_bus - Try to reset a PCI bus
5397 * @pdev: top level PCI device to reset via slot/bus
5399 * Same as above except return -EAGAIN if the bus cannot be locked
5401 int pci_reset_bus(struct pci_dev *pdev)
5403 return (!pci_probe_reset_slot(pdev->slot)) ?
5404 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5406 EXPORT_SYMBOL_GPL(pci_reset_bus);
5409 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5410 * @dev: PCI device to query
5412 * Returns mmrbc: maximum designed memory read count in bytes or
5413 * appropriate error value.
5415 int pcix_get_max_mmrbc(struct pci_dev *dev)
5417 int cap;
5418 u32 stat;
5420 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5421 if (!cap)
5422 return -EINVAL;
5424 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5425 return -EINVAL;
5427 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5429 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5432 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5433 * @dev: PCI device to query
5435 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5436 * value.
5438 int pcix_get_mmrbc(struct pci_dev *dev)
5440 int cap;
5441 u16 cmd;
5443 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5444 if (!cap)
5445 return -EINVAL;
5447 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5448 return -EINVAL;
5450 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5452 EXPORT_SYMBOL(pcix_get_mmrbc);
5455 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5456 * @dev: PCI device to query
5457 * @mmrbc: maximum memory read count in bytes
5458 * valid values are 512, 1024, 2048, 4096
5460 * If possible sets maximum memory read byte count, some bridges have errata
5461 * that prevent this.
5463 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5465 int cap;
5466 u32 stat, v, o;
5467 u16 cmd;
5469 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5470 return -EINVAL;
5472 v = ffs(mmrbc) - 10;
5474 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5475 if (!cap)
5476 return -EINVAL;
5478 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5479 return -EINVAL;
5481 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5482 return -E2BIG;
5484 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5485 return -EINVAL;
5487 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5488 if (o != v) {
5489 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5490 return -EIO;
5492 cmd &= ~PCI_X_CMD_MAX_READ;
5493 cmd |= v << 2;
5494 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5495 return -EIO;
5497 return 0;
5499 EXPORT_SYMBOL(pcix_set_mmrbc);
5502 * pcie_get_readrq - get PCI Express read request size
5503 * @dev: PCI device to query
5505 * Returns maximum memory read request in bytes or appropriate error value.
5507 int pcie_get_readrq(struct pci_dev *dev)
5509 u16 ctl;
5511 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5513 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5515 EXPORT_SYMBOL(pcie_get_readrq);
5518 * pcie_set_readrq - set PCI Express maximum memory read request
5519 * @dev: PCI device to query
5520 * @rq: maximum memory read count in bytes
5521 * valid values are 128, 256, 512, 1024, 2048, 4096
5523 * If possible sets maximum memory read request in bytes
5525 int pcie_set_readrq(struct pci_dev *dev, int rq)
5527 u16 v;
5529 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5530 return -EINVAL;
5533 * If using the "performance" PCIe config, we clamp the read rq
5534 * size to the max packet size to keep the host bridge from
5535 * generating requests larger than we can cope with.
5537 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5538 int mps = pcie_get_mps(dev);
5540 if (mps < rq)
5541 rq = mps;
5544 v = (ffs(rq) - 8) << 12;
5546 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5547 PCI_EXP_DEVCTL_READRQ, v);
5549 EXPORT_SYMBOL(pcie_set_readrq);
5552 * pcie_get_mps - get PCI Express maximum payload size
5553 * @dev: PCI device to query
5555 * Returns maximum payload size in bytes
5557 int pcie_get_mps(struct pci_dev *dev)
5559 u16 ctl;
5561 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5563 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5565 EXPORT_SYMBOL(pcie_get_mps);
5568 * pcie_set_mps - set PCI Express maximum payload size
5569 * @dev: PCI device to query
5570 * @mps: maximum payload size in bytes
5571 * valid values are 128, 256, 512, 1024, 2048, 4096
5573 * If possible sets maximum payload size
5575 int pcie_set_mps(struct pci_dev *dev, int mps)
5577 u16 v;
5579 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5580 return -EINVAL;
5582 v = ffs(mps) - 8;
5583 if (v > dev->pcie_mpss)
5584 return -EINVAL;
5585 v <<= 5;
5587 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5588 PCI_EXP_DEVCTL_PAYLOAD, v);
5590 EXPORT_SYMBOL(pcie_set_mps);
5593 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5594 * device and its bandwidth limitation
5595 * @dev: PCI device to query
5596 * @limiting_dev: storage for device causing the bandwidth limitation
5597 * @speed: storage for speed of limiting device
5598 * @width: storage for width of limiting device
5600 * Walk up the PCI device chain and find the point where the minimum
5601 * bandwidth is available. Return the bandwidth available there and (if
5602 * limiting_dev, speed, and width pointers are supplied) information about
5603 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5604 * raw bandwidth.
