Linux 4.14.120
[linux/fpc-iii.git] / block / blk-mq-sched.c
blobae5d8f10a27c59a957911dd66fa9b68a7fc5c6e6
1 /*
2 * blk-mq scheduling framework
4 * Copyright (C) 2016 Jens Axboe
5 */
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/blk-mq.h>
10 #include <trace/events/block.h>
12 #include "blk.h"
13 #include "blk-mq.h"
14 #include "blk-mq-debugfs.h"
15 #include "blk-mq-sched.h"
16 #include "blk-mq-tag.h"
17 #include "blk-wbt.h"
19 void blk_mq_sched_free_hctx_data(struct request_queue *q,
20 void (*exit)(struct blk_mq_hw_ctx *))
22 struct blk_mq_hw_ctx *hctx;
23 int i;
25 queue_for_each_hw_ctx(q, hctx, i) {
26 if (exit && hctx->sched_data)
27 exit(hctx);
28 kfree(hctx->sched_data);
29 hctx->sched_data = NULL;
32 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
34 void blk_mq_sched_assign_ioc(struct request *rq, struct bio *bio)
36 struct request_queue *q = rq->q;
37 struct io_context *ioc = rq_ioc(bio);
38 struct io_cq *icq;
40 spin_lock_irq(q->queue_lock);
41 icq = ioc_lookup_icq(ioc, q);
42 spin_unlock_irq(q->queue_lock);
44 if (!icq) {
45 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
46 if (!icq)
47 return;
49 get_io_context(icq->ioc);
50 rq->elv.icq = icq;
54 * Mark a hardware queue as needing a restart. For shared queues, maintain
55 * a count of how many hardware queues are marked for restart.
57 static void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
59 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
60 return;
62 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
63 struct request_queue *q = hctx->queue;
65 if (!test_and_set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
66 atomic_inc(&q->shared_hctx_restart);
67 } else
68 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
71 static bool blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
73 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
74 return false;
76 if (hctx->flags & BLK_MQ_F_TAG_SHARED) {
77 struct request_queue *q = hctx->queue;
79 if (test_and_clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
80 atomic_dec(&q->shared_hctx_restart);
81 } else
82 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
84 if (blk_mq_hctx_has_pending(hctx)) {
85 blk_mq_run_hw_queue(hctx, true);
86 return true;
89 return false;
92 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
94 struct request_queue *q = hctx->queue;
95 struct elevator_queue *e = q->elevator;
96 const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
97 bool do_sched_dispatch = true;
98 LIST_HEAD(rq_list);
100 /* RCU or SRCU read lock is needed before checking quiesced flag */
101 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
102 return;
104 hctx->run++;
107 * If we have previous entries on our dispatch list, grab them first for
108 * more fair dispatch.
110 if (!list_empty_careful(&hctx->dispatch)) {
111 spin_lock(&hctx->lock);
112 if (!list_empty(&hctx->dispatch))
113 list_splice_init(&hctx->dispatch, &rq_list);
114 spin_unlock(&hctx->lock);
118 * Only ask the scheduler for requests, if we didn't have residual
119 * requests from the dispatch list. This is to avoid the case where
120 * we only ever dispatch a fraction of the requests available because
121 * of low device queue depth. Once we pull requests out of the IO
122 * scheduler, we can no longer merge or sort them. So it's best to
123 * leave them there for as long as we can. Mark the hw queue as
124 * needing a restart in that case.
126 if (!list_empty(&rq_list)) {
127 blk_mq_sched_mark_restart_hctx(hctx);
128 do_sched_dispatch = blk_mq_dispatch_rq_list(q, &rq_list);
129 } else if (!has_sched_dispatch) {
130 blk_mq_flush_busy_ctxs(hctx, &rq_list);
131 blk_mq_dispatch_rq_list(q, &rq_list);
135 * We want to dispatch from the scheduler if there was nothing
136 * on the dispatch list or we were able to dispatch from the
137 * dispatch list.
