1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
35 #include <linux/aer.h>
38 DEFINE_MUTEX(pci_slot_mutex
);
40 const char *pci_power_names
[] = {
41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 EXPORT_SYMBOL_GPL(pci_power_names
);
45 int isa_dma_bridge_buggy
;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
49 EXPORT_SYMBOL(pci_pci_problems
);
51 unsigned int pci_pm_d3_delay
;
53 static void pci_pme_list_scan(struct work_struct
*work
);
55 static LIST_HEAD(pci_pme_list
);
56 static DEFINE_MUTEX(pci_pme_list_mutex
);
57 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
59 struct pci_pme_device
{
60 struct list_head list
;
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
68 unsigned int delay
= dev
->d3_delay
;
70 if (delay
< pci_pm_d3_delay
)
71 delay
= pci_pm_d3_delay
;
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported
= 1;
81 #define DEFAULT_CARDBUS_IO_SIZE (256)
82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
85 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
87 #define DEFAULT_HOTPLUG_IO_SIZE (256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
91 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
93 #define DEFAULT_HOTPLUG_BUS_SIZE 1
94 unsigned long pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
96 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
99 * The default CLS is used if arch didn't set CLS explicitly and not
100 * all pci devices agree on the same value. Arch can override either
101 * the dfl or actual value as it sees fit. Don't forget this is
102 * measured in 32-bit words, not bytes.
104 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
105 u8 pci_cache_line_size
;
108 * If we set up a device for bus mastering, we need to check the latency
109 * timer as certain BIOSes forget to set it properly.
111 unsigned int pcibios_max_latency
= 255;
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled
;
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled
;
119 /* If set, the PCI config space of each device is printed during boot. */
122 bool pci_ats_disabled(void)
124 return pcie_ats_disabled
;
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable
;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force
;
132 static int __init
pcie_port_pm_setup(char *str
)
134 if (!strcmp(str
, "off"))
135 pci_bridge_d3_disable
= true;
136 else if (!strcmp(str
, "force"))
137 pci_bridge_d3_force
= true;
140 __setup("pcie_port_pm=", pcie_port_pm_setup
);
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147 * @bus: pointer to PCI bus structure to search
149 * Given a PCI bus, returns the highest PCI bus number present in the set
150 * including the given PCI bus and its list of child PCI buses.
152 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
155 unsigned char max
, n
;
157 max
= bus
->busn_res
.end
;
158 list_for_each_entry(tmp
, &bus
->children
, node
) {
159 n
= pci_bus_max_busnr(tmp
);
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
170 struct resource
*res
= &pdev
->resource
[bar
];
173 * Make sure the BAR is actually a memory resource, not an IO resource
175 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
176 pci_warn(pdev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
179 return ioremap_nocache(res
->start
, resource_size(res
));
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
183 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
186 * Make sure the BAR is actually a memory resource, not an IO resource
188 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
192 return ioremap_wc(pci_resource_start(pdev
, bar
),
193 pci_resource_len(pdev
, bar
));
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
199 * pci_dev_str_match_path - test if a path string matches a device
200 * @dev: the PCI device to test
201 * @path: string to match the device against
202 * @endptr: pointer to the string after the match
204 * Test if a string (typically from a kernel parameter) formatted as a
205 * path of device/function addresses matches a PCI device. The string must
208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
210 * A path for a device can be obtained using 'lspci -t'. Using a path
211 * is more robust against bus renumbering than using only a single bus,
212 * device and function address.
214 * Returns 1 if the string matches the device, 0 if it does not and
215 * a negative error code if it fails to parse the string.
217 static int pci_dev_str_match_path(struct pci_dev
*dev
, const char *path
,
221 int seg
, bus
, slot
, func
;
225 *endptr
= strchrnul(path
, ';');
227 wpath
= kmemdup_nul(path
, *endptr
- path
, GFP_KERNEL
);
232 p
= strrchr(wpath
, '/');
235 ret
= sscanf(p
, "/%x.%x%c", &slot
, &func
, &end
);
241 if (dev
->devfn
!= PCI_DEVFN(slot
, func
)) {
247 * Note: we don't need to get a reference to the upstream
248 * bridge because we hold a reference to the top level
249 * device which should hold a reference to the bridge,
252 dev
= pci_upstream_bridge(dev
);
261 ret
= sscanf(wpath
, "%x:%x:%x.%x%c", &seg
, &bus
, &slot
,
265 ret
= sscanf(wpath
, "%x:%x.%x%c", &bus
, &slot
, &func
, &end
);
272 ret
= (seg
== pci_domain_nr(dev
->bus
) &&
273 bus
== dev
->bus
->number
&&
274 dev
->devfn
== PCI_DEVFN(slot
, func
));
282 * pci_dev_str_match - test if a string matches a device
283 * @dev: the PCI device to test
284 * @p: string to match the device against
285 * @endptr: pointer to the string after the match
287 * Test if a string (typically from a kernel parameter) matches a specified
288 * PCI device. The string may be of one of the following formats:
290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
293 * The first format specifies a PCI bus/device/function address which
294 * may change if new hardware is inserted, if motherboard firmware changes,
295 * or due to changes caused in kernel parameters. If the domain is
296 * left unspecified, it is taken to be 0. In order to be robust against
297 * bus renumbering issues, a path of PCI device/function numbers may be used
298 * to address the specific device. The path for a device can be determined
299 * through the use of 'lspci -t'.
301 * The second format matches devices using IDs in the configuration
302 * space which may match multiple devices in the system. A value of 0
303 * for any field will match all devices. (Note: this differs from
304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305 * legacy reasons and convenience so users don't have to specify
306 * FFFFFFFFs on the command line.)
308 * Returns 1 if the string matches the device, 0 if it does not and
309 * a negative error code if the string cannot be parsed.
311 static int pci_dev_str_match(struct pci_dev
*dev
, const char *p
,
316 unsigned short vendor
, device
, subsystem_vendor
, subsystem_device
;
318 if (strncmp(p
, "pci:", 4) == 0) {
319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
321 ret
= sscanf(p
, "%hx:%hx:%hx:%hx%n", &vendor
, &device
,
322 &subsystem_vendor
, &subsystem_device
, &count
);
324 ret
= sscanf(p
, "%hx:%hx%n", &vendor
, &device
, &count
);
328 subsystem_vendor
= 0;
329 subsystem_device
= 0;
334 if ((!vendor
|| vendor
== dev
->vendor
) &&
335 (!device
|| device
== dev
->device
) &&
336 (!subsystem_vendor
||
337 subsystem_vendor
== dev
->subsystem_vendor
) &&
338 (!subsystem_device
||
339 subsystem_device
== dev
->subsystem_device
))
343 * PCI Bus, Device, Function IDs are specified
344 * (optionally, may include a path of devfns following it)
346 ret
= pci_dev_str_match_path(dev
, p
, &p
);
361 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
362 u8 pos
, int cap
, int *ttl
)
367 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
373 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
385 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
388 int ttl
= PCI_FIND_CAP_TTL
;
390 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
393 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
395 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
396 pos
+ PCI_CAP_LIST_NEXT
, cap
);
398 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
400 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
401 unsigned int devfn
, u8 hdr_type
)
405 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
406 if (!(status
& PCI_STATUS_CAP_LIST
))
410 case PCI_HEADER_TYPE_NORMAL
:
411 case PCI_HEADER_TYPE_BRIDGE
:
412 return PCI_CAPABILITY_LIST
;
413 case PCI_HEADER_TYPE_CARDBUS
:
414 return PCI_CB_CAPABILITY_LIST
;
421 * pci_find_capability - query for devices' capabilities
422 * @dev: PCI device to query
423 * @cap: capability code
425 * Tell if a device supports a given PCI capability.
426 * Returns the address of the requested capability structure within the
427 * device's PCI configuration space or 0 in case the device does not
428 * support it. Possible values for @cap include:
430 * %PCI_CAP_ID_PM Power Management
431 * %PCI_CAP_ID_AGP Accelerated Graphics Port
432 * %PCI_CAP_ID_VPD Vital Product Data
433 * %PCI_CAP_ID_SLOTID Slot Identification
434 * %PCI_CAP_ID_MSI Message Signalled Interrupts
435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
436 * %PCI_CAP_ID_PCIX PCI-X
437 * %PCI_CAP_ID_EXP PCI Express
439 int pci_find_capability(struct pci_dev
*dev
, int cap
)
443 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
445 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
449 EXPORT_SYMBOL(pci_find_capability
);
452 * pci_bus_find_capability - query for devices' capabilities
453 * @bus: the PCI bus to query
454 * @devfn: PCI device to query
455 * @cap: capability code
457 * Like pci_find_capability() but works for PCI devices that do not have a
458 * pci_dev structure set up yet.
460 * Returns the address of the requested capability structure within the
461 * device's PCI configuration space or 0 in case the device does not
464 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
469 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
471 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
473 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
477 EXPORT_SYMBOL(pci_bus_find_capability
);
480 * pci_find_next_ext_capability - Find an extended capability
481 * @dev: PCI device to query
482 * @start: address at which to start looking (0 to start at beginning of list)
483 * @cap: capability code
485 * Returns the address of the next matching extended capability structure
486 * within the device's PCI configuration space or 0 if the device does
487 * not support it. Some capabilities can occur several times, e.g., the
488 * vendor-specific capability, and this provides a way to find them all.
490 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
494 int pos
= PCI_CFG_SPACE_SIZE
;
496 /* minimum 8 bytes per capability */
497 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
499 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
505 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
509 * If we have no capabilities, this is indicated by cap ID,
510 * cap version and next pointer all being 0.
516 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
519 pos
= PCI_EXT_CAP_NEXT(header
);
520 if (pos
< PCI_CFG_SPACE_SIZE
)
523 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
532 * pci_find_ext_capability - Find an extended capability
533 * @dev: PCI device to query
534 * @cap: capability code
536 * Returns the address of the requested extended capability structure
537 * within the device's PCI configuration space or 0 if the device does
538 * not support it. Possible values for @cap include:
540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
541 * %PCI_EXT_CAP_ID_VC Virtual Channel
542 * %PCI_EXT_CAP_ID_DSN Device Serial Number
543 * %PCI_EXT_CAP_ID_PWR Power Budgeting
545 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
547 return pci_find_next_ext_capability(dev
, 0, cap
);
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
551 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
553 int rc
, ttl
= PCI_FIND_CAP_TTL
;
556 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
557 mask
= HT_3BIT_CAP_MASK
;
559 mask
= HT_5BIT_CAP_MASK
;
561 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
562 PCI_CAP_ID_HT
, &ttl
);
564 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
565 if (rc
!= PCIBIOS_SUCCESSFUL
)
568 if ((cap
& mask
) == ht_cap
)
571 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
572 pos
+ PCI_CAP_LIST_NEXT
,
573 PCI_CAP_ID_HT
, &ttl
);
579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580 * @dev: PCI device to query
581 * @pos: Position from which to continue searching
582 * @ht_cap: Hypertransport capability code
584 * To be used in conjunction with pci_find_ht_capability() to search for
585 * all capabilities matching @ht_cap. @pos should always be a value returned
586 * from pci_find_ht_capability().
588 * NB. To be 100% safe against broken PCI devices, the caller should take
589 * steps to avoid an infinite loop.
591 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
593 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
598 * pci_find_ht_capability - query a device's Hypertransport capabilities
599 * @dev: PCI device to query
600 * @ht_cap: Hypertransport capability code
602 * Tell if a device supports a given Hypertransport capability.
603 * Returns an address within the device's PCI configuration space
604 * or 0 in case the device does not support the request capability.
605 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606 * which has a Hypertransport capability matching @ht_cap.
608 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
612 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
614 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
621 * pci_find_parent_resource - return resource region of parent bus of given
623 * @dev: PCI device structure contains resources to be searched
624 * @res: child resource record for which parent is sought
626 * For given resource region of given device, return the resource region of
627 * parent bus the given region is contained in.
629 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
630 struct resource
*res
)
632 const struct pci_bus
*bus
= dev
->bus
;
636 pci_bus_for_each_resource(bus
, r
, i
) {
639 if (resource_contains(r
, res
)) {
642 * If the window is prefetchable but the BAR is
643 * not, the allocator made a mistake.
645 if (r
->flags
& IORESOURCE_PREFETCH
&&
646 !(res
->flags
& IORESOURCE_PREFETCH
))
650 * If we're below a transparent bridge, there may
651 * be both a positively-decoded aperture and a
652 * subtractively-decoded region that contain the BAR.
653 * We want the positively-decoded one, so this depends
654 * on pci_bus_for_each_resource() giving us those
662 EXPORT_SYMBOL(pci_find_parent_resource
);
665 * pci_find_resource - Return matching PCI device resource
666 * @dev: PCI device to query
667 * @res: Resource to look for
669 * Goes over standard PCI resources (BARs) and checks if the given resource
670 * is partially or fully contained in any of them. In that case the
671 * matching resource is returned, %NULL otherwise.
673 struct resource
*pci_find_resource(struct pci_dev
*dev
, struct resource
*res
)
677 for (i
= 0; i
< PCI_ROM_RESOURCE
; i
++) {
678 struct resource
*r
= &dev
->resource
[i
];
680 if (r
->start
&& resource_contains(r
, res
))
686 EXPORT_SYMBOL(pci_find_resource
);
689 * pci_find_pcie_root_port - return PCIe Root Port
690 * @dev: PCI device to query
692 * Traverse up the parent chain and return the PCIe Root Port PCI Device
693 * for a given PCI Device.
695 struct pci_dev
*pci_find_pcie_root_port(struct pci_dev
*dev
)
697 struct pci_dev
*bridge
, *highest_pcie_bridge
= dev
;
699 bridge
= pci_upstream_bridge(dev
);
700 while (bridge
&& pci_is_pcie(bridge
)) {
701 highest_pcie_bridge
= bridge
;
702 bridge
= pci_upstream_bridge(bridge
);
705 if (pci_pcie_type(highest_pcie_bridge
) != PCI_EXP_TYPE_ROOT_PORT
)
708 return highest_pcie_bridge
;
710 EXPORT_SYMBOL(pci_find_pcie_root_port
);
713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
714 * @dev: the PCI device to operate on
715 * @pos: config space offset of status word
716 * @mask: mask of bit(s) to care about in status word
718 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
720 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
724 /* Wait for Transaction Pending bit clean */
725 for (i
= 0; i
< 4; i
++) {
728 msleep((1 << (i
- 1)) * 100);
730 pci_read_config_word(dev
, pos
, &status
);
731 if (!(status
& mask
))
739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
740 * @dev: PCI device to have its BARs restored
742 * Restore the BAR values for a given device, so as to make it
743 * accessible by its driver.
745 static void pci_restore_bars(struct pci_dev
*dev
)
749 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
750 pci_update_resource(dev
, i
);
753 static const struct pci_platform_pm_ops
*pci_platform_pm
;
755 int pci_set_platform_pm(const struct pci_platform_pm_ops
*ops
)
757 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->get_state
||
758 !ops
->choose_state
|| !ops
->set_wakeup
|| !ops
->need_resume
)
760 pci_platform_pm
= ops
;
764 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
766 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
769 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
772 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
775 static inline pci_power_t
platform_pci_get_power_state(struct pci_dev
*dev
)
777 return pci_platform_pm
? pci_platform_pm
->get_state(dev
) : PCI_UNKNOWN
;
780 static inline void platform_pci_refresh_power_state(struct pci_dev
*dev
)
782 if (pci_platform_pm
&& pci_platform_pm
->refresh_state
)
783 pci_platform_pm
->refresh_state(dev
);
786 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
788 return pci_platform_pm
?
789 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
792 static inline int platform_pci_set_wakeup(struct pci_dev
*dev
, bool enable
)
794 return pci_platform_pm
?
795 pci_platform_pm
->set_wakeup(dev
, enable
) : -ENODEV
;
798 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
800 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
803 static inline bool platform_pci_bridge_d3(struct pci_dev
*dev
)
805 return pci_platform_pm
? pci_platform_pm
->bridge_d3(dev
) : false;
809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
811 * @dev: PCI device to handle.
812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
815 * -EINVAL if the requested state is invalid.
816 * -EIO if device does not support PCI PM or its PM capabilities register has a
817 * wrong version, or device doesn't support the requested state.
818 * 0 if device already is in the requested state.
819 * 0 if device's power state has been successfully changed.
821 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
824 bool need_restore
= false;
826 /* Check if we're already there */
827 if (dev
->current_state
== state
)
833 if (state
< PCI_D0
|| state
> PCI_D3hot
)
837 * Validate current state:
838 * Can enter D0 from any state, but if we can only go deeper
839 * to sleep if we're already in a low power state
841 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
842 && dev
->current_state
> state
) {
843 pci_err(dev
, "invalid power transition (from state %d to %d)\n",
844 dev
->current_state
, state
);
848 /* Check if this device supports the desired state */
849 if ((state
== PCI_D1
&& !dev
->d1_support
)
850 || (state
== PCI_D2
&& !dev
->d2_support
))
853 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
856 * If we're (effectively) in D3, force entire word to 0.
857 * This doesn't affect PME_Status, disables PME_En, and
858 * sets PowerState to 0.
860 switch (dev
->current_state
) {
864 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
869 case PCI_UNKNOWN
: /* Boot-up */
870 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
871 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
873 /* Fall-through - force to D0 */
879 /* Enter specified state */
880 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
883 * Mandatory power management transition delays; see PCI PM 1.1
886 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
887 pci_dev_d3_sleep(dev
);
888 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
889 udelay(PCI_PM_D2_DELAY
);
891 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
892 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
893 if (dev
->current_state
!= state
&& printk_ratelimit())
894 pci_info(dev
, "Refused to change power state, currently in D%d\n",
898 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
899 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
900 * from D3hot to D0 _may_ perform an internal reset, thereby
901 * going to "D0 Uninitialized" rather than "D0 Initialized".
902 * For example, at least some versions of the 3c905B and the
903 * 3c556B exhibit this behaviour.
905 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
906 * devices in a D3hot state at boot. Consequently, we need to
907 * restore at least the BARs so that the device will be
908 * accessible to its driver.