5606 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5607 enum pci_bus_speed *speed,
5608 enum pcie_link_width *width)
5610 u16 lnksta;
5611 enum pci_bus_speed next_speed;
5612 enum pcie_link_width next_width;
5613 u32 bw, next_bw;
5615 if (speed)
5616 *speed = PCI_SPEED_UNKNOWN;
5617 if (width)
5618 *width = PCIE_LNK_WIDTH_UNKNOWN;
5620 bw = 0;
5622 while (dev) {
5623 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5625 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5626 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5627 PCI_EXP_LNKSTA_NLW_SHIFT;
5629 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5631 /* Check if current device limits the total bandwidth */
5632 if (!bw || next_bw <= bw) {
5633 bw = next_bw;
5635 if (limiting_dev)
5636 *limiting_dev = dev;
5637 if (speed)
5638 *speed = next_speed;
5639 if (width)
5640 *width = next_width;
5643 dev = pci_upstream_bridge(dev);
5646 return bw;
5648 EXPORT_SYMBOL(pcie_bandwidth_available);
5651 * pcie_get_speed_cap - query for the PCI device's link speed capability
5652 * @dev: PCI device to query
5654 * Query the PCI device speed capability. Return the maximum link speed
5655 * supported by the device.
5657 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5659 u32 lnkcap2, lnkcap;
5662 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5663 * implementation note there recommends using the Supported Link
5664 * Speeds Vector in Link Capabilities 2 when supported.
5666 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5667 * should use the Supported Link Speeds field in Link Capabilities,
5668 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5670 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5671 if (lnkcap2) { /* PCIe r3.0-compliant */
5672 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5673 return PCIE_SPEED_32_0GT;
5674 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5675 return PCIE_SPEED_16_0GT;
5676 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5677 return PCIE_SPEED_8_0GT;
5678 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5679 return PCIE_SPEED_5_0GT;
5680 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5681 return PCIE_SPEED_2_5GT;
5682 return PCI_SPEED_UNKNOWN;
5685 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5686 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5687 return PCIE_SPEED_5_0GT;
5688 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5689 return PCIE_SPEED_2_5GT;
5691 return PCI_SPEED_UNKNOWN;
5693 EXPORT_SYMBOL(pcie_get_speed_cap);
5696 * pcie_get_width_cap - query for the PCI device's link width capability
5697 * @dev: PCI device to query
5699 * Query the PCI device width capability. Return the maximum link width
5700 * supported by the device.
5702 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5704 u32 lnkcap;
5706 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5707 if (lnkcap)
5708 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5710 return PCIE_LNK_WIDTH_UNKNOWN;
5712 EXPORT_SYMBOL(pcie_get_width_cap);
5715 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5716 * @dev: PCI device
5717 * @speed: storage for link speed
5718 * @width: storage for link width
5720 * Calculate a PCI device's link bandwidth by querying for its link speed
5721 * and width, multiplying them, and applying encoding overhead. The result
5722 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5724 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5725 enum pcie_link_width *width)
5727 *speed = pcie_get_speed_cap(dev);
5728 *width = pcie_get_width_cap(dev);
5730 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5731 return 0;
5733 return *width * PCIE_SPEED2MBS_ENC(*speed);
5737 * __pcie_print_link_status - Report the PCI device's link speed and width
5738 * @dev: PCI device to query
5739 * @verbose: Print info even when enough bandwidth is available
5741 * If the available bandwidth at the device is less than the device is
5742 * capable of, report the device's maximum possible bandwidth and the
5743 * upstream link that limits its performance. If @verbose, always print
5744 * the available bandwidth, even if the device isn't constrained.
5746 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5748 enum pcie_link_width width, width_cap;
5749 enum pci_bus_speed speed, speed_cap;
5750 struct pci_dev *limiting_dev = NULL;
5751 u32 bw_avail, bw_cap;
5753 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5754 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5756 if (bw_avail >= bw_cap && verbose)
5757 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5758 bw_cap / 1000, bw_cap % 1000,
5759 PCIE_SPEED2STR(speed_cap), width_cap);
5760 else if (bw_avail < bw_cap)
5761 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5762 bw_avail / 1000, bw_avail % 1000,
5763 PCIE_SPEED2STR(speed), width,
5764 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5765 bw_cap / 1000, bw_cap % 1000,
5766 PCIE_SPEED2STR(speed_cap), width_cap);
5770 * pcie_print_link_status - Report the PCI device's link speed and width
5771 * @dev: PCI device to query
5773 * Report the available bandwidth at the device.
5775 void pcie_print_link_status(struct pci_dev *dev)
5777 __pcie_print_link_status(dev, true);
5779 EXPORT_SYMBOL(pcie_print_link_status);
5782 * pci_select_bars - Make BAR mask from the type of resource
5783 * @dev: the PCI device for which BAR mask is made
5784 * @flags: resource type mask to be selected
5786 * This helper routine makes bar mask from the type of resource.
5788 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5790 int i, bars = 0;
5791 for (i = 0; i < PCI_NUM_RESOURCES; i++)
5792 if (pci_resource_flags(dev, i) & flags)
5793 bars |= (1 << i);
5794 return bars;
5796 EXPORT_SYMBOL(pci_select_bars);
5798 /* Some architectures require additional programming to enable VGA */
5799 static arch_set_vga_state_t arch_set_vga_state;
5801 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5803 arch_set_vga_state = func; /* NULL disables */
5806 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5807 unsigned int command_bits, u32 flags)
5809 if (arch_set_vga_state)
5810 return arch_set_vga_state(dev, decode, command_bits,
5811 flags);
5812 return 0;
5816 * pci_set_vga_state - set VGA decode state on device and parents if requested
5817 * @dev: the PCI device
5818 * @decode: true = enable decoding, false = disable decoding
5819 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5820 * @flags: traverse ancestors and change bridges
5821 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5823 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5824 unsigned int command_bits, u32 flags)
5826 struct pci_bus *bus;
5827 struct pci_dev *bridge;
5828 u16 cmd;
5829 int rc;
5831 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5833 /* ARCH specific VGA enables */
5834 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5835 if (rc)
5836 return rc;
5838 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5839 pci_read_config_word(dev, PCI_COMMAND, &cmd);
5840 if (decode == true)
5841 cmd |= command_bits;
5842 else
5843 cmd &= ~command_bits;
5844 pci_write_config_word(dev, PCI_COMMAND, cmd);
5847 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5848 return 0;
5850 bus = dev->bus;
5851 while (bus) {
5852 bridge = bus->self;
5853 if (bridge) {
5854 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5855 &cmd);
5856 if (decode == true)
5857 cmd |= PCI_BRIDGE_CTL_VGA;
5858 else
5859 cmd &= ~PCI_BRIDGE_CTL_VGA;
5860 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5861 cmd);
5863 bus = bus->parent;
5865 return 0;
5869 * pci_add_dma_alias - Add a DMA devfn alias for a device
5870 * @dev: the PCI device for which alias is added
5871 * @devfn: alias slot and function
5873 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5874 * which is used to program permissible bus-devfn source addresses for DMA
5875 * requests in an IOMMU. These aliases factor into IOMMU group creation
5876 * and are useful for devices generating DMA requests beyond or different
5877 * from their logical bus-devfn. Examples include device quirks where the
5878 * device simply uses the wrong devfn, as well as non-transparent bridges
5879 * where the alias may be a proxy for devices in another domain.
5881 * IOMMU group creation is performed during device discovery or addition,
5882 * prior to any potential DMA mapping and therefore prior to driver probing
5883 * (especially for userspace assigned devices where IOMMU group definition
5884 * cannot be left as a userspace activity). DMA aliases should therefore
5885 * be configured via quirks, such as the PCI fixup header quirk.
5887 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5889 if (!dev->dma_alias_mask)
5890 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5891 if (!dev->dma_alias_mask) {
5892 pci_warn(dev, "Unable to allocate DMA alias mask\n");
5893 return;
5896 set_bit(devfn, dev->dma_alias_mask);
5897 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5898 PCI_SLOT(devfn), PCI_FUNC(devfn));
5901 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5903 return (dev1->dma_alias_mask &&
5904 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5905 (dev2->dma_alias_mask &&
5906 test_bit(dev1->devfn, dev2->dma_alias_mask));
5909 bool pci_device_is_present(struct pci_dev *pdev)
5911 u32 v;
5913 if (pci_dev_is_disconnected(pdev))
5914 return false;
5915 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5917 EXPORT_SYMBOL_GPL(pci_device_is_present);
5919 void pci_ignore_hotplug(struct pci_dev *dev)
5921 struct pci_dev *bridge = dev->bus->self;
5923 dev->ignore_hotplug = 1;
5924 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5925 if (bridge)
5926 bridge->ignore_hotplug = 1;
5928 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5930 resource_size_t __weak pcibios_default_alignment(void)
5932 return 0;
5935 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5936 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5937 static DEFINE_SPINLOCK(resource_alignment_lock);
5940 * pci_specified_resource_alignment - get resource alignment specified by user.
5941 * @dev: the PCI device to get
5942 * @resize: whether or not to change resources' size when reassigning alignment
5944 * RETURNS: Resource alignment if it is specified.
5945 * Zero if it is not specified.
5947 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5948 bool *resize)
5950 int align_order, count;
5951 resource_size_t align = pcibios_default_alignment();
5952 const char *p;
5953 int ret;
5955 spin_lock(&resource_alignment_lock);
5956 p = resource_alignment_param;
5957 if (!*p && !align)
5958 goto out;
5959 if (pci_has_flag(PCI_PROBE_ONLY)) {
5960 align = 0;
5961 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5962 goto out;
5965 while (*p) {
5966 count = 0;
5967 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5968 p[count] == '@') {
5969 p += count + 1;
5970 } else {
5971 align_order = -1;
5974 ret = pci_dev_str_match(dev, p, &p);
5975 if (ret == 1) {
5976 *resize = true;
5977 if (align_order == -1)
5978 align = PAGE_SIZE;
5979 else
5980 align = 1 << align_order;
5981 break;
5982 } else if (ret < 0) {
5983 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5985 break;
5988 if (*p != ';' && *p != ',') {
5989 /* End of param or invalid format */
5990 break;
5992 p++;
5994 out:
5995 spin_unlock(&resource_alignment_lock);
5996 return align;
5999 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6000 resource_size_t align, bool resize)
6002 struct resource *r = &dev->resource[bar];
6003 resource_size_t size;
6005 if (!(r->flags & IORESOURCE_MEM))
6006 return;
6008 if (r->flags & IORESOURCE_PCI_FIXED) {
6009 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6010 bar, r, (unsigned long long)align);
6011 return;
6014 size = resource_size(r);
6015 if (size >= align)
6016 return;
6019 * Increase the alignment of the resource. There are two ways we
6020 * can do this:
6022 * 1) Increase the size of the resource. BARs are aligned on their
6023 * size, so when we reallocate space for this resource, we'll
6024 * allocate it with the larger alignment. This also prevents
6025 * assignment of any other BARs inside the alignment region, so
6026 * if we're requesting page alignment, this means no other BARs
6027 * will share the page.
6029 * The disadvantage is that this makes the resource larger than
6030 * the hardware BAR, which may break drivers that compute things
6031 * based on the resource size, e.g., to find registers at a
6032 * fixed offset before the end of the BAR.
6034 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6035 * set r->start to the desired alignment. By itself this
6036 * doesn't prevent other BARs being put inside the alignment
6037 * region, but if we realign *every* resource of every device in
6038 * the system, none of them will share an alignment region.
6040 * When the user has requested alignment for only some devices via
6041 * the "pci=resource_alignment" argument, "resize" is true and we
6042 * use the first method. Otherwise we assume we're aligning all
6043 * devices and we use the second.