139 if (do_sched_dispatch && has_sched_dispatch) {
140 do {
141 struct request *rq;
143 rq = e->type->ops.mq.dispatch_request(hctx);
144 if (!rq)
145 break;
146 list_add(&rq->queuelist, &rq_list);
147 } while (blk_mq_dispatch_rq_list(q, &rq_list));
151 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
152 struct request **merged_request)
154 struct request *rq;
156 switch (elv_merge(q, &rq, bio)) {
157 case ELEVATOR_BACK_MERGE:
158 if (!blk_mq_sched_allow_merge(q, rq, bio))
159 return false;
160 if (!bio_attempt_back_merge(q, rq, bio))
161 return false;
162 *merged_request = attempt_back_merge(q, rq);
163 if (!*merged_request)
164 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
165 return true;
166 case ELEVATOR_FRONT_MERGE:
167 if (!blk_mq_sched_allow_merge(q, rq, bio))
168 return false;
169 if (!bio_attempt_front_merge(q, rq, bio))
170 return false;
171 *merged_request = attempt_front_merge(q, rq);
172 if (!*merged_request)
173 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
174 return true;
175 default:
176 return false;
179 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
182 * Reverse check our software queue for entries that we could potentially
183 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
184 * too much time checking for merges.
186 static bool blk_mq_attempt_merge(struct request_queue *q,
187 struct blk_mq_ctx *ctx, struct bio *bio)
189 struct request *rq;
190 int checked = 8;
192 lockdep_assert_held(&ctx->lock);
194 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
195 bool merged = false;
197 if (!checked--)
198 break;
200 if (!blk_rq_merge_ok(rq, bio))
201 continue;
203 switch (blk_try_merge(rq, bio)) {
204 case ELEVATOR_BACK_MERGE:
205 if (blk_mq_sched_allow_merge(q, rq, bio))
206 merged = bio_attempt_back_merge(q, rq, bio);
207 break;
208 case ELEVATOR_FRONT_MERGE:
209 if (blk_mq_sched_allow_merge(q, rq, bio))
210 merged = bio_attempt_front_merge(q, rq, bio);
211 break;
212 case ELEVATOR_DISCARD_MERGE:
213 merged = bio_attempt_discard_merge(q, rq, bio);
214 break;
215 default:
216 continue;
219 if (merged)
220 ctx->rq_merged++;
221 return merged;
224 return false;
227 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
229 struct elevator_queue *e = q->elevator;
230 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
231 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
232 bool ret = false;
234 if (e && e->type->ops.mq.bio_merge) {
235 blk_mq_put_ctx(ctx);
236 return e->type->ops.mq.bio_merge(hctx, bio);
239 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
240 !list_empty_careful(&ctx->rq_list)) {
241 /* default per sw-queue merge */
242 spin_lock(&ctx->lock);
243 ret = blk_mq_attempt_merge(q, ctx, bio);
244 spin_unlock(&ctx->lock);
247 blk_mq_put_ctx(ctx);
248 return ret;
251 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
253 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
255 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
257 void blk_mq_sched_request_inserted(struct request *rq)
259 trace_block_rq_insert(rq->q, rq);
261 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
263 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
264 struct request *rq)
266 if (rq->tag == -1) {
267 rq->rq_flags |= RQF_SORTED;
268 return false;
272 * If we already have a real request tag, send directly to
273 * the dispatch list.
275 spin_lock(&hctx->lock);
276 list_add(&rq->queuelist, &hctx->dispatch);
277 spin_unlock(&hctx->lock);
278 return true;
282 * list_for_each_entry_rcu_rr - iterate in a round-robin fashion over rcu list
283 * @pos: loop cursor.
284 * @skip: the list element that will not be examined. Iteration starts at
285 * @skip->next.
286 * @head: head of the list to examine. This list must have at least one
287 * element, namely @skip.
288 * @member: name of the list_head structure within typeof(*pos).
290 #define list_for_each_entry_rcu_rr(pos, skip, head, member) \
291 for ((pos) = (skip); \
292 (pos = (pos)->member.next != (head) ? list_entry_rcu( \
293 (pos)->member.next, typeof(*pos), member) : \
294 list_entry_rcu((pos)->member.next->next, typeof(*pos), member)), \
295 (pos) != (skip); )
298 * Called after a driver tag has been freed to check whether a hctx needs to
299 * be restarted. Restarts @hctx if its tag set is not shared. Restarts hardware
300 * queues in a round-robin fashion if the tag set of @hctx is shared with other
301 * hardware queues.