911 pci_restore_bars(dev
);
914 pcie_aspm_pm_state_change(dev
->bus
->self
);
920 * pci_update_current_state - Read power state of given device and cache it
921 * @dev: PCI device to handle.
922 * @state: State to cache in case the device doesn't have the PM capability
924 * The power state is read from the PMCSR register, which however is
925 * inaccessible in D3cold. The platform firmware is therefore queried first
926 * to detect accessibility of the register. In case the platform firmware
927 * reports an incorrect state or the device isn't power manageable by the
928 * platform at all, we try to detect D3cold by testing accessibility of the
929 * vendor ID in config space.
931 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
933 if (platform_pci_get_power_state(dev
) == PCI_D3cold
||
934 !pci_device_is_present(dev
)) {
935 dev
->current_state
= PCI_D3cold
;
936 } else if (dev
->pm_cap
) {
939 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
940 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
942 dev
->current_state
= state
;
947 * pci_refresh_power_state - Refresh the given device's power state data
948 * @dev: Target PCI device.
950 * Ask the platform to refresh the devices power state information and invoke
951 * pci_update_current_state() to update its current PCI power state.
953 void pci_refresh_power_state(struct pci_dev
*dev
)
955 if (platform_pci_power_manageable(dev
))
956 platform_pci_refresh_power_state(dev
);
958 pci_update_current_state(dev
, dev
->current_state
);
962 * pci_power_up - Put the given device into D0 forcibly
963 * @dev: PCI device to power up
965 void pci_power_up(struct pci_dev
*dev
)
967 if (platform_pci_power_manageable(dev
))
968 platform_pci_set_power_state(dev
, PCI_D0
);
970 pci_raw_set_power_state(dev
, PCI_D0
);
971 pci_update_current_state(dev
, PCI_D0
);
975 * pci_platform_power_transition - Use platform to change device power state
976 * @dev: PCI device to handle.
977 * @state: State to put the device into.
979 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
983 if (platform_pci_power_manageable(dev
)) {
984 error
= platform_pci_set_power_state(dev
, state
);
986 pci_update_current_state(dev
, state
);
990 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
991 dev
->current_state
= PCI_D0
;
997 * pci_wakeup - Wake up a PCI device
998 * @pci_dev: Device to handle.
999 * @ign: ignored parameter
1001 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
1003 pci_wakeup_event(pci_dev
);
1004 pm_request_resume(&pci_dev
->dev
);
1009 * pci_wakeup_bus - Walk given bus and wake up devices on it
1010 * @bus: Top bus of the subtree to walk.
1012 void pci_wakeup_bus(struct pci_bus
*bus
)
1015 pci_walk_bus(bus
, pci_wakeup
, NULL
);
1019 * __pci_start_power_transition - Start power transition of a PCI device
1020 * @dev: PCI device to handle.
1021 * @state: State to put the device into.
1023 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
1025 if (state
== PCI_D0
) {
1026 pci_platform_power_transition(dev
, PCI_D0
);
1028 * Mandatory power management transition delays are
1029 * handled in the PCIe portdrv resume hooks.
1031 if (dev
->runtime_d3cold
) {
1033 * When powering on a bridge from D3cold, the
1034 * whole hierarchy may be powered on into
1035 * D0uninitialized state, resume them to give
1036 * them a chance to suspend again
1038 pci_wakeup_bus(dev
->subordinate
);
1044 * __pci_dev_set_current_state - Set current state of a PCI device
1045 * @dev: Device to handle
1046 * @data: pointer to state to be set
1048 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
1050 pci_power_t state
= *(pci_power_t
*)data
;
1052 dev
->current_state
= state
;
1057 * pci_bus_set_current_state - Walk given bus and set current state of devices
1058 * @bus: Top bus of the subtree to walk.
1059 * @state: state to be set
1061 void pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
1064 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
1068 * __pci_complete_power_transition - Complete power transition of a PCI device
1069 * @dev: PCI device to handle.
1070 * @state: State to put the device into.
1072 * This function should not be called directly by device drivers.
1074 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
1078 if (state
<= PCI_D0
)
1080 ret
= pci_platform_power_transition(dev
, state
);
1081 /* Power off the bridge may power off the whole hierarchy */
1082 if (!ret
&& state
== PCI_D3cold
)
1083 pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
1086 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
1089 * pci_set_power_state - Set the power state of a PCI device
1090 * @dev: PCI device to handle.
1091 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1093 * Transition a device to a new power state, using the platform firmware and/or
1094 * the device's PCI PM registers.
1097 * -EINVAL if the requested state is invalid.
1098 * -EIO if device does not support PCI PM or its PM capabilities register has a
1099 * wrong version, or device doesn't support the requested state.
1100 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1101 * 0 if device already is in the requested state.
1102 * 0 if the transition is to D3 but D3 is not supported.
1103 * 0 if device's power state has been successfully changed.
1105 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
1109 /* Bound the state we're entering */
1110 if (state
> PCI_D3cold
)
1112 else if (state
< PCI_D0
)
1114 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
1117 * If the device or the parent bridge do not support PCI
1118 * PM, ignore the request if we're doing anything other
1119 * than putting it into D0 (which would only happen on
1124 /* Check if we're already there */
1125 if (dev
->current_state
== state
)
1128 __pci_start_power_transition(dev
, state
);
1131 * This device is quirked not to be put into D3, so don't put it in
1134 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
1138 * To put device in D3cold, we put device into D3hot in native
1139 * way, then put device into D3cold with platform ops
1141 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
1144 if (!__pci_complete_power_transition(dev
, state
))
1149 EXPORT_SYMBOL(pci_set_power_state
);
1152 * pci_choose_state - Choose the power state of a PCI device
1153 * @dev: PCI device to be suspended
1154 * @state: target sleep state for the whole system. This is the value
1155 * that is passed to suspend() function.
1157 * Returns PCI power state suitable for given device and given system
1160 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
1167 ret
= platform_pci_choose_state(dev
);
1168 if (ret
!= PCI_POWER_ERROR
)
1171 switch (state
.event
) {
1174 case PM_EVENT_FREEZE
:
1175 case PM_EVENT_PRETHAW
:
1176 /* REVISIT both freeze and pre-thaw "should" use D0 */
1177 case PM_EVENT_SUSPEND
:
1178 case PM_EVENT_HIBERNATE
:
1181 pci_info(dev
, "unrecognized suspend event %d\n",
1187 EXPORT_SYMBOL(pci_choose_state
);
1189 #define PCI_EXP_SAVE_REGS 7
1191 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
1192 u16 cap
, bool extended
)
1194 struct pci_cap_saved_state
*tmp
;
1196 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
1197 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
1203 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
1205 return _pci_find_saved_cap(dev
, cap
, false);
1208 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
1210 return _pci_find_saved_cap(dev
, cap
, true);
1213 static int pci_save_pcie_state(struct pci_dev
*dev
)
1216 struct pci_cap_saved_state
*save_state
;
1219 if (!pci_is_pcie(dev
))
1222 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1224 pci_err(dev
, "buffer not found in %s\n", __func__
);
1228 cap
= (u16
*)&save_state
->cap
.data
[0];
1229 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
1230 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
1231 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
1232 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
1233 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
1234 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
1235 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
1240 static void pci_restore_pcie_state(struct pci_dev
*dev
)
1243 struct pci_cap_saved_state
*save_state
;
1246 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1250 cap
= (u16
*)&save_state
->cap
.data
[0];
1251 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
1252 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1253 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1254 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1255 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1256 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1257 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1260 static int pci_save_pcix_state(struct pci_dev
*dev
)
1263 struct pci_cap_saved_state
*save_state
;
1265 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1269 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1271 pci_err(dev
, "buffer not found in %s\n", __func__
);
1275 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1276 (u16
*)save_state
->cap
.data
);
1281 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1284 struct pci_cap_saved_state
*save_state
;
1287 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1288 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1289 if (!save_state
|| !pos
)
1291 cap
= (u16
*)&save_state
->cap
.data
[0];
1293 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1296 static void pci_save_ltr_state(struct pci_dev
*dev
)
1299 struct pci_cap_saved_state
*save_state
;
1302 if (!pci_is_pcie(dev
))
1305 ltr
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_LTR
);
1309 save_state
= pci_find_saved_ext_cap(dev
, PCI_EXT_CAP_ID_LTR
);
1311 pci_err(dev
, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1315 cap
= (u16
*)&save_state
->cap
.data
[0];
1316 pci_read_config_word(dev
, ltr
+ PCI_LTR_MAX_SNOOP_LAT
, cap
++);
1317 pci_read_config_word(dev
, ltr
+ PCI_LTR_MAX_NOSNOOP_LAT
, cap
++);
1320 static void pci_restore_ltr_state(struct pci_dev
*dev
)
1322 struct pci_cap_saved_state
*save_state
;
1326 save_state
= pci_find_saved_ext_cap(dev
, PCI_EXT_CAP_ID_LTR
);
1327 ltr
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_LTR
);
1328 if (!save_state
|| !ltr
)
1331 cap
= (u16
*)&save_state
->cap
.data
[0];
1332 pci_write_config_word(dev
, ltr
+ PCI_LTR_MAX_SNOOP_LAT
, *cap
++);
1333 pci_write_config_word(dev
, ltr
+ PCI_LTR_MAX_NOSNOOP_LAT
, *cap
++);
1337 * pci_save_state - save the PCI configuration space of a device before
1339 * @dev: PCI device that we're dealing with
1341 int pci_save_state(struct pci_dev
*dev
)
1344 /* XXX: 100% dword access ok here? */
1345 for (i
= 0; i
< 16; i
++)
1346 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1347 dev
->state_saved
= true;
1349 i
= pci_save_pcie_state(dev
);
1353 i
= pci_save_pcix_state(dev
);
1357 pci_save_ltr_state(dev
);
1358 pci_save_dpc_state(dev
);
1359 return pci_save_vc_state(dev
);
1361 EXPORT_SYMBOL(pci_save_state
);
1363 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1364 u32 saved_val
, int retry
, bool force
)
1368 pci_read_config_dword(pdev
, offset
, &val
);
1369 if (!force
&& val
== saved_val
)
1373 pci_dbg(pdev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1374 offset
, val
, saved_val
);
1375 pci_write_config_dword(pdev
, offset
, saved_val
);
1379 pci_read_config_dword(pdev
, offset
, &val
);
1380 if (val
== saved_val
)
1387 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1388 int start
, int end
, int retry
,
1393 for (index
= end
; index
>= start
; index
--)
1394 pci_restore_config_dword(pdev
, 4 * index
,
1395 pdev
->saved_config_space
[index
],
1399 static void pci_restore_config_space(struct pci_dev
*pdev
)
1401 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1402 pci_restore_config_space_range(pdev
, 10, 15, 0, false);
1403 /* Restore BARs before the command register. */
1404 pci_restore_config_space_range(pdev
, 4, 9, 10, false);
1405 pci_restore_config_space_range(pdev
, 0, 3, 0, false);
1406 } else if (pdev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1407 pci_restore_config_space_range(pdev
, 12, 15, 0, false);
1410 * Force rewriting of prefetch registers to avoid S3 resume
1411 * issues on Intel PCI bridges that occur when these
1412 * registers are not explicitly written.
1414 pci_restore_config_space_range(pdev
, 9, 11, 0, true);
1415 pci_restore_config_space_range(pdev
, 0, 8, 0, false);
1417 pci_restore_config_space_range(pdev
, 0, 15, 0, false);
1421 static void pci_restore_rebar_state(struct pci_dev
*pdev
)
1423 unsigned int pos
, nbars
, i
;
1426 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
1430 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1431 nbars
= (ctrl
& PCI_REBAR_CTRL_NBAR_MASK
) >>
1432 PCI_REBAR_CTRL_NBAR_SHIFT
;
1434 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
1435 struct resource
*res
;
1438 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
1439 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
1440 res
= pdev
->resource
+ bar_idx
;
1441 size
= order_base_2((resource_size(res
) >> 20) | 1) - 1;
1442 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
1443 ctrl
|= size
<< PCI_REBAR_CTRL_BAR_SHIFT
;
1444 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
1449 * pci_restore_state - Restore the saved state of a PCI device
1450 * @dev: PCI device that we're dealing with
1452 void pci_restore_state(struct pci_dev
*dev
)
1454 if (!dev
->state_saved
)
1458 * Restore max latencies (in the LTR capability) before enabling
1459 * LTR itself (in the PCIe capability).
1461 pci_restore_ltr_state(dev
);
1463 pci_restore_pcie_state(dev
);
1464 pci_restore_pasid_state(dev
);
1465 pci_restore_pri_state(dev
);
1466 pci_restore_ats_state(dev
);
1467 pci_restore_vc_state(dev
);
1468 pci_restore_rebar_state(dev
);
1469 pci_restore_dpc_state(dev
);
1471 pci_cleanup_aer_error_status_regs(dev
);
1473 pci_restore_config_space(dev
);
1475 pci_restore_pcix_state(dev
);
1476 pci_restore_msi_state(dev
);
1478 /* Restore ACS and IOV configuration state */
1479 pci_enable_acs(dev
);
1480 pci_restore_iov_state(dev
);
1482 dev
->state_saved
= false;
1484 EXPORT_SYMBOL(pci_restore_state
);
1486 struct pci_saved_state
{
1487 u32 config_space
[16];
1488 struct pci_cap_saved_data cap
[0];
1492 * pci_store_saved_state - Allocate and return an opaque struct containing
1493 * the device saved state.
1494 * @dev: PCI device that we're dealing with
1496 * Return NULL if no state or error.
1498 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1500 struct pci_saved_state
*state
;
1501 struct pci_cap_saved_state
*tmp
;
1502 struct pci_cap_saved_data
*cap
;
1505 if (!dev
->state_saved
)
1508 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1510 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1511 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1513 state
= kzalloc(size
, GFP_KERNEL
);
1517 memcpy(state
->config_space
, dev
->saved_config_space
,
1518 sizeof(state
->config_space
));
1521 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1522 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1523 memcpy(cap
, &tmp
->cap
, len
);
1524 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1526 /* Empty cap_save terminates list */
1530 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1533 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1534 * @dev: PCI device that we're dealing with
1535 * @state: Saved state returned from pci_store_saved_state()
1537 int pci_load_saved_state(struct pci_dev
*dev
,
1538 struct pci_saved_state
*state
)
1540 struct pci_cap_saved_data
*cap
;
1542 dev
->state_saved
= false;
1547 memcpy(dev
->saved_config_space
, state
->config_space
,
1548 sizeof(state
->config_space
));
1552 struct pci_cap_saved_state
*tmp
;
1554 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1555 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1558 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1559 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1560 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1563 dev
->state_saved
= true;
1566 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1569 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1570 * and free the memory allocated for it.
1571 * @dev: PCI device that we're dealing with
1572 * @state: Pointer to saved state returned from pci_store_saved_state()
1574 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1575 struct pci_saved_state
**state
)
1577 int ret
= pci_load_saved_state(dev
, *state
);
1582 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1584 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1586 return pci_enable_resources(dev
, bars
);
1589 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1592 struct pci_dev
*bridge
;
1596 err
= pci_set_power_state(dev
, PCI_D0
);
1597 if (err
< 0 && err
!= -EIO
)
1600 bridge
= pci_upstream_bridge(dev
);
1602 pcie_aspm_powersave_config_link(bridge
);
1604 err
= pcibios_enable_device(dev
, bars
);
1607 pci_fixup_device(pci_fixup_enable
, dev
);
1609 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1612 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1614 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1615 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1616 pci_write_config_word(dev
, PCI_COMMAND
,
1617 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1624 * pci_reenable_device - Resume abandoned device
1625 * @dev: PCI device to be resumed
1627 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1628 * to be called by normal code, write proper resume handler and use it instead.
1630 int pci_reenable_device(struct pci_dev
*dev
)
1632 if (pci_is_enabled(dev
))
1633 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1636 EXPORT_SYMBOL(pci_reenable_device
);
1638 static void pci_enable_bridge(struct pci_dev
*dev
)
1640 struct pci_dev
*bridge
;
1643 bridge
= pci_upstream_bridge(dev
);
1645 pci_enable_bridge(bridge
);
1647 if (pci_is_enabled(dev
)) {
1648 if (!dev
->is_busmaster
)
1649 pci_set_master(dev
);
1653 retval
= pci_enable_device(dev
);
1655 pci_err(dev
, "Error enabling bridge (%d), continuing\n",
1657 pci_set_master(dev
);
1660 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1662 struct pci_dev
*bridge
;
1667 * Power state could be unknown at this point, either due to a fresh
1668 * boot or a device removal call. So get the current power state
1669 * so that things like MSI message writing will behave as expected
1670 * (e.g. if the device really is in D0 at enable time).
1674 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1675 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1678 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1679 return 0; /* already enabled */
1681 bridge
= pci_upstream_bridge(dev
);
1683 pci_enable_bridge(bridge
);
1685 /* only skip sriov related */
1686 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1687 if (dev
->resource
[i
].flags
& flags
)
1689 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1690 if (dev
->resource
[i
].flags
& flags
)
1693 err
= do_pci_enable_device(dev
, bars
);
1695 atomic_dec(&dev
->enable_cnt
);
1700 * pci_enable_device_io - Initialize a device for use with IO space
1701 * @dev: PCI device to be initialized
1703 * Initialize device before it's used by a driver. Ask low-level code
1704 * to enable I/O resources. Wake up the device if it was suspended.
1705 * Beware, this function can fail.
1707 int pci_enable_device_io(struct pci_dev
*dev
)
1709 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1711 EXPORT_SYMBOL(pci_enable_device_io
);
1714 * pci_enable_device_mem - Initialize a device for use with Memory space
1715 * @dev: PCI device to be initialized
1717 * Initialize device before it's used by a driver. Ask low-level code
1718 * to enable Memory resources. Wake up the device if it was suspended.
1719 * Beware, this function can fail.
1721 int pci_enable_device_mem(struct pci_dev
*dev
)
1723 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1725 EXPORT_SYMBOL(pci_enable_device_mem
);
1728 * pci_enable_device - Initialize device before it's used by a driver.
1729 * @dev: PCI device to be initialized
1731 * Initialize device before it's used by a driver. Ask low-level code
1732 * to enable I/O and memory. Wake up the device if it was suspended.
1733 * Beware, this function can fail.
1735 * Note we don't actually enable the device many times if we call
1736 * this function repeatedly (we just increment the count).
1738 int pci_enable_device(struct pci_dev
*dev
)
1740 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1742 EXPORT_SYMBOL(pci_enable_device
);
1745 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
1746 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
1747 * there's no need to track it separately. pci_devres is initialized
1748 * when a device is enabled using managed PCI device enable interface.
1751 unsigned int enabled
:1;
1752 unsigned int pinned
:1;
1753 unsigned int orig_intx
:1;
1754 unsigned int restore_intx
:1;
1759 static void pcim_release(struct device
*gendev
, void *res
)
1761 struct pci_dev
*dev
= to_pci_dev(gendev
);
1762 struct pci_devres
*this = res
;
1765 if (dev
->msi_enabled
)
1766 pci_disable_msi(dev
);
1767 if (dev
->msix_enabled
)
1768 pci_disable_msix(dev
);
1770 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1771 if (this->region_mask
& (1 << i
))
1772 pci_release_region(dev
, i
);
1777 if (this->restore_intx
)
1778 pci_intx(dev
, this->orig_intx
);
1780 if (this->enabled
&& !this->pinned
)
1781 pci_disable_device(dev
);
1784 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1786 struct pci_devres
*dr
, *new_dr
;
1788 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1792 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1795 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1798 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1800 if (pci_is_managed(pdev
))
1801 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1806 * pcim_enable_device - Managed pci_enable_device()
1807 * @pdev: PCI device to be initialized
1809 * Managed pci_enable_device().
1811 int pcim_enable_device(struct pci_dev
*pdev
)
1813 struct pci_devres
*dr
;
1816 dr
= get_pci_dr(pdev
);
1822 rc
= pci_enable_device(pdev
);
1824 pdev
->is_managed
= 1;
1829 EXPORT_SYMBOL(pcim_enable_device
);
1832 * pcim_pin_device - Pin managed PCI device
1833 * @pdev: PCI device to pin
1835 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1836 * driver detach. @pdev must have been enabled with
1837 * pcim_enable_device().
1839 void pcim_pin_device(struct pci_dev
*pdev
)
1841 struct pci_devres
*dr
;
1843 dr
= find_pci_dr(pdev
);
1844 WARN_ON(!dr
|| !dr
->enabled
);
1848 EXPORT_SYMBOL(pcim_pin_device
);
1851 * pcibios_add_device - provide arch specific hooks when adding device dev
1852 * @dev: the PCI device being added
1854 * Permits the platform to provide architecture specific functionality when
1855 * devices are added. This is the default implementation. Architecture
1856 * implementations can override this.
1858 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1864 * pcibios_release_device - provide arch specific hooks when releasing
1866 * @dev: the PCI device being released
1868 * Permits the platform to provide architecture specific functionality when
1869 * devices are released. This is the default implementation. Architecture
1870 * implementations can override this.
1872 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1875 * pcibios_disable_device - disable arch specific PCI resources for device dev
1876 * @dev: the PCI device to disable
1878 * Disables architecture specific PCI resources for the device. This
1879 * is the default implementation. Architecture implementations can
1882 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
1885 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1886 * @irq: ISA IRQ to penalize
1887 * @active: IRQ active or not
1889 * Permits the platform to provide architecture-specific functionality when
1890 * penalizing ISA IRQs. This is the default implementation. Architecture
1891 * implementations can override this.
1893 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1895 static void do_pci_disable_device(struct pci_dev
*dev
)
1899 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1900 if (pci_command
& PCI_COMMAND_MASTER
) {
1901 pci_command
&= ~PCI_COMMAND_MASTER
;
1902 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1905 pcibios_disable_device(dev
);
1909 * pci_disable_enabled_device - Disable device without updating enable_cnt
1910 * @dev: PCI device to disable
1912 * NOTE: This function is a backend of PCI power management routines and is
1913 * not supposed to be called drivers.
1915 void pci_disable_enabled_device(struct pci_dev
*dev
)
1917 if (pci_is_enabled(dev
))
1918 do_pci_disable_device(dev
);
1922 * pci_disable_device - Disable PCI device after use
1923 * @dev: PCI device to be disabled
1925 * Signal to the system that the PCI device is not in use by the system
1926 * anymore. This only involves disabling PCI bus-mastering, if active.
1928 * Note we don't actually disable the device until all callers of
1929 * pci_enable_device() have called pci_disable_device().
1931 void pci_disable_device(struct pci_dev
*dev
)
1933 struct pci_devres
*dr
;
1935 dr
= find_pci_dr(dev
);
1939 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1940 "disabling already-disabled device");
1942 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1945 do_pci_disable_device(dev
);
1947 dev
->is_busmaster
= 0;
1949 EXPORT_SYMBOL(pci_disable_device
);
1952 * pcibios_set_pcie_reset_state - set reset state for device dev
1953 * @dev: the PCIe device reset
1954 * @state: Reset state to enter into
1956 * Set the PCIe reset state for the device. This is the default
1957 * implementation. Architecture implementations can override this.
1959 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1960 enum pcie_reset_state state
)
1966 * pci_set_pcie_reset_state - set reset state for device dev
1967 * @dev: the PCIe device reset
1968 * @state: Reset state to enter into
1970 * Sets the PCI reset state for the device.
1972 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1974 return pcibios_set_pcie_reset_state(dev
, state
);
1976 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1979 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1980 * @dev: PCIe root port or event collector.
1982 void pcie_clear_root_pme_status(struct pci_dev
*dev
)
1984 pcie_capability_set_dword(dev
, PCI_EXP_RTSTA
, PCI_EXP_RTSTA_PME
);
1988 * pci_check_pme_status - Check if given device has generated PME.
1989 * @dev: Device to check.
1991 * Check the PME status of the device and if set, clear it and clear PME enable
1992 * (if set). Return 'true' if PME status and PME enable were both set or
1993 * 'false' otherwise.
1995 bool pci_check_pme_status(struct pci_dev
*dev
)
2004 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
2005 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
2006 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
2009 /* Clear PME status. */
2010 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
2011 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
2012 /* Disable PME to avoid interrupt flood. */
2013 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2017 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
2023 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2024 * @dev: Device to handle.
2025 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2027 * Check if @dev has generated PME and queue a resume request for it in that
2030 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
2032 if (pme_poll_reset
&& dev
->pme_poll
)
2033 dev
->pme_poll
= false;
2035 if (pci_check_pme_status(dev
)) {
2036 pci_wakeup_event(dev
);
2037 pm_request_resume(&dev
->dev
);
2043 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2044 * @bus: Top bus of the subtree to walk.
2046 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
2049 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
2054 * pci_pme_capable - check the capability of PCI device to generate PME#
2055 * @dev: PCI device to handle.
2056 * @state: PCI state from which device will issue PME#.
2058 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
2063 return !!(dev
->pme_support
& (1 << state
));
2065 EXPORT_SYMBOL(pci_pme_capable
);
2067 static void pci_pme_list_scan(struct work_struct
*work
)
2069 struct pci_pme_device
*pme_dev
, *n
;
2071 mutex_lock(&pci_pme_list_mutex
);
2072 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
2073 if (pme_dev
->dev
->pme_poll
) {
2074 struct pci_dev
*bridge
;
2076 bridge
= pme_dev
->dev
->bus
->self
;
2078 * If bridge is in low power state, the
2079 * configuration space of subordinate devices
2080 * may be not accessible
2082 if (bridge
&& bridge
->current_state
!= PCI_D0
)
2085 * If the device is in D3cold it should not be
2088 if (pme_dev
->dev
->current_state
== PCI_D3cold
)
2091 pci_pme_wakeup(pme_dev
->dev
, NULL
);
2093 list_del(&pme_dev
->list
);
2097 if (!list_empty(&pci_pme_list
))
2098 queue_delayed_work(system_freezable_wq
, &pci_pme_work
,
2099 msecs_to_jiffies(PME_TIMEOUT
));
2100 mutex_unlock(&pci_pme_list_mutex
);
2103 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
2107 if (!dev
->pme_support
)
2110 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2111 /* Clear PME_Status by writing 1 to it and enable PME# */
2112 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
2114 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2116 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2120 * pci_pme_restore - Restore PME configuration after config space restore.
2121 * @dev: PCI device to update.
2123 void pci_pme_restore(struct pci_dev
*dev
)
2127 if (!dev
->pme_support
)
2130 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
2131 if (dev
->wakeup_prepared
) {
2132 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
2133 pmcsr
&= ~PCI_PM_CTRL_PME_STATUS
;
2135 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
2136 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
2138 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
2142 * pci_pme_active - enable or disable PCI device's PME# function
2143 * @dev: PCI device to handle.
2144 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2146 * The caller must verify that the device is capable of generating PME# before
2147 * calling this function with @enable equal to 'true'.
2149 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
2151 __pci_pme_active(dev
, enable
);
2154 * PCI (as opposed to PCIe) PME requires that the device have
2155 * its PME# line hooked up correctly. Not all hardware vendors
2156 * do this, so the PME never gets delivered and the device
2157 * remains asleep. The easiest way around this is to
2158 * periodically walk the list of suspended devices and check
2159 * whether any have their PME flag set. The assumption is that
2160 * we'll wake up often enough anyway that this won't be a huge
2161 * hit, and the power savings from the devices will still be a
2164 * Although PCIe uses in-band PME message instead of PME# line
2165 * to report PME, PME does not work for some PCIe devices in
2166 * reality. For example, there are devices that set their PME
2167 * status bits, but don't really bother to send a PME message;
2168 * there are PCI Express Root Ports that don't bother to
2169 * trigger interrupts when they receive PME messages from the
2170 * devices below. So PME poll is used for PCIe devices too.
2173 if (dev
->pme_poll
) {
2174 struct pci_pme_device
*pme_dev
;
2176 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
2179 pci_warn(dev
, "can't enable PME#\n");
2183 mutex_lock(&pci_pme_list_mutex
);
2184 list_add(&pme_dev
->list
, &pci_pme_list
);
2185 if (list_is_singular(&pci_pme_list
))
2186 queue_delayed_work(system_freezable_wq
,
2188 msecs_to_jiffies(PME_TIMEOUT
));
2189 mutex_unlock(&pci_pme_list_mutex
);
2191 mutex_lock(&pci_pme_list_mutex
);
2192 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
2193 if (pme_dev
->dev
== dev
) {
2194 list_del(&pme_dev
->list
);
2199 mutex_unlock(&pci_pme_list_mutex
);
2203 pci_dbg(dev
, "PME# %s\n", enable
? "enabled" : "disabled");
2205 EXPORT_SYMBOL(pci_pme_active
);
2208 * __pci_enable_wake - enable PCI device as wakeup event source
2209 * @dev: PCI device affected
2210 * @state: PCI state from which device will issue wakeup events
2211 * @enable: True to enable event generation; false to disable
2213 * This enables the device as a wakeup event source, or disables it.
2214 * When such events involves platform-specific hooks, those hooks are
2215 * called automatically by this routine.
2217 * Devices with legacy power management (no standard PCI PM capabilities)
2218 * always require such platform hooks.
2221 * 0 is returned on success
2222 * -EINVAL is returned if device is not supposed to wake up the system
2223 * Error code depending on the platform is returned if both the platform and
2224 * the native mechanism fail to enable the generation of wake-up events
2226 static int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
, bool enable
)
2231 * Bridges that are not power-manageable directly only signal
2232 * wakeup on behalf of subordinate devices which is set up
2233 * elsewhere, so skip them. However, bridges that are
2234 * power-manageable may signal wakeup for themselves (for example,
2235 * on a hotplug event) and they need to be covered here.
2237 if (!pci_power_manageable(dev
))
2240 /* Don't do the same thing twice in a row for one device. */
2241 if (!!enable
== !!dev
->wakeup_prepared
)
2245 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2246 * Anderson we should be doing PME# wake enable followed by ACPI wake
2247 * enable. To disable wake-up we call the platform first, for symmetry.
2253 if (pci_pme_capable(dev
, state
))
2254 pci_pme_active(dev
, true);
2257 error
= platform_pci_set_wakeup(dev
, true);
2261 dev
->wakeup_prepared
= true;
2263 platform_pci_set_wakeup(dev
, false);
2264 pci_pme_active(dev
, false);
2265 dev
->wakeup_prepared
= false;
2272 * pci_enable_wake - change wakeup settings for a PCI device
2273 * @pci_dev: Target device
2274 * @state: PCI state from which device will issue wakeup events
2275 * @enable: Whether or not to enable event generation
2277 * If @enable is set, check device_may_wakeup() for the device before calling
2278 * __pci_enable_wake() for it.
2280 int pci_enable_wake(struct pci_dev
*pci_dev
, pci_power_t state
, bool enable
)
2282 if (enable
&& !device_may_wakeup(&pci_dev
->dev
))
2285 return __pci_enable_wake(pci_dev
, state
, enable
);
2287 EXPORT_SYMBOL(pci_enable_wake
);
2290 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2291 * @dev: PCI device to prepare
2292 * @enable: True to enable wake-up event generation; false to disable
2294 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2295 * and this function allows them to set that up cleanly - pci_enable_wake()
2296 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2297 * ordering constraints.
2299 * This function only returns error code if the device is not allowed to wake
2300 * up the system from sleep or it is not capable of generating PME# from both
2301 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2303 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
2305 return pci_pme_capable(dev
, PCI_D3cold
) ?
2306 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
2307 pci_enable_wake(dev
, PCI_D3hot
, enable
);
2309 EXPORT_SYMBOL(pci_wake_from_d3
);
2312 * pci_target_state - find an appropriate low power state for a given PCI dev
2314 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2316 * Use underlying platform code to find a supported low power state for @dev.
2317 * If the platform can't manage @dev, return the deepest state from which it
2318 * can generate wake events, based on any available PME info.
2320 static pci_power_t
pci_target_state(struct pci_dev
*dev
, bool wakeup
)
2322 pci_power_t target_state
= PCI_D3hot
;
2324 if (platform_pci_power_manageable(dev
)) {
2326 * Call the platform to find the target state for the device.
2328 pci_power_t state
= platform_pci_choose_state(dev
);
2331 case PCI_POWER_ERROR
:
2336 if (pci_no_d1d2(dev
))
2338 /* else, fall through */
2340 target_state
= state
;
2343 return target_state
;
2347 target_state
= PCI_D0
;
2350 * If the device is in D3cold even though it's not power-manageable by
2351 * the platform, it may have been powered down by non-standard means.
2352 * Best to let it slumber.
2354 if (dev
->current_state
== PCI_D3cold
)
2355 target_state
= PCI_D3cold
;
2359 * Find the deepest state from which the device can generate
2362 if (dev
->pme_support
) {
2364 && !(dev
->pme_support
& (1 << target_state
)))
2369 return target_state
;
2373 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2374 * into a sleep state
2375 * @dev: Device to handle.
2377 * Choose the power state appropriate for the device depending on whether
2378 * it can wake up the system and/or is power manageable by the platform
2379 * (PCI_D3hot is the default) and put the device into that state.
2381 int pci_prepare_to_sleep(struct pci_dev
*dev
)
2383 bool wakeup
= device_may_wakeup(&dev
->dev
);
2384 pci_power_t target_state
= pci_target_state(dev
, wakeup
);
2387 if (target_state
== PCI_POWER_ERROR
)
2390 pci_enable_wake(dev
, target_state
, wakeup
);
2392 error
= pci_set_power_state(dev
, target_state
);
2395 pci_enable_wake(dev
, target_state
, false);
2399 EXPORT_SYMBOL(pci_prepare_to_sleep
);
2402 * pci_back_from_sleep - turn PCI device on during system-wide transition
2403 * into working state
2404 * @dev: Device to handle.
2406 * Disable device's system wake-up capability and put it into D0.
2408 int pci_back_from_sleep(struct pci_dev
*dev
)
2410 pci_enable_wake(dev
, PCI_D0
, false);
2411 return pci_set_power_state(dev
, PCI_D0
);
2413 EXPORT_SYMBOL(pci_back_from_sleep
);
2416 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2417 * @dev: PCI device being suspended.
2419 * Prepare @dev to generate wake-up events at run time and put it into a low
2422 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2424 pci_power_t target_state
;
2427 target_state
= pci_target_state(dev
, device_can_wakeup(&dev
->dev
));
2428 if (target_state
== PCI_POWER_ERROR
)
2431 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
2433 __pci_enable_wake(dev
, target_state
, pci_dev_run_wake(dev
));
2435 error
= pci_set_power_state(dev
, target_state
);
2438 pci_enable_wake(dev
, target_state
, false);
2439 dev
->runtime_d3cold
= false;
2446 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2447 * @dev: Device to check.
2449 * Return true if the device itself is capable of generating wake-up events
2450 * (through the platform or using the native PCIe PME) or if the device supports
2451 * PME and one of its upstream bridges can generate wake-up events.
2453 bool pci_dev_run_wake(struct pci_dev
*dev
)
2455 struct pci_bus
*bus
= dev
->bus
;
2457 if (!dev
->pme_support
)
2460 /* PME-capable in principle, but not from the target power state */
2461 if (!pci_pme_capable(dev
, pci_target_state(dev
, true)))
2464 if (device_can_wakeup(&dev
->dev
))
2467 while (bus
->parent
) {
2468 struct pci_dev
*bridge
= bus
->self
;
2470 if (device_can_wakeup(&bridge
->dev
))
2476 /* We have reached the root bus. */
2478 return device_can_wakeup(bus
->bridge
);
2482 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2485 * pci_dev_need_resume - Check if it is necessary to resume the device.
2486 * @pci_dev: Device to check.
2488 * Return 'true' if the device is not runtime-suspended or it has to be
2489 * reconfigured due to wakeup settings difference between system and runtime
2490 * suspend, or the current power state of it is not suitable for the upcoming
2491 * (system-wide) transition.
2493 bool pci_dev_need_resume(struct pci_dev
*pci_dev
)
2495 struct device
*dev
= &pci_dev
->dev
;
2496 pci_power_t target_state
;
2498 if (!pm_runtime_suspended(dev
) || platform_pci_need_resume(pci_dev
))
2501 target_state
= pci_target_state(pci_dev
, device_may_wakeup(dev
));
2504 * If the earlier platform check has not triggered, D3cold is just power
2505 * removal on top of D3hot, so no need to resume the device in that
2508 return target_state
!= pci_dev
->current_state
&&
2509 target_state
!= PCI_D3cold
&&
2510 pci_dev
->current_state
!= PCI_D3hot
;
2514 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2515 * @pci_dev: Device to check.
2517 * If the device is suspended and it is not configured for system wakeup,
2518 * disable PME for it to prevent it from waking up the system unnecessarily.
2520 * Note that if the device's power state is D3cold and the platform check in
2521 * pci_dev_need_resume() has not triggered, the device's configuration need not
2524 void pci_dev_adjust_pme(struct pci_dev
*pci_dev
)
2526 struct device
*dev
= &pci_dev
->dev
;
2528 spin_lock_irq(&dev
->power
.lock
);
2530 if (pm_runtime_suspended(dev
) && !device_may_wakeup(dev
) &&
2531 pci_dev
->current_state
< PCI_D3cold
)
2532 __pci_pme_active(pci_dev
, false);
2534 spin_unlock_irq(&dev
->power
.lock
);
2538 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2539 * @pci_dev: Device to handle.
2541 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2542 * it might have been disabled during the prepare phase of system suspend if
2543 * the device was not configured for system wakeup.
2545 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2547 struct device
*dev
= &pci_dev
->dev
;
2549 if (!pci_dev_run_wake(pci_dev
))
2552 spin_lock_irq(&dev
->power
.lock
);
2554 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2555 __pci_pme_active(pci_dev
, true);
2557 spin_unlock_irq(&dev
->power
.lock
);
2560 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2562 struct device
*dev
= &pdev
->dev
;
2563 struct device
*parent
= dev
->parent
;
2566 pm_runtime_get_sync(parent
);
2567 pm_runtime_get_noresume(dev
);
2569 * pdev->current_state is set to PCI_D3cold during suspending,
2570 * so wait until suspending completes
2572 pm_runtime_barrier(dev
);
2574 * Only need to resume devices in D3cold, because config
2575 * registers are still accessible for devices suspended but
2578 if (pdev
->current_state
== PCI_D3cold
)
2579 pm_runtime_resume(dev
);
2582 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2584 struct device
*dev
= &pdev
->dev
;
2585 struct device
*parent
= dev
->parent
;
2587 pm_runtime_put(dev
);
2589 pm_runtime_put_sync(parent
);
2592 static const struct dmi_system_id bridge_d3_blacklist
[] = {
2596 * Gigabyte X299 root port is not marked as hotplug capable
2597 * which allows Linux to power manage it. However, this
2598 * confuses the BIOS SMI handler so don't power manage root
2599 * ports on that system.
2601 .ident
= "X299 DESIGNARE EX-CF",
2603 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co., Ltd."),
2604 DMI_MATCH(DMI_BOARD_NAME
, "X299 DESIGNARE EX-CF"),
2612 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2613 * @bridge: Bridge to check
2615 * This function checks if it is possible to move the bridge to D3.
2616 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2618 bool pci_bridge_d3_possible(struct pci_dev
*bridge
)
2620 if (!pci_is_pcie(bridge
))
2623 switch (pci_pcie_type(bridge
)) {
2624 case PCI_EXP_TYPE_ROOT_PORT
:
2625 case PCI_EXP_TYPE_UPSTREAM
:
2626 case PCI_EXP_TYPE_DOWNSTREAM
:
2627 if (pci_bridge_d3_disable
)
2631 * Hotplug ports handled by firmware in System Management Mode
2632 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2634 if (bridge
->is_hotplug_bridge
&& !pciehp_is_native(bridge
))
2637 if (pci_bridge_d3_force
)
2640 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2641 if (bridge
->is_thunderbolt
)
2644 /* Platform might know better if the bridge supports D3 */
2645 if (platform_pci_bridge_d3(bridge
))
2649 * Hotplug ports handled natively by the OS were not validated
2650 * by vendors for runtime D3 at least until 2018 because there
2651 * was no OS support.
2653 if (bridge
->is_hotplug_bridge
)
2656 if (dmi_check_system(bridge_d3_blacklist
))
2660 * It should be safe to put PCIe ports from 2015 or newer
2663 if (dmi_get_bios_year() >= 2015)
2671 static int pci_dev_check_d3cold(struct pci_dev
*dev
, void *data
)
2673 bool *d3cold_ok
= data
;
2675 if (/* The device needs to be allowed to go D3cold ... */
2676 dev
->no_d3cold
|| !dev
->d3cold_allowed
||
2678 /* ... and if it is wakeup capable to do so from D3cold. */
2679 (device_may_wakeup(&dev
->dev
) &&
2680 !pci_pme_capable(dev
, PCI_D3cold
)) ||
2682 /* If it is a bridge it must be allowed to go to D3. */
2683 !pci_power_manageable(dev
))
2691 * pci_bridge_d3_update - Update bridge D3 capabilities
2692 * @dev: PCI device which is changed
2694 * Update upstream bridge PM capabilities accordingly depending on if the
2695 * device PM configuration was changed or the device is being removed. The
2696 * change is also propagated upstream.
2698 void pci_bridge_d3_update(struct pci_dev
*dev
)
2700 bool remove
= !device_is_registered(&dev
->dev
);
2701 struct pci_dev
*bridge
;
2702 bool d3cold_ok
= true;
2704 bridge
= pci_upstream_bridge(dev
);
2705 if (!bridge
|| !pci_bridge_d3_possible(bridge
))
2709 * If D3 is currently allowed for the bridge, removing one of its
2710 * children won't change that.
2712 if (remove
&& bridge
->bridge_d3
)
2716 * If D3 is currently allowed for the bridge and a child is added or
2717 * changed, disallowance of D3 can only be caused by that child, so
2718 * we only need to check that single device, not any of its siblings.
2720 * If D3 is currently not allowed for the bridge, checking the device
2721 * first may allow us to skip checking its siblings.
2724 pci_dev_check_d3cold(dev
, &d3cold_ok
);
2727 * If D3 is currently not allowed for the bridge, this may be caused
2728 * either by the device being changed/removed or any of its siblings,
2729 * so we need to go through all children to find out if one of them
2730 * continues to block D3.
2732 if (d3cold_ok
&& !bridge
->bridge_d3
)
2733 pci_walk_bus(bridge
->subordinate
, pci_dev_check_d3cold
,
2736 if (bridge
->bridge_d3
!= d3cold_ok
) {
2737 bridge
->bridge_d3
= d3cold_ok
;
2738 /* Propagate change to upstream bridges */
2739 pci_bridge_d3_update(bridge
);
2744 * pci_d3cold_enable - Enable D3cold for device
2745 * @dev: PCI device to handle
2747 * This function can be used in drivers to enable D3cold from the device
2748 * they handle. It also updates upstream PCI bridge PM capabilities
2751 void pci_d3cold_enable(struct pci_dev
*dev
)
2753 if (dev
->no_d3cold
) {
2754 dev
->no_d3cold
= false;
2755 pci_bridge_d3_update(dev
);
2758 EXPORT_SYMBOL_GPL(pci_d3cold_enable
);
2761 * pci_d3cold_disable - Disable D3cold for device
2762 * @dev: PCI device to handle
2764 * This function can be used in drivers to disable D3cold from the device
2765 * they handle. It also updates upstream PCI bridge PM capabilities
2768 void pci_d3cold_disable(struct pci_dev
*dev
)
2770 if (!dev
->no_d3cold
) {
2771 dev
->no_d3cold
= true;
2772 pci_bridge_d3_update(dev
);
2775 EXPORT_SYMBOL_GPL(pci_d3cold_disable
);
2778 * pci_pm_init - Initialize PM functions of given PCI device
2779 * @dev: PCI device to handle.
2781 void pci_pm_init(struct pci_dev
*dev
)
2787 pm_runtime_forbid(&dev
->dev
);
2788 pm_runtime_set_active(&dev
->dev
);
2789 pm_runtime_enable(&dev
->dev
);
2790 device_enable_async_suspend(&dev
->dev
);
2791 dev
->wakeup_prepared
= false;
2794 dev
->pme_support
= 0;
2796 /* find PCI PM capability in list */
2797 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2800 /* Check device's ability to generate PME# */
2801 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2803 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2804 pci_err(dev
, "unsupported PM cap regs version (%u)\n",
2805 pmc
& PCI_PM_CAP_VER_MASK
);
2810 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2811 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2812 dev
->bridge_d3
= pci_bridge_d3_possible(dev
);
2813 dev
->d3cold_allowed
= true;
2815 dev
->d1_support
= false;
2816 dev
->d2_support
= false;
2817 if (!pci_no_d1d2(dev
)) {
2818 if (pmc
& PCI_PM_CAP_D1
)
2819 dev
->d1_support
= true;
2820 if (pmc
& PCI_PM_CAP_D2
)
2821 dev
->d2_support
= true;
2823 if (dev
->d1_support
|| dev
->d2_support
)
2824 pci_info(dev
, "supports%s%s\n",
2825 dev
->d1_support
? " D1" : "",
2826 dev
->d2_support
? " D2" : "");
2829 pmc
&= PCI_PM_CAP_PME_MASK
;
2831 pci_info(dev
, "PME# supported from%s%s%s%s%s\n",
2832 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2833 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2834 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2835 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2836 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2837 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2838 dev
->pme_poll
= true;
2840 * Make device's PM flags reflect the wake-up capability, but
2841 * let the user space enable it to wake up the system as needed.
2843 device_set_wakeup_capable(&dev
->dev
, true);
2844 /* Disable the PME# generation functionality */
2845 pci_pme_active(dev
, false);
2848 pci_read_config_word(dev
, PCI_STATUS
, &status
);
2849 if (status
& PCI_STATUS_IMM_READY
)
2853 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
2855 unsigned long flags
= IORESOURCE_PCI_FIXED
| IORESOURCE_PCI_EA_BEI
;
2859 case PCI_EA_P_VF_MEM
:
2860 flags
|= IORESOURCE_MEM
;
2862 case PCI_EA_P_MEM_PREFETCH
:
2863 case PCI_EA_P_VF_MEM_PREFETCH
:
2864 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
2867 flags
|= IORESOURCE_IO
;
2876 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
2879 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
2880 return &dev
->resource
[bei
];
2881 #ifdef CONFIG_PCI_IOV
2882 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
2883 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
2884 return &dev
->resource
[PCI_IOV_RESOURCES
+
2885 bei
- PCI_EA_BEI_VF_BAR0
];
2887 else if (bei
== PCI_EA_BEI_ROM
)
2888 return &dev
->resource
[PCI_ROM_RESOURCE
];
2893 /* Read an Enhanced Allocation (EA) entry */
2894 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
2896 struct resource
*res
;
2897 int ent_size
, ent_offset
= offset
;
2898 resource_size_t start
, end
;
2899 unsigned long flags
;
2900 u32 dw0
, bei
, base
, max_offset
;
2902 bool support_64
= (sizeof(resource_size_t
) >= 8);
2904 pci_read_config_dword(dev
, ent_offset
, &dw0
);
2907 /* Entry size field indicates DWORDs after 1st */
2908 ent_size
= ((dw0
& PCI_EA_ES
) + 1) << 2;
2910 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
2913 bei
= (dw0
& PCI_EA_BEI
) >> 4;
2914 prop
= (dw0
& PCI_EA_PP
) >> 8;
2917 * If the Property is in the reserved range, try the Secondary
2920 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
2921 prop
= (dw0
& PCI_EA_SP
) >> 16;
2922 if (prop
> PCI_EA_P_BRIDGE_IO
)
2925 res
= pci_ea_get_resource(dev
, bei
, prop
);
2927 pci_err(dev
, "Unsupported EA entry BEI: %u\n", bei
);
2931 flags
= pci_ea_flags(dev
, prop
);
2933 pci_err(dev
, "Unsupported EA properties: %#x\n", prop
);
2938 pci_read_config_dword(dev
, ent_offset
, &base
);
2939 start
= (base
& PCI_EA_FIELD_MASK
);
2942 /* Read MaxOffset */
2943 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
2946 /* Read Base MSBs (if 64-bit entry) */
2947 if (base
& PCI_EA_IS_64
) {
2950 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
2953 flags
|= IORESOURCE_MEM_64
;
2955 /* entry starts above 32-bit boundary, can't use */
2956 if (!support_64
&& base_upper
)
2960 start
|= ((u64
)base_upper
<< 32);
2963 end
= start
+ (max_offset
| 0x03);
2965 /* Read MaxOffset MSBs (if 64-bit entry) */
2966 if (max_offset
& PCI_EA_IS_64
) {
2967 u32 max_offset_upper
;
2969 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
2972 flags
|= IORESOURCE_MEM_64
;
2974 /* entry too big, can't use */
2975 if (!support_64
&& max_offset_upper
)
2979 end
+= ((u64
)max_offset_upper
<< 32);
2983 pci_err(dev
, "EA Entry crosses address boundary\n");
2987 if (ent_size
!= ent_offset
- offset
) {
2988 pci_err(dev
, "EA Entry Size (%d) does not match length read (%d)\n",
2989 ent_size
, ent_offset
- offset
);
2993 res
->name
= pci_name(dev
);
2998 if (bei
<= PCI_EA_BEI_BAR5
)
2999 pci_info(dev
, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3001 else if (bei
== PCI_EA_BEI_ROM
)
3002 pci_info(dev
, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3004 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
3005 pci_info(dev
, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3006 bei
- PCI_EA_BEI_VF_BAR0
, res
, prop
);
3008 pci_info(dev
, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3012 return offset
+ ent_size
;
3015 /* Enhanced Allocation Initialization */
3016 void pci_ea_init(struct pci_dev
*dev
)
3023 /* find PCI EA capability in list */
3024 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
3028 /* determine the number of entries */
3029 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
3031 num_ent
&= PCI_EA_NUM_ENT_MASK
;
3033 offset
= ea
+ PCI_EA_FIRST_ENT
;
3035 /* Skip DWORD 2 for type 1 functions */
3036 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
3039 /* parse each EA entry */
3040 for (i
= 0; i
< num_ent
; ++i
)
3041 offset
= pci_ea_read(dev
, offset
);
3044 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
3045 struct pci_cap_saved_state
*new_cap
)
3047 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
3051 * _pci_add_cap_save_buffer - allocate buffer for saving given
3052 * capability registers
3053 * @dev: the PCI device
3054 * @cap: the capability to allocate the buffer for
3055 * @extended: Standard or Extended capability ID
3056 * @size: requested size of the buffer
3058 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
3059 bool extended
, unsigned int size
)
3062 struct pci_cap_saved_state
*save_state
;
3065 pos
= pci_find_ext_capability(dev
, cap
);
3067 pos
= pci_find_capability(dev
, cap
);
3072 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
3076 save_state
->cap
.cap_nr
= cap
;
3077 save_state
->cap
.cap_extended
= extended
;
3078 save_state
->cap
.size
= size
;
3079 pci_add_saved_cap(dev
, save_state
);
3084 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
3086 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
3089 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
3091 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
3095 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3096 * @dev: the PCI device
3098 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
3102 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
3103 PCI_EXP_SAVE_REGS
* sizeof(u16
));
3105 pci_err(dev
, "unable to preallocate PCI Express save buffer\n");
3107 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
3109 pci_err(dev
, "unable to preallocate PCI-X save buffer\n");
3111 error
= pci_add_ext_cap_save_buffer(dev
, PCI_EXT_CAP_ID_LTR
,
3114 pci_err(dev
, "unable to allocate suspend buffer for LTR\n");
3116 pci_allocate_vc_save_buffers(dev
);
3119 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
3121 struct pci_cap_saved_state
*tmp
;
3122 struct hlist_node
*n
;
3124 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
3129 * pci_configure_ari - enable or disable ARI forwarding
3130 * @dev: the PCI device
3132 * If @dev and its upstream bridge both support ARI, enable ARI in the
3133 * bridge. Otherwise, disable ARI in the bridge.
3135 void pci_configure_ari(struct pci_dev
*dev
)
3138 struct pci_dev
*bridge
;
3140 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
3143 bridge
= dev
->bus
->self
;
3147 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3148 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
3151 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
3152 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
3153 PCI_EXP_DEVCTL2_ARI
);
3154 bridge
->ari_enabled
= 1;
3156 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
3157 PCI_EXP_DEVCTL2_ARI
);
3158 bridge
->ari_enabled
= 0;
3162 static int pci_acs_enable
;
3165 * pci_request_acs - ask for ACS to be enabled if supported
3167 void pci_request_acs(void)
3172 static const char *disable_acs_redir_param
;
3175 * pci_disable_acs_redir - disable ACS redirect capabilities
3176 * @dev: the PCI device
3178 * For only devices specified in the disable_acs_redir parameter.
3180 static void pci_disable_acs_redir(struct pci_dev
*dev
)
3187 if (!disable_acs_redir_param
)
3190 p
= disable_acs_redir_param
;
3192 ret
= pci_dev_str_match(dev
, p
, &p
);
3194 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3195 disable_acs_redir_param
);
3198 } else if (ret
== 1) {
3203 if (*p
!= ';' && *p
!= ',') {
3204 /* End of param or invalid format */
3213 if (!pci_dev_specific_disable_acs_redir(dev
))
3216 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
3218 pci_warn(dev
, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3222 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3224 /* P2P Request & Completion Redirect */
3225 ctrl
&= ~(PCI_ACS_RR
| PCI_ACS_CR
| PCI_ACS_EC
);
3227 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
3229 pci_info(dev
, "disabled ACS redirect\n");
3233 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3234 * @dev: the PCI device
3236 static void pci_std_enable_acs(struct pci_dev
*dev
)
3242 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
3246 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
3247 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3249 /* Source Validation */
3250 ctrl
|= (cap
& PCI_ACS_SV
);
3252 /* P2P Request Redirect */
3253 ctrl
|= (cap
& PCI_ACS_RR
);
3255 /* P2P Completion Redirect */
3256 ctrl
|= (cap
& PCI_ACS_CR
);
3258 /* Upstream Forwarding */
3259 ctrl
|= (cap
& PCI_ACS_UF
);
3261 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
3265 * pci_enable_acs - enable ACS if hardware support it
3266 * @dev: the PCI device
3268 void pci_enable_acs(struct pci_dev
*dev
)
3270 if (!pci_acs_enable
)
3271 goto disable_acs_redir
;
3273 if (!pci_dev_specific_enable_acs(dev
))
3274 goto disable_acs_redir
;
3276 pci_std_enable_acs(dev
);
3280 * Note: pci_disable_acs_redir() must be called even if ACS was not
3281 * enabled by the kernel because it may have been enabled by
3282 * platform firmware. So if we are told to disable it, we should
3283 * always disable it after setting the kernel's default
3286 pci_disable_acs_redir(dev
);
3289 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3294 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
3299 * Except for egress control, capabilities are either required
3300 * or only required if controllable. Features missing from the
3301 * capability field can therefore be assumed as hard-wired enabled.
3303 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
3304 acs_flags
&= (cap
| PCI_ACS_EC
);
3306 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
3307 return (ctrl
& acs_flags
) == acs_flags
;
3311 * pci_acs_enabled - test ACS against required flags for a given device
3312 * @pdev: device to test
3313 * @acs_flags: required PCI ACS flags
3315 * Return true if the device supports the provided flags. Automatically
3316 * filters out flags that are not implemented on multifunction devices.
3318 * Note that this interface checks the effective ACS capabilities of the
3319 * device rather than the actual capabilities. For instance, most single
3320 * function endpoints are not required to support ACS because they have no
3321 * opportunity for peer-to-peer access. We therefore return 'true'
3322 * regardless of whether the device exposes an ACS capability. This makes
3323 * it much easier for callers of this function to ignore the actual type
3324 * or topology of the device when testing ACS support.
3326 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
3330 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
3335 * Conventional PCI and PCI-X devices never support ACS, either
3336 * effectively or actually. The shared bus topology implies that
3337 * any device on the bus can receive or snoop DMA.
3339 if (!pci_is_pcie(pdev
))
3342 switch (pci_pcie_type(pdev
)) {
3344 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3345 * but since their primary interface is PCI/X, we conservatively
3346 * handle them as we would a non-PCIe device.
3348 case PCI_EXP_TYPE_PCIE_BRIDGE
:
3350 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3351 * applicable... must never implement an ACS Extended Capability...".
3352 * This seems arbitrary, but we take a conservative interpretation
3353 * of this statement.
3355 case PCI_EXP_TYPE_PCI_BRIDGE
:
3356 case PCI_EXP_TYPE_RC_EC
:
3359 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3360 * implement ACS in order to indicate their peer-to-peer capabilities,
3361 * regardless of whether they are single- or multi-function devices.
3363 case PCI_EXP_TYPE_DOWNSTREAM
:
3364 case PCI_EXP_TYPE_ROOT_PORT
:
3365 return pci_acs_flags_enabled(pdev
, acs_flags
);
3367 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3368 * implemented by the remaining PCIe types to indicate peer-to-peer
3369 * capabilities, but only when they are part of a multifunction
3370 * device. The footnote for section 6.12 indicates the specific
3371 * PCIe types included here.
3373 case PCI_EXP_TYPE_ENDPOINT
:
3374 case PCI_EXP_TYPE_UPSTREAM
:
3375 case PCI_EXP_TYPE_LEG_END
:
3376 case PCI_EXP_TYPE_RC_END
:
3377 if (!pdev
->multifunction
)
3380 return pci_acs_flags_enabled(pdev
, acs_flags
);
3384 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3385 * to single function devices with the exception of downstream ports.
3391 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3392 * @start: starting downstream device
3393 * @end: ending upstream device or NULL to search to the root bus
3394 * @acs_flags: required flags
3396 * Walk up a device tree from start to end testing PCI ACS support. If
3397 * any step along the way does not support the required flags, return false.
3399 bool pci_acs_path_enabled(struct pci_dev
*start
,
3400 struct pci_dev
*end
, u16 acs_flags
)
3402 struct pci_dev
*pdev
, *parent
= start
;
3407 if (!pci_acs_enabled(pdev
, acs_flags
))
3410 if (pci_is_root_bus(pdev
->bus
))
3411 return (end
== NULL
);
3413 parent
= pdev
->bus
->self
;
3414 } while (pdev
!= end
);
3420 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3424 * Helper to find the position of the ctrl register for a BAR.
3425 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3426 * Returns -ENOENT if no ctrl register for the BAR could be found.
3428 static int pci_rebar_find_pos(struct pci_dev
*pdev
, int bar
)
3430 unsigned int pos
, nbars
, i
;
3433 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_REBAR
);
3437 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3438 nbars
= (ctrl
& PCI_REBAR_CTRL_NBAR_MASK
) >>
3439 PCI_REBAR_CTRL_NBAR_SHIFT
;
3441 for (i
= 0; i
< nbars
; i
++, pos
+= 8) {
3444 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3445 bar_idx
= ctrl
& PCI_REBAR_CTRL_BAR_IDX
;
3454 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3456 * @bar: BAR to query
3458 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3459 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3461 u32
pci_rebar_get_possible_sizes(struct pci_dev
*pdev
, int bar
)
3466 pos
= pci_rebar_find_pos(pdev
, bar
);
3470 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CAP
, &cap
);
3471 return (cap
& PCI_REBAR_CAP_SIZES
) >> 4;
3475 * pci_rebar_get_current_size - get the current size of a BAR
3477 * @bar: BAR to set size to
3479 * Read the size of a BAR from the resizable BAR config.
3480 * Returns size if found or negative error code.
3482 int pci_rebar_get_current_size(struct pci_dev
*pdev
, int bar
)
3487 pos
= pci_rebar_find_pos(pdev
, bar
);
3491 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3492 return (ctrl
& PCI_REBAR_CTRL_BAR_SIZE
) >> PCI_REBAR_CTRL_BAR_SHIFT
;
3496 * pci_rebar_set_size - set a new size for a BAR
3498 * @bar: BAR to set size to
3499 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3501 * Set the new size of a BAR as defined in the spec.
3502 * Returns zero if resizing was successful, error code otherwise.
3504 int pci_rebar_set_size(struct pci_dev
*pdev
, int bar
, int size
)
3509 pos
= pci_rebar_find_pos(pdev
, bar
);
3513 pci_read_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, &ctrl
);
3514 ctrl
&= ~PCI_REBAR_CTRL_BAR_SIZE
;
3515 ctrl
|= size
<< PCI_REBAR_CTRL_BAR_SHIFT
;
3516 pci_write_config_dword(pdev
, pos
+ PCI_REBAR_CTRL
, ctrl
);
3521 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3522 * @dev: the PCI device
3523 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3524 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3525 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3526 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3528 * Return 0 if all upstream bridges support AtomicOp routing, egress
3529 * blocking is disabled on all upstream ports, and the root port supports
3530 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3531 * AtomicOp completion), or negative otherwise.
3533 int pci_enable_atomic_ops_to_root(struct pci_dev
*dev
, u32 cap_mask
)
3535 struct pci_bus
*bus
= dev
->bus
;
3536 struct pci_dev
*bridge
;
3539 if (!pci_is_pcie(dev
))
3543 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3544 * AtomicOp requesters. For now, we only support endpoints as
3545 * requesters and root ports as completers. No endpoints as
3546 * completers, and no peer-to-peer.
3549 switch (pci_pcie_type(dev
)) {
3550 case PCI_EXP_TYPE_ENDPOINT
:
3551 case PCI_EXP_TYPE_LEG_END
:
3552 case PCI_EXP_TYPE_RC_END
:
3558 while (bus
->parent
) {
3561 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
3563 switch (pci_pcie_type(bridge
)) {
3564 /* Ensure switch ports support AtomicOp routing */
3565 case PCI_EXP_TYPE_UPSTREAM
:
3566 case PCI_EXP_TYPE_DOWNSTREAM
:
3567 if (!(cap
& PCI_EXP_DEVCAP2_ATOMIC_ROUTE
))
3571 /* Ensure root port supports all the sizes we care about */
3572 case PCI_EXP_TYPE_ROOT_PORT
:
3573 if ((cap
& cap_mask
) != cap_mask
)
3578 /* Ensure upstream ports don't block AtomicOps on egress */
3579 if (!bridge
->has_secondary_link
) {
3580 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCTL2
,
3582 if (ctl2
& PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK
)
3589 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL2
,
3590 PCI_EXP_DEVCTL2_ATOMIC_REQ
);
3593 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root
);
3596 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3597 * @dev: the PCI device
3598 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3600 * Perform INTx swizzling for a device behind one level of bridge. This is
3601 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3602 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3603 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3604 * the PCI Express Base Specification, Revision 2.1)
3606 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
3610 if (pci_ari_enabled(dev
->bus
))
3613 slot
= PCI_SLOT(dev
->devfn
);
3615 return (((pin
- 1) + slot
) % 4) + 1;
3618 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
3626 while (!pci_is_root_bus(dev
->bus
)) {
3627 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3628 dev
= dev
->bus
->self
;
3635 * pci_common_swizzle - swizzle INTx all the way to root bridge
3636 * @dev: the PCI device
3637 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3639 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3640 * bridges all the way up to a PCI root bus.
3642 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
3646 while (!pci_is_root_bus(dev
->bus
)) {
3647 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3648 dev
= dev
->bus
->self
;
3651 return PCI_SLOT(dev
->devfn
);
3653 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
3656 * pci_release_region - Release a PCI bar
3657 * @pdev: PCI device whose resources were previously reserved by
3658 * pci_request_region()
3659 * @bar: BAR to release
3661 * Releases the PCI I/O and memory resources previously reserved by a
3662 * successful call to pci_request_region(). Call this function only
3663 * after all use of the PCI regions has ceased.
3665 void pci_release_region(struct pci_dev
*pdev
, int bar
)
3667 struct pci_devres
*dr
;
3669 if (pci_resource_len(pdev
, bar
) == 0)
3671 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
3672 release_region(pci_resource_start(pdev
, bar
),
3673 pci_resource_len(pdev
, bar
));
3674 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
3675 release_mem_region(pci_resource_start(pdev
, bar
),
3676 pci_resource_len(pdev
, bar
));
3678 dr
= find_pci_dr(pdev
);
3680 dr
->region_mask
&= ~(1 << bar
);
3682 EXPORT_SYMBOL(pci_release_region
);
3685 * __pci_request_region - Reserved PCI I/O and memory resource
3686 * @pdev: PCI device whose resources are to be reserved
3687 * @bar: BAR to be reserved
3688 * @res_name: Name to be associated with resource.
3689 * @exclusive: whether the region access is exclusive or not
3691 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3692 * being reserved by owner @res_name. Do not access any
3693 * address inside the PCI regions unless this call returns
3696 * If @exclusive is set, then the region is marked so that userspace
3697 * is explicitly not allowed to map the resource via /dev/mem or
3698 * sysfs MMIO access.
3700 * Returns 0 on success, or %EBUSY on error. A warning
3701 * message is also printed on failure.
3703 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
3704 const char *res_name
, int exclusive
)
3706 struct pci_devres
*dr
;
3708 if (pci_resource_len(pdev
, bar
) == 0)
3711 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
3712 if (!request_region(pci_resource_start(pdev
, bar
),
3713 pci_resource_len(pdev
, bar
), res_name
))
3715 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
3716 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
3717 pci_resource_len(pdev
, bar
), res_name
,
3722 dr
= find_pci_dr(pdev
);
3724 dr
->region_mask
|= 1 << bar
;
3729 pci_warn(pdev
, "BAR %d: can't reserve %pR\n", bar
,
3730 &pdev
->resource
[bar
]);
3735 * pci_request_region - Reserve PCI I/O and memory resource
3736 * @pdev: PCI device whose resources are to be reserved
3737 * @bar: BAR to be reserved
3738 * @res_name: Name to be associated with resource
3740 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3741 * being reserved by owner @res_name. Do not access any
3742 * address inside the PCI regions unless this call returns
3745 * Returns 0 on success, or %EBUSY on error. A warning
3746 * message is also printed on failure.
3748 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
3750 return __pci_request_region(pdev
, bar
, res_name
, 0);
3752 EXPORT_SYMBOL(pci_request_region
);
3755 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3756 * @pdev: PCI device whose resources were previously reserved
3757 * @bars: Bitmask of BARs to be released
3759 * Release selected PCI I/O and memory resources previously reserved.
3760 * Call this function only after all use of the PCI regions has ceased.
3762 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
3766 for (i
= 0; i
< 6; i
++)
3767 if (bars
& (1 << i
))
3768 pci_release_region(pdev
, i
);
3770 EXPORT_SYMBOL(pci_release_selected_regions
);
3772 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3773 const char *res_name
, int excl
)
3777 for (i
= 0; i
< 6; i
++)
3778 if (bars
& (1 << i
))
3779 if (__pci_request_region(pdev
, i
, res_name
, excl
))
3785 if (bars
& (1 << i
))
3786 pci_release_region(pdev
, i
);
3793 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3794 * @pdev: PCI device whose resources are to be reserved
3795 * @bars: Bitmask of BARs to be requested
3796 * @res_name: Name to be associated with resource
3798 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3799 const char *res_name
)
3801 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
3803 EXPORT_SYMBOL(pci_request_selected_regions
);
3805 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
3806 const char *res_name
)
3808 return __pci_request_selected_regions(pdev
, bars
, res_name
,
3809 IORESOURCE_EXCLUSIVE
);
3811 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
3814 * pci_release_regions - Release reserved PCI I/O and memory resources
3815 * @pdev: PCI device whose resources were previously reserved by
3816 * pci_request_regions()
3818 * Releases all PCI I/O and memory resources previously reserved by a
3819 * successful call to pci_request_regions(). Call this function only
3820 * after all use of the PCI regions has ceased.
3823 void pci_release_regions(struct pci_dev
*pdev
)
3825 pci_release_selected_regions(pdev
, (1 << 6) - 1);
3827 EXPORT_SYMBOL(pci_release_regions
);
3830 * pci_request_regions - Reserve PCI I/O and memory resources
3831 * @pdev: PCI device whose resources are to be reserved
3832 * @res_name: Name to be associated with resource.
3834 * Mark all PCI regions associated with PCI device @pdev as
3835 * being reserved by owner @res_name. Do not access any
3836 * address inside the PCI regions unless this call returns
3839 * Returns 0 on success, or %EBUSY on error. A warning
3840 * message is also printed on failure.
3842 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
3844 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
3846 EXPORT_SYMBOL(pci_request_regions
);
3849 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3850 * @pdev: PCI device whose resources are to be reserved
3851 * @res_name: Name to be associated with resource.
3853 * Mark all PCI regions associated with PCI device @pdev as being reserved
3854 * by owner @res_name. Do not access any address inside the PCI regions
3855 * unless this call returns successfully.
3857 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3858 * and the sysfs MMIO access will not be allowed.
3860 * Returns 0 on success, or %EBUSY on error. A warning message is also
3861 * printed on failure.
3863 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
3865 return pci_request_selected_regions_exclusive(pdev
,
3866 ((1 << 6) - 1), res_name
);
3868 EXPORT_SYMBOL(pci_request_regions_exclusive
);
3871 * Record the PCI IO range (expressed as CPU physical address + size).
3872 * Return a negative value if an error has occurred, zero otherwise
3874 int pci_register_io_range(struct fwnode_handle
*fwnode
, phys_addr_t addr
,
3875 resource_size_t size
)
3879 struct logic_pio_hwaddr
*range
;
3881 if (!size
|| addr
+ size
< addr
)
3884 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
3888 range
->fwnode
= fwnode
;
3890 range
->hw_start
= addr
;
3891 range
->flags
= LOGIC_PIO_CPU_MMIO
;
3893 ret
= logic_pio_register_range(range
);
3901 phys_addr_t
pci_pio_to_address(unsigned long pio
)
3903 phys_addr_t address
= (phys_addr_t
)OF_BAD_ADDR
;
3906 if (pio
>= MMIO_UPPER_LIMIT
)
3909 address
= logic_pio_to_hwaddr(pio
);
3915 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
3918 return logic_pio_trans_cpuaddr(address
);
3920 if (address
> IO_SPACE_LIMIT
)
3921 return (unsigned long)-1;
3923 return (unsigned long) address
;
3928 * pci_remap_iospace - Remap the memory mapped I/O space
3929 * @res: Resource describing the I/O space
3930 * @phys_addr: physical address of range to be mapped
3932 * Remap the memory mapped I/O space described by the @res and the CPU
3933 * physical address @phys_addr into virtual address space. Only
3934 * architectures that have memory mapped IO functions defined (and the
3935 * PCI_IOBASE value defined) should call this function.
3937 int pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
3939 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3940 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3942 if (!(res
->flags
& IORESOURCE_IO
))
3945 if (res
->end
> IO_SPACE_LIMIT
)
3948 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
3949 pgprot_device(PAGE_KERNEL
));
3952 * This architecture does not have memory mapped I/O space,
3953 * so this function should never be called
3955 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3959 EXPORT_SYMBOL(pci_remap_iospace
);
3962 * pci_unmap_iospace - Unmap the memory mapped I/O space
3963 * @res: resource to be unmapped
3965 * Unmap the CPU virtual address @res from virtual address space. Only
3966 * architectures that have memory mapped IO functions defined (and the
3967 * PCI_IOBASE value defined) should call this function.
3969 void pci_unmap_iospace(struct resource
*res
)
3971 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3972 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3974 unmap_kernel_range(vaddr
, resource_size(res
));
3977 EXPORT_SYMBOL(pci_unmap_iospace
);
3979 static void devm_pci_unmap_iospace(struct device
*dev
, void *ptr
)
3981 struct resource
**res
= ptr
;
3983 pci_unmap_iospace(*res
);
3987 * devm_pci_remap_iospace - Managed pci_remap_iospace()
3988 * @dev: Generic device to remap IO address for
3989 * @res: Resource describing the I/O space
3990 * @phys_addr: physical address of range to be mapped
3992 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
3995 int devm_pci_remap_iospace(struct device
*dev
, const struct resource
*res
,
3996 phys_addr_t phys_addr
)
3998 const struct resource
**ptr
;
4001 ptr
= devres_alloc(devm_pci_unmap_iospace
, sizeof(*ptr
), GFP_KERNEL
);
4005 error
= pci_remap_iospace(res
, phys_addr
);
4010 devres_add(dev
, ptr
);
4015 EXPORT_SYMBOL(devm_pci_remap_iospace
);
4018 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4019 * @dev: Generic device to remap IO address for
4020 * @offset: Resource address to map
4021 * @size: Size of map
4023 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4026 void __iomem
*devm_pci_remap_cfgspace(struct device
*dev
,
4027 resource_size_t offset
,
4028 resource_size_t size
)
4030 void __iomem
**ptr
, *addr
;
4032 ptr
= devres_alloc(devm_ioremap_release
, sizeof(*ptr
), GFP_KERNEL
);
4036 addr
= pci_remap_cfgspace(offset
, size
);
4039 devres_add(dev
, ptr
);
4045 EXPORT_SYMBOL(devm_pci_remap_cfgspace
);
4048 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4049 * @dev: generic device to handle the resource for
4050 * @res: configuration space resource to be handled
4052 * Checks that a resource is a valid memory region, requests the memory
4053 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4054 * proper PCI configuration space memory attributes are guaranteed.
4056 * All operations are managed and will be undone on driver detach.
4058 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4059 * on failure. Usage example::
4061 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4062 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4064 * return PTR_ERR(base);
4066 void __iomem
*devm_pci_remap_cfg_resource(struct device
*dev
,
4067 struct resource
*res
)
4069 resource_size_t size
;
4071 void __iomem
*dest_ptr
;
4075 if (!res
|| resource_type(res
) != IORESOURCE_MEM
) {
4076 dev_err(dev
, "invalid resource\n");
4077 return IOMEM_ERR_PTR(-EINVAL
);
4080 size
= resource_size(res
);
4081 name
= res
->name
?: dev_name(dev
);
4083 if (!devm_request_mem_region(dev
, res
->start
, size
, name
)) {
4084 dev_err(dev
, "can't request region for resource %pR\n", res
);
4085 return IOMEM_ERR_PTR(-EBUSY
);
4088 dest_ptr
= devm_pci_remap_cfgspace(dev
, res
->start
, size
);
4090 dev_err(dev
, "ioremap failed for resource %pR\n", res
);
4091 devm_release_mem_region(dev
, res
->start
, size
);
4092 dest_ptr
= IOMEM_ERR_PTR(-ENOMEM
);
4097 EXPORT_SYMBOL(devm_pci_remap_cfg_resource
);
4099 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
4103 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
4105 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
4107 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
4108 if (cmd
!= old_cmd
) {
4109 pci_dbg(dev
, "%s bus mastering\n",
4110 enable
? "enabling" : "disabling");
4111 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4113 dev
->is_busmaster
= enable
;
4117 * pcibios_setup - process "pci=" kernel boot arguments
4118 * @str: string used to pass in "pci=" kernel boot arguments
4120 * Process kernel boot arguments. This is the default implementation.
4121 * Architecture specific implementations can override this as necessary.
4123 char * __weak __init
pcibios_setup(char *str
)
4129 * pcibios_set_master - enable PCI bus-mastering for device dev
4130 * @dev: the PCI device to enable
4132 * Enables PCI bus-mastering for the device. This is the default
4133 * implementation. Architecture specific implementations can override
4134 * this if necessary.
4136 void __weak
pcibios_set_master(struct pci_dev
*dev
)
4140 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4141 if (pci_is_pcie(dev
))
4144 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
4146 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
4147 else if (lat
> pcibios_max_latency
)
4148 lat
= pcibios_max_latency
;
4152 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
4156 * pci_set_master - enables bus-mastering for device dev
4157 * @dev: the PCI device to enable
4159 * Enables bus-mastering on the device and calls pcibios_set_master()
4160 * to do the needed arch specific settings.
4162 void pci_set_master(struct pci_dev
*dev
)
4164 __pci_set_master(dev
, true);
4165 pcibios_set_master(dev
);
4167 EXPORT_SYMBOL(pci_set_master
);
4170 * pci_clear_master - disables bus-mastering for device dev
4171 * @dev: the PCI device to disable
4173 void pci_clear_master(struct pci_dev
*dev
)
4175 __pci_set_master(dev
, false);
4177 EXPORT_SYMBOL(pci_clear_master
);
4180 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4181 * @dev: the PCI device for which MWI is to be enabled
4183 * Helper function for pci_set_mwi.
4184 * Originally copied from drivers/net/acenic.c.
4185 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4187 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4189 int pci_set_cacheline_size(struct pci_dev
*dev
)
4193 if (!pci_cache_line_size
)
4196 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4197 equal to or multiple of the right value. */
4198 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4199 if (cacheline_size
>= pci_cache_line_size
&&
4200 (cacheline_size
% pci_cache_line_size
) == 0)
4203 /* Write the correct value. */
4204 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
4206 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
4207 if (cacheline_size
== pci_cache_line_size
)
4210 pci_info(dev
, "cache line size of %d is not supported\n",
4211 pci_cache_line_size
<< 2);
4215 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
4218 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4219 * @dev: the PCI device for which MWI is enabled
4221 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4223 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4225 int pci_set_mwi(struct pci_dev
*dev
)
4227 #ifdef PCI_DISABLE_MWI
4233 rc
= pci_set_cacheline_size(dev
);
4237 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4238 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
4239 pci_dbg(dev
, "enabling Mem-Wr-Inval\n");
4240 cmd
|= PCI_COMMAND_INVALIDATE
;
4241 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4246 EXPORT_SYMBOL(pci_set_mwi
);
4249 * pcim_set_mwi - a device-managed pci_set_mwi()
4250 * @dev: the PCI device for which MWI is enabled
4252 * Managed pci_set_mwi().
4254 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4256 int pcim_set_mwi(struct pci_dev
*dev
)
4258 struct pci_devres
*dr
;
4260 dr
= find_pci_dr(dev
);
4265 return pci_set_mwi(dev
);
4267 EXPORT_SYMBOL(pcim_set_mwi
);
4270 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4271 * @dev: the PCI device for which MWI is enabled
4273 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4274 * Callers are not required to check the return value.
4276 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4278 int pci_try_set_mwi(struct pci_dev
*dev
)
4280 #ifdef PCI_DISABLE_MWI
4283 return pci_set_mwi(dev
);
4286 EXPORT_SYMBOL(pci_try_set_mwi
);
4289 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4290 * @dev: the PCI device to disable
4292 * Disables PCI Memory-Write-Invalidate transaction on the device
4294 void pci_clear_mwi(struct pci_dev
*dev
)
4296 #ifndef PCI_DISABLE_MWI
4299 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4300 if (cmd
& PCI_COMMAND_INVALIDATE
) {
4301 cmd
&= ~PCI_COMMAND_INVALIDATE
;
4302 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4306 EXPORT_SYMBOL(pci_clear_mwi
);
4309 * pci_intx - enables/disables PCI INTx for device dev
4310 * @pdev: the PCI device to operate on
4311 * @enable: boolean: whether to enable or disable PCI INTx
4313 * Enables/disables PCI INTx for device @pdev
4315 void pci_intx(struct pci_dev
*pdev
, int enable
)
4317 u16 pci_command
, new;
4319 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
4322 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
4324 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
4326 if (new != pci_command
) {
4327 struct pci_devres
*dr
;
4329 pci_write_config_word(pdev
, PCI_COMMAND
, new);
4331 dr
= find_pci_dr(pdev
);
4332 if (dr
&& !dr
->restore_intx
) {
4333 dr
->restore_intx
= 1;
4334 dr
->orig_intx
= !enable
;
4338 EXPORT_SYMBOL_GPL(pci_intx
);
4340 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
4342 struct pci_bus
*bus
= dev
->bus
;
4343 bool mask_updated
= true;
4344 u32 cmd_status_dword
;
4345 u16 origcmd
, newcmd
;
4346 unsigned long flags
;
4350 * We do a single dword read to retrieve both command and status.
4351 * Document assumptions that make this possible.
4353 BUILD_BUG_ON(PCI_COMMAND
% 4);
4354 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
4356 raw_spin_lock_irqsave(&pci_lock
, flags
);
4358 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
4360 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
4363 * Check interrupt status register to see whether our device
4364 * triggered the interrupt (when masking) or the next IRQ is
4365 * already pending (when unmasking).
4367 if (mask
!= irq_pending
) {
4368 mask_updated
= false;
4372 origcmd
= cmd_status_dword
;
4373 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
4375 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
4376 if (newcmd
!= origcmd
)
4377 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
4380 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
4382 return mask_updated
;
4386 * pci_check_and_mask_intx - mask INTx on pending interrupt
4387 * @dev: the PCI device to operate on
4389 * Check if the device dev has its INTx line asserted, mask it and return
4390 * true in that case. False is returned if no interrupt was pending.
4392 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
4394 return pci_check_and_set_intx_mask(dev
, true);
4396 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
4399 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4400 * @dev: the PCI device to operate on
4402 * Check if the device dev has its INTx line asserted, unmask it if not and
4403 * return true. False is returned and the mask remains active if there was
4404 * still an interrupt pending.
4406 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
4408 return pci_check_and_set_intx_mask(dev
, false);
4410 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
4413 * pci_wait_for_pending_transaction - wait for pending transaction
4414 * @dev: the PCI device to operate on
4416 * Return 0 if transaction is pending 1 otherwise.
4418 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
4420 if (!pci_is_pcie(dev
))
4423 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
4424 PCI_EXP_DEVSTA_TRPND
);
4426 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
4428 static int pci_dev_wait(struct pci_dev
*dev
, char *reset_type
, int timeout
)
4434 * After reset, the device should not silently discard config
4435 * requests, but it may still indicate that it needs more time by
4436 * responding to them with CRS completions. The Root Port will
4437 * generally synthesize ~0 data to complete the read (except when
4438 * CRS SV is enabled and the read was for the Vendor ID; in that
4439 * case it synthesizes 0x0001 data).
4441 * Wait for the device to return a non-CRS completion. Read the
4442 * Command register instead of Vendor ID so we don't have to
4443 * contend with the CRS SV value.
4445 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
4447 if (delay
> timeout
) {
4448 pci_warn(dev
, "not ready %dms after %s; giving up\n",
4449 delay
- 1, reset_type
);
4454 pci_info(dev
, "not ready %dms after %s; waiting\n",
4455 delay
- 1, reset_type
);
4459 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
4463 pci_info(dev
, "ready %dms after %s\n", delay
- 1,
4470 * pcie_has_flr - check if a device supports function level resets
4471 * @dev: device to check
4473 * Returns true if the device advertises support for PCIe function level
4476 bool pcie_has_flr(struct pci_dev
*dev
)
4480 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4483 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
4484 return cap
& PCI_EXP_DEVCAP_FLR
;
4486 EXPORT_SYMBOL_GPL(pcie_has_flr
);
4489 * pcie_flr - initiate a PCIe function level reset
4490 * @dev: device to reset
4492 * Initiate a function level reset on @dev. The caller should ensure the
4493 * device supports FLR before calling this function, e.g. by using the
4494 * pcie_has_flr() helper.
4496 int pcie_flr(struct pci_dev
*dev
)
4498 if (!pci_wait_for_pending_transaction(dev
))
4499 pci_err(dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
4501 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
4507 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4508 * 100ms, but may silently discard requests while the FLR is in
4509 * progress. Wait 100ms before trying to access the device.
4513 return pci_dev_wait(dev
, "FLR", PCIE_RESET_READY_POLL_MS
);
4515 EXPORT_SYMBOL_GPL(pcie_flr
);
4517 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
4522 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
4526 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
4529 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
4530 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
4537 * Wait for Transaction Pending bit to clear. A word-aligned test
4538 * is used, so we use the control offset rather than status and shift
4539 * the test bit to match.
4541 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
4542 PCI_AF_STATUS_TP
<< 8))
4543 pci_err(dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4545 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
4551 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4552 * updated 27 July 2006; a device must complete an FLR within
4553 * 100ms, but may silently discard requests while the FLR is in
4554 * progress. Wait 100ms before trying to access the device.
4558 return pci_dev_wait(dev
, "AF_FLR", PCIE_RESET_READY_POLL_MS
);
4562 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4563 * @dev: Device to reset.
4564 * @probe: If set, only check if the device can be reset this way.
4566 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4567 * unset, it will be reinitialized internally when going from PCI_D3hot to
4568 * PCI_D0. If that's the case and the device is not in a low-power state
4569 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4571 * NOTE: This causes the caller to sleep for twice the device power transition
4572 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4573 * by default (i.e. unless the @dev's d3_delay field has a different value).
4574 * Moreover, only devices in D0 can be reset by this function.
4576 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
4580 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
4583 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
4584 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
4590 if (dev
->current_state
!= PCI_D0
)
4593 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4595 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4596 pci_dev_d3_sleep(dev
);
4598 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
4600 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
4601 pci_dev_d3_sleep(dev
);
4603 return pci_dev_wait(dev
, "PM D3->D0", PCIE_RESET_READY_POLL_MS
);
4607 * pcie_wait_for_link_delay - Wait until link is active or inactive
4608 * @pdev: Bridge device
4609 * @active: waiting for active or inactive?
4610 * @delay: Delay to wait after link has become active (in ms)
4612 * Use this to wait till link becomes active or inactive.
4614 bool pcie_wait_for_link_delay(struct pci_dev
*pdev
, bool active
, int delay
)
4621 * Some controllers might not implement link active reporting. In this
4622 * case, we wait for 1000 + 100 ms.
4624 if (!pdev
->link_active_reporting
) {
4630 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4631 * after which we should expect an link active if the reset was
4632 * successful. If so, software must wait a minimum 100ms before sending
4633 * configuration requests to devices downstream this port.
4635 * If the link fails to activate, either the device was physically
4636 * removed or the link is permanently failed.
4641 pcie_capability_read_word(pdev
, PCI_EXP_LNKSTA
, &lnk_status
);
4642 ret
= !!(lnk_status
& PCI_EXP_LNKSTA_DLLLA
);
4652 else if (ret
!= active
)
4653 pci_info(pdev
, "Data Link Layer Link Active not %s in 1000 msec\n",
4654 active
? "set" : "cleared");
4655 return ret
== active
;
4659 * pcie_wait_for_link - Wait until link is active or inactive
4660 * @pdev: Bridge device
4661 * @active: waiting for active or inactive?
4663 * Use this to wait till link becomes active or inactive.
4665 bool pcie_wait_for_link(struct pci_dev
*pdev
, bool active
)
4667 return pcie_wait_for_link_delay(pdev
, active
, 100);
4670 void pci_reset_secondary_bus(struct pci_dev
*dev
)
4674 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
4675 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
4676 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4679 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4680 * this to 2ms to ensure that we meet the minimum requirement.
4684 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
4685 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
4688 * Trhfa for conventional PCI is 2^25 clock cycles.
4689 * Assuming a minimum 33MHz clock this results in a 1s
4690 * delay before we can consider subordinate devices to
4691 * be re-initialized. PCIe has some ways to shorten this,
4692 * but we don't make use of them yet.
4697 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
4699 pci_reset_secondary_bus(dev
);
4703 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4704 * @dev: Bridge device
4706 * Use the bridge control register to assert reset on the secondary bus.
4707 * Devices on the secondary bus are left in power-on state.
4709 int pci_bridge_secondary_bus_reset(struct pci_dev
*dev
)
4711 pcibios_reset_secondary_bus(dev
);
4713 return pci_dev_wait(dev
, "bus reset", PCIE_RESET_READY_POLL_MS
);
4715 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset
);
4717 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
4719 struct pci_dev
*pdev
;
4721 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
4722 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4725 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4732 return pci_bridge_secondary_bus_reset(dev
->bus
->self
);
4735 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
4739 if (!hotplug
|| !try_module_get(hotplug
->owner
))
4742 if (hotplug
->ops
->reset_slot
)
4743 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
4745 module_put(hotplug
->owner
);
4750 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
4752 struct pci_dev
*pdev
;
4754 if (dev
->subordinate
|| !dev
->slot
||
4755 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4758 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4759 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
4762 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
4765 static void pci_dev_lock(struct pci_dev
*dev
)
4767 pci_cfg_access_lock(dev
);
4768 /* block PM suspend, driver probe, etc. */
4769 device_lock(&dev
->dev
);
4772 /* Return 1 on successful lock, 0 on contention */
4773 static int pci_dev_trylock(struct pci_dev
*dev
)
4775 if (pci_cfg_access_trylock(dev
)) {
4776 if (device_trylock(&dev
->dev
))
4778 pci_cfg_access_unlock(dev
);
4784 static void pci_dev_unlock(struct pci_dev
*dev
)
4786 device_unlock(&dev
->dev
);
4787 pci_cfg_access_unlock(dev
);
4790 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
4792 const struct pci_error_handlers
*err_handler
=
4793 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4796 * dev->driver->err_handler->reset_prepare() is protected against
4797 * races with ->remove() by the device lock, which must be held by
4800 if (err_handler
&& err_handler
->reset_prepare
)
4801 err_handler
->reset_prepare(dev
);
4804 * Wake-up device prior to save. PM registers default to D0 after
4805 * reset and a simple register restore doesn't reliably return
4806 * to a non-D0 state anyway.
4808 pci_set_power_state(dev
, PCI_D0
);
4810 pci_save_state(dev
);
4812 * Disable the device by clearing the Command register, except for
4813 * INTx-disable which is set. This not only disables MMIO and I/O port
4814 * BARs, but also prevents the device from being Bus Master, preventing
4815 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4816 * compliant devices, INTx-disable prevents legacy interrupts.
4818 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
4821 static void pci_dev_restore(struct pci_dev
*dev
)
4823 const struct pci_error_handlers
*err_handler
=
4824 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4826 pci_restore_state(dev
);
4829 * dev->driver->err_handler->reset_done() is protected against
4830 * races with ->remove() by the device lock, which must be held by
4833 if (err_handler
&& err_handler
->reset_done
)
4834 err_handler
->reset_done(dev
);
4838 * __pci_reset_function_locked - reset a PCI device function while holding
4839 * the @dev mutex lock.
4840 * @dev: PCI device to reset
4842 * Some devices allow an individual function to be reset without affecting
4843 * other functions in the same device. The PCI device must be responsive
4844 * to PCI config space in order to use this function.
4846 * The device function is presumed to be unused and the caller is holding
4847 * the device mutex lock when this function is called.
4849 * Resetting the device will make the contents of PCI configuration space
4850 * random, so any caller of this must be prepared to reinitialise the
4851 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4854 * Returns 0 if the device function was successfully reset or negative if the
4855 * device doesn't support resetting a single function.
4857 int __pci_reset_function_locked(struct pci_dev
*dev
)
4864 * A reset method returns -ENOTTY if it doesn't support this device
4865 * and we should try the next method.
4867 * If it returns 0 (success), we're finished. If it returns any
4868 * other error, we're also finished: this indicates that further
4869 * reset mechanisms might be broken on the device.
4871 rc
= pci_dev_specific_reset(dev
, 0);
4874 if (pcie_has_flr(dev
)) {
4879 rc
= pci_af_flr(dev
, 0);
4882 rc
= pci_pm_reset(dev
, 0);
4885 rc
= pci_dev_reset_slot_function(dev
, 0);
4888 return pci_parent_bus_reset(dev
, 0);
4890 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
4893 * pci_probe_reset_function - check whether the device can be safely reset
4894 * @dev: PCI device to reset
4896 * Some devices allow an individual function to be reset without affecting
4897 * other functions in the same device. The PCI device must be responsive
4898 * to PCI config space in order to use this function.
4900 * Returns 0 if the device function can be reset or negative if the
4901 * device doesn't support resetting a single function.
4903 int pci_probe_reset_function(struct pci_dev
*dev
)
4909 rc
= pci_dev_specific_reset(dev
, 1);
4912 if (pcie_has_flr(dev
))
4914 rc
= pci_af_flr(dev
, 1);
4917 rc
= pci_pm_reset(dev
, 1);
4920 rc
= pci_dev_reset_slot_function(dev
, 1);
4924 return pci_parent_bus_reset(dev
, 1);
4928 * pci_reset_function - quiesce and reset a PCI device function
4929 * @dev: PCI device to reset
4931 * Some devices allow an individual function to be reset without affecting
4932 * other functions in the same device. The PCI device must be responsive
4933 * to PCI config space in order to use this function.
4935 * This function does not just reset the PCI portion of a device, but
4936 * clears all the state associated with the device. This function differs
4937 * from __pci_reset_function_locked() in that it saves and restores device state
4938 * over the reset and takes the PCI device lock.
4940 * Returns 0 if the device function was successfully reset or negative if the
4941 * device doesn't support resetting a single function.
4943 int pci_reset_function(struct pci_dev
*dev
)
4951 pci_dev_save_and_disable(dev
);
4953 rc
= __pci_reset_function_locked(dev
);
4955 pci_dev_restore(dev
);
4956 pci_dev_unlock(dev
);
4960 EXPORT_SYMBOL_GPL(pci_reset_function
);
4963 * pci_reset_function_locked - quiesce and reset a PCI device function
4964 * @dev: PCI device to reset
4966 * Some devices allow an individual function to be reset without affecting
4967 * other functions in the same device. The PCI device must be responsive
4968 * to PCI config space in order to use this function.
4970 * This function does not just reset the PCI portion of a device, but
4971 * clears all the state associated with the device. This function differs
4972 * from __pci_reset_function_locked() in that it saves and restores device state
4973 * over the reset. It also differs from pci_reset_function() in that it
4974 * requires the PCI device lock to be held.
4976 * Returns 0 if the device function was successfully reset or negative if the
4977 * device doesn't support resetting a single function.
4979 int pci_reset_function_locked(struct pci_dev
*dev
)
4986 pci_dev_save_and_disable(dev
);
4988 rc
= __pci_reset_function_locked(dev
);
4990 pci_dev_restore(dev
);
4994 EXPORT_SYMBOL_GPL(pci_reset_function_locked
);
4997 * pci_try_reset_function - quiesce and reset a PCI device function
4998 * @dev: PCI device to reset
5000 * Same as above, except return -EAGAIN if unable to lock device.
5002 int pci_try_reset_function(struct pci_dev
*dev
)
5009 if (!pci_dev_trylock(dev
))
5012 pci_dev_save_and_disable(dev
);
5013 rc
= __pci_reset_function_locked(dev
);
5014 pci_dev_restore(dev
);
5015 pci_dev_unlock(dev
);
5019 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
5021 /* Do any devices on or below this bus prevent a bus reset? */
5022 static bool pci_bus_resetable(struct pci_bus
*bus
)
5024 struct pci_dev
*dev
;
5027 if (bus
->self
&& (bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
5030 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5031 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
5032 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
5039 /* Lock devices from the top of the tree down */
5040 static void pci_bus_lock(struct pci_bus
*bus
)
5042 struct pci_dev
*dev
;
5044 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5046 if (dev
->subordinate
)
5047 pci_bus_lock(dev
->subordinate
);
5051 /* Unlock devices from the bottom of the tree up */
5052 static void pci_bus_unlock(struct pci_bus
*bus
)
5054 struct pci_dev
*dev
;
5056 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5057 if (dev
->subordinate
)
5058 pci_bus_unlock(dev
->subordinate
);
5059 pci_dev_unlock(dev
);
5063 /* Return 1 on successful lock, 0 on contention */
5064 static int pci_bus_trylock(struct pci_bus
*bus
)
5066 struct pci_dev
*dev
;
5068 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5069 if (!pci_dev_trylock(dev
))
5071 if (dev
->subordinate
) {
5072 if (!pci_bus_trylock(dev
->subordinate
)) {
5073 pci_dev_unlock(dev
);
5081 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
5082 if (dev
->subordinate
)
5083 pci_bus_unlock(dev
->subordinate
);
5084 pci_dev_unlock(dev
);
5089 /* Do any devices on or below this slot prevent a bus reset? */
5090 static bool pci_slot_resetable(struct pci_slot
*slot
)
5092 struct pci_dev
*dev
;
5094 if (slot
->bus
->self
&&
5095 (slot
->bus
->self
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
))
5098 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5099 if (!dev
->slot
|| dev
->slot
!= slot
)
5101 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
5102 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
5109 /* Lock devices from the top of the tree down */
5110 static void pci_slot_lock(struct pci_slot
*slot
)
5112 struct pci_dev
*dev
;
5114 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5115 if (!dev
->slot
|| dev
->slot
!= slot
)
5118 if (dev
->subordinate
)
5119 pci_bus_lock(dev
->subordinate
);
5123 /* Unlock devices from the bottom of the tree up */
5124 static void pci_slot_unlock(struct pci_slot
*slot
)
5126 struct pci_dev
*dev
;
5128 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5129 if (!dev
->slot
|| dev
->slot
!= slot
)
5131 if (dev
->subordinate
)
5132 pci_bus_unlock(dev
->subordinate
);
5133 pci_dev_unlock(dev
);
5137 /* Return 1 on successful lock, 0 on contention */
5138 static int pci_slot_trylock(struct pci_slot
*slot
)
5140 struct pci_dev
*dev
;
5142 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5143 if (!dev
->slot
|| dev
->slot
!= slot
)
5145 if (!pci_dev_trylock(dev
))
5147 if (dev
->subordinate
) {
5148 if (!pci_bus_trylock(dev
->subordinate
)) {
5149 pci_dev_unlock(dev
);
5157 list_for_each_entry_continue_reverse(dev
,
5158 &slot
->bus
->devices
, bus_list
) {
5159 if (!dev
->slot
|| dev
->slot
!= slot
)
5161 if (dev
->subordinate
)
5162 pci_bus_unlock(dev
->subordinate
);
5163 pci_dev_unlock(dev
);
5169 * Save and disable devices from the top of the tree down while holding
5170 * the @dev mutex lock for the entire tree.
5172 static void pci_bus_save_and_disable_locked(struct pci_bus
*bus
)
5174 struct pci_dev
*dev
;
5176 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5177 pci_dev_save_and_disable(dev
);
5178 if (dev
->subordinate
)
5179 pci_bus_save_and_disable_locked(dev
->subordinate
);
5184 * Restore devices from top of the tree down while holding @dev mutex lock
5185 * for the entire tree. Parent bridges need to be restored before we can
5186 * get to subordinate devices.
5188 static void pci_bus_restore_locked(struct pci_bus
*bus
)
5190 struct pci_dev
*dev
;
5192 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
5193 pci_dev_restore(dev
);
5194 if (dev
->subordinate
)
5195 pci_bus_restore_locked(dev
->subordinate
);
5200 * Save and disable devices from the top of the tree down while holding
5201 * the @dev mutex lock for the entire tree.
5203 static void pci_slot_save_and_disable_locked(struct pci_slot
*slot
)
5205 struct pci_dev
*dev
;
5207 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5208 if (!dev
->slot
|| dev
->slot
!= slot
)
5210 pci_dev_save_and_disable(dev
);
5211 if (dev
->subordinate
)
5212 pci_bus_save_and_disable_locked(dev
->subordinate
);
5217 * Restore devices from top of the tree down while holding @dev mutex lock
5218 * for the entire tree. Parent bridges need to be restored before we can
5219 * get to subordinate devices.
5221 static void pci_slot_restore_locked(struct pci_slot
*slot
)
5223 struct pci_dev
*dev
;
5225 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
5226 if (!dev
->slot
|| dev
->slot
!= slot
)
5228 pci_dev_restore(dev
);
5229 if (dev
->subordinate
)
5230 pci_bus_restore_locked(dev
->subordinate
);
5234 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
5238 if (!slot
|| !pci_slot_resetable(slot
))
5242 pci_slot_lock(slot
);
5246 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
5249 pci_slot_unlock(slot
);
5255 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5256 * @slot: PCI slot to probe
5258 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5260 int pci_probe_reset_slot(struct pci_slot
*slot
)
5262 return pci_slot_reset(slot
, 1);
5264 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
5267 * __pci_reset_slot - Try to reset a PCI slot
5268 * @slot: PCI slot to reset
5270 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5271 * independent of other slots. For instance, some slots may support slot power
5272 * control. In the case of a 1:1 bus to slot architecture, this function may
5273 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5274 * Generally a slot reset should be attempted before a bus reset. All of the
5275 * function of the slot and any subordinate buses behind the slot are reset
5276 * through this function. PCI config space of all devices in the slot and
5277 * behind the slot is saved before and restored after reset.
5279 * Same as above except return -EAGAIN if the slot cannot be locked
5281 static int __pci_reset_slot(struct pci_slot
*slot
)
5285 rc
= pci_slot_reset(slot
, 1);
5289 if (pci_slot_trylock(slot
)) {
5290 pci_slot_save_and_disable_locked(slot
);
5292 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
5293 pci_slot_restore_locked(slot
);
5294 pci_slot_unlock(slot
);
5301 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
5305 if (!bus
->self
|| !pci_bus_resetable(bus
))
5315 ret
= pci_bridge_secondary_bus_reset(bus
->self
);
5317 pci_bus_unlock(bus
);
5323 * pci_bus_error_reset - reset the bridge's subordinate bus
5324 * @bridge: The parent device that connects to the bus to reset
5326 * This function will first try to reset the slots on this bus if the method is
5327 * available. If slot reset fails or is not available, this will fall back to a
5328 * secondary bus reset.
5330 int pci_bus_error_reset(struct pci_dev
*bridge
)
5332 struct pci_bus
*bus
= bridge
->subordinate
;
5333 struct pci_slot
*slot
;
5338 mutex_lock(&pci_slot_mutex
);
5339 if (list_empty(&bus
->slots
))
5342 list_for_each_entry(slot
, &bus
->slots
, list
)
5343 if (pci_probe_reset_slot(slot
))
5346 list_for_each_entry(slot
, &bus
->slots
, list
)
5347 if (pci_slot_reset(slot
, 0))
5350 mutex_unlock(&pci_slot_mutex
);
5353 mutex_unlock(&pci_slot_mutex
);
5354 return pci_bus_reset(bridge
->subordinate
, 0);
5358 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5359 * @bus: PCI bus to probe
5361 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5363 int pci_probe_reset_bus(struct pci_bus
*bus
)
5365 return pci_bus_reset(bus
, 1);
5367 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
5370 * __pci_reset_bus - Try to reset a PCI bus
5371 * @bus: top level PCI bus to reset
5373 * Same as above except return -EAGAIN if the bus cannot be locked
5375 static int __pci_reset_bus(struct pci_bus
*bus
)
5379 rc
= pci_bus_reset(bus
, 1);
5383 if (pci_bus_trylock(bus
)) {
5384 pci_bus_save_and_disable_locked(bus
);
5386 rc
= pci_bridge_secondary_bus_reset(bus
->self
);
5387 pci_bus_restore_locked(bus
);
5388 pci_bus_unlock(bus
);
5396 * pci_reset_bus - Try to reset a PCI bus
5397 * @pdev: top level PCI device to reset via slot/bus
5399 * Same as above except return -EAGAIN if the bus cannot be locked
5401 int pci_reset_bus(struct pci_dev
*pdev
)
5403 return (!pci_probe_reset_slot(pdev
->slot
)) ?
5404 __pci_reset_slot(pdev
->slot
) : __pci_reset_bus(pdev
->bus
);
5406 EXPORT_SYMBOL_GPL(pci_reset_bus
);
5409 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5410 * @dev: PCI device to query
5412 * Returns mmrbc: maximum designed memory read count in bytes or
5413 * appropriate error value.
5415 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
5420 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5424 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5427 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
5429 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
5432 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5433 * @dev: PCI device to query
5435 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5438 int pcix_get_mmrbc(struct pci_dev
*dev
)
5443 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5447 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5450 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
5452 EXPORT_SYMBOL(pcix_get_mmrbc
);
5455 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5456 * @dev: PCI device to query
5457 * @mmrbc: maximum memory read count in bytes
5458 * valid values are 512, 1024, 2048, 4096
5460 * If possible sets maximum memory read byte count, some bridges have errata
5461 * that prevent this.
5463 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
5469 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
5472 v
= ffs(mmrbc
) - 10;
5474 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
5478 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
5481 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
5484 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
5487 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
5489 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
5492 cmd
&= ~PCI_X_CMD_MAX_READ
;
5494 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
5499 EXPORT_SYMBOL(pcix_set_mmrbc
);
5502 * pcie_get_readrq - get PCI Express read request size
5503 * @dev: PCI device to query
5505 * Returns maximum memory read request in bytes or appropriate error value.
5507 int pcie_get_readrq(struct pci_dev
*dev
)
5511 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
5513 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
5515 EXPORT_SYMBOL(pcie_get_readrq
);
5518 * pcie_set_readrq - set PCI Express maximum memory read request
5519 * @dev: PCI device to query
5520 * @rq: maximum memory read count in bytes
5521 * valid values are 128, 256, 512, 1024, 2048, 4096
5523 * If possible sets maximum memory read request in bytes
5525 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
5529 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
5533 * If using the "performance" PCIe config, we clamp the read rq
5534 * size to the max packet size to keep the host bridge from
5535 * generating requests larger than we can cope with.
5537 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
5538 int mps
= pcie_get_mps(dev
);
5544 v
= (ffs(rq
) - 8) << 12;
5546 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
5547 PCI_EXP_DEVCTL_READRQ
, v
);
5549 EXPORT_SYMBOL(pcie_set_readrq
);
5552 * pcie_get_mps - get PCI Express maximum payload size
5553 * @dev: PCI device to query
5555 * Returns maximum payload size in bytes
5557 int pcie_get_mps(struct pci_dev
*dev
)
5561 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
5563 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
5565 EXPORT_SYMBOL(pcie_get_mps
);
5568 * pcie_set_mps - set PCI Express maximum payload size
5569 * @dev: PCI device to query
5570 * @mps: maximum payload size in bytes
5571 * valid values are 128, 256, 512, 1024, 2048, 4096
5573 * If possible sets maximum payload size
5575 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
5579 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
5583 if (v
> dev
->pcie_mpss
)
5587 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
5588 PCI_EXP_DEVCTL_PAYLOAD
, v
);
5590 EXPORT_SYMBOL(pcie_set_mps
);
5593 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5594 * device and its bandwidth limitation
5595 * @dev: PCI device to query
5596 * @limiting_dev: storage for device causing the bandwidth limitation
5597 * @speed: storage for speed of limiting device
5598 * @width: storage for width of limiting device
5600 * Walk up the PCI device chain and find the point where the minimum
5601 * bandwidth is available. Return the bandwidth available there and (if
5602 * limiting_dev, speed, and width pointers are supplied) information about
5603 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5606 u32
pcie_bandwidth_available(struct pci_dev
*dev
, struct pci_dev
**limiting_dev
,
5607 enum pci_bus_speed
*speed
,
5608 enum pcie_link_width
*width
)
5611 enum pci_bus_speed next_speed
;
5612 enum pcie_link_width next_width
;
5616 *speed
= PCI_SPEED_UNKNOWN
;
5618 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
5623 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
5625 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
5626 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
5627 PCI_EXP_LNKSTA_NLW_SHIFT
;
5629 next_bw
= next_width
* PCIE_SPEED2MBS_ENC(next_speed
);
5631 /* Check if current device limits the total bandwidth */
5632 if (!bw
|| next_bw
<= bw
) {
5636 *limiting_dev
= dev
;
5638 *speed
= next_speed
;
5640 *width
= next_width
;
5643 dev
= pci_upstream_bridge(dev
);
5648 EXPORT_SYMBOL(pcie_bandwidth_available
);
5651 * pcie_get_speed_cap - query for the PCI device's link speed capability
5652 * @dev: PCI device to query
5654 * Query the PCI device speed capability. Return the maximum link speed
5655 * supported by the device.
5657 enum pci_bus_speed
pcie_get_speed_cap(struct pci_dev
*dev
)
5659 u32 lnkcap2
, lnkcap
;
5662 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
5663 * implementation note there recommends using the Supported Link
5664 * Speeds Vector in Link Capabilities 2 when supported.
5666 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5667 * should use the Supported Link Speeds field in Link Capabilities,
5668 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5670 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP2
, &lnkcap2
);
5671 if (lnkcap2
) { /* PCIe r3.0-compliant */
5672 if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_32_0GB
)
5673 return PCIE_SPEED_32_0GT
;
5674 else if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_16_0GB
)
5675 return PCIE_SPEED_16_0GT
;
5676 else if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_8_0GB
)
5677 return PCIE_SPEED_8_0GT
;
5678 else if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_5_0GB
)
5679 return PCIE_SPEED_5_0GT
;
5680 else if (lnkcap2
& PCI_EXP_LNKCAP2_SLS_2_5GB
)
5681 return PCIE_SPEED_2_5GT
;
5682 return PCI_SPEED_UNKNOWN
;
5685 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
5686 if ((lnkcap
& PCI_EXP_LNKCAP_SLS
) == PCI_EXP_LNKCAP_SLS_5_0GB
)
5687 return PCIE_SPEED_5_0GT
;
5688 else if ((lnkcap
& PCI_EXP_LNKCAP_SLS
) == PCI_EXP_LNKCAP_SLS_2_5GB
)
5689 return PCIE_SPEED_2_5GT
;
5691 return PCI_SPEED_UNKNOWN
;
5693 EXPORT_SYMBOL(pcie_get_speed_cap
);
5696 * pcie_get_width_cap - query for the PCI device's link width capability
5697 * @dev: PCI device to query
5699 * Query the PCI device width capability. Return the maximum link width
5700 * supported by the device.
5702 enum pcie_link_width
pcie_get_width_cap(struct pci_dev
*dev
)
5706 pcie_capability_read_dword(dev
, PCI_EXP_LNKCAP
, &lnkcap
);
5708 return (lnkcap
& PCI_EXP_LNKCAP_MLW
) >> 4;
5710 return PCIE_LNK_WIDTH_UNKNOWN
;
5712 EXPORT_SYMBOL(pcie_get_width_cap
);
5715 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5717 * @speed: storage for link speed
5718 * @width: storage for link width
5720 * Calculate a PCI device's link bandwidth by querying for its link speed
5721 * and width, multiplying them, and applying encoding overhead. The result
5722 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5724 u32
pcie_bandwidth_capable(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
5725 enum pcie_link_width
*width
)
5727 *speed
= pcie_get_speed_cap(dev
);
5728 *width
= pcie_get_width_cap(dev
);
5730 if (*speed
== PCI_SPEED_UNKNOWN
|| *width
== PCIE_LNK_WIDTH_UNKNOWN
)
5733 return *width
* PCIE_SPEED2MBS_ENC(*speed
);
5737 * __pcie_print_link_status - Report the PCI device's link speed and width
5738 * @dev: PCI device to query
5739 * @verbose: Print info even when enough bandwidth is available
5741 * If the available bandwidth at the device is less than the device is
5742 * capable of, report the device's maximum possible bandwidth and the
5743 * upstream link that limits its performance. If @verbose, always print
5744 * the available bandwidth, even if the device isn't constrained.
5746 void __pcie_print_link_status(struct pci_dev
*dev
, bool verbose
)
5748 enum pcie_link_width width
, width_cap
;
5749 enum pci_bus_speed speed
, speed_cap
;
5750 struct pci_dev
*limiting_dev
= NULL
;
5751 u32 bw_avail
, bw_cap
;
5753 bw_cap
= pcie_bandwidth_capable(dev
, &speed_cap
, &width_cap
);
5754 bw_avail
= pcie_bandwidth_available(dev
, &limiting_dev
, &speed
, &width
);
5756 if (bw_avail
>= bw_cap
&& verbose
)
5757 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5758 bw_cap
/ 1000, bw_cap
% 1000,
5759 PCIE_SPEED2STR(speed_cap
), width_cap
);
5760 else if (bw_avail
< bw_cap
)
5761 pci_info(dev
, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5762 bw_avail
/ 1000, bw_avail
% 1000,
5763 PCIE_SPEED2STR(speed
), width
,
5764 limiting_dev
? pci_name(limiting_dev
) : "<unknown>",
5765 bw_cap
/ 1000, bw_cap
% 1000,
5766 PCIE_SPEED2STR(speed_cap
), width_cap
);
5770 * pcie_print_link_status - Report the PCI device's link speed and width
5771 * @dev: PCI device to query
5773 * Report the available bandwidth at the device.
5775 void pcie_print_link_status(struct pci_dev
*dev
)
5777 __pcie_print_link_status(dev
, true);
5779 EXPORT_SYMBOL(pcie_print_link_status
);
5782 * pci_select_bars - Make BAR mask from the type of resource
5783 * @dev: the PCI device for which BAR mask is made
5784 * @flags: resource type mask to be selected
5786 * This helper routine makes bar mask from the type of resource.
5788 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
5791 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
5792 if (pci_resource_flags(dev
, i
) & flags
)
5796 EXPORT_SYMBOL(pci_select_bars
);
5798 /* Some architectures require additional programming to enable VGA */
5799 static arch_set_vga_state_t arch_set_vga_state
;
5801 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
5803 arch_set_vga_state
= func
; /* NULL disables */
5806 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
5807 unsigned int command_bits
, u32 flags
)
5809 if (arch_set_vga_state
)
5810 return arch_set_vga_state(dev
, decode
, command_bits
,
5816 * pci_set_vga_state - set VGA decode state on device and parents if requested
5817 * @dev: the PCI device
5818 * @decode: true = enable decoding, false = disable decoding
5819 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5820 * @flags: traverse ancestors and change bridges
5821 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5823 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
5824 unsigned int command_bits
, u32 flags
)
5826 struct pci_bus
*bus
;
5827 struct pci_dev
*bridge
;
5831 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
5833 /* ARCH specific VGA enables */
5834 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
5838 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
5839 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
5841 cmd
|= command_bits
;
5843 cmd
&= ~command_bits
;
5844 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
5847 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
5854 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
5857 cmd
|= PCI_BRIDGE_CTL_VGA
;
5859 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
5860 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
5869 * pci_add_dma_alias - Add a DMA devfn alias for a device
5870 * @dev: the PCI device for which alias is added
5871 * @devfn: alias slot and function
5873 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5874 * which is used to program permissible bus-devfn source addresses for DMA
5875 * requests in an IOMMU. These aliases factor into IOMMU group creation
5876 * and are useful for devices generating DMA requests beyond or different
5877 * from their logical bus-devfn. Examples include device quirks where the
5878 * device simply uses the wrong devfn, as well as non-transparent bridges
5879 * where the alias may be a proxy for devices in another domain.
5881 * IOMMU group creation is performed during device discovery or addition,
5882 * prior to any potential DMA mapping and therefore prior to driver probing
5883 * (especially for userspace assigned devices where IOMMU group definition
5884 * cannot be left as a userspace activity). DMA aliases should therefore
5885 * be configured via quirks, such as the PCI fixup header quirk.
5887 void pci_add_dma_alias(struct pci_dev
*dev
, u8 devfn
)
5889 if (!dev
->dma_alias_mask
)
5890 dev
->dma_alias_mask
= bitmap_zalloc(U8_MAX
, GFP_KERNEL
);
5891 if (!dev
->dma_alias_mask
) {
5892 pci_warn(dev
, "Unable to allocate DMA alias mask\n");
5896 set_bit(devfn
, dev
->dma_alias_mask
);
5897 pci_info(dev
, "Enabling fixed DMA alias to %02x.%d\n",
5898 PCI_SLOT(devfn
), PCI_FUNC(devfn
));
5901 bool pci_devs_are_dma_aliases(struct pci_dev
*dev1
, struct pci_dev
*dev2
)
5903 return (dev1
->dma_alias_mask
&&
5904 test_bit(dev2
->devfn
, dev1
->dma_alias_mask
)) ||
5905 (dev2
->dma_alias_mask
&&
5906 test_bit(dev1
->devfn
, dev2
->dma_alias_mask
));
5909 bool pci_device_is_present(struct pci_dev
*pdev
)
5913 if (pci_dev_is_disconnected(pdev
))
5915 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
5917 EXPORT_SYMBOL_GPL(pci_device_is_present
);
5919 void pci_ignore_hotplug(struct pci_dev
*dev
)
5921 struct pci_dev
*bridge
= dev
->bus
->self
;
5923 dev
->ignore_hotplug
= 1;
5924 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5926 bridge
->ignore_hotplug
= 1;
5928 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
5930 resource_size_t __weak
pcibios_default_alignment(void)
5935 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5936 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
5937 static DEFINE_SPINLOCK(resource_alignment_lock
);
5940 * pci_specified_resource_alignment - get resource alignment specified by user.
5941 * @dev: the PCI device to get
5942 * @resize: whether or not to change resources' size when reassigning alignment
5944 * RETURNS: Resource alignment if it is specified.
5945 * Zero if it is not specified.
5947 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
,
5950 int align_order
, count
;
5951 resource_size_t align
= pcibios_default_alignment();
5955 spin_lock(&resource_alignment_lock
);
5956 p
= resource_alignment_param
;
5959 if (pci_has_flag(PCI_PROBE_ONLY
)) {
5961 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5967 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
5974 ret
= pci_dev_str_match(dev
, p
, &p
);
5977 if (align_order
== -1)
5980 align
= 1 << align_order
;
5982 } else if (ret
< 0) {
5983 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5988 if (*p
!= ';' && *p
!= ',') {
5989 /* End of param or invalid format */
5995 spin_unlock(&resource_alignment_lock
);
5999 static void pci_request_resource_alignment(struct pci_dev
*dev
, int bar
,
6000 resource_size_t align
, bool resize
)
6002 struct resource
*r
= &dev
->resource
[bar
];
6003 resource_size_t size
;
6005 if (!(r
->flags
& IORESOURCE_MEM
))
6008 if (r
->flags
& IORESOURCE_PCI_FIXED
) {
6009 pci_info(dev
, "BAR%d %pR: ignoring requested alignment %#llx\n",
6010 bar
, r
, (unsigned long long)align
);
6014 size
= resource_size(r
);
6019 * Increase the alignment of the resource. There are two ways we
6022 * 1) Increase the size of the resource. BARs are aligned on their
6023 * size, so when we reallocate space for this resource, we'll
6024 * allocate it with the larger alignment. This also prevents
6025 * assignment of any other BARs inside the alignment region, so
6026 * if we're requesting page alignment, this means no other BARs
6027 * will share the page.
6029 * The disadvantage is that this makes the resource larger than
6030 * the hardware BAR, which may break drivers that compute things
6031 * based on the resource size, e.g., to find registers at a
6032 * fixed offset before the end of the BAR.
6034 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6035 * set r->start to the desired alignment. By itself this
6036 * doesn't prevent other BARs being put inside the alignment
6037 * region, but if we realign *every* resource of every device in
6038 * the system, none of them will share an alignment region.
6040 * When the user has requested alignment for only some devices via
6041 * the "pci=resource_alignment" argument, "resize" is true and we
6042 * use the first method. Otherwise we assume we're aligning all
6043 * devices and we use the second.
6046 pci_info(dev
, "BAR%d %pR: requesting alignment to %#llx\n",
6047 bar
, r
, (unsigned long long)align
);
6053 r
->flags
&= ~IORESOURCE_SIZEALIGN
;
6054 r
->flags
|= IORESOURCE_STARTALIGN
;
6056 r
->end
= r
->start
+ size
- 1;
6058 r
->flags
|= IORESOURCE_UNSET
;
6062 * This function disables memory decoding and releases memory resources
6063 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6064 * It also rounds up size to specified alignment.
6065 * Later on, the kernel will assign page-aligned memory resource back
6068 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
6072 resource_size_t align
;
6074 bool resize
= false;
6077 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6078 * 3.4.1.11. Their resources are allocated from the space
6079 * described by the VF BARx register in the PF's SR-IOV capability.
6080 * We can't influence their alignment here.
6085 /* check if specified PCI is target device to reassign */
6086 align
= pci_specified_resource_alignment(dev
, &resize
);
6090 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
6091 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
6092 pci_warn(dev
, "Can't reassign resources to host bridge\n");
6096 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
6097 command
&= ~PCI_COMMAND_MEMORY
;
6098 pci_write_config_word(dev
, PCI_COMMAND
, command
);
6100 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
6101 pci_request_resource_alignment(dev
, i
, align
, resize
);
6104 * Need to disable bridge's resource window,
6105 * to enable the kernel to reassign new resource
6108 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
6109 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
6110 r
= &dev
->resource
[i
];
6111 if (!(r
->flags
& IORESOURCE_MEM
))
6113 r
->flags
|= IORESOURCE_UNSET
;
6114 r
->end
= resource_size(r
) - 1;
6117 pci_disable_bridge_window(dev
);
6121 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
6123 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
6124 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
6125 spin_lock(&resource_alignment_lock
);
6126 strncpy(resource_alignment_param
, buf
, count
);
6127 resource_alignment_param
[count
] = '\0';
6128 spin_unlock(&resource_alignment_lock
);
6132 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
6135 spin_lock(&resource_alignment_lock
);
6136 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
6137 spin_unlock(&resource_alignment_lock
);
6141 static ssize_t
resource_alignment_show(struct bus_type
*bus
, char *buf
)
6143 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
6146 static ssize_t
resource_alignment_store(struct bus_type
*bus
,
6147 const char *buf
, size_t count
)
6149 return pci_set_resource_alignment_param(buf
, count
);
6152 static BUS_ATTR_RW(resource_alignment
);
6154 static int __init
pci_resource_alignment_sysfs_init(void)
6156 return bus_create_file(&pci_bus_type
,
6157 &bus_attr_resource_alignment
);
6159 late_initcall(pci_resource_alignment_sysfs_init
);
6161 static void pci_no_domains(void)
6163 #ifdef CONFIG_PCI_DOMAINS
6164 pci_domains_supported
= 0;
6168 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6169 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
6171 static int pci_get_new_domain_nr(void)
6173 return atomic_inc_return(&__domain_nr
);
6176 static int of_pci_bus_find_domain_nr(struct device
*parent
)
6178 static int use_dt_domains
= -1;
6182 domain
= of_get_pci_domain_nr(parent
->of_node
);
6185 * Check DT domain and use_dt_domains values.
6187 * If DT domain property is valid (domain >= 0) and
6188 * use_dt_domains != 0, the DT assignment is valid since this means
6189 * we have not previously allocated a domain number by using
6190 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6191 * 1, to indicate that we have just assigned a domain number from
6194 * If DT domain property value is not valid (ie domain < 0), and we
6195 * have not previously assigned a domain number from DT
6196 * (use_dt_domains != 1) we should assign a domain number by
6199 * pci_get_new_domain_nr()
6201 * API and update the use_dt_domains value to keep track of method we
6202 * are using to assign domain numbers (use_dt_domains = 0).
6204 * All other combinations imply we have a platform that is trying
6205 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6206 * which is a recipe for domain mishandling and it is prevented by
6207 * invalidating the domain value (domain = -1) and printing a
6208 * corresponding error.
6210 if (domain
>= 0 && use_dt_domains
) {
6212 } else if (domain
< 0 && use_dt_domains
!= 1) {
6214 domain
= pci_get_new_domain_nr();
6217 pr_err("Node %pOF has ", parent
->of_node
);
6218 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6225 int pci_bus_find_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
6227 return acpi_disabled
? of_pci_bus_find_domain_nr(parent
) :
6228 acpi_pci_bus_find_domain_nr(bus
);
6233 * pci_ext_cfg_avail - can we access extended PCI config space?
6235 * Returns 1 if we can access PCI extended config space (offsets
6236 * greater than 0xff). This is the default implementation. Architecture
6237 * implementations can override this.
6239 int __weak
pci_ext_cfg_avail(void)
6244 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
6247 EXPORT_SYMBOL(pci_fixup_cardbus
);
6249 static int __init
pci_setup(char *str
)
6252 char *k
= strchr(str
, ',');
6255 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
6256 if (!strcmp(str
, "nomsi")) {
6258 } else if (!strncmp(str
, "noats", 5)) {
6259 pr_info("PCIe: ATS is disabled\n");
6260 pcie_ats_disabled
= true;
6261 } else if (!strcmp(str
, "noaer")) {
6263 } else if (!strcmp(str
, "earlydump")) {
6264 pci_early_dump
= true;
6265 } else if (!strncmp(str
, "realloc=", 8)) {
6266 pci_realloc_get_opt(str
+ 8);
6267 } else if (!strncmp(str
, "realloc", 7)) {
6268 pci_realloc_get_opt("on");
6269 } else if (!strcmp(str
, "nodomains")) {
6271 } else if (!strncmp(str
, "noari", 5)) {
6272 pcie_ari_disabled
= true;
6273 } else if (!strncmp(str
, "cbiosize=", 9)) {
6274 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
6275 } else if (!strncmp(str
, "cbmemsize=", 10)) {
6276 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
6277 } else if (!strncmp(str
, "resource_alignment=", 19)) {
6278 pci_set_resource_alignment_param(str
+ 19,
6280 } else if (!strncmp(str
, "ecrc=", 5)) {
6281 pcie_ecrc_get_policy(str
+ 5);
6282 } else if (!strncmp(str
, "hpiosize=", 9)) {
6283 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
6284 } else if (!strncmp(str
, "hpmemsize=", 10)) {
6285 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
6286 } else if (!strncmp(str
, "hpbussize=", 10)) {
6287 pci_hotplug_bus_size
=
6288 simple_strtoul(str
+ 10, &str
, 0);
6289 if (pci_hotplug_bus_size
> 0xff)
6290 pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
6291 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
6292 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
6293 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
6294 pcie_bus_config
= PCIE_BUS_SAFE
;
6295 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
6296 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
6297 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
6298 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
6299 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
6300 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
6301 } else if (!strncmp(str
, "disable_acs_redir=", 18)) {
6302 disable_acs_redir_param
= str
+ 18;
6304 pr_err("PCI: Unknown option `%s'\n", str
);
6311 early_param("pci", pci_setup
);
6314 * 'disable_acs_redir_param' is initialized in pci_setup(), above, to point
6315 * to data in the __initdata section which will be freed after the init
6316 * sequence is complete. We can't allocate memory in pci_setup() because some
6317 * architectures do not have any memory allocation service available during
6318 * an early_param() call. So we allocate memory and copy the variable here
6319 * before the init section is freed.
6321 static int __init
pci_realloc_setup_params(void)
6323 disable_acs_redir_param
= kstrdup(disable_acs_redir_param
, GFP_KERNEL
);
6327 pure_initcall(pci_realloc_setup_params
);