6046 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6047 bar, r, (unsigned long long)align);
6049 if (resize) {
6050 r->start = 0;
6051 r->end = align - 1;
6052 } else {
6053 r->flags &= ~IORESOURCE_SIZEALIGN;
6054 r->flags |= IORESOURCE_STARTALIGN;
6055 r->start = align;
6056 r->end = r->start + size - 1;
6058 r->flags |= IORESOURCE_UNSET;
6062 * This function disables memory decoding and releases memory resources
6063 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6064 * It also rounds up size to specified alignment.
6065 * Later on, the kernel will assign page-aligned memory resource back
6066 * to the device.
6068 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6070 int i;
6071 struct resource *r;
6072 resource_size_t align;
6073 u16 command;
6074 bool resize = false;
6077 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6078 * 3.4.1.11. Their resources are allocated from the space
6079 * described by the VF BARx register in the PF's SR-IOV capability.
6080 * We can't influence their alignment here.
6082 if (dev->is_virtfn)
6083 return;
6085 /* check if specified PCI is target device to reassign */
6086 align = pci_specified_resource_alignment(dev, &resize);
6087 if (!align)
6088 return;
6090 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6091 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6092 pci_warn(dev, "Can't reassign resources to host bridge\n");
6093 return;
6096 pci_read_config_word(dev, PCI_COMMAND, &command);
6097 command &= ~PCI_COMMAND_MEMORY;
6098 pci_write_config_word(dev, PCI_COMMAND, command);
6100 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6101 pci_request_resource_alignment(dev, i, align, resize);
6104 * Need to disable bridge's resource window,
6105 * to enable the kernel to reassign new resource
6106 * window later on.
6108 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6109 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6110 r = &dev->resource[i];
6111 if (!(r->flags & IORESOURCE_MEM))
6112 continue;
6113 r->flags |= IORESOURCE_UNSET;
6114 r->end = resource_size(r) - 1;
6115 r->start = 0;
6117 pci_disable_bridge_window(dev);
6121 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
6123 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
6124 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
6125 spin_lock(&resource_alignment_lock);
6126 strncpy(resource_alignment_param, buf, count);
6127 resource_alignment_param[count] = '\0';
6128 spin_unlock(&resource_alignment_lock);
6129 return count;
6132 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
6134 size_t count;
6135 spin_lock(&resource_alignment_lock);
6136 count = snprintf(buf, size, "%s", resource_alignment_param);
6137 spin_unlock(&resource_alignment_lock);
6138 return count;
6141 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6143 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
6146 static ssize_t resource_alignment_store(struct bus_type *bus,
6147 const char *buf, size_t count)
6149 return pci_set_resource_alignment_param(buf, count);
6152 static BUS_ATTR_RW(resource_alignment);
6154 static int __init pci_resource_alignment_sysfs_init(void)
6156 return bus_create_file(&pci_bus_type,
6157 &bus_attr_resource_alignment);
6159 late_initcall(pci_resource_alignment_sysfs_init);
6161 static void pci_no_domains(void)
6163 #ifdef CONFIG_PCI_DOMAINS
6164 pci_domains_supported = 0;
6165 #endif
6168 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6169 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6171 static int pci_get_new_domain_nr(void)
6173 return atomic_inc_return(&__domain_nr);
6176 static int of_pci_bus_find_domain_nr(struct device *parent)
6178 static int use_dt_domains = -1;
6179 int domain = -1;
6181 if (parent)
6182 domain = of_get_pci_domain_nr(parent->of_node);
6185 * Check DT domain and use_dt_domains values.
6187 * If DT domain property is valid (domain >= 0) and
6188 * use_dt_domains != 0, the DT assignment is valid since this means
6189 * we have not previously allocated a domain number by using
6190 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6191 * 1, to indicate that we have just assigned a domain number from
6192 * DT.
6194 * If DT domain property value is not valid (ie domain < 0), and we
6195 * have not previously assigned a domain number from DT
6196 * (use_dt_domains != 1) we should assign a domain number by
6197 * using the:
6199 * pci_get_new_domain_nr()
6201 * API and update the use_dt_domains value to keep track of method we
6202 * are using to assign domain numbers (use_dt_domains = 0).
6204 * All other combinations imply we have a platform that is trying
6205 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6206 * which is a recipe for domain mishandling and it is prevented by
6207 * invalidating the domain value (domain = -1) and printing a
6208 * corresponding error.
6210 if (domain >= 0 && use_dt_domains) {
6211 use_dt_domains = 1;
6212 } else if (domain < 0 && use_dt_domains != 1) {
6213 use_dt_domains = 0;
6214 domain = pci_get_new_domain_nr();
6215 } else {
6216 if (parent)
6217 pr_err("Node %pOF has ", parent->of_node);
6218 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6219 domain = -1;
6222 return domain;
6225 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6227 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6228 acpi_pci_bus_find_domain_nr(bus);
6230 #endif
6233 * pci_ext_cfg_avail - can we access extended PCI config space?
6235 * Returns 1 if we can access PCI extended config space (offsets
6236 * greater than 0xff). This is the default implementation. Architecture
6237 * implementations can override this.
6239 int __weak pci_ext_cfg_avail(void)
6241 return 1;
6244 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6247 EXPORT_SYMBOL(pci_fixup_cardbus);
6249 static int __init pci_setup(char *str)
6251 while (str) {
6252 char *k = strchr(str, ',');
6253 if (k)
6254 *k++ = 0;
6255 if (*str && (str = pcibios_setup(str)) && *str) {
6256 if (!strcmp(str, "nomsi")) {
6257 pci_no_msi();
6258 } else if (!strncmp(str, "noats", 5)) {
6259 pr_info("PCIe: ATS is disabled\n");
6260 pcie_ats_disabled = true;
6261 } else if (!strcmp(str, "noaer")) {
6262 pci_no_aer();
6263 } else if (!strcmp(str, "earlydump")) {
6264 pci_early_dump = true;
6265 } else if (!strncmp(str, "realloc=", 8)) {
6266 pci_realloc_get_opt(str + 8);
6267 } else if (!strncmp(str, "realloc", 7)) {
6268 pci_realloc_get_opt("on");
6269 } else if (!strcmp(str, "nodomains")) {
6270 pci_no_domains();
6271 } else if (!strncmp(str, "noari", 5)) {
6272 pcie_ari_disabled = true;
6273 } else if (!strncmp(str, "cbiosize=", 9)) {
6274 pci_cardbus_io_size = memparse(str + 9, &str);
6275 } else if (!strncmp(str, "cbmemsize=", 10)) {
6276 pci_cardbus_mem_size = memparse(str + 10, &str);
6277 } else if (!strncmp(str, "resource_alignment=", 19)) {
6278 pci_set_resource_alignment_param(str + 19,
6279 strlen(str + 19));
6280 } else if (!strncmp(str, "ecrc=", 5)) {
6281 pcie_ecrc_get_policy(str + 5);
6282 } else if (!strncmp(str, "hpiosize=", 9)) {
6283 pci_hotplug_io_size = memparse(str + 9, &str);
6284 } else if (!strncmp(str, "hpmemsize=", 10)) {
6285 pci_hotplug_mem_size = memparse(str + 10, &str);
6286 } else if (!strncmp(str, "hpbussize=", 10)) {
6287 pci_hotplug_bus_size =
6288 simple_strtoul(str + 10, &str, 0);
6289 if (pci_hotplug_bus_size > 0xff)
6290 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6291 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6292 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6293 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6294 pcie_bus_config = PCIE_BUS_SAFE;
6295 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6296 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6297 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6298 pcie_bus_config = PCIE_BUS_PEER2PEER;
6299 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6300 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6301 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6302 disable_acs_redir_param = str + 18;
6303 } else {
6304 pr_err("PCI: Unknown option `%s'\n", str);
6307 str = k;
6309 return 0;
6311 early_param("pci", pci_setup);
6314 * 'disable_acs_redir_param' is initialized in pci_setup(), above, to point
6315 * to data in the __initdata section which will be freed after the init
6316 * sequence is complete. We can't allocate memory in pci_setup() because some
6317 * architectures do not have any memory allocation service available during
6318 * an early_param() call. So we allocate memory and copy the variable here
6319 * before the init section is freed.
6321 static int __init pci_realloc_setup_params(void)
6323 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6325 return 0;
6327 pure_initcall(pci_realloc_setup_params);