303 void blk_mq_sched_restart(struct blk_mq_hw_ctx *const hctx)
305 struct blk_mq_tags *const tags = hctx->tags;
306 struct blk_mq_tag_set *const set = hctx->queue->tag_set;
307 struct request_queue *const queue = hctx->queue, *q;
308 struct blk_mq_hw_ctx *hctx2;
309 unsigned int i, j;
311 if (set->flags & BLK_MQ_F_TAG_SHARED) {
313 * If this is 0, then we know that no hardware queues
314 * have RESTART marked. We're done.
316 if (!atomic_read(&queue->shared_hctx_restart))
317 return;
319 rcu_read_lock();
320 list_for_each_entry_rcu_rr(q, queue, &set->tag_list,
321 tag_set_list) {
322 queue_for_each_hw_ctx(q, hctx2, i)
323 if (hctx2->tags == tags &&
324 blk_mq_sched_restart_hctx(hctx2))
325 goto done;
327 j = hctx->queue_num + 1;
328 for (i = 0; i < queue->nr_hw_queues; i++, j++) {
329 if (j == queue->nr_hw_queues)
330 j = 0;
331 hctx2 = queue->queue_hw_ctx[j];
332 if (hctx2->tags == tags &&
333 blk_mq_sched_restart_hctx(hctx2))
334 break;
336 done:
337 rcu_read_unlock();
338 } else {
339 blk_mq_sched_restart_hctx(hctx);
344 * Add flush/fua to the queue. If we fail getting a driver tag, then
345 * punt to the requeue list. Requeue will re-invoke us from a context
346 * that's safe to block from.
348 static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
349 struct request *rq, bool can_block)
351 if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
352 blk_insert_flush(rq);
353 blk_mq_run_hw_queue(hctx, true);
354 } else
355 blk_mq_add_to_requeue_list(rq, false, true);
358 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
359 bool run_queue, bool async, bool can_block)
361 struct request_queue *q = rq->q;
362 struct elevator_queue *e = q->elevator;
363 struct blk_mq_ctx *ctx = rq->mq_ctx;
364 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
366 if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
367 blk_mq_sched_insert_flush(hctx, rq, can_block);
368 return;
371 if (e && blk_mq_sched_bypass_insert(hctx, rq))
372 goto run;
374 if (e && e->type->ops.mq.insert_requests) {
375 LIST_HEAD(list);
377 list_add(&rq->queuelist, &list);
378 e->type->ops.mq.insert_requests(hctx, &list, at_head);
379 } else {
380 spin_lock(&ctx->lock);
381 __blk_mq_insert_request(hctx, rq, at_head);
382 spin_unlock(&ctx->lock);
385 run:
386 if (run_queue)
387 blk_mq_run_hw_queue(hctx, async);
390 void blk_mq_sched_insert_requests(struct request_queue *q,
391 struct blk_mq_ctx *ctx,
392 struct list_head *list, bool run_queue_async)
394 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
395 struct elevator_queue *e = hctx->queue->elevator;
397 if (e) {
398 struct request *rq, *next;
401 * We bypass requests that already have a driver tag assigned,
402 * which should only be flushes. Flushes are only ever inserted
403 * as single requests, so we shouldn't ever hit the
404 * WARN_ON_ONCE() below (but let's handle it just in case).
406 list_for_each_entry_safe(rq, next, list, queuelist) {
407 if (WARN_ON_ONCE(rq->tag != -1)) {
408 list_del_init(&rq->queuelist);
409 blk_mq_sched_bypass_insert(hctx, rq);
414 if (e && e->type->ops.mq.insert_requests)
415 e->type->ops.mq.insert_requests(hctx, list, false);
416 else
417 blk_mq_insert_requests(hctx, ctx, list);
419 blk_mq_run_hw_queue(hctx, run_queue_async);
422 static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
423 struct blk_mq_hw_ctx *hctx,
424 unsigned int hctx_idx)
426 if (hctx->sched_tags) {
427 blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
428 blk_mq_free_rq_map(hctx->sched_tags);
429 hctx->sched_tags = NULL;
433 static int blk_mