1 // SPDX-License-Identifier: GPL-2.0-or-later
3 // core.c -- Voltage/Current Regulator framework.
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 static DEFINE_WW_CLASS(regulator_ww_class
);
48 static DEFINE_MUTEX(regulator_nesting_mutex
);
49 static DEFINE_MUTEX(regulator_list_mutex
);
50 static LIST_HEAD(regulator_map_list
);
51 static LIST_HEAD(regulator_ena_gpio_list
);
52 static LIST_HEAD(regulator_supply_alias_list
);
53 static LIST_HEAD(regulator_coupler_list
);
54 static bool has_full_constraints
;
56 static struct dentry
*debugfs_root
;
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map
{
64 struct list_head list
;
65 const char *dev_name
; /* The dev_name() for the consumer */
67 struct regulator_dev
*regulator
;
71 * struct regulator_enable_gpio
73 * Management for shared enable GPIO pin
75 struct regulator_enable_gpio
{
76 struct list_head list
;
77 struct gpio_desc
*gpiod
;
78 u32 enable_count
; /* a number of enabled shared GPIO */
79 u32 request_count
; /* a number of requested shared GPIO */
83 * struct regulator_supply_alias
85 * Used to map lookups for a supply onto an alternative device.
87 struct regulator_supply_alias
{
88 struct list_head list
;
89 struct device
*src_dev
;
90 const char *src_supply
;
91 struct device
*alias_dev
;
92 const char *alias_supply
;
95 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
96 static int _regulator_disable(struct regulator
*regulator
);
97 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
98 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
99 static int _notifier_call_chain(struct regulator_dev
*rdev
,
100 unsigned long event
, void *data
);
101 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
102 int min_uV
, int max_uV
);
103 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
104 suspend_state_t state
);
105 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
107 const char *supply_name
);
108 static void _regulator_put(struct regulator
*regulator
);
110 const char *rdev_get_name(struct regulator_dev
*rdev
)
112 if (rdev
->constraints
&& rdev
->constraints
->name
)
113 return rdev
->constraints
->name
;
114 else if (rdev
->desc
->name
)
115 return rdev
->desc
->name
;
120 static bool have_full_constraints(void)
122 return has_full_constraints
|| of_have_populated_dt();
125 static bool regulator_ops_is_valid(struct regulator_dev
*rdev
, int ops
)
127 if (!rdev
->constraints
) {
128 rdev_err(rdev
, "no constraints\n");
132 if (rdev
->constraints
->valid_ops_mask
& ops
)
139 * regulator_lock_nested - lock a single regulator
140 * @rdev: regulator source
141 * @ww_ctx: w/w mutex acquire context
143 * This function can be called many times by one task on
144 * a single regulator and its mutex will be locked only
145 * once. If a task, which is calling this function is other
146 * than the one, which initially locked the mutex, it will
149 static inline int regulator_lock_nested(struct regulator_dev
*rdev
,
150 struct ww_acquire_ctx
*ww_ctx
)
155 mutex_lock(®ulator_nesting_mutex
);
157 if (ww_ctx
|| !ww_mutex_trylock(&rdev
->mutex
)) {
158 if (rdev
->mutex_owner
== current
)
164 mutex_unlock(®ulator_nesting_mutex
);
165 ret
= ww_mutex_lock(&rdev
->mutex
, ww_ctx
);
166 mutex_lock(®ulator_nesting_mutex
);
172 if (lock
&& ret
!= -EDEADLK
) {
174 rdev
->mutex_owner
= current
;
177 mutex_unlock(®ulator_nesting_mutex
);
183 * regulator_lock - lock a single regulator
184 * @rdev: regulator source
186 * This function can be called many times by one task on
187 * a single regulator and its mutex will be locked only
188 * once. If a task, which is calling this function is other
189 * than the one, which initially locked the mutex, it will
192 void regulator_lock(struct regulator_dev
*rdev
)
194 regulator_lock_nested(rdev
, NULL
);
196 EXPORT_SYMBOL_GPL(regulator_lock
);
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
205 void regulator_unlock(struct regulator_dev
*rdev
)
207 mutex_lock(®ulator_nesting_mutex
);
209 if (--rdev
->ref_cnt
== 0) {
210 rdev
->mutex_owner
= NULL
;
211 ww_mutex_unlock(&rdev
->mutex
);
214 WARN_ON_ONCE(rdev
->ref_cnt
< 0);
216 mutex_unlock(®ulator_nesting_mutex
);
218 EXPORT_SYMBOL_GPL(regulator_unlock
);
220 static bool regulator_supply_is_couple(struct regulator_dev
*rdev
)
222 struct regulator_dev
*c_rdev
;
225 for (i
= 1; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
226 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
228 if (rdev
->supply
->rdev
== c_rdev
)
235 static void regulator_unlock_recursive(struct regulator_dev
*rdev
,
236 unsigned int n_coupled
)
238 struct regulator_dev
*c_rdev
;
241 for (i
= n_coupled
; i
> 0; i
--) {
242 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
- 1];
247 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
))
248 regulator_unlock_recursive(
249 c_rdev
->supply
->rdev
,
250 c_rdev
->coupling_desc
.n_coupled
);
252 regulator_unlock(c_rdev
);
256 static int regulator_lock_recursive(struct regulator_dev
*rdev
,
257 struct regulator_dev
**new_contended_rdev
,
258 struct regulator_dev
**old_contended_rdev
,
259 struct ww_acquire_ctx
*ww_ctx
)
261 struct regulator_dev
*c_rdev
;
264 for (i
= 0; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
265 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
270 if (c_rdev
!= *old_contended_rdev
) {
271 err
= regulator_lock_nested(c_rdev
, ww_ctx
);
273 if (err
== -EDEADLK
) {
274 *new_contended_rdev
= c_rdev
;
278 /* shouldn't happen */
279 WARN_ON_ONCE(err
!= -EALREADY
);
282 *old_contended_rdev
= NULL
;
285 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
)) {
286 err
= regulator_lock_recursive(c_rdev
->supply
->rdev
,
291 regulator_unlock(c_rdev
);
300 regulator_unlock_recursive(rdev
, i
);
306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
308 * @rdev: regulator source
309 * @ww_ctx: w/w mutex acquire context
311 * Unlock all regulators related with rdev by coupling or supplying.
313 static void regulator_unlock_dependent(struct regulator_dev
*rdev
,
314 struct ww_acquire_ctx
*ww_ctx
)
316 regulator_unlock_recursive(rdev
, rdev
->coupling_desc
.n_coupled
);
317 ww_acquire_fini(ww_ctx
);
321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322 * @rdev: regulator source
323 * @ww_ctx: w/w mutex acquire context
325 * This function as a wrapper on regulator_lock_recursive(), which locks
326 * all regulators related with rdev by coupling or supplying.
328 static void regulator_lock_dependent(struct regulator_dev
*rdev
,
329 struct ww_acquire_ctx
*ww_ctx
)
331 struct regulator_dev
*new_contended_rdev
= NULL
;
332 struct regulator_dev
*old_contended_rdev
= NULL
;
335 mutex_lock(®ulator_list_mutex
);
337 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
340 if (new_contended_rdev
) {
341 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
342 old_contended_rdev
= new_contended_rdev
;
343 old_contended_rdev
->ref_cnt
++;
346 err
= regulator_lock_recursive(rdev
,
351 if (old_contended_rdev
)
352 regulator_unlock(old_contended_rdev
);
354 } while (err
== -EDEADLK
);
356 ww_acquire_done(ww_ctx
);
358 mutex_unlock(®ulator_list_mutex
);
362 * of_get_child_regulator - get a child regulator device node
363 * based on supply name
364 * @parent: Parent device node
365 * @prop_name: Combination regulator supply name and "-supply"
367 * Traverse all child nodes.
368 * Extract the child regulator device node corresponding to the supply name.
369 * returns the device node corresponding to the regulator if found, else
372 static struct device_node
*of_get_child_regulator(struct device_node
*parent
,
373 const char *prop_name
)
375 struct device_node
*regnode
= NULL
;
376 struct device_node
*child
= NULL
;
378 for_each_child_of_node(parent
, child
) {
379 regnode
= of_parse_phandle(child
, prop_name
, 0);
382 regnode
= of_get_child_regulator(child
, prop_name
);
393 * of_get_regulator - get a regulator device node based on supply name
394 * @dev: Device pointer for the consumer (of regulator) device
395 * @supply: regulator supply name
397 * Extract the regulator device node corresponding to the supply name.
398 * returns the device node corresponding to the regulator if found, else
401 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
403 struct device_node
*regnode
= NULL
;
404 char prop_name
[32]; /* 32 is max size of property name */
406 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
408 snprintf(prop_name
, 32, "%s-supply", supply
);
409 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
412 regnode
= of_get_child_regulator(dev
->of_node
, prop_name
);
416 dev_dbg(dev
, "Looking up %s property in node %pOF failed\n",
417 prop_name
, dev
->of_node
);
423 /* Platform voltage constraint check */
424 int regulator_check_voltage(struct regulator_dev
*rdev
,
425 int *min_uV
, int *max_uV
)
427 BUG_ON(*min_uV
> *max_uV
);
429 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
430 rdev_err(rdev
, "voltage operation not allowed\n");
434 if (*max_uV
> rdev
->constraints
->max_uV
)
435 *max_uV
= rdev
->constraints
->max_uV
;
436 if (*min_uV
< rdev
->constraints
->min_uV
)
437 *min_uV
= rdev
->constraints
->min_uV
;
439 if (*min_uV
> *max_uV
) {
440 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
448 /* return 0 if the state is valid */
449 static int regulator_check_states(suspend_state_t state
)
451 return (state
> PM_SUSPEND_MAX
|| state
== PM_SUSPEND_TO_IDLE
);
454 /* Make sure we select a voltage that suits the needs of all
455 * regulator consumers
457 int regulator_check_consumers(struct regulator_dev
*rdev
,
458 int *min_uV
, int *max_uV
,
459 suspend_state_t state
)
461 struct regulator
*regulator
;
462 struct regulator_voltage
*voltage
;
464 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
465 voltage
= ®ulator
->voltage
[state
];
467 * Assume consumers that didn't say anything are OK
468 * with anything in the constraint range.
470 if (!voltage
->min_uV
&& !voltage
->max_uV
)
473 if (*max_uV
> voltage
->max_uV
)
474 *max_uV
= voltage
->max_uV
;
475 if (*min_uV
< voltage
->min_uV
)
476 *min_uV
= voltage
->min_uV
;
479 if (*min_uV
> *max_uV
) {
480 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
488 /* current constraint check */
489 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
490 int *min_uA
, int *max_uA
)
492 BUG_ON(*min_uA
> *max_uA
);
494 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_CURRENT
)) {
495 rdev_err(rdev
, "current operation not allowed\n");
499 if (*max_uA
> rdev
->constraints
->max_uA
)
500 *max_uA
= rdev
->constraints
->max_uA
;
501 if (*min_uA
< rdev
->constraints
->min_uA
)
502 *min_uA
= rdev
->constraints
->min_uA
;
504 if (*min_uA
> *max_uA
) {
505 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
513 /* operating mode constraint check */
514 static int regulator_mode_constrain(struct regulator_dev
*rdev
,
518 case REGULATOR_MODE_FAST
:
519 case REGULATOR_MODE_NORMAL
:
520 case REGULATOR_MODE_IDLE
:
521 case REGULATOR_MODE_STANDBY
:
524 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
528 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_MODE
)) {
529 rdev_err(rdev
, "mode operation not allowed\n");
533 /* The modes are bitmasks, the most power hungry modes having
534 * the lowest values. If the requested mode isn't supported
535 * try higher modes. */
537 if (rdev
->constraints
->valid_modes_mask
& *mode
)
545 static inline struct regulator_state
*
546 regulator_get_suspend_state(struct regulator_dev
*rdev
, suspend_state_t state
)
548 if (rdev
->constraints
== NULL
)
552 case PM_SUSPEND_STANDBY
:
553 return &rdev
->constraints
->state_standby
;
555 return &rdev
->constraints
->state_mem
;
557 return &rdev
->constraints
->state_disk
;
563 static ssize_t
regulator_uV_show(struct device
*dev
,
564 struct device_attribute
*attr
, char *buf
)
566 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
569 regulator_lock(rdev
);
570 ret
= sprintf(buf
, "%d\n", regulator_get_voltage_rdev(rdev
));
571 regulator_unlock(rdev
);
575 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
577 static ssize_t
regulator_uA_show(struct device
*dev
,
578 struct device_attribute
*attr
, char *buf
)
580 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
582 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
584 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
586 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
589 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
591 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
593 static DEVICE_ATTR_RO(name
);
595 static const char *regulator_opmode_to_str(int mode
)
598 case REGULATOR_MODE_FAST
:
600 case REGULATOR_MODE_NORMAL
:
602 case REGULATOR_MODE_IDLE
:
604 case REGULATOR_MODE_STANDBY
:
610 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
612 return sprintf(buf
, "%s\n", regulator_opmode_to_str(mode
));
615 static ssize_t
regulator_opmode_show(struct device
*dev
,
616 struct device_attribute
*attr
, char *buf
)
618 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
620 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
622 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
624 static ssize_t
regulator_print_state(char *buf
, int state
)
627 return sprintf(buf
, "enabled\n");
629 return sprintf(buf
, "disabled\n");
631 return sprintf(buf
, "unknown\n");
634 static ssize_t
regulator_state_show(struct device
*dev
,
635 struct device_attribute
*attr
, char *buf
)
637 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
640 regulator_lock(rdev
);
641 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
642 regulator_unlock(rdev
);
646 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
648 static ssize_t
regulator_status_show(struct device
*dev
,
649 struct device_attribute
*attr
, char *buf
)
651 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
655 status
= rdev
->desc
->ops
->get_status(rdev
);
660 case REGULATOR_STATUS_OFF
:
663 case REGULATOR_STATUS_ON
:
666 case REGULATOR_STATUS_ERROR
:
669 case REGULATOR_STATUS_FAST
:
672 case REGULATOR_STATUS_NORMAL
:
675 case REGULATOR_STATUS_IDLE
:
678 case REGULATOR_STATUS_STANDBY
:
681 case REGULATOR_STATUS_BYPASS
:
684 case REGULATOR_STATUS_UNDEFINED
:
691 return sprintf(buf
, "%s\n", label
);
693 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
695 static ssize_t
regulator_min_uA_show(struct device
*dev
,
696 struct device_attribute
*attr
, char *buf
)
698 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
700 if (!rdev
->constraints
)
701 return sprintf(buf
, "constraint not defined\n");
703 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
705 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
707 static ssize_t
regulator_max_uA_show(struct device
*dev
,
708 struct device_attribute
*attr
, char *buf
)
710 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
712 if (!rdev
->constraints
)
713 return sprintf(buf
, "constraint not defined\n");
715 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
717 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
719 static ssize_t
regulator_min_uV_show(struct device
*dev
,
720 struct device_attribute
*attr
, char *buf
)
722 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
724 if (!rdev
->constraints
)
725 return sprintf(buf
, "constraint not defined\n");
727 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
729 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
731 static ssize_t
regulator_max_uV_show(struct device
*dev
,
732 struct device_attribute
*attr
, char *buf
)
734 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
736 if (!rdev
->constraints
)
737 return sprintf(buf
, "constraint not defined\n");
739 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
741 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
743 static ssize_t
regulator_total_uA_show(struct device
*dev
,
744 struct device_attribute
*attr
, char *buf
)
746 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
747 struct regulator
*regulator
;
750 regulator_lock(rdev
);
751 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
752 if (regulator
->enable_count
)
753 uA
+= regulator
->uA_load
;
755 regulator_unlock(rdev
);
756 return sprintf(buf
, "%d\n", uA
);
758 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
760 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
763 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
764 return sprintf(buf
, "%d\n", rdev
->use_count
);
766 static DEVICE_ATTR_RO(num_users
);
768 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
771 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
773 switch (rdev
->desc
->type
) {
774 case REGULATOR_VOLTAGE
:
775 return sprintf(buf
, "voltage\n");
776 case REGULATOR_CURRENT
:
777 return sprintf(buf
, "current\n");
779 return sprintf(buf
, "unknown\n");
781 static DEVICE_ATTR_RO(type
);
783 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
784 struct device_attribute
*attr
, char *buf
)
786 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
788 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
790 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
791 regulator_suspend_mem_uV_show
, NULL
);
793 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
794 struct device_attribute
*attr
, char *buf
)
796 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
798 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
800 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
801 regulator_suspend_disk_uV_show
, NULL
);
803 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
804 struct device_attribute
*attr
, char *buf
)
806 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
808 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
810 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
811 regulator_suspend_standby_uV_show
, NULL
);
813 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
814 struct device_attribute
*attr
, char *buf
)
816 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
818 return regulator_print_opmode(buf
,
819 rdev
->constraints
->state_mem
.mode
);
821 static DEVICE_ATTR(suspend_mem_mode
, 0444,
822 regulator_suspend_mem_mode_show
, NULL
);
824 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
825 struct device_attribute
*attr
, char *buf
)
827 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
829 return regulator_print_opmode(buf
,
830 rdev
->constraints
->state_disk
.mode
);
832 static DEVICE_ATTR(suspend_disk_mode
, 0444,
833 regulator_suspend_disk_mode_show
, NULL
);
835 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
836 struct device_attribute
*attr
, char *buf
)
838 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
840 return regulator_print_opmode(buf
,
841 rdev
->constraints
->state_standby
.mode
);
843 static DEVICE_ATTR(suspend_standby_mode
, 0444,
844 regulator_suspend_standby_mode_show
, NULL
);
846 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
847 struct device_attribute
*attr
, char *buf
)
849 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
851 return regulator_print_state(buf
,
852 rdev
->constraints
->state_mem
.enabled
);
854 static DEVICE_ATTR(suspend_mem_state
, 0444,
855 regulator_suspend_mem_state_show
, NULL
);
857 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
858 struct device_attribute
*attr
, char *buf
)
860 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
862 return regulator_print_state(buf
,
863 rdev
->constraints
->state_disk
.enabled
);
865 static DEVICE_ATTR(suspend_disk_state
, 0444,
866 regulator_suspend_disk_state_show
, NULL
);
868 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
869 struct device_attribute
*attr
, char *buf
)
871 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
873 return regulator_print_state(buf
,
874 rdev
->constraints
->state_standby
.enabled
);
876 static DEVICE_ATTR(suspend_standby_state
, 0444,
877 regulator_suspend_standby_state_show
, NULL
);
879 static ssize_t
regulator_bypass_show(struct device
*dev
,
880 struct device_attribute
*attr
, char *buf
)
882 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
887 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
896 return sprintf(buf
, "%s\n", report
);
898 static DEVICE_ATTR(bypass
, 0444,
899 regulator_bypass_show
, NULL
);
901 /* Calculate the new optimum regulator operating mode based on the new total
902 * consumer load. All locks held by caller */
903 static int drms_uA_update(struct regulator_dev
*rdev
)
905 struct regulator
*sibling
;
906 int current_uA
= 0, output_uV
, input_uV
, err
;
910 * first check to see if we can set modes at all, otherwise just
911 * tell the consumer everything is OK.
913 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
)) {
914 rdev_dbg(rdev
, "DRMS operation not allowed\n");
918 if (!rdev
->desc
->ops
->get_optimum_mode
&&
919 !rdev
->desc
->ops
->set_load
)
922 if (!rdev
->desc
->ops
->set_mode
&&
923 !rdev
->desc
->ops
->set_load
)
926 /* calc total requested load */
927 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
) {
928 if (sibling
->enable_count
)
929 current_uA
+= sibling
->uA_load
;
932 current_uA
+= rdev
->constraints
->system_load
;
934 if (rdev
->desc
->ops
->set_load
) {
935 /* set the optimum mode for our new total regulator load */
936 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
938 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
940 /* get output voltage */
941 output_uV
= regulator_get_voltage_rdev(rdev
);
942 if (output_uV
<= 0) {
943 rdev_err(rdev
, "invalid output voltage found\n");
947 /* get input voltage */
950 input_uV
= regulator_get_voltage(rdev
->supply
);
952 input_uV
= rdev
->constraints
->input_uV
;
954 rdev_err(rdev
, "invalid input voltage found\n");
958 /* now get the optimum mode for our new total regulator load */
959 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
960 output_uV
, current_uA
);
962 /* check the new mode is allowed */
963 err
= regulator_mode_constrain(rdev
, &mode
);
965 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
966 current_uA
, input_uV
, output_uV
);
970 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
972 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
978 static int suspend_set_state(struct regulator_dev
*rdev
,
979 suspend_state_t state
)
982 struct regulator_state
*rstate
;
984 rstate
= regulator_get_suspend_state(rdev
, state
);
988 /* If we have no suspend mode configuration don't set anything;
989 * only warn if the driver implements set_suspend_voltage or
990 * set_suspend_mode callback.
992 if (rstate
->enabled
!= ENABLE_IN_SUSPEND
&&
993 rstate
->enabled
!= DISABLE_IN_SUSPEND
) {
994 if (rdev
->desc
->ops
->set_suspend_voltage
||
995 rdev
->desc
->ops
->set_suspend_mode
)
996 rdev_warn(rdev
, "No configuration\n");
1000 if (rstate
->enabled
== ENABLE_IN_SUSPEND
&&
1001 rdev
->desc
->ops
->set_suspend_enable
)
1002 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
1003 else if (rstate
->enabled
== DISABLE_IN_SUSPEND
&&
1004 rdev
->desc
->ops
->set_suspend_disable
)
1005 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
1006 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1010 rdev_err(rdev
, "failed to enabled/disable\n");
1014 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
1015 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
1017 rdev_err(rdev
, "failed to set voltage\n");
1022 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
1023 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
1025 rdev_err(rdev
, "failed to set mode\n");
1033 static void print_constraints(struct regulator_dev
*rdev
)
1035 struct regulation_constraints
*constraints
= rdev
->constraints
;
1037 size_t len
= sizeof(buf
) - 1;
1041 if (constraints
->min_uV
&& constraints
->max_uV
) {
1042 if (constraints
->min_uV
== constraints
->max_uV
)
1043 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
1044 constraints
->min_uV
/ 1000);
1046 count
+= scnprintf(buf
+ count
, len
- count
,
1048 constraints
->min_uV
/ 1000,
1049 constraints
->max_uV
/ 1000);
1052 if (!constraints
->min_uV
||
1053 constraints
->min_uV
!= constraints
->max_uV
) {
1054 ret
= regulator_get_voltage_rdev(rdev
);
1056 count
+= scnprintf(buf
+ count
, len
- count
,
1057 "at %d mV ", ret
/ 1000);
1060 if (constraints
->uV_offset
)
1061 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
1062 constraints
->uV_offset
/ 1000);
1064 if (constraints
->min_uA
&& constraints
->max_uA
) {
1065 if (constraints
->min_uA
== constraints
->max_uA
)
1066 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
1067 constraints
->min_uA
/ 1000);
1069 count
+= scnprintf(buf
+ count
, len
- count
,
1071 constraints
->min_uA
/ 1000,
1072 constraints
->max_uA
/ 1000);
1075 if (!constraints
->min_uA
||
1076 constraints
->min_uA
!= constraints
->max_uA
) {
1077 ret
= _regulator_get_current_limit(rdev
);
1079 count
+= scnprintf(buf
+ count
, len
- count
,
1080 "at %d mA ", ret
/ 1000);
1083 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
1084 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
1085 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
1086 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
1087 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
1088 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
1089 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
1090 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
1093 scnprintf(buf
, len
, "no parameters");
1095 rdev_dbg(rdev
, "%s\n", buf
);
1097 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
1098 !regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
1100 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1103 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
1104 struct regulation_constraints
*constraints
)
1106 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1109 /* do we need to apply the constraint voltage */
1110 if (rdev
->constraints
->apply_uV
&&
1111 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
) {
1112 int target_min
, target_max
;
1113 int current_uV
= regulator_get_voltage_rdev(rdev
);
1115 if (current_uV
== -ENOTRECOVERABLE
) {
1116 /* This regulator can't be read and must be initialized */
1117 rdev_info(rdev
, "Setting %d-%duV\n",
1118 rdev
->constraints
->min_uV
,
1119 rdev
->constraints
->max_uV
);
1120 _regulator_do_set_voltage(rdev
,
1121 rdev
->constraints
->min_uV
,
1122 rdev
->constraints
->max_uV
);
1123 current_uV
= regulator_get_voltage_rdev(rdev
);
1126 if (current_uV
< 0) {
1128 "failed to get the current voltage(%d)\n",
1134 * If we're below the minimum voltage move up to the
1135 * minimum voltage, if we're above the maximum voltage
1136 * then move down to the maximum.
1138 target_min
= current_uV
;
1139 target_max
= current_uV
;
1141 if (current_uV
< rdev
->constraints
->min_uV
) {
1142 target_min
= rdev
->constraints
->min_uV
;
1143 target_max
= rdev
->constraints
->min_uV
;
1146 if (current_uV
> rdev
->constraints
->max_uV
) {
1147 target_min
= rdev
->constraints
->max_uV
;
1148 target_max
= rdev
->constraints
->max_uV
;
1151 if (target_min
!= current_uV
|| target_max
!= current_uV
) {
1152 rdev_info(rdev
, "Bringing %duV into %d-%duV\n",
1153 current_uV
, target_min
, target_max
);
1154 ret
= _regulator_do_set_voltage(
1155 rdev
, target_min
, target_max
);
1158 "failed to apply %d-%duV constraint(%d)\n",
1159 target_min
, target_max
, ret
);
1165 /* constrain machine-level voltage specs to fit
1166 * the actual range supported by this regulator.
1168 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
1169 int count
= rdev
->desc
->n_voltages
;
1171 int min_uV
= INT_MAX
;
1172 int max_uV
= INT_MIN
;
1173 int cmin
= constraints
->min_uV
;
1174 int cmax
= constraints
->max_uV
;
1176 /* it's safe to autoconfigure fixed-voltage supplies
1177 and the constraints are used by list_voltage. */
1178 if (count
== 1 && !cmin
) {
1181 constraints
->min_uV
= cmin
;
1182 constraints
->max_uV
= cmax
;
1185 /* voltage constraints are optional */
1186 if ((cmin
== 0) && (cmax
== 0))
1189 /* else require explicit machine-level constraints */
1190 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
1191 rdev_err(rdev
, "invalid voltage constraints\n");
1195 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1196 for (i
= 0; i
< count
; i
++) {
1199 value
= ops
->list_voltage(rdev
, i
);
1203 /* maybe adjust [min_uV..max_uV] */
1204 if (value
>= cmin
&& value
< min_uV
)
1206 if (value
<= cmax
&& value
> max_uV
)
1210 /* final: [min_uV..max_uV] valid iff constraints valid */
1211 if (max_uV
< min_uV
) {
1213 "unsupportable voltage constraints %u-%uuV\n",
1218 /* use regulator's subset of machine constraints */
1219 if (constraints
->min_uV
< min_uV
) {
1220 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
1221 constraints
->min_uV
, min_uV
);
1222 constraints
->min_uV
= min_uV
;
1224 if (constraints
->max_uV
> max_uV
) {
1225 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
1226 constraints
->max_uV
, max_uV
);
1227 constraints
->max_uV
= max_uV
;
1234 static int machine_constraints_current(struct regulator_dev
*rdev
,
1235 struct regulation_constraints
*constraints
)
1237 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1240 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1243 if (constraints
->min_uA
> constraints
->max_uA
) {
1244 rdev_err(rdev
, "Invalid current constraints\n");
1248 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1249 rdev_warn(rdev
, "Operation of current configuration missing\n");
1253 /* Set regulator current in constraints range */
1254 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1255 constraints
->max_uA
);
1257 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1264 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1267 * set_machine_constraints - sets regulator constraints
1268 * @rdev: regulator source
1269 * @constraints: constraints to apply
1271 * Allows platform initialisation code to define and constrain
1272 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1273 * Constraints *must* be set by platform code in order for some
1274 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1277 static int set_machine_constraints(struct regulator_dev
*rdev
,
1278 const struct regulation_constraints
*constraints
)
1281 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1284 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1287 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1289 if (!rdev
->constraints
)
1292 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1296 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1300 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1301 ret
= ops
->set_input_current_limit(rdev
,
1302 rdev
->constraints
->ilim_uA
);
1304 rdev_err(rdev
, "failed to set input limit\n");
1309 /* do we need to setup our suspend state */
1310 if (rdev
->constraints
->initial_state
) {
1311 ret
= suspend_set_state(rdev
, rdev
->constraints
->initial_state
);
1313 rdev_err(rdev
, "failed to set suspend state\n");
1318 if (rdev
->constraints
->initial_mode
) {
1319 if (!ops
->set_mode
) {
1320 rdev_err(rdev
, "no set_mode operation\n");
1324 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1326 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1329 } else if (rdev
->constraints
->system_load
) {
1331 * We'll only apply the initial system load if an
1332 * initial mode wasn't specified.
1334 drms_uA_update(rdev
);
1337 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1338 && ops
->set_ramp_delay
) {
1339 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1341 rdev_err(rdev
, "failed to set ramp_delay\n");
1346 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1347 ret
= ops
->set_pull_down(rdev
);
1349 rdev_err(rdev
, "failed to set pull down\n");
1354 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1355 ret
= ops
->set_soft_start(rdev
);
1357 rdev_err(rdev
, "failed to set soft start\n");
1362 if (rdev
->constraints
->over_current_protection
1363 && ops
->set_over_current_protection
) {
1364 ret
= ops
->set_over_current_protection(rdev
);
1366 rdev_err(rdev
, "failed to set over current protection\n");
1371 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1372 bool ad_state
= (rdev
->constraints
->active_discharge
==
1373 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1375 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1377 rdev_err(rdev
, "failed to set active discharge\n");
1382 /* If the constraints say the regulator should be on at this point
1383 * and we have control then make sure it is enabled.
1385 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1387 ret
= regulator_enable(rdev
->supply
);
1389 _regulator_put(rdev
->supply
);
1390 rdev
->supply
= NULL
;
1395 ret
= _regulator_do_enable(rdev
);
1396 if (ret
< 0 && ret
!= -EINVAL
) {
1397 rdev_err(rdev
, "failed to enable\n");
1403 print_constraints(rdev
);
1408 * set_supply - set regulator supply regulator
1409 * @rdev: regulator name
1410 * @supply_rdev: supply regulator name
1412 * Called by platform initialisation code to set the supply regulator for this
1413 * regulator. This ensures that a regulators supply will also be enabled by the
1414 * core if it's child is enabled.
1416 static int set_supply(struct regulator_dev
*rdev
,
1417 struct regulator_dev
*supply_rdev
)
1421 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1423 if (!try_module_get(supply_rdev
->owner
))
1426 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1427 if (rdev
->supply
== NULL
) {
1431 supply_rdev
->open_count
++;
1437 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1438 * @rdev: regulator source
1439 * @consumer_dev_name: dev_name() string for device supply applies to
1440 * @supply: symbolic name for supply
1442 * Allows platform initialisation code to map physical regulator
1443 * sources to symbolic names for supplies for use by devices. Devices
1444 * should use these symbolic names to request regulators, avoiding the
1445 * need to provide board-specific regulator names as platform data.
1447 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1448 const char *consumer_dev_name
,
1451 struct regulator_map
*node
;
1457 if (consumer_dev_name
!= NULL
)
1462 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1463 if (node
->dev_name
&& consumer_dev_name
) {
1464 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1466 } else if (node
->dev_name
|| consumer_dev_name
) {
1470 if (strcmp(node
->supply
, supply
) != 0)
1473 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1475 dev_name(&node
->regulator
->dev
),
1476 node
->regulator
->desc
->name
,
1478 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1482 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1486 node
->regulator
= rdev
;
1487 node
->supply
= supply
;
1490 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1491 if (node
->dev_name
== NULL
) {
1497 list_add(&node
->list
, ®ulator_map_list
);
1501 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1503 struct regulator_map
*node
, *n
;
1505 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1506 if (rdev
== node
->regulator
) {
1507 list_del(&node
->list
);
1508 kfree(node
->dev_name
);
1514 #ifdef CONFIG_DEBUG_FS
1515 static ssize_t
constraint_flags_read_file(struct file
*file
,
1516 char __user
*user_buf
,
1517 size_t count
, loff_t
*ppos
)
1519 const struct regulator
*regulator
= file
->private_data
;
1520 const struct regulation_constraints
*c
= regulator
->rdev
->constraints
;
1527 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1531 ret
= snprintf(buf
, PAGE_SIZE
,
1535 "ramp_disable: %u\n"
1538 "over_current_protection: %u\n",
1545 c
->over_current_protection
);
1547 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
1555 static const struct file_operations constraint_flags_fops
= {
1556 #ifdef CONFIG_DEBUG_FS
1557 .open
= simple_open
,
1558 .read
= constraint_flags_read_file
,
1559 .llseek
= default_llseek
,
1563 #define REG_STR_SIZE 64
1565 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1567 const char *supply_name
)
1569 struct regulator
*regulator
;
1570 char buf
[REG_STR_SIZE
];
1573 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1574 if (regulator
== NULL
)
1577 regulator_lock(rdev
);
1578 regulator
->rdev
= rdev
;
1579 list_add(®ulator
->list
, &rdev
->consumer_list
);
1582 regulator
->dev
= dev
;
1584 /* Add a link to the device sysfs entry */
1585 size
= snprintf(buf
, REG_STR_SIZE
, "%s-%s",
1586 dev
->kobj
.name
, supply_name
);
1587 if (size
>= REG_STR_SIZE
)
1590 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1591 if (regulator
->supply_name
== NULL
)
1594 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1597 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1598 dev
->kobj
.name
, err
);
1602 regulator
->supply_name
= kstrdup_const(supply_name
, GFP_KERNEL
);
1603 if (regulator
->supply_name
== NULL
)
1607 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1609 if (!regulator
->debugfs
) {
1610 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1612 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1613 ®ulator
->uA_load
);
1614 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1615 ®ulator
->voltage
[PM_SUSPEND_ON
].min_uV
);
1616 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1617 ®ulator
->voltage
[PM_SUSPEND_ON
].max_uV
);
1618 debugfs_create_file("constraint_flags", 0444,
1619 regulator
->debugfs
, regulator
,
1620 &constraint_flags_fops
);
1624 * Check now if the regulator is an always on regulator - if
1625 * it is then we don't need to do nearly so much work for
1626 * enable/disable calls.
1628 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
) &&
1629 _regulator_is_enabled(rdev
))
1630 regulator
->always_on
= true;
1632 regulator_unlock(rdev
);
1635 list_del(®ulator
->list
);
1637 regulator_unlock(rdev
);
1641 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1643 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1644 return rdev
->constraints
->enable_time
;
1645 if (rdev
->desc
->ops
->enable_time
)
1646 return rdev
->desc
->ops
->enable_time(rdev
);
1647 return rdev
->desc
->enable_time
;
1650 static struct regulator_supply_alias
*regulator_find_supply_alias(
1651 struct device
*dev
, const char *supply
)
1653 struct regulator_supply_alias
*map
;
1655 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1656 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1662 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1664 struct regulator_supply_alias
*map
;
1666 map
= regulator_find_supply_alias(*dev
, *supply
);
1668 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1669 *supply
, map
->alias_supply
,
1670 dev_name(map
->alias_dev
));
1671 *dev
= map
->alias_dev
;
1672 *supply
= map
->alias_supply
;
1676 static int regulator_match(struct device
*dev
, const void *data
)
1678 struct regulator_dev
*r
= dev_to_rdev(dev
);
1680 return strcmp(rdev_get_name(r
), data
) == 0;
1683 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1687 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1689 return dev
? dev_to_rdev(dev
) : NULL
;
1693 * regulator_dev_lookup - lookup a regulator device.
1694 * @dev: device for regulator "consumer".
1695 * @supply: Supply name or regulator ID.
1697 * If successful, returns a struct regulator_dev that corresponds to the name
1698 * @supply and with the embedded struct device refcount incremented by one.
1699 * The refcount must be dropped by calling put_device().
1700 * On failure one of the following ERR-PTR-encoded values is returned:
1701 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1704 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1707 struct regulator_dev
*r
= NULL
;
1708 struct device_node
*node
;
1709 struct regulator_map
*map
;
1710 const char *devname
= NULL
;
1712 regulator_supply_alias(&dev
, &supply
);
1714 /* first do a dt based lookup */
1715 if (dev
&& dev
->of_node
) {
1716 node
= of_get_regulator(dev
, supply
);
1718 r
= of_find_regulator_by_node(node
);
1723 * We have a node, but there is no device.
1724 * assume it has not registered yet.
1726 return ERR_PTR(-EPROBE_DEFER
);
1730 /* if not found, try doing it non-dt way */
1732 devname
= dev_name(dev
);
1734 mutex_lock(®ulator_list_mutex
);
1735 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1736 /* If the mapping has a device set up it must match */
1737 if (map
->dev_name
&&
1738 (!devname
|| strcmp(map
->dev_name
, devname
)))
1741 if (strcmp(map
->supply
, supply
) == 0 &&
1742 get_device(&map
->regulator
->dev
)) {
1747 mutex_unlock(®ulator_list_mutex
);
1752 r
= regulator_lookup_by_name(supply
);
1756 return ERR_PTR(-ENODEV
);
1759 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1761 struct regulator_dev
*r
;
1762 struct device
*dev
= rdev
->dev
.parent
;
1765 /* No supply to resolve? */
1766 if (!rdev
->supply_name
)
1769 /* Supply already resolved? */
1773 r
= regulator_dev_lookup(dev
, rdev
->supply_name
);
1777 /* Did the lookup explicitly defer for us? */
1778 if (ret
== -EPROBE_DEFER
)
1781 if (have_full_constraints()) {
1782 r
= dummy_regulator_rdev
;
1783 get_device(&r
->dev
);
1785 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1786 rdev
->supply_name
, rdev
->desc
->name
);
1787 return -EPROBE_DEFER
;
1792 * If the supply's parent device is not the same as the
1793 * regulator's parent device, then ensure the parent device
1794 * is bound before we resolve the supply, in case the parent
1795 * device get probe deferred and unregisters the supply.
1797 if (r
->dev
.parent
&& r
->dev
.parent
!= rdev
->dev
.parent
) {
1798 if (!device_is_bound(r
->dev
.parent
)) {
1799 put_device(&r
->dev
);
1800 return -EPROBE_DEFER
;
1804 /* Recursively resolve the supply of the supply */
1805 ret
= regulator_resolve_supply(r
);
1807 put_device(&r
->dev
);
1811 ret
= set_supply(rdev
, r
);
1813 put_device(&r
->dev
);
1818 * In set_machine_constraints() we may have turned this regulator on
1819 * but we couldn't propagate to the supply if it hadn't been resolved
1822 if (rdev
->use_count
) {
1823 ret
= regulator_enable(rdev
->supply
);
1825 _regulator_put(rdev
->supply
);
1826 rdev
->supply
= NULL
;
1834 /* Internal regulator request function */
1835 struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1836 enum regulator_get_type get_type
)
1838 struct regulator_dev
*rdev
;
1839 struct regulator
*regulator
;
1840 const char *devname
= dev
? dev_name(dev
) : "deviceless";
1843 if (get_type
>= MAX_GET_TYPE
) {
1844 dev_err(dev
, "invalid type %d in %s\n", get_type
, __func__
);
1845 return ERR_PTR(-EINVAL
);
1849 pr_err("get() with no identifier\n");
1850 return ERR_PTR(-EINVAL
);
1853 rdev
= regulator_dev_lookup(dev
, id
);
1855 ret
= PTR_ERR(rdev
);
1858 * If regulator_dev_lookup() fails with error other
1859 * than -ENODEV our job here is done, we simply return it.
1862 return ERR_PTR(ret
);
1864 if (!have_full_constraints()) {
1866 "incomplete constraints, dummy supplies not allowed\n");
1867 return ERR_PTR(-ENODEV
);
1873 * Assume that a regulator is physically present and
1874 * enabled, even if it isn't hooked up, and just
1878 "%s supply %s not found, using dummy regulator\n",
1880 rdev
= dummy_regulator_rdev
;
1881 get_device(&rdev
->dev
);
1886 "dummy supplies not allowed for exclusive requests\n");
1890 return ERR_PTR(-ENODEV
);
1894 if (rdev
->exclusive
) {
1895 regulator
= ERR_PTR(-EPERM
);
1896 put_device(&rdev
->dev
);
1900 if (get_type
== EXCLUSIVE_GET
&& rdev
->open_count
) {
1901 regulator
= ERR_PTR(-EBUSY
);
1902 put_device(&rdev
->dev
);
1906 mutex_lock(®ulator_list_mutex
);
1907 ret
= (rdev
->coupling_desc
.n_resolved
!= rdev
->coupling_desc
.n_coupled
);
1908 mutex_unlock(®ulator_list_mutex
);
1911 regulator
= ERR_PTR(-EPROBE_DEFER
);
1912 put_device(&rdev
->dev
);
1916 ret
= regulator_resolve_supply(rdev
);
1918 regulator
= ERR_PTR(ret
);
1919 put_device(&rdev
->dev
);
1923 if (!try_module_get(rdev
->owner
)) {
1924 regulator
= ERR_PTR(-EPROBE_DEFER
);
1925 put_device(&rdev
->dev
);
1929 regulator
= create_regulator(rdev
, dev
, id
);
1930 if (regulator
== NULL
) {
1931 regulator
= ERR_PTR(-ENOMEM
);
1932 put_device(&rdev
->dev
);
1933 module_put(rdev
->owner
);
1938 if (get_type
== EXCLUSIVE_GET
) {
1939 rdev
->exclusive
= 1;
1941 ret
= _regulator_is_enabled(rdev
);
1943 rdev
->use_count
= 1;
1945 rdev
->use_count
= 0;
1948 device_link_add(dev
, &rdev
->dev
, DL_FLAG_STATELESS
);
1954 * regulator_get - lookup and obtain a reference to a regulator.
1955 * @dev: device for regulator "consumer"
1956 * @id: Supply name or regulator ID.
1958 * Returns a struct regulator corresponding to the regulator producer,
1959 * or IS_ERR() condition containing errno.
1961 * Use of supply names configured via regulator_set_device_supply() is
1962 * strongly encouraged. It is recommended that the supply name used
1963 * should match the name used for the supply and/or the relevant
1964 * device pins in the datasheet.
1966 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1968 return _regulator_get(dev
, id
, NORMAL_GET
);
1970 EXPORT_SYMBOL_GPL(regulator_get
);
1973 * regulator_get_exclusive - obtain exclusive access to a regulator.
1974 * @dev: device for regulator "consumer"
1975 * @id: Supply name or regulator ID.
1977 * Returns a struct regulator corresponding to the regulator producer,
1978 * or IS_ERR() condition containing errno. Other consumers will be
1979 * unable to obtain this regulator while this reference is held and the
1980 * use count for the regulator will be initialised to reflect the current
1981 * state of the regulator.
1983 * This is intended for use by consumers which cannot tolerate shared
1984 * use of the regulator such as those which need to force the
1985 * regulator off for correct operation of the hardware they are
1988 * Use of supply names configured via regulator_set_device_supply() is
1989 * strongly encouraged. It is recommended that the supply name used
1990 * should match the name used for the supply and/or the relevant
1991 * device pins in the datasheet.
1993 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1995 return _regulator_get(dev
, id
, EXCLUSIVE_GET
);
1997 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
2000 * regulator_get_optional - obtain optional access to a regulator.
2001 * @dev: device for regulator "consumer"
2002 * @id: Supply name or regulator ID.
2004 * Returns a struct regulator corresponding to the regulator producer,
2005 * or IS_ERR() condition containing errno.
2007 * This is intended for use by consumers for devices which can have
2008 * some supplies unconnected in normal use, such as some MMC devices.
2009 * It can allow the regulator core to provide stub supplies for other
2010 * supplies requested using normal regulator_get() calls without
2011 * disrupting the operation of drivers that can handle absent
2014 * Use of supply names configured via regulator_set_device_supply() is
2015 * strongly encouraged. It is recommended that the supply name used
2016 * should match the name used for the supply and/or the relevant
2017 * device pins in the datasheet.
2019 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
2021 return _regulator_get(dev
, id
, OPTIONAL_GET
);
2023 EXPORT_SYMBOL_GPL(regulator_get_optional
);
2025 /* regulator_list_mutex lock held by regulator_put() */
2026 static void _regulator_put(struct regulator
*regulator
)
2028 struct regulator_dev
*rdev
;
2030 if (IS_ERR_OR_NULL(regulator
))
2033 lockdep_assert_held_once(®ulator_list_mutex
);
2035 /* Docs say you must disable before calling regulator_put() */
2036 WARN_ON(regulator
->enable_count
);
2038 rdev
= regulator
->rdev
;
2040 debugfs_remove_recursive(regulator
->debugfs
);
2042 if (regulator
->dev
) {
2043 device_link_remove(regulator
->dev
, &rdev
->dev
);
2045 /* remove any sysfs entries */
2046 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
2049 regulator_lock(rdev
);
2050 list_del(®ulator
->list
);
2053 rdev
->exclusive
= 0;
2054 put_device(&rdev
->dev
);
2055 regulator_unlock(rdev
);
2057 kfree_const(regulator
->supply_name
);
2060 module_put(rdev
->owner
);
2064 * regulator_put - "free" the regulator source
2065 * @regulator: regulator source
2067 * Note: drivers must ensure that all regulator_enable calls made on this
2068 * regulator source are balanced by regulator_disable calls prior to calling
2071 void regulator_put(struct regulator
*regulator
)
2073 mutex_lock(®ulator_list_mutex
);
2074 _regulator_put(regulator
);
2075 mutex_unlock(®ulator_list_mutex
);
2077 EXPORT_SYMBOL_GPL(regulator_put
);
2080 * regulator_register_supply_alias - Provide device alias for supply lookup
2082 * @dev: device that will be given as the regulator "consumer"
2083 * @id: Supply name or regulator ID
2084 * @alias_dev: device that should be used to lookup the supply
2085 * @alias_id: Supply name or regulator ID that should be used to lookup the
2088 * All lookups for id on dev will instead be conducted for alias_id on
2091 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
2092 struct device
*alias_dev
,
2093 const char *alias_id
)
2095 struct regulator_supply_alias
*map
;
2097 map
= regulator_find_supply_alias(dev
, id
);
2101 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
2106 map
->src_supply
= id
;
2107 map
->alias_dev
= alias_dev
;
2108 map
->alias_supply
= alias_id
;
2110 list_add(&map
->list
, ®ulator_supply_alias_list
);
2112 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2113 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
2117 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
2120 * regulator_unregister_supply_alias - Remove device alias
2122 * @dev: device that will be given as the regulator "consumer"
2123 * @id: Supply name or regulator ID
2125 * Remove a lookup alias if one exists for id on dev.
2127 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
2129 struct regulator_supply_alias
*map
;
2131 map
= regulator_find_supply_alias(dev
, id
);
2133 list_del(&map
->list
);
2137 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
2140 * regulator_bulk_register_supply_alias - register multiple aliases
2142 * @dev: device that will be given as the regulator "consumer"
2143 * @id: List of supply names or regulator IDs
2144 * @alias_dev: device that should be used to lookup the supply
2145 * @alias_id: List of supply names or regulator IDs that should be used to
2147 * @num_id: Number of aliases to register
2149 * @return 0 on success, an errno on failure.
2151 * This helper function allows drivers to register several supply
2152 * aliases in one operation. If any of the aliases cannot be
2153 * registered any aliases that were registered will be removed
2154 * before returning to the caller.
2156 int regulator_bulk_register_supply_alias(struct device
*dev
,
2157 const char *const *id
,
2158 struct device
*alias_dev
,
2159 const char *const *alias_id
,
2165 for (i
= 0; i
< num_id
; ++i
) {
2166 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
2176 "Failed to create supply alias %s,%s -> %s,%s\n",
2177 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
2180 regulator_unregister_supply_alias(dev
, id
[i
]);
2184 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
2187 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2189 * @dev: device that will be given as the regulator "consumer"
2190 * @id: List of supply names or regulator IDs
2191 * @num_id: Number of aliases to unregister
2193 * This helper function allows drivers to unregister several supply
2194 * aliases in one operation.
2196 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
2197 const char *const *id
,
2202 for (i
= 0; i
< num_id
; ++i
)
2203 regulator_unregister_supply_alias(dev
, id
[i
]);
2205 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
2208 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2209 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
2210 const struct regulator_config
*config
)
2212 struct regulator_enable_gpio
*pin
;
2213 struct gpio_desc
*gpiod
;
2215 gpiod
= config
->ena_gpiod
;
2217 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
2218 if (pin
->gpiod
== gpiod
) {
2219 rdev_dbg(rdev
, "GPIO is already used\n");
2220 goto update_ena_gpio_to_rdev
;
2224 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
2229 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
2231 update_ena_gpio_to_rdev
:
2232 pin
->request_count
++;
2233 rdev
->ena_pin
= pin
;
2237 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
2239 struct regulator_enable_gpio
*pin
, *n
;
2244 /* Free the GPIO only in case of no use */
2245 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
2246 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
2247 if (pin
->request_count
<= 1) {
2248 pin
->request_count
= 0;
2249 gpiod_put(pin
->gpiod
);
2250 list_del(&pin
->list
);
2252 rdev
->ena_pin
= NULL
;
2255 pin
->request_count
--;
2262 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2263 * @rdev: regulator_dev structure
2264 * @enable: enable GPIO at initial use?
2266 * GPIO is enabled in case of initial use. (enable_count is 0)
2267 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2269 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
2271 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
2277 /* Enable GPIO at initial use */
2278 if (pin
->enable_count
== 0)
2279 gpiod_set_value_cansleep(pin
->gpiod
, 1);
2281 pin
->enable_count
++;
2283 if (pin
->enable_count
> 1) {
2284 pin
->enable_count
--;
2288 /* Disable GPIO if not used */
2289 if (pin
->enable_count
<= 1) {
2290 gpiod_set_value_cansleep(pin
->gpiod
, 0);
2291 pin
->enable_count
= 0;
2299 * _regulator_enable_delay - a delay helper function
2300 * @delay: time to delay in microseconds
2302 * Delay for the requested amount of time as per the guidelines in:
2304 * Documentation/timers/timers-howto.rst
2306 * The assumption here is that regulators will never be enabled in
2307 * atomic context and therefore sleeping functions can be used.
2309 static void _regulator_enable_delay(unsigned int delay
)
2311 unsigned int ms
= delay
/ 1000;
2312 unsigned int us
= delay
% 1000;
2316 * For small enough values, handle super-millisecond
2317 * delays in the usleep_range() call below.
2326 * Give the scheduler some room to coalesce with any other
2327 * wakeup sources. For delays shorter than 10 us, don't even
2328 * bother setting up high-resolution timers and just busy-
2332 usleep_range(us
, us
+ 100);
2337 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2341 /* Query before enabling in case configuration dependent. */
2342 ret
= _regulator_get_enable_time(rdev
);
2346 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2350 trace_regulator_enable(rdev_get_name(rdev
));
2352 if (rdev
->desc
->off_on_delay
) {
2353 /* if needed, keep a distance of off_on_delay from last time
2354 * this regulator was disabled.
2356 unsigned long start_jiffy
= jiffies
;
2357 unsigned long intended
, max_delay
, remaining
;
2359 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2360 intended
= rdev
->last_off_jiffy
+ max_delay
;
2362 if (time_before(start_jiffy
, intended
)) {
2363 /* calc remaining jiffies to deal with one-time
2365 * in case of multiple timer wrapping, either it can be
2366 * detected by out-of-range remaining, or it cannot be
2367 * detected and we get a penalty of
2368 * _regulator_enable_delay().
2370 remaining
= intended
- start_jiffy
;
2371 if (remaining
<= max_delay
)
2372 _regulator_enable_delay(
2373 jiffies_to_usecs(remaining
));
2377 if (rdev
->ena_pin
) {
2378 if (!rdev
->ena_gpio_state
) {
2379 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2382 rdev
->ena_gpio_state
= 1;
2384 } else if (rdev
->desc
->ops
->enable
) {
2385 ret
= rdev
->desc
->ops
->enable(rdev
);
2392 /* Allow the regulator to ramp; it would be useful to extend
2393 * this for bulk operations so that the regulators can ramp
2395 trace_regulator_enable_delay(rdev_get_name(rdev
));
2397 _regulator_enable_delay(delay
);
2399 trace_regulator_enable_complete(rdev_get_name(rdev
));
2405 * _regulator_handle_consumer_enable - handle that a consumer enabled
2406 * @regulator: regulator source
2408 * Some things on a regulator consumer (like the contribution towards total
2409 * load on the regulator) only have an effect when the consumer wants the
2410 * regulator enabled. Explained in example with two consumers of the same
2412 * consumer A: set_load(100); => total load = 0
2413 * consumer A: regulator_enable(); => total load = 100
2414 * consumer B: set_load(1000); => total load = 100
2415 * consumer B: regulator_enable(); => total load = 1100
2416 * consumer A: regulator_disable(); => total_load = 1000
2418 * This function (together with _regulator_handle_consumer_disable) is
2419 * responsible for keeping track of the refcount for a given regulator consumer
2420 * and applying / unapplying these things.
2422 * Returns 0 upon no error; -error upon error.
2424 static int _regulator_handle_consumer_enable(struct regulator
*regulator
)
2426 struct regulator_dev
*rdev
= regulator
->rdev
;
2428 lockdep_assert_held_once(&rdev
->mutex
.base
);
2430 regulator
->enable_count
++;
2431 if (regulator
->uA_load
&& regulator
->enable_count
== 1)
2432 return drms_uA_update(rdev
);
2438 * _regulator_handle_consumer_disable - handle that a consumer disabled
2439 * @regulator: regulator source
2441 * The opposite of _regulator_handle_consumer_enable().
2443 * Returns 0 upon no error; -error upon error.
2445 static int _regulator_handle_consumer_disable(struct regulator
*regulator
)
2447 struct regulator_dev
*rdev
= regulator
->rdev
;
2449 lockdep_assert_held_once(&rdev
->mutex
.base
);
2451 if (!regulator
->enable_count
) {
2452 rdev_err(rdev
, "Underflow of regulator enable count\n");
2456 regulator
->enable_count
--;
2457 if (regulator
->uA_load
&& regulator
->enable_count
== 0)
2458 return drms_uA_update(rdev
);
2463 /* locks held by regulator_enable() */
2464 static int _regulator_enable(struct regulator
*regulator
)
2466 struct regulator_dev
*rdev
= regulator
->rdev
;
2469 lockdep_assert_held_once(&rdev
->mutex
.base
);
2471 if (rdev
->use_count
== 0 && rdev
->supply
) {
2472 ret
= _regulator_enable(rdev
->supply
);
2477 /* balance only if there are regulators coupled */
2478 if (rdev
->coupling_desc
.n_coupled
> 1) {
2479 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2481 goto err_disable_supply
;
2484 ret
= _regulator_handle_consumer_enable(regulator
);
2486 goto err_disable_supply
;
2488 if (rdev
->use_count
== 0) {
2489 /* The regulator may on if it's not switchable or left on */
2490 ret
= _regulator_is_enabled(rdev
);
2491 if (ret
== -EINVAL
|| ret
== 0) {
2492 if (!regulator_ops_is_valid(rdev
,
2493 REGULATOR_CHANGE_STATUS
)) {
2495 goto err_consumer_disable
;
2498 ret
= _regulator_do_enable(rdev
);
2500 goto err_consumer_disable
;
2502 _notifier_call_chain(rdev
, REGULATOR_EVENT_ENABLE
,
2504 } else if (ret
< 0) {
2505 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2506 goto err_consumer_disable
;
2508 /* Fallthrough on positive return values - already enabled */
2515 err_consumer_disable
:
2516 _regulator_handle_consumer_disable(regulator
);
2519 if (rdev
->use_count
== 0 && rdev
->supply
)
2520 _regulator_disable(rdev
->supply
);
2526 * regulator_enable - enable regulator output
2527 * @regulator: regulator source
2529 * Request that the regulator be enabled with the regulator output at
2530 * the predefined voltage or current value. Calls to regulator_enable()
2531 * must be balanced with calls to regulator_disable().
2533 * NOTE: the output value can be set by other drivers, boot loader or may be
2534 * hardwired in the regulator.
2536 int regulator_enable(struct regulator
*regulator
)
2538 struct regulator_dev
*rdev
= regulator
->rdev
;
2539 struct ww_acquire_ctx ww_ctx
;
2542 regulator_lock_dependent(rdev
, &ww_ctx
);
2543 ret
= _regulator_enable(regulator
);
2544 regulator_unlock_dependent(rdev
, &ww_ctx
);
2548 EXPORT_SYMBOL_GPL(regulator_enable
);
2550 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2554 trace_regulator_disable(rdev_get_name(rdev
));
2556 if (rdev
->ena_pin
) {
2557 if (rdev
->ena_gpio_state
) {
2558 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2561 rdev
->ena_gpio_state
= 0;
2564 } else if (rdev
->desc
->ops
->disable
) {
2565 ret
= rdev
->desc
->ops
->disable(rdev
);
2570 /* cares about last_off_jiffy only if off_on_delay is required by
2573 if (rdev
->desc
->off_on_delay
)
2574 rdev
->last_off_jiffy
= jiffies
;
2576 trace_regulator_disable_complete(rdev_get_name(rdev
));
2581 /* locks held by regulator_disable() */
2582 static int _regulator_disable(struct regulator
*regulator
)
2584 struct regulator_dev
*rdev
= regulator
->rdev
;
2587 lockdep_assert_held_once(&rdev
->mutex
.base
);
2589 if (WARN(rdev
->use_count
<= 0,
2590 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2593 /* are we the last user and permitted to disable ? */
2594 if (rdev
->use_count
== 1 &&
2595 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2597 /* we are last user */
2598 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
)) {
2599 ret
= _notifier_call_chain(rdev
,
2600 REGULATOR_EVENT_PRE_DISABLE
,
2602 if (ret
& NOTIFY_STOP_MASK
)
2605 ret
= _regulator_do_disable(rdev
);
2607 rdev_err(rdev
, "failed to disable\n");
2608 _notifier_call_chain(rdev
,
2609 REGULATOR_EVENT_ABORT_DISABLE
,
2613 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2617 rdev
->use_count
= 0;
2618 } else if (rdev
->use_count
> 1) {
2623 ret
= _regulator_handle_consumer_disable(regulator
);
2625 if (ret
== 0 && rdev
->coupling_desc
.n_coupled
> 1)
2626 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2628 if (ret
== 0 && rdev
->use_count
== 0 && rdev
->supply
)
2629 ret
= _regulator_disable(rdev
->supply
);
2635 * regulator_disable - disable regulator output
2636 * @regulator: regulator source
2638 * Disable the regulator output voltage or current. Calls to
2639 * regulator_enable() must be balanced with calls to
2640 * regulator_disable().
2642 * NOTE: this will only disable the regulator output if no other consumer
2643 * devices have it enabled, the regulator device supports disabling and
2644 * machine constraints permit this operation.
2646 int regulator_disable(struct regulator
*regulator
)
2648 struct regulator_dev
*rdev
= regulator
->rdev
;
2649 struct ww_acquire_ctx ww_ctx
;
2652 regulator_lock_dependent(rdev
, &ww_ctx
);
2653 ret
= _regulator_disable(regulator
);
2654 regulator_unlock_dependent(rdev
, &ww_ctx
);
2658 EXPORT_SYMBOL_GPL(regulator_disable
);
2660 /* locks held by regulator_force_disable() */
2661 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2665 lockdep_assert_held_once(&rdev
->mutex
.base
);
2667 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2668 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2669 if (ret
& NOTIFY_STOP_MASK
)
2672 ret
= _regulator_do_disable(rdev
);
2674 rdev_err(rdev
, "failed to force disable\n");
2675 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2676 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2680 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2681 REGULATOR_EVENT_DISABLE
, NULL
);
2687 * regulator_force_disable - force disable regulator output
2688 * @regulator: regulator source
2690 * Forcibly disable the regulator output voltage or current.
2691 * NOTE: this *will* disable the regulator output even if other consumer
2692 * devices have it enabled. This should be used for situations when device
2693 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2695 int regulator_force_disable(struct regulator
*regulator
)
2697 struct regulator_dev
*rdev
= regulator
->rdev
;
2698 struct ww_acquire_ctx ww_ctx
;
2701 regulator_lock_dependent(rdev
, &ww_ctx
);
2703 ret
= _regulator_force_disable(regulator
->rdev
);
2705 if (rdev
->coupling_desc
.n_coupled
> 1)
2706 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2708 if (regulator
->uA_load
) {
2709 regulator
->uA_load
= 0;
2710 ret
= drms_uA_update(rdev
);
2713 if (rdev
->use_count
!= 0 && rdev
->supply
)
2714 _regulator_disable(rdev
->supply
);
2716 regulator_unlock_dependent(rdev
, &ww_ctx
);
2720 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2722 static void regulator_disable_work(struct work_struct
*work
)
2724 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2726 struct ww_acquire_ctx ww_ctx
;
2728 struct regulator
*regulator
;
2729 int total_count
= 0;
2731 regulator_lock_dependent(rdev
, &ww_ctx
);
2734 * Workqueue functions queue the new work instance while the previous
2735 * work instance is being processed. Cancel the queued work instance
2736 * as the work instance under processing does the job of the queued
2739 cancel_delayed_work(&rdev
->disable_work
);
2741 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
2742 count
= regulator
->deferred_disables
;
2747 total_count
+= count
;
2748 regulator
->deferred_disables
= 0;
2750 for (i
= 0; i
< count
; i
++) {
2751 ret
= _regulator_disable(regulator
);
2753 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2756 WARN_ON(!total_count
);
2758 if (rdev
->coupling_desc
.n_coupled
> 1)
2759 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2761 regulator_unlock_dependent(rdev
, &ww_ctx
);
2765 * regulator_disable_deferred - disable regulator output with delay
2766 * @regulator: regulator source
2767 * @ms: milliseconds until the regulator is disabled
2769 * Execute regulator_disable() on the regulator after a delay. This
2770 * is intended for use with devices that require some time to quiesce.
2772 * NOTE: this will only disable the regulator output if no other consumer
2773 * devices have it enabled, the regulator device supports disabling and
2774 * machine constraints permit this operation.
2776 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2778 struct regulator_dev
*rdev
= regulator
->rdev
;
2781 return regulator_disable(regulator
);
2783 regulator_lock(rdev
);
2784 regulator
->deferred_disables
++;
2785 mod_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
2786 msecs_to_jiffies(ms
));
2787 regulator_unlock(rdev
);
2791 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2793 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2795 /* A GPIO control always takes precedence */
2797 return rdev
->ena_gpio_state
;
2799 /* If we don't know then assume that the regulator is always on */
2800 if (!rdev
->desc
->ops
->is_enabled
)
2803 return rdev
->desc
->ops
->is_enabled(rdev
);
2806 static int _regulator_list_voltage(struct regulator_dev
*rdev
,
2807 unsigned selector
, int lock
)
2809 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2812 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2813 return rdev
->desc
->fixed_uV
;
2815 if (ops
->list_voltage
) {
2816 if (selector
>= rdev
->desc
->n_voltages
)
2819 regulator_lock(rdev
);
2820 ret
= ops
->list_voltage(rdev
, selector
);
2822 regulator_unlock(rdev
);
2823 } else if (rdev
->is_switch
&& rdev
->supply
) {
2824 ret
= _regulator_list_voltage(rdev
->supply
->rdev
,
2831 if (ret
< rdev
->constraints
->min_uV
)
2833 else if (ret
> rdev
->constraints
->max_uV
)
2841 * regulator_is_enabled - is the regulator output enabled
2842 * @regulator: regulator source
2844 * Returns positive if the regulator driver backing the source/client
2845 * has requested that the device be enabled, zero if it hasn't, else a
2846 * negative errno code.
2848 * Note that the device backing this regulator handle can have multiple
2849 * users, so it might be enabled even if regulator_enable() was never
2850 * called for this particular source.
2852 int regulator_is_enabled(struct regulator
*regulator
)
2856 if (regulator
->always_on
)
2859 regulator_lock(regulator
->rdev
);
2860 ret
= _regulator_is_enabled(regulator
->rdev
);
2861 regulator_unlock(regulator
->rdev
);
2865 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2868 * regulator_count_voltages - count regulator_list_voltage() selectors
2869 * @regulator: regulator source
2871 * Returns number of selectors, or negative errno. Selectors are
2872 * numbered starting at zero, and typically correspond to bitfields
2873 * in hardware registers.
2875 int regulator_count_voltages(struct regulator
*regulator
)
2877 struct regulator_dev
*rdev
= regulator
->rdev
;
2879 if (rdev
->desc
->n_voltages
)
2880 return rdev
->desc
->n_voltages
;
2882 if (!rdev
->is_switch
|| !rdev
->supply
)
2885 return regulator_count_voltages(rdev
->supply
);
2887 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2890 * regulator_list_voltage - enumerate supported voltages
2891 * @regulator: regulator source
2892 * @selector: identify voltage to list
2893 * Context: can sleep
2895 * Returns a voltage that can be passed to @regulator_set_voltage(),
2896 * zero if this selector code can't be used on this system, or a
2899 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2901 return _regulator_list_voltage(regulator
->rdev
, selector
, 1);
2903 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2906 * regulator_get_regmap - get the regulator's register map
2907 * @regulator: regulator source
2909 * Returns the register map for the given regulator, or an ERR_PTR value
2910 * if the regulator doesn't use regmap.
2912 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2914 struct regmap
*map
= regulator
->rdev
->regmap
;
2916 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2920 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2921 * @regulator: regulator source
2922 * @vsel_reg: voltage selector register, output parameter
2923 * @vsel_mask: mask for voltage selector bitfield, output parameter
2925 * Returns the hardware register offset and bitmask used for setting the
2926 * regulator voltage. This might be useful when configuring voltage-scaling
2927 * hardware or firmware that can make I2C requests behind the kernel's back,
2930 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2931 * and 0 is returned, otherwise a negative errno is returned.
2933 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2935 unsigned *vsel_mask
)
2937 struct regulator_dev
*rdev
= regulator
->rdev
;
2938 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2940 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2943 *vsel_reg
= rdev
->desc
->vsel_reg
;
2944 *vsel_mask
= rdev
->desc
->vsel_mask
;
2948 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2951 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2952 * @regulator: regulator source
2953 * @selector: identify voltage to list
2955 * Converts the selector to a hardware-specific voltage selector that can be
2956 * directly written to the regulator registers. The address of the voltage
2957 * register can be determined by calling @regulator_get_hardware_vsel_register.
2959 * On error a negative errno is returned.
2961 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2964 struct regulator_dev
*rdev
= regulator
->rdev
;
2965 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2967 if (selector
>= rdev
->desc
->n_voltages
)
2969 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2974 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2977 * regulator_get_linear_step - return the voltage step size between VSEL values
2978 * @regulator: regulator source
2980 * Returns the voltage step size between VSEL values for linear
2981 * regulators, or return 0 if the regulator isn't a linear regulator.
2983 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2985 struct regulator_dev
*rdev
= regulator
->rdev
;
2987 return rdev
->desc
->uV_step
;
2989 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2992 * regulator_is_supported_voltage - check if a voltage range can be supported
2994 * @regulator: Regulator to check.
2995 * @min_uV: Minimum required voltage in uV.
2996 * @max_uV: Maximum required voltage in uV.
2998 * Returns a boolean.
3000 int regulator_is_supported_voltage(struct regulator
*regulator
,
3001 int min_uV
, int max_uV
)
3003 struct regulator_dev
*rdev
= regulator
->rdev
;
3004 int i
, voltages
, ret
;
3006 /* If we can't change voltage check the current voltage */
3007 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3008 ret
= regulator_get_voltage(regulator
);
3010 return min_uV
<= ret
&& ret
<= max_uV
;
3015 /* Any voltage within constrains range is fine? */
3016 if (rdev
->desc
->continuous_voltage_range
)
3017 return min_uV
>= rdev
->constraints
->min_uV
&&
3018 max_uV
<= rdev
->constraints
->max_uV
;
3020 ret
= regulator_count_voltages(regulator
);
3025 for (i
= 0; i
< voltages
; i
++) {
3026 ret
= regulator_list_voltage(regulator
, i
);
3028 if (ret
>= min_uV
&& ret
<= max_uV
)
3034 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
3036 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
3039 const struct regulator_desc
*desc
= rdev
->desc
;
3041 if (desc
->ops
->map_voltage
)
3042 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
3044 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
3045 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
3047 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
3048 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
3050 if (desc
->ops
->list_voltage
==
3051 regulator_list_voltage_pickable_linear_range
)
3052 return regulator_map_voltage_pickable_linear_range(rdev
,
3055 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
3058 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
3059 int min_uV
, int max_uV
,
3062 struct pre_voltage_change_data data
;
3065 data
.old_uV
= regulator_get_voltage_rdev(rdev
);
3066 data
.min_uV
= min_uV
;
3067 data
.max_uV
= max_uV
;
3068 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3070 if (ret
& NOTIFY_STOP_MASK
)
3073 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
3077 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3078 (void *)data
.old_uV
);
3083 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
3084 int uV
, unsigned selector
)
3086 struct pre_voltage_change_data data
;
3089 data
.old_uV
= regulator_get_voltage_rdev(rdev
);
3092 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3094 if (ret
& NOTIFY_STOP_MASK
)
3097 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
3101 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3102 (void *)data
.old_uV
);
3107 static int _regulator_set_voltage_sel_step(struct regulator_dev
*rdev
,
3108 int uV
, int new_selector
)
3110 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3111 int diff
, old_sel
, curr_sel
, ret
;
3113 /* Stepping is only needed if the regulator is enabled. */
3114 if (!_regulator_is_enabled(rdev
))
3117 if (!ops
->get_voltage_sel
)
3120 old_sel
= ops
->get_voltage_sel(rdev
);
3124 diff
= new_selector
- old_sel
;
3126 return 0; /* No change needed. */
3130 for (curr_sel
= old_sel
+ rdev
->desc
->vsel_step
;
3131 curr_sel
< new_selector
;
3132 curr_sel
+= rdev
->desc
->vsel_step
) {
3134 * Call the callback directly instead of using
3135 * _regulator_call_set_voltage_sel() as we don't
3136 * want to notify anyone yet. Same in the branch
3139 ret
= ops
->set_voltage_sel(rdev
, curr_sel
);
3144 /* Stepping down. */
3145 for (curr_sel
= old_sel
- rdev
->desc
->vsel_step
;
3146 curr_sel
> new_selector
;
3147 curr_sel
-= rdev
->desc
->vsel_step
) {
3148 ret
= ops
->set_voltage_sel(rdev
, curr_sel
);
3155 /* The final selector will trigger the notifiers. */
3156 return _regulator_call_set_voltage_sel(rdev
, uV
, new_selector
);
3160 * At least try to return to the previous voltage if setting a new
3163 (void)ops
->set_voltage_sel(rdev
, old_sel
);
3167 static int _regulator_set_voltage_time(struct regulator_dev
*rdev
,
3168 int old_uV
, int new_uV
)
3170 unsigned int ramp_delay
= 0;
3172 if (rdev
->constraints
->ramp_delay
)
3173 ramp_delay
= rdev
->constraints
->ramp_delay
;
3174 else if (rdev
->desc
->ramp_delay
)
3175 ramp_delay
= rdev
->desc
->ramp_delay
;
3176 else if (rdev
->constraints
->settling_time
)
3177 return rdev
->constraints
->settling_time
;
3178 else if (rdev
->constraints
->settling_time_up
&&
3180 return rdev
->constraints
->settling_time_up
;
3181 else if (rdev
->constraints
->settling_time_down
&&
3183 return rdev
->constraints
->settling_time_down
;
3185 if (ramp_delay
== 0) {
3186 rdev_dbg(rdev
, "ramp_delay not set\n");
3190 return DIV_ROUND_UP(abs(new_uV
- old_uV
), ramp_delay
);
3193 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
3194 int min_uV
, int max_uV
)
3199 unsigned int selector
;
3200 int old_selector
= -1;
3201 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3202 int old_uV
= regulator_get_voltage_rdev(rdev
);
3204 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
3206 min_uV
+= rdev
->constraints
->uV_offset
;
3207 max_uV
+= rdev
->constraints
->uV_offset
;
3210 * If we can't obtain the old selector there is not enough
3211 * info to call set_voltage_time_sel().
3213 if (_regulator_is_enabled(rdev
) &&
3214 ops
->set_voltage_time_sel
&& ops
->get_voltage_sel
) {
3215 old_selector
= ops
->get_voltage_sel(rdev
);
3216 if (old_selector
< 0)
3217 return old_selector
;
3220 if (ops
->set_voltage
) {
3221 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
3225 if (ops
->list_voltage
)
3226 best_val
= ops
->list_voltage(rdev
,
3229 best_val
= regulator_get_voltage_rdev(rdev
);
3232 } else if (ops
->set_voltage_sel
) {
3233 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3235 best_val
= ops
->list_voltage(rdev
, ret
);
3236 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
3238 if (old_selector
== selector
)
3240 else if (rdev
->desc
->vsel_step
)
3241 ret
= _regulator_set_voltage_sel_step(
3242 rdev
, best_val
, selector
);
3244 ret
= _regulator_call_set_voltage_sel(
3245 rdev
, best_val
, selector
);
3257 if (ops
->set_voltage_time_sel
) {
3259 * Call set_voltage_time_sel if successfully obtained
3262 if (old_selector
>= 0 && old_selector
!= selector
)
3263 delay
= ops
->set_voltage_time_sel(rdev
, old_selector
,
3266 if (old_uV
!= best_val
) {
3267 if (ops
->set_voltage_time
)
3268 delay
= ops
->set_voltage_time(rdev
, old_uV
,
3271 delay
= _regulator_set_voltage_time(rdev
,
3278 rdev_warn(rdev
, "failed to get delay: %d\n", delay
);
3282 /* Insert any necessary delays */
3283 if (delay
>= 1000) {
3284 mdelay(delay
/ 1000);
3285 udelay(delay
% 1000);
3290 if (best_val
>= 0) {
3291 unsigned long data
= best_val
;
3293 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
3298 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
3303 static int _regulator_do_set_suspend_voltage(struct regulator_dev
*rdev
,
3304 int min_uV
, int max_uV
, suspend_state_t state
)
3306 struct regulator_state
*rstate
;
3309 rstate
= regulator_get_suspend_state(rdev
, state
);
3313 if (min_uV
< rstate
->min_uV
)
3314 min_uV
= rstate
->min_uV
;
3315 if (max_uV
> rstate
->max_uV
)
3316 max_uV
= rstate
->max_uV
;
3318 sel
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3322 uV
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3323 if (uV
>= min_uV
&& uV
<= max_uV
)
3329 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
3330 int min_uV
, int max_uV
,
3331 suspend_state_t state
)
3333 struct regulator_dev
*rdev
= regulator
->rdev
;
3334 struct regulator_voltage
*voltage
= ®ulator
->voltage
[state
];
3336 int old_min_uV
, old_max_uV
;
3339 /* If we're setting the same range as last time the change
3340 * should be a noop (some cpufreq implementations use the same
3341 * voltage for multiple frequencies, for example).
3343 if (voltage
->min_uV
== min_uV
&& voltage
->max_uV
== max_uV
)
3346 /* If we're trying to set a range that overlaps the current voltage,
3347 * return successfully even though the regulator does not support
3348 * changing the voltage.
3350 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3351 current_uV
= regulator_get_voltage_rdev(rdev
);
3352 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
3353 voltage
->min_uV
= min_uV
;
3354 voltage
->max_uV
= max_uV
;
3360 if (!rdev
->desc
->ops
->set_voltage
&&
3361 !rdev
->desc
->ops
->set_voltage_sel
) {
3366 /* constraints check */
3367 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3371 /* restore original values in case of error */
3372 old_min_uV
= voltage
->min_uV
;
3373 old_max_uV
= voltage
->max_uV
;
3374 voltage
->min_uV
= min_uV
;
3375 voltage
->max_uV
= max_uV
;
3377 /* for not coupled regulators this will just set the voltage */
3378 ret
= regulator_balance_voltage(rdev
, state
);
3380 voltage
->min_uV
= old_min_uV
;
3381 voltage
->max_uV
= old_max_uV
;
3388 int regulator_set_voltage_rdev(struct regulator_dev
*rdev
, int min_uV
,
3389 int max_uV
, suspend_state_t state
)
3391 int best_supply_uV
= 0;
3392 int supply_change_uV
= 0;
3396 regulator_ops_is_valid(rdev
->supply
->rdev
,
3397 REGULATOR_CHANGE_VOLTAGE
) &&
3398 (rdev
->desc
->min_dropout_uV
|| !(rdev
->desc
->ops
->get_voltage
||
3399 rdev
->desc
->ops
->get_voltage_sel
))) {
3400 int current_supply_uV
;
3403 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3409 best_supply_uV
= _regulator_list_voltage(rdev
, selector
, 0);
3410 if (best_supply_uV
< 0) {
3411 ret
= best_supply_uV
;
3415 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
3417 current_supply_uV
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
3418 if (current_supply_uV
< 0) {
3419 ret
= current_supply_uV
;
3423 supply_change_uV
= best_supply_uV
- current_supply_uV
;
3426 if (supply_change_uV
> 0) {
3427 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3428 best_supply_uV
, INT_MAX
, state
);
3430 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
3436 if (state
== PM_SUSPEND_ON
)
3437 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3439 ret
= _regulator_do_set_suspend_voltage(rdev
, min_uV
,
3444 if (supply_change_uV
< 0) {
3445 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3446 best_supply_uV
, INT_MAX
, state
);
3448 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
3450 /* No need to fail here */
3458 static int regulator_limit_voltage_step(struct regulator_dev
*rdev
,
3459 int *current_uV
, int *min_uV
)
3461 struct regulation_constraints
*constraints
= rdev
->constraints
;
3463 /* Limit voltage change only if necessary */
3464 if (!constraints
->max_uV_step
|| !_regulator_is_enabled(rdev
))
3467 if (*current_uV
< 0) {
3468 *current_uV
= regulator_get_voltage_rdev(rdev
);
3470 if (*current_uV
< 0)
3474 if (abs(*current_uV
- *min_uV
) <= constraints
->max_uV_step
)
3477 /* Clamp target voltage within the given step */
3478 if (*current_uV
< *min_uV
)
3479 *min_uV
= min(*current_uV
+ constraints
->max_uV_step
,
3482 *min_uV
= max(*current_uV
- constraints
->max_uV_step
,
3488 static int regulator_get_optimal_voltage(struct regulator_dev
*rdev
,
3490 int *min_uV
, int *max_uV
,
3491 suspend_state_t state
,
3494 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3495 struct regulator_dev
**c_rdevs
= c_desc
->coupled_rdevs
;
3496 struct regulation_constraints
*constraints
= rdev
->constraints
;
3497 int desired_min_uV
= 0, desired_max_uV
= INT_MAX
;
3498 int max_current_uV
= 0, min_current_uV
= INT_MAX
;
3499 int highest_min_uV
= 0, target_uV
, possible_uV
;
3500 int i
, ret
, max_spread
;
3506 * If there are no coupled regulators, simply set the voltage
3507 * demanded by consumers.
3509 if (n_coupled
== 1) {
3511 * If consumers don't provide any demands, set voltage
3514 desired_min_uV
= constraints
->min_uV
;
3515 desired_max_uV
= constraints
->max_uV
;
3517 ret
= regulator_check_consumers(rdev
,
3519 &desired_max_uV
, state
);
3523 possible_uV
= desired_min_uV
;
3529 /* Find highest min desired voltage */
3530 for (i
= 0; i
< n_coupled
; i
++) {
3532 int tmp_max
= INT_MAX
;
3534 lockdep_assert_held_once(&c_rdevs
[i
]->mutex
.base
);
3536 ret
= regulator_check_consumers(c_rdevs
[i
],
3542 ret
= regulator_check_voltage(c_rdevs
[i
], &tmp_min
, &tmp_max
);
3546 highest_min_uV
= max(highest_min_uV
, tmp_min
);
3549 desired_min_uV
= tmp_min
;
3550 desired_max_uV
= tmp_max
;
3554 max_spread
= constraints
->max_spread
[0];
3557 * Let target_uV be equal to the desired one if possible.
3558 * If not, set it to minimum voltage, allowed by other coupled
3561 target_uV
= max(desired_min_uV
, highest_min_uV
- max_spread
);
3564 * Find min and max voltages, which currently aren't violating
3567 for (i
= 1; i
< n_coupled
; i
++) {
3570 if (!_regulator_is_enabled(c_rdevs
[i
]))
3573 tmp_act
= regulator_get_voltage_rdev(c_rdevs
[i
]);
3577 min_current_uV
= min(tmp_act
, min_current_uV
);
3578 max_current_uV
= max(tmp_act
, max_current_uV
);
3581 /* There aren't any other regulators enabled */
3582 if (max_current_uV
== 0) {
3583 possible_uV
= target_uV
;
3586 * Correct target voltage, so as it currently isn't
3587 * violating max_spread
3589 possible_uV
= max(target_uV
, max_current_uV
- max_spread
);
3590 possible_uV
= min(possible_uV
, min_current_uV
+ max_spread
);
3593 if (possible_uV
> desired_max_uV
)
3596 done
= (possible_uV
== target_uV
);
3597 desired_min_uV
= possible_uV
;
3600 /* Apply max_uV_step constraint if necessary */
3601 if (state
== PM_SUSPEND_ON
) {
3602 ret
= regulator_limit_voltage_step(rdev
, current_uV
,
3611 /* Set current_uV if wasn't done earlier in the code and if necessary */
3612 if (n_coupled
> 1 && *current_uV
== -1) {
3614 if (_regulator_is_enabled(rdev
)) {
3615 ret
= regulator_get_voltage_rdev(rdev
);
3621 *current_uV
= desired_min_uV
;
3625 *min_uV
= desired_min_uV
;
3626 *max_uV
= desired_max_uV
;
3631 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
3632 suspend_state_t state
)
3634 struct regulator_dev
**c_rdevs
;
3635 struct regulator_dev
*best_rdev
;
3636 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3637 struct regulator_coupler
*coupler
= c_desc
->coupler
;
3638 int i
, ret
, n_coupled
, best_min_uV
, best_max_uV
, best_c_rdev
;
3639 unsigned int delta
, best_delta
;
3640 unsigned long c_rdev_done
= 0;
3641 bool best_c_rdev_done
;
3643 c_rdevs
= c_desc
->coupled_rdevs
;
3644 n_coupled
= c_desc
->n_coupled
;
3647 * If system is in a state other than PM_SUSPEND_ON, don't check
3648 * other coupled regulators.
3650 if (state
!= PM_SUSPEND_ON
)
3653 if (c_desc
->n_resolved
< n_coupled
) {
3654 rdev_err(rdev
, "Not all coupled regulators registered\n");
3658 /* Invoke custom balancer for customized couplers */
3659 if (coupler
&& coupler
->balance_voltage
)
3660 return coupler
->balance_voltage(coupler
, rdev
, state
);
3663 * Find the best possible voltage change on each loop. Leave the loop
3664 * if there isn't any possible change.
3667 best_c_rdev_done
= false;
3675 * Find highest difference between optimal voltage
3676 * and current voltage.
3678 for (i
= 0; i
< n_coupled
; i
++) {
3680 * optimal_uV is the best voltage that can be set for
3681 * i-th regulator at the moment without violating
3682 * max_spread constraint in order to balance
3683 * the coupled voltages.
3685 int optimal_uV
= 0, optimal_max_uV
= 0, current_uV
= 0;
3687 if (test_bit(i
, &c_rdev_done
))
3690 ret
= regulator_get_optimal_voltage(c_rdevs
[i
],
3698 delta
= abs(optimal_uV
- current_uV
);
3700 if (delta
&& best_delta
<= delta
) {
3701 best_c_rdev_done
= ret
;
3703 best_rdev
= c_rdevs
[i
];
3704 best_min_uV
= optimal_uV
;
3705 best_max_uV
= optimal_max_uV
;
3710 /* Nothing to change, return successfully */
3716 ret
= regulator_set_voltage_rdev(best_rdev
, best_min_uV
,
3717 best_max_uV
, state
);
3722 if (best_c_rdev_done
)
3723 set_bit(best_c_rdev
, &c_rdev_done
);
3725 } while (n_coupled
> 1);
3732 * regulator_set_voltage - set regulator output voltage
3733 * @regulator: regulator source
3734 * @min_uV: Minimum required voltage in uV
3735 * @max_uV: Maximum acceptable voltage in uV
3737 * Sets a voltage regulator to the desired output voltage. This can be set
3738 * during any regulator state. IOW, regulator can be disabled or enabled.
3740 * If the regulator is enabled then the voltage will change to the new value
3741 * immediately otherwise if the regulator is disabled the regulator will
3742 * output at the new voltage when enabled.
3744 * NOTE: If the regulator is shared between several devices then the lowest
3745 * request voltage that meets the system constraints will be used.
3746 * Regulator system constraints must be set for this regulator before
3747 * calling this function otherwise this call will fail.
3749 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
3751 struct ww_acquire_ctx ww_ctx
;
3754 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3756 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
,
3759 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3763 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
3765 static inline int regulator_suspend_toggle(struct regulator_dev
*rdev
,
3766 suspend_state_t state
, bool en
)
3768 struct regulator_state
*rstate
;
3770 rstate
= regulator_get_suspend_state(rdev
, state
);
3774 if (!rstate
->changeable
)
3777 rstate
->enabled
= (en
) ? ENABLE_IN_SUSPEND
: DISABLE_IN_SUSPEND
;
3782 int regulator_suspend_enable(struct regulator_dev
*rdev
,
3783 suspend_state_t state
)
3785 return regulator_suspend_toggle(rdev
, state
, true);
3787 EXPORT_SYMBOL_GPL(regulator_suspend_enable
);
3789 int regulator_suspend_disable(struct regulator_dev
*rdev
,
3790 suspend_state_t state
)
3792 struct regulator
*regulator
;
3793 struct regulator_voltage
*voltage
;
3796 * if any consumer wants this regulator device keeping on in
3797 * suspend states, don't set it as disabled.
3799 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
3800 voltage
= ®ulator
->voltage
[state
];
3801 if (voltage
->min_uV
|| voltage
->max_uV
)
3805 return regulator_suspend_toggle(rdev
, state
, false);
3807 EXPORT_SYMBOL_GPL(regulator_suspend_disable
);
3809 static int _regulator_set_suspend_voltage(struct regulator
*regulator
,
3810 int min_uV
, int max_uV
,
3811 suspend_state_t state
)
3813 struct regulator_dev
*rdev
= regulator
->rdev
;
3814 struct regulator_state
*rstate
;
3816 rstate
= regulator_get_suspend_state(rdev
, state
);
3820 if (rstate
->min_uV
== rstate
->max_uV
) {
3821 rdev_err(rdev
, "The suspend voltage can't be changed!\n");
3825 return regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
, state
);
3828 int regulator_set_suspend_voltage(struct regulator
*regulator
, int min_uV
,
3829 int max_uV
, suspend_state_t state
)
3831 struct ww_acquire_ctx ww_ctx
;
3834 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3835 if (regulator_check_states(state
) || state
== PM_SUSPEND_ON
)
3838 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3840 ret
= _regulator_set_suspend_voltage(regulator
, min_uV
,
3843 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3847 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage
);
3850 * regulator_set_voltage_time - get raise/fall time
3851 * @regulator: regulator source
3852 * @old_uV: starting voltage in microvolts
3853 * @new_uV: target voltage in microvolts
3855 * Provided with the starting and ending voltage, this function attempts to
3856 * calculate the time in microseconds required to rise or fall to this new
3859 int regulator_set_voltage_time(struct regulator
*regulator
,
3860 int old_uV
, int new_uV
)
3862 struct regulator_dev
*rdev
= regulator
->rdev
;
3863 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3869 if (ops
->set_voltage_time
)
3870 return ops
->set_voltage_time(rdev
, old_uV
, new_uV
);
3871 else if (!ops
->set_voltage_time_sel
)
3872 return _regulator_set_voltage_time(rdev
, old_uV
, new_uV
);
3874 /* Currently requires operations to do this */
3875 if (!ops
->list_voltage
|| !rdev
->desc
->n_voltages
)
3878 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
3879 /* We only look for exact voltage matches here */
3880 voltage
= regulator_list_voltage(regulator
, i
);
3885 if (voltage
== old_uV
)
3887 if (voltage
== new_uV
)
3891 if (old_sel
< 0 || new_sel
< 0)
3894 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
3896 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
3899 * regulator_set_voltage_time_sel - get raise/fall time
3900 * @rdev: regulator source device
3901 * @old_selector: selector for starting voltage
3902 * @new_selector: selector for target voltage
3904 * Provided with the starting and target voltage selectors, this function
3905 * returns time in microseconds required to rise or fall to this new voltage
3907 * Drivers providing ramp_delay in regulation_constraints can use this as their
3908 * set_voltage_time_sel() operation.
3910 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
3911 unsigned int old_selector
,
3912 unsigned int new_selector
)
3914 int old_volt
, new_volt
;
3917 if (!rdev
->desc
->ops
->list_voltage
)
3920 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
3921 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
3923 if (rdev
->desc
->ops
->set_voltage_time
)
3924 return rdev
->desc
->ops
->set_voltage_time(rdev
, old_volt
,
3927 return _regulator_set_voltage_time(rdev
, old_volt
, new_volt
);
3929 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
3932 * regulator_sync_voltage - re-apply last regulator output voltage
3933 * @regulator: regulator source
3935 * Re-apply the last configured voltage. This is intended to be used
3936 * where some external control source the consumer is cooperating with
3937 * has caused the configured voltage to change.
3939 int regulator_sync_voltage(struct regulator
*regulator
)
3941 struct regulator_dev
*rdev
= regulator
->rdev
;
3942 struct regulator_voltage
*voltage
= ®ulator
->voltage
[PM_SUSPEND_ON
];
3943 int ret
, min_uV
, max_uV
;
3945 regulator_lock(rdev
);
3947 if (!rdev
->desc
->ops
->set_voltage
&&
3948 !rdev
->desc
->ops
->set_voltage_sel
) {
3953 /* This is only going to work if we've had a voltage configured. */
3954 if (!voltage
->min_uV
&& !voltage
->max_uV
) {
3959 min_uV
= voltage
->min_uV
;
3960 max_uV
= voltage
->max_uV
;
3962 /* This should be a paranoia check... */
3963 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3967 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, 0);
3971 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3974 regulator_unlock(rdev
);
3977 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
3979 int regulator_get_voltage_rdev(struct regulator_dev
*rdev
)
3984 if (rdev
->desc
->ops
->get_bypass
) {
3985 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypassed
);
3989 /* if bypassed the regulator must have a supply */
3990 if (!rdev
->supply
) {
3992 "bypassed regulator has no supply!\n");
3993 return -EPROBE_DEFER
;
3996 return regulator_get_voltage_rdev(rdev
->supply
->rdev
);
4000 if (rdev
->desc
->ops
->get_voltage_sel
) {
4001 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
4004 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
4005 } else if (rdev
->desc
->ops
->get_voltage
) {
4006 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
4007 } else if (rdev
->desc
->ops
->list_voltage
) {
4008 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
4009 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
4010 ret
= rdev
->desc
->fixed_uV
;
4011 } else if (rdev
->supply
) {
4012 ret
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
4019 return ret
- rdev
->constraints
->uV_offset
;
4023 * regulator_get_voltage - get regulator output voltage
4024 * @regulator: regulator source
4026 * This returns the current regulator voltage in uV.
4028 * NOTE: If the regulator is disabled it will return the voltage value. This
4029 * function should not be used to determine regulator state.
4031 int regulator_get_voltage(struct regulator
*regulator
)
4033 struct ww_acquire_ctx ww_ctx
;
4036 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
4037 ret
= regulator_get_voltage_rdev(regulator
->rdev
);
4038 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
4042 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
4045 * regulator_set_current_limit - set regulator output current limit
4046 * @regulator: regulator source
4047 * @min_uA: Minimum supported current in uA
4048 * @max_uA: Maximum supported current in uA
4050 * Sets current sink to the desired output current. This can be set during
4051 * any regulator state. IOW, regulator can be disabled or enabled.
4053 * If the regulator is enabled then the current will change to the new value
4054 * immediately otherwise if the regulator is disabled the regulator will
4055 * output at the new current when enabled.
4057 * NOTE: Regulator system constraints must be set for this regulator before
4058 * calling this function otherwise this call will fail.
4060 int regulator_set_current_limit(struct regulator
*regulator
,
4061 int min_uA
, int max_uA
)
4063 struct regulator_dev
*rdev
= regulator
->rdev
;
4066 regulator_lock(rdev
);
4069 if (!rdev
->desc
->ops
->set_current_limit
) {
4074 /* constraints check */
4075 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
4079 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
4081 regulator_unlock(rdev
);
4084 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
4086 static int _regulator_get_current_limit_unlocked(struct regulator_dev
*rdev
)
4089 if (!rdev
->desc
->ops
->get_current_limit
)
4092 return rdev
->desc
->ops
->get_current_limit(rdev
);
4095 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
4099 regulator_lock(rdev
);
4100 ret
= _regulator_get_current_limit_unlocked(rdev
);
4101 regulator_unlock(rdev
);
4107 * regulator_get_current_limit - get regulator output current
4108 * @regulator: regulator source
4110 * This returns the current supplied by the specified current sink in uA.
4112 * NOTE: If the regulator is disabled it will return the current value. This
4113 * function should not be used to determine regulator state.
4115 int regulator_get_current_limit(struct regulator
*regulator
)
4117 return _regulator_get_current_limit(regulator
->rdev
);
4119 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
4122 * regulator_set_mode - set regulator operating mode
4123 * @regulator: regulator source
4124 * @mode: operating mode - one of the REGULATOR_MODE constants
4126 * Set regulator operating mode to increase regulator efficiency or improve
4127 * regulation performance.
4129 * NOTE: Regulator system constraints must be set for this regulator before
4130 * calling this function otherwise this call will fail.
4132 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
4134 struct regulator_dev
*rdev
= regulator
->rdev
;
4136 int regulator_curr_mode
;
4138 regulator_lock(rdev
);
4141 if (!rdev
->desc
->ops
->set_mode
) {
4146 /* return if the same mode is requested */
4147 if (rdev
->desc
->ops
->get_mode
) {
4148 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
4149 if (regulator_curr_mode
== mode
) {
4155 /* constraints check */
4156 ret
= regulator_mode_constrain(rdev
, &mode
);
4160 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
4162 regulator_unlock(rdev
);
4165 EXPORT_SYMBOL_GPL(regulator_set_mode
);
4167 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev
*rdev
)
4170 if (!rdev
->desc
->ops
->get_mode
)
4173 return rdev
->desc
->ops
->get_mode(rdev
);
4176 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
4180 regulator_lock(rdev
);
4181 ret
= _regulator_get_mode_unlocked(rdev
);
4182 regulator_unlock(rdev
);
4188 * regulator_get_mode - get regulator operating mode
4189 * @regulator: regulator source
4191 * Get the current regulator operating mode.
4193 unsigned int regulator_get_mode(struct regulator
*regulator
)
4195 return _regulator_get_mode(regulator
->rdev
);
4197 EXPORT_SYMBOL_GPL(regulator_get_mode
);
4199 static int _regulator_get_error_flags(struct regulator_dev
*rdev
,
4200 unsigned int *flags
)
4204 regulator_lock(rdev
);
4207 if (!rdev
->desc
->ops
->get_error_flags
) {
4212 ret
= rdev
->desc
->ops
->get_error_flags(rdev
, flags
);
4214 regulator_unlock(rdev
);
4219 * regulator_get_error_flags - get regulator error information
4220 * @regulator: regulator source
4221 * @flags: pointer to store error flags
4223 * Get the current regulator error information.
4225 int regulator_get_error_flags(struct regulator
*regulator
,
4226 unsigned int *flags
)
4228 return _regulator_get_error_flags(regulator
->rdev
, flags
);
4230 EXPORT_SYMBOL_GPL(regulator_get_error_flags
);
4233 * regulator_set_load - set regulator load
4234 * @regulator: regulator source
4235 * @uA_load: load current
4237 * Notifies the regulator core of a new device load. This is then used by
4238 * DRMS (if enabled by constraints) to set the most efficient regulator
4239 * operating mode for the new regulator loading.
4241 * Consumer devices notify their supply regulator of the maximum power
4242 * they will require (can be taken from device datasheet in the power
4243 * consumption tables) when they change operational status and hence power
4244 * state. Examples of operational state changes that can affect power
4245 * consumption are :-
4247 * o Device is opened / closed.
4248 * o Device I/O is about to begin or has just finished.
4249 * o Device is idling in between work.
4251 * This information is also exported via sysfs to userspace.
4253 * DRMS will sum the total requested load on the regulator and change
4254 * to the most efficient operating mode if platform constraints allow.
4256 * NOTE: when a regulator consumer requests to have a regulator
4257 * disabled then any load that consumer requested no longer counts
4258 * toward the total requested load. If the regulator is re-enabled
4259 * then the previously requested load will start counting again.
4261 * If a regulator is an always-on regulator then an individual consumer's
4262 * load will still be removed if that consumer is fully disabled.
4264 * On error a negative errno is returned.
4266 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
4268 struct regulator_dev
*rdev
= regulator
->rdev
;
4272 regulator_lock(rdev
);
4273 old_uA_load
= regulator
->uA_load
;
4274 regulator
->uA_load
= uA_load
;
4275 if (regulator
->enable_count
&& old_uA_load
!= uA_load
) {
4276 ret
= drms_uA_update(rdev
);
4278 regulator
->uA_load
= old_uA_load
;
4280 regulator_unlock(rdev
);
4284 EXPORT_SYMBOL_GPL(regulator_set_load
);
4287 * regulator_allow_bypass - allow the regulator to go into bypass mode
4289 * @regulator: Regulator to configure
4290 * @enable: enable or disable bypass mode
4292 * Allow the regulator to go into bypass mode if all other consumers
4293 * for the regulator also enable bypass mode and the machine
4294 * constraints allow this. Bypass mode means that the regulator is
4295 * simply passing the input directly to the output with no regulation.
4297 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
4299 struct regulator_dev
*rdev
= regulator
->rdev
;
4302 if (!rdev
->desc
->ops
->set_bypass
)
4305 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_BYPASS
))
4308 regulator_lock(rdev
);
4310 if (enable
&& !regulator
->bypass
) {
4311 rdev
->bypass_count
++;
4313 if (rdev
->bypass_count
== rdev
->open_count
) {
4314 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4316 rdev
->bypass_count
--;
4319 } else if (!enable
&& regulator
->bypass
) {
4320 rdev
->bypass_count
--;
4322 if (rdev
->bypass_count
!= rdev
->open_count
) {
4323 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4325 rdev
->bypass_count
++;
4330 regulator
->bypass
= enable
;
4332 regulator_unlock(rdev
);
4336 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
4339 * regulator_register_notifier - register regulator event notifier
4340 * @regulator: regulator source
4341 * @nb: notifier block
4343 * Register notifier block to receive regulator events.
4345 int regulator_register_notifier(struct regulator
*regulator
,
4346 struct notifier_block
*nb
)
4348 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
4351 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
4354 * regulator_unregister_notifier - unregister regulator event notifier
4355 * @regulator: regulator source
4356 * @nb: notifier block
4358 * Unregister regulator event notifier block.
4360 int regulator_unregister_notifier(struct regulator
*regulator
,
4361 struct notifier_block
*nb
)
4363 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
4366 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
4368 /* notify regulator consumers and downstream regulator consumers.
4369 * Note mutex must be held by caller.
4371 static int _notifier_call_chain(struct regulator_dev
*rdev
,
4372 unsigned long event
, void *data
)
4374 /* call rdev chain first */
4375 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
4379 * regulator_bulk_get - get multiple regulator consumers
4381 * @dev: Device to supply
4382 * @num_consumers: Number of consumers to register
4383 * @consumers: Configuration of consumers; clients are stored here.
4385 * @return 0 on success, an errno on failure.
4387 * This helper function allows drivers to get several regulator
4388 * consumers in one operation. If any of the regulators cannot be
4389 * acquired then any regulators that were allocated will be freed
4390 * before returning to the caller.
4392 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
4393 struct regulator_bulk_data
*consumers
)
4398 for (i
= 0; i
< num_consumers
; i
++)
4399 consumers
[i
].consumer
= NULL
;
4401 for (i
= 0; i
< num_consumers
; i
++) {
4402 consumers
[i
].consumer
= regulator_get(dev
,
4403 consumers
[i
].supply
);
4404 if (IS_ERR(consumers
[i
].consumer
)) {
4405 ret
= PTR_ERR(consumers
[i
].consumer
);
4406 consumers
[i
].consumer
= NULL
;
4414 if (ret
!= -EPROBE_DEFER
)
4415 dev_err(dev
, "Failed to get supply '%s': %d\n",
4416 consumers
[i
].supply
, ret
);
4418 dev_dbg(dev
, "Failed to get supply '%s', deferring\n",
4419 consumers
[i
].supply
);
4422 regulator_put(consumers
[i
].consumer
);
4426 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
4428 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
4430 struct regulator_bulk_data
*bulk
= data
;
4432 bulk
->ret
= regulator_enable(bulk
->consumer
);
4436 * regulator_bulk_enable - enable multiple regulator consumers
4438 * @num_consumers: Number of consumers
4439 * @consumers: Consumer data; clients are stored here.
4440 * @return 0 on success, an errno on failure
4442 * This convenience API allows consumers to enable multiple regulator
4443 * clients in a single API call. If any consumers cannot be enabled
4444 * then any others that were enabled will be disabled again prior to
4447 int regulator_bulk_enable(int num_consumers
,
4448 struct regulator_bulk_data
*consumers
)
4450 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
4454 for (i
= 0; i
< num_consumers
; i
++) {
4455 async_schedule_domain(regulator_bulk_enable_async
,
4456 &consumers
[i
], &async_domain
);
4459 async_synchronize_full_domain(&async_domain
);
4461 /* If any consumer failed we need to unwind any that succeeded */
4462 for (i
= 0; i
< num_consumers
; i
++) {
4463 if (consumers
[i
].ret
!= 0) {
4464 ret
= consumers
[i
].ret
;
4472 for (i
= 0; i
< num_consumers
; i
++) {
4473 if (consumers
[i
].ret
< 0)
4474 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
4477 regulator_disable(consumers
[i
].consumer
);
4482 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
4485 * regulator_bulk_disable - disable multiple regulator consumers
4487 * @num_consumers: Number of consumers
4488 * @consumers: Consumer data; clients are stored here.
4489 * @return 0 on success, an errno on failure
4491 * This convenience API allows consumers to disable multiple regulator
4492 * clients in a single API call. If any consumers cannot be disabled
4493 * then any others that were disabled will be enabled again prior to
4496 int regulator_bulk_disable(int num_consumers
,
4497 struct regulator_bulk_data
*consumers
)
4502 for (i
= num_consumers
- 1; i
>= 0; --i
) {
4503 ret
= regulator_disable(consumers
[i
].consumer
);
4511 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
4512 for (++i
; i
< num_consumers
; ++i
) {
4513 r
= regulator_enable(consumers
[i
].consumer
);
4515 pr_err("Failed to re-enable %s: %d\n",
4516 consumers
[i
].supply
, r
);
4521 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
4524 * regulator_bulk_force_disable - force disable multiple regulator consumers
4526 * @num_consumers: Number of consumers
4527 * @consumers: Consumer data; clients are stored here.
4528 * @return 0 on success, an errno on failure
4530 * This convenience API allows consumers to forcibly disable multiple regulator
4531 * clients in a single API call.
4532 * NOTE: This should be used for situations when device damage will
4533 * likely occur if the regulators are not disabled (e.g. over temp).
4534 * Although regulator_force_disable function call for some consumers can
4535 * return error numbers, the function is called for all consumers.
4537 int regulator_bulk_force_disable(int num_consumers
,
4538 struct regulator_bulk_data
*consumers
)
4543 for (i
= 0; i
< num_consumers
; i
++) {
4545 regulator_force_disable(consumers
[i
].consumer
);
4547 /* Store first error for reporting */
4548 if (consumers
[i
].ret
&& !ret
)
4549 ret
= consumers
[i
].ret
;
4554 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
4557 * regulator_bulk_free - free multiple regulator consumers
4559 * @num_consumers: Number of consumers
4560 * @consumers: Consumer data; clients are stored here.
4562 * This convenience API allows consumers to free multiple regulator
4563 * clients in a single API call.
4565 void regulator_bulk_free(int num_consumers
,
4566 struct regulator_bulk_data
*consumers
)
4570 for (i
= 0; i
< num_consumers
; i
++) {
4571 regulator_put(consumers
[i
].consumer
);
4572 consumers
[i
].consumer
= NULL
;
4575 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
4578 * regulator_notifier_call_chain - call regulator event notifier
4579 * @rdev: regulator source
4580 * @event: notifier block
4581 * @data: callback-specific data.
4583 * Called by regulator drivers to notify clients a regulator event has
4584 * occurred. We also notify regulator clients downstream.
4585 * Note lock must be held by caller.
4587 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
4588 unsigned long event
, void *data
)
4590 lockdep_assert_held_once(&rdev
->mutex
.base
);
4592 _notifier_call_chain(rdev
, event
, data
);
4596 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
4599 * regulator_mode_to_status - convert a regulator mode into a status
4601 * @mode: Mode to convert
4603 * Convert a regulator mode into a status.
4605 int regulator_mode_to_status(unsigned int mode
)
4608 case REGULATOR_MODE_FAST
:
4609 return REGULATOR_STATUS_FAST
;
4610 case REGULATOR_MODE_NORMAL
:
4611 return REGULATOR_STATUS_NORMAL
;
4612 case REGULATOR_MODE_IDLE
:
4613 return REGULATOR_STATUS_IDLE
;
4614 case REGULATOR_MODE_STANDBY
:
4615 return REGULATOR_STATUS_STANDBY
;
4617 return REGULATOR_STATUS_UNDEFINED
;
4620 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
4622 static struct attribute
*regulator_dev_attrs
[] = {
4623 &dev_attr_name
.attr
,
4624 &dev_attr_num_users
.attr
,
4625 &dev_attr_type
.attr
,
4626 &dev_attr_microvolts
.attr
,
4627 &dev_attr_microamps
.attr
,
4628 &dev_attr_opmode
.attr
,
4629 &dev_attr_state
.attr
,
4630 &dev_attr_status
.attr
,
4631 &dev_attr_bypass
.attr
,
4632 &dev_attr_requested_microamps
.attr
,
4633 &dev_attr_min_microvolts
.attr
,
4634 &dev_attr_max_microvolts
.attr
,
4635 &dev_attr_min_microamps
.attr
,
4636 &dev_attr_max_microamps
.attr
,
4637 &dev_attr_suspend_standby_state
.attr
,
4638 &dev_attr_suspend_mem_state
.attr
,
4639 &dev_attr_suspend_disk_state
.attr
,
4640 &dev_attr_suspend_standby_microvolts
.attr
,
4641 &dev_attr_suspend_mem_microvolts
.attr
,
4642 &dev_attr_suspend_disk_microvolts
.attr
,
4643 &dev_attr_suspend_standby_mode
.attr
,
4644 &dev_attr_suspend_mem_mode
.attr
,
4645 &dev_attr_suspend_disk_mode
.attr
,
4650 * To avoid cluttering sysfs (and memory) with useless state, only
4651 * create attributes that can be meaningfully displayed.
4653 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
4654 struct attribute
*attr
, int idx
)
4656 struct device
*dev
= kobj_to_dev(kobj
);
4657 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4658 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4659 umode_t mode
= attr
->mode
;
4661 /* these three are always present */
4662 if (attr
== &dev_attr_name
.attr
||
4663 attr
== &dev_attr_num_users
.attr
||
4664 attr
== &dev_attr_type
.attr
)
4667 /* some attributes need specific methods to be displayed */
4668 if (attr
== &dev_attr_microvolts
.attr
) {
4669 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
4670 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
4671 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
4672 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
4677 if (attr
== &dev_attr_microamps
.attr
)
4678 return ops
->get_current_limit
? mode
: 0;
4680 if (attr
== &dev_attr_opmode
.attr
)
4681 return ops
->get_mode
? mode
: 0;
4683 if (attr
== &dev_attr_state
.attr
)
4684 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
4686 if (attr
== &dev_attr_status
.attr
)
4687 return ops
->get_status
? mode
: 0;
4689 if (attr
== &dev_attr_bypass
.attr
)
4690 return ops
->get_bypass
? mode
: 0;
4692 /* constraints need specific supporting methods */
4693 if (attr
== &dev_attr_min_microvolts
.attr
||
4694 attr
== &dev_attr_max_microvolts
.attr
)
4695 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
4697 if (attr
== &dev_attr_min_microamps
.attr
||
4698 attr
== &dev_attr_max_microamps
.attr
)
4699 return ops
->set_current_limit
? mode
: 0;
4701 if (attr
== &dev_attr_suspend_standby_state
.attr
||
4702 attr
== &dev_attr_suspend_mem_state
.attr
||
4703 attr
== &dev_attr_suspend_disk_state
.attr
)
4706 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
4707 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
4708 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
4709 return ops
->set_suspend_voltage
? mode
: 0;
4711 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
4712 attr
== &dev_attr_suspend_mem_mode
.attr
||
4713 attr
== &dev_attr_suspend_disk_mode
.attr
)
4714 return ops
->set_suspend_mode
? mode
: 0;
4719 static const struct attribute_group regulator_dev_group
= {
4720 .attrs
= regulator_dev_attrs
,
4721 .is_visible
= regulator_attr_is_visible
,
4724 static const struct attribute_group
*regulator_dev_groups
[] = {
4725 ®ulator_dev_group
,
4729 static void regulator_dev_release(struct device
*dev
)
4731 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
4733 kfree(rdev
->constraints
);
4734 of_node_put(rdev
->dev
.of_node
);
4738 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
4740 struct device
*parent
= rdev
->dev
.parent
;
4741 const char *rname
= rdev_get_name(rdev
);
4742 char name
[NAME_MAX
];
4744 /* Avoid duplicate debugfs directory names */
4745 if (parent
&& rname
== rdev
->desc
->name
) {
4746 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
4751 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
4752 if (!rdev
->debugfs
) {
4753 rdev_warn(rdev
, "Failed to create debugfs directory\n");
4757 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
4759 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
4761 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
4762 &rdev
->bypass_count
);
4765 static int regulator_register_resolve_supply(struct device
*dev
, void *data
)
4767 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4769 if (regulator_resolve_supply(rdev
))
4770 rdev_dbg(rdev
, "unable to resolve supply\n");
4775 int regulator_coupler_register(struct regulator_coupler
*coupler
)
4777 mutex_lock(®ulator_list_mutex
);
4778 list_add_tail(&coupler
->list
, ®ulator_coupler_list
);
4779 mutex_unlock(®ulator_list_mutex
);
4784 static struct regulator_coupler
*
4785 regulator_find_coupler(struct regulator_dev
*rdev
)
4787 struct regulator_coupler
*coupler
;
4791 * Note that regulators are appended to the list and the generic
4792 * coupler is registered first, hence it will be attached at last
4795 list_for_each_entry_reverse(coupler
, ®ulator_coupler_list
, list
) {
4796 err
= coupler
->attach_regulator(coupler
, rdev
);
4798 if (!coupler
->balance_voltage
&&
4799 rdev
->coupling_desc
.n_coupled
> 2)
4800 goto err_unsupported
;
4806 return ERR_PTR(err
);
4814 return ERR_PTR(-EINVAL
);
4817 if (coupler
->detach_regulator
)
4818 coupler
->detach_regulator(coupler
, rdev
);
4821 "Voltage balancing for multiple regulator couples is unimplemented\n");
4823 return ERR_PTR(-EPERM
);
4826 static void regulator_resolve_coupling(struct regulator_dev
*rdev
)
4828 struct regulator_coupler
*coupler
= rdev
->coupling_desc
.coupler
;
4829 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
4830 int n_coupled
= c_desc
->n_coupled
;
4831 struct regulator_dev
*c_rdev
;
4834 for (i
= 1; i
< n_coupled
; i
++) {
4835 /* already resolved */
4836 if (c_desc
->coupled_rdevs
[i
])
4839 c_rdev
= of_parse_coupled_regulator(rdev
, i
- 1);
4844 if (c_rdev
->coupling_desc
.coupler
!= coupler
) {
4845 rdev_err(rdev
, "coupler mismatch with %s\n",
4846 rdev_get_name(c_rdev
));
4850 regulator_lock(c_rdev
);
4852 c_desc
->coupled_rdevs
[i
] = c_rdev
;
4853 c_desc
->n_resolved
++;
4855 regulator_unlock(c_rdev
);
4857 regulator_resolve_coupling(c_rdev
);
4861 static void regulator_remove_coupling(struct regulator_dev
*rdev
)
4863 struct regulator_coupler
*coupler
= rdev
->coupling_desc
.coupler
;
4864 struct coupling_desc
*__c_desc
, *c_desc
= &rdev
->coupling_desc
;
4865 struct regulator_dev
*__c_rdev
, *c_rdev
;
4866 unsigned int __n_coupled
, n_coupled
;
4870 n_coupled
= c_desc
->n_coupled
;
4872 for (i
= 1; i
< n_coupled
; i
++) {
4873 c_rdev
= c_desc
->coupled_rdevs
[i
];
4878 regulator_lock(c_rdev
);
4880 __c_desc
= &c_rdev
->coupling_desc
;
4881 __n_coupled
= __c_desc
->n_coupled
;
4883 for (k
= 1; k
< __n_coupled
; k
++) {
4884 __c_rdev
= __c_desc
->coupled_rdevs
[k
];
4886 if (__c_rdev
== rdev
) {
4887 __c_desc
->coupled_rdevs
[k
] = NULL
;
4888 __c_desc
->n_resolved
--;
4893 regulator_unlock(c_rdev
);
4895 c_desc
->coupled_rdevs
[i
] = NULL
;
4896 c_desc
->n_resolved
--;
4899 if (coupler
&& coupler
->detach_regulator
) {
4900 err
= coupler
->detach_regulator(coupler
, rdev
);
4902 rdev_err(rdev
, "failed to detach from coupler: %d\n",
4906 kfree(rdev
->coupling_desc
.coupled_rdevs
);
4907 rdev
->coupling_desc
.coupled_rdevs
= NULL
;
4910 static int regulator_init_coupling(struct regulator_dev
*rdev
)
4912 int err
, n_phandles
;
4915 if (!IS_ENABLED(CONFIG_OF
))
4918 n_phandles
= of_get_n_coupled(rdev
);
4920 alloc_size
= sizeof(*rdev
) * (n_phandles
+ 1);
4922 rdev
->coupling_desc
.coupled_rdevs
= kzalloc(alloc_size
, GFP_KERNEL
);
4923 if (!rdev
->coupling_desc
.coupled_rdevs
)
4927 * Every regulator should always have coupling descriptor filled with
4928 * at least pointer to itself.
4930 rdev
->coupling_desc
.coupled_rdevs
[0] = rdev
;
4931 rdev
->coupling_desc
.n_coupled
= n_phandles
+ 1;
4932 rdev
->coupling_desc
.n_resolved
++;
4934 /* regulator isn't coupled */
4935 if (n_phandles
== 0)
4938 if (!of_check_coupling_data(rdev
))
4941 rdev
->coupling_desc
.coupler
= regulator_find_coupler(rdev
);
4942 if (IS_ERR(rdev
->coupling_desc
.coupler
)) {
4943 err
= PTR_ERR(rdev
->coupling_desc
.coupler
);
4944 rdev_err(rdev
, "failed to get coupler: %d\n", err
);
4951 static int generic_coupler_attach(struct regulator_coupler
*coupler
,
4952 struct regulator_dev
*rdev
)
4954 if (rdev
->coupling_desc
.n_coupled
> 2) {
4956 "Voltage balancing for multiple regulator couples is unimplemented\n");
4963 static struct regulator_coupler generic_regulator_coupler
= {
4964 .attach_regulator
= generic_coupler_attach
,
4968 * regulator_register - register regulator
4969 * @regulator_desc: regulator to register
4970 * @cfg: runtime configuration for regulator
4972 * Called by regulator drivers to register a regulator.
4973 * Returns a valid pointer to struct regulator_dev on success
4974 * or an ERR_PTR() on error.
4976 struct regulator_dev
*
4977 regulator_register(const struct regulator_desc
*regulator_desc
,
4978 const struct regulator_config
*cfg
)
4980 const struct regulation_constraints
*constraints
= NULL
;
4981 const struct regulator_init_data
*init_data
;
4982 struct regulator_config
*config
= NULL
;
4983 static atomic_t regulator_no
= ATOMIC_INIT(-1);
4984 struct regulator_dev
*rdev
;
4985 bool dangling_cfg_gpiod
= false;
4986 bool dangling_of_gpiod
= false;
4991 return ERR_PTR(-EINVAL
);
4993 dangling_cfg_gpiod
= true;
4994 if (regulator_desc
== NULL
) {
5002 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
) {
5007 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
5008 regulator_desc
->type
!= REGULATOR_CURRENT
) {
5013 /* Only one of each should be implemented */
5014 WARN_ON(regulator_desc
->ops
->get_voltage
&&
5015 regulator_desc
->ops
->get_voltage_sel
);
5016 WARN_ON(regulator_desc
->ops
->set_voltage
&&
5017 regulator_desc
->ops
->set_voltage_sel
);
5019 /* If we're using selectors we must implement list_voltage. */
5020 if (regulator_desc
->ops
->get_voltage_sel
&&
5021 !regulator_desc
->ops
->list_voltage
) {
5025 if (regulator_desc
->ops
->set_voltage_sel
&&
5026 !regulator_desc
->ops
->list_voltage
) {
5031 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
5038 * Duplicate the config so the driver could override it after
5039 * parsing init data.
5041 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
5042 if (config
== NULL
) {
5048 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
5049 &rdev
->dev
.of_node
);
5051 * We need to keep track of any GPIO descriptor coming from the
5052 * device tree until we have handled it over to the core. If the
5053 * config that was passed in to this function DOES NOT contain
5054 * a descriptor, and the config after this call DOES contain
5055 * a descriptor, we definitely got one from parsing the device
5058 if (!cfg
->ena_gpiod
&& config
->ena_gpiod
)
5059 dangling_of_gpiod
= true;
5061 init_data
= config
->init_data
;
5062 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
5065 ww_mutex_init(&rdev
->mutex
, ®ulator_ww_class
);
5066 rdev
->reg_data
= config
->driver_data
;
5067 rdev
->owner
= regulator_desc
->owner
;
5068 rdev
->desc
= regulator_desc
;
5070 rdev
->regmap
= config
->regmap
;
5071 else if (dev_get_regmap(dev
, NULL
))
5072 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
5073 else if (dev
->parent
)
5074 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
5075 INIT_LIST_HEAD(&rdev
->consumer_list
);
5076 INIT_LIST_HEAD(&rdev
->list
);
5077 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
5078 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
5080 /* preform any regulator specific init */
5081 if (init_data
&& init_data
->regulator_init
) {
5082 ret
= init_data
->regulator_init(rdev
->reg_data
);
5087 if (config
->ena_gpiod
) {
5088 mutex_lock(®ulator_list_mutex
);
5089 ret
= regulator_ena_gpio_request(rdev
, config
);
5090 mutex_unlock(®ulator_list_mutex
);
5092 rdev_err(rdev
, "Failed to request enable GPIO: %d\n",
5096 /* The regulator core took over the GPIO descriptor */
5097 dangling_cfg_gpiod
= false;
5098 dangling_of_gpiod
= false;
5101 /* register with sysfs */
5102 rdev
->dev
.class = ®ulator_class
;
5103 rdev
->dev
.parent
= dev
;
5104 dev_set_name(&rdev
->dev
, "regulator.%lu",
5105 (unsigned long) atomic_inc_return(®ulator_no
));
5107 /* set regulator constraints */
5109 constraints
= &init_data
->constraints
;
5111 if (init_data
&& init_data
->supply_regulator
)
5112 rdev
->supply_name
= init_data
->supply_regulator
;
5113 else if (regulator_desc
->supply_name
)
5114 rdev
->supply_name
= regulator_desc
->supply_name
;
5117 * Attempt to resolve the regulator supply, if specified,
5118 * but don't return an error if we fail because we will try
5119 * to resolve it again later as more regulators are added.
5121 if (regulator_resolve_supply(rdev
))
5122 rdev_dbg(rdev
, "unable to resolve supply\n");
5124 ret
= set_machine_constraints(rdev
, constraints
);
5128 mutex_lock(®ulator_list_mutex
);
5129 ret
= regulator_init_coupling(rdev
);
5130 mutex_unlock(®ulator_list_mutex
);
5134 /* add consumers devices */
5136 mutex_lock(®ulator_list_mutex
);
5137 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
5138 ret
= set_consumer_device_supply(rdev
,
5139 init_data
->consumer_supplies
[i
].dev_name
,
5140 init_data
->consumer_supplies
[i
].supply
);
5142 mutex_unlock(®ulator_list_mutex
);
5143 dev_err(dev
, "Failed to set supply %s\n",
5144 init_data
->consumer_supplies
[i
].supply
);
5145 goto unset_supplies
;
5148 mutex_unlock(®ulator_list_mutex
);
5151 if (!rdev
->desc
->ops
->get_voltage
&&
5152 !rdev
->desc
->ops
->list_voltage
&&
5153 !rdev
->desc
->fixed_uV
)
5154 rdev
->is_switch
= true;
5156 dev_set_drvdata(&rdev
->dev
, rdev
);
5157 ret
= device_register(&rdev
->dev
);
5159 put_device(&rdev
->dev
);
5160 goto unset_supplies
;
5163 rdev_init_debugfs(rdev
);
5165 /* try to resolve regulators coupling since a new one was registered */
5166 mutex_lock(®ulator_list_mutex
);
5167 regulator_resolve_coupling(rdev
);
5168 mutex_unlock(®ulator_list_mutex
);
5170 /* try to resolve regulators supply since a new one was registered */
5171 class_for_each_device(®ulator_class
, NULL
, NULL
,
5172 regulator_register_resolve_supply
);
5177 mutex_lock(®ulator_list_mutex
);
5178 unset_regulator_supplies(rdev
);
5179 regulator_remove_coupling(rdev
);
5180 mutex_unlock(®ulator_list_mutex
);
5182 kfree(rdev
->constraints
);
5183 mutex_lock(®ulator_list_mutex
);
5184 regulator_ena_gpio_free(rdev
);
5185 mutex_unlock(®ulator_list_mutex
);
5187 if (dangling_of_gpiod
)
5188 gpiod_put(config
->ena_gpiod
);
5192 if (dangling_cfg_gpiod
)
5193 gpiod_put(cfg
->ena_gpiod
);
5194 return ERR_PTR(ret
);
5196 EXPORT_SYMBOL_GPL(regulator_register
);
5199 * regulator_unregister - unregister regulator
5200 * @rdev: regulator to unregister
5202 * Called by regulator drivers to unregister a regulator.
5204 void regulator_unregister(struct regulator_dev
*rdev
)
5210 while (rdev
->use_count
--)
5211 regulator_disable(rdev
->supply
);
5212 regulator_put(rdev
->supply
);
5215 flush_work(&rdev
->disable_work
.work
);
5217 mutex_lock(®ulator_list_mutex
);
5219 debugfs_remove_recursive(rdev
->debugfs
);
5220 WARN_ON(rdev
->open_count
);
5221 regulator_remove_coupling(rdev
);
5222 unset_regulator_supplies(rdev
);
5223 list_del(&rdev
->list
);
5224 regulator_ena_gpio_free(rdev
);
5225 device_unregister(&rdev
->dev
);
5227 mutex_unlock(®ulator_list_mutex
);
5229 EXPORT_SYMBOL_GPL(regulator_unregister
);
5231 #ifdef CONFIG_SUSPEND
5233 * regulator_suspend - prepare regulators for system wide suspend
5234 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5236 * Configure each regulator with it's suspend operating parameters for state.
5238 static int regulator_suspend(struct device
*dev
)
5240 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5241 suspend_state_t state
= pm_suspend_target_state
;
5244 regulator_lock(rdev
);
5245 ret
= suspend_set_state(rdev
, state
);
5246 regulator_unlock(rdev
);
5251 static int regulator_resume(struct device
*dev
)
5253 suspend_state_t state
= pm_suspend_target_state
;
5254 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5255 struct regulator_state
*rstate
;
5258 rstate
= regulator_get_suspend_state(rdev
, state
);
5262 regulator_lock(rdev
);
5264 if (rdev
->desc
->ops
->resume
&&
5265 (rstate
->enabled
== ENABLE_IN_SUSPEND
||
5266 rstate
->enabled
== DISABLE_IN_SUSPEND
))
5267 ret
= rdev
->desc
->ops
->resume(rdev
);
5269 regulator_unlock(rdev
);
5273 #else /* !CONFIG_SUSPEND */
5275 #define regulator_suspend NULL
5276 #define regulator_resume NULL
5278 #endif /* !CONFIG_SUSPEND */
5281 static const struct dev_pm_ops __maybe_unused regulator_pm_ops
= {
5282 .suspend
= regulator_suspend
,
5283 .resume
= regulator_resume
,
5287 struct class regulator_class
= {
5288 .name
= "regulator",
5289 .dev_release
= regulator_dev_release
,
5290 .dev_groups
= regulator_dev_groups
,
5292 .pm
= ®ulator_pm_ops
,
5296 * regulator_has_full_constraints - the system has fully specified constraints
5298 * Calling this function will cause the regulator API to disable all
5299 * regulators which have a zero use count and don't have an always_on
5300 * constraint in a late_initcall.
5302 * The intention is that this will become the default behaviour in a
5303 * future kernel release so users are encouraged to use this facility
5306 void regulator_has_full_constraints(void)
5308 has_full_constraints
= 1;
5310 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
5313 * rdev_get_drvdata - get rdev regulator driver data
5316 * Get rdev regulator driver private data. This call can be used in the
5317 * regulator driver context.
5319 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
5321 return rdev
->reg_data
;
5323 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
5326 * regulator_get_drvdata - get regulator driver data
5327 * @regulator: regulator
5329 * Get regulator driver private data. This call can be used in the consumer
5330 * driver context when non API regulator specific functions need to be called.
5332 void *regulator_get_drvdata(struct regulator
*regulator
)
5334 return regulator
->rdev
->reg_data
;
5336 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
5339 * regulator_set_drvdata - set regulator driver data
5340 * @regulator: regulator
5343 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
5345 regulator
->rdev
->reg_data
= data
;
5347 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
5350 * regulator_get_id - get regulator ID
5353 int rdev_get_id(struct regulator_dev
*rdev
)
5355 return rdev
->desc
->id
;
5357 EXPORT_SYMBOL_GPL(rdev_get_id
);
5359 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
5363 EXPORT_SYMBOL_GPL(rdev_get_dev
);
5365 struct regmap
*rdev_get_regmap(struct regulator_dev
*rdev
)
5367 return rdev
->regmap
;
5369 EXPORT_SYMBOL_GPL(rdev_get_regmap
);
5371 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
5373 return reg_init_data
->driver_data
;
5375 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
5377 #ifdef CONFIG_DEBUG_FS
5378 static int supply_map_show(struct seq_file
*sf
, void *data
)
5380 struct regulator_map
*map
;
5382 list_for_each_entry(map
, ®ulator_map_list
, list
) {
5383 seq_printf(sf
, "%s -> %s.%s\n",
5384 rdev_get_name(map
->regulator
), map
->dev_name
,
5390 DEFINE_SHOW_ATTRIBUTE(supply_map
);
5392 struct summary_data
{
5394 struct regulator_dev
*parent
;
5398 static void regulator_summary_show_subtree(struct seq_file
*s
,
5399 struct regulator_dev
*rdev
,
5402 static int regulator_summary_show_children(struct device
*dev
, void *data
)
5404 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5405 struct summary_data
*summary_data
= data
;
5407 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
5408 regulator_summary_show_subtree(summary_data
->s
, rdev
,
5409 summary_data
->level
+ 1);
5414 static void regulator_summary_show_subtree(struct seq_file
*s
,
5415 struct regulator_dev
*rdev
,
5418 struct regulation_constraints
*c
;
5419 struct regulator
*consumer
;
5420 struct summary_data summary_data
;
5421 unsigned int opmode
;
5426 opmode
= _regulator_get_mode_unlocked(rdev
);
5427 seq_printf(s
, "%*s%-*s %3d %4d %6d %7s ",
5429 30 - level
* 3, rdev_get_name(rdev
),
5430 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
,
5431 regulator_opmode_to_str(opmode
));
5433 seq_printf(s
, "%5dmV ", regulator_get_voltage_rdev(rdev
) / 1000);
5434 seq_printf(s
, "%5dmA ",
5435 _regulator_get_current_limit_unlocked(rdev
) / 1000);
5437 c
= rdev
->constraints
;
5439 switch (rdev
->desc
->type
) {
5440 case REGULATOR_VOLTAGE
:
5441 seq_printf(s
, "%5dmV %5dmV ",
5442 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
5444 case REGULATOR_CURRENT
:
5445 seq_printf(s
, "%5dmA %5dmA ",
5446 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
5453 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
5454 if (consumer
->dev
&& consumer
->dev
->class == ®ulator_class
)
5457 seq_printf(s
, "%*s%-*s ",
5458 (level
+ 1) * 3 + 1, "",
5459 30 - (level
+ 1) * 3,
5460 consumer
->dev
? dev_name(consumer
->dev
) : "deviceless");
5462 switch (rdev
->desc
->type
) {
5463 case REGULATOR_VOLTAGE
:
5464 seq_printf(s
, "%3d %33dmA%c%5dmV %5dmV",
5465 consumer
->enable_count
,
5466 consumer
->uA_load
/ 1000,
5467 consumer
->uA_load
&& !consumer
->enable_count
?
5469 consumer
->voltage
[PM_SUSPEND_ON
].min_uV
/ 1000,
5470 consumer
->voltage
[PM_SUSPEND_ON
].max_uV
/ 1000);
5472 case REGULATOR_CURRENT
:
5480 summary_data
.level
= level
;
5481 summary_data
.parent
= rdev
;
5483 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
5484 regulator_summary_show_children
);
5487 struct summary_lock_data
{
5488 struct ww_acquire_ctx
*ww_ctx
;
5489 struct regulator_dev
**new_contended_rdev
;
5490 struct regulator_dev
**old_contended_rdev
;
5493 static int regulator_summary_lock_one(struct device
*dev
, void *data
)
5495 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5496 struct summary_lock_data
*lock_data
= data
;
5499 if (rdev
!= *lock_data
->old_contended_rdev
) {
5500 ret
= regulator_lock_nested(rdev
, lock_data
->ww_ctx
);
5502 if (ret
== -EDEADLK
)
5503 *lock_data
->new_contended_rdev
= rdev
;
5507 *lock_data
->old_contended_rdev
= NULL
;
5513 static int regulator_summary_unlock_one(struct device
*dev
, void *data
)
5515 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5516 struct summary_lock_data
*lock_data
= data
;
5519 if (rdev
== *lock_data
->new_contended_rdev
)
5523 regulator_unlock(rdev
);
5528 static int regulator_summary_lock_all(struct ww_acquire_ctx
*ww_ctx
,
5529 struct regulator_dev
**new_contended_rdev
,
5530 struct regulator_dev
**old_contended_rdev
)
5532 struct summary_lock_data lock_data
;
5535 lock_data
.ww_ctx
= ww_ctx
;
5536 lock_data
.new_contended_rdev
= new_contended_rdev
;
5537 lock_data
.old_contended_rdev
= old_contended_rdev
;
5539 ret
= class_for_each_device(®ulator_class
, NULL
, &lock_data
,
5540 regulator_summary_lock_one
);
5542 class_for_each_device(®ulator_class
, NULL
, &lock_data
,
5543 regulator_summary_unlock_one
);
5548 static void regulator_summary_lock(struct ww_acquire_ctx
*ww_ctx
)
5550 struct regulator_dev
*new_contended_rdev
= NULL
;
5551 struct regulator_dev
*old_contended_rdev
= NULL
;
5554 mutex_lock(®ulator_list_mutex
);
5556 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
5559 if (new_contended_rdev
) {
5560 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
5561 old_contended_rdev
= new_contended_rdev
;
5562 old_contended_rdev
->ref_cnt
++;
5565 err
= regulator_summary_lock_all(ww_ctx
,
5566 &new_contended_rdev
,
5567 &old_contended_rdev
);
5569 if (old_contended_rdev
)
5570 regulator_unlock(old_contended_rdev
);
5572 } while (err
== -EDEADLK
);
5574 ww_acquire_done(ww_ctx
);
5577 static void regulator_summary_unlock(struct ww_acquire_ctx
*ww_ctx
)
5579 class_for_each_device(®ulator_class
, NULL
, NULL
,
5580 regulator_summary_unlock_one
);
5581 ww_acquire_fini(ww_ctx
);
5583 mutex_unlock(®ulator_list_mutex
);
5586 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
5588 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5589 struct seq_file
*s
= data
;
5592 regulator_summary_show_subtree(s
, rdev
, 0);
5597 static int regulator_summary_show(struct seq_file
*s
, void *data
)
5599 struct ww_acquire_ctx ww_ctx
;
5601 seq_puts(s
, " regulator use open bypass opmode voltage current min max\n");
5602 seq_puts(s
, "---------------------------------------------------------------------------------------\n");
5604 regulator_summary_lock(&ww_ctx
);
5606 class_for_each_device(®ulator_class
, NULL
, s
,
5607 regulator_summary_show_roots
);
5609 regulator_summary_unlock(&ww_ctx
);
5613 DEFINE_SHOW_ATTRIBUTE(regulator_summary
);
5614 #endif /* CONFIG_DEBUG_FS */
5616 static int __init
regulator_init(void)
5620 ret
= class_register(®ulator_class
);
5622 debugfs_root
= debugfs_create_dir("regulator", NULL
);
5624 pr_warn("regulator: Failed to create debugfs directory\n");
5626 #ifdef CONFIG_DEBUG_FS
5627 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
5630 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
5631 NULL
, ®ulator_summary_fops
);
5633 regulator_dummy_init();
5635 regulator_coupler_register(&generic_regulator_coupler
);
5640 /* init early to allow our consumers to complete system booting */
5641 core_initcall(regulator_init
);
5643 static int __init
regulator_late_cleanup(struct device
*dev
, void *data
)
5645 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5646 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
5647 struct regulation_constraints
*c
= rdev
->constraints
;
5650 if (c
&& c
->always_on
)
5653 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
))
5656 regulator_lock(rdev
);
5658 if (rdev
->use_count
)
5661 /* If we can't read the status assume it's on. */
5662 if (ops
->is_enabled
)
5663 enabled
= ops
->is_enabled(rdev
);
5670 if (have_full_constraints()) {
5671 /* We log since this may kill the system if it goes
5673 rdev_info(rdev
, "disabling\n");
5674 ret
= _regulator_do_disable(rdev
);
5676 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
5678 /* The intention is that in future we will
5679 * assume that full constraints are provided
5680 * so warn even if we aren't going to do
5683 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
5687 regulator_unlock(rdev
);
5692 static int __init
regulator_init_complete(void)
5695 * Since DT doesn't provide an idiomatic mechanism for
5696 * enabling full constraints and since it's much more natural
5697 * with DT to provide them just assume that a DT enabled
5698 * system has full constraints.
5700 if (of_have_populated_dt())
5701 has_full_constraints
= true;
5704 * Regulators may had failed to resolve their input supplies
5705 * when were registered, either because the input supply was
5706 * not registered yet or because its parent device was not
5707 * bound yet. So attempt to resolve the input supplies for
5708 * pending regulators before trying to disable unused ones.
5710 class_for_each_device(®ulator_class
, NULL
, NULL
,
5711 regulator_register_resolve_supply
);
5713 /* If we have a full configuration then disable any regulators
5714 * we have permission to change the status for and which are
5715 * not in use or always_on. This is effectively the default
5716 * for DT and ACPI as they have full constraints.
5718 class_for_each_device(®ulator_class
, NULL
, NULL
,
5719 regulator_late_cleanup
);
5723 late_initcall_sync(regulator_init_complete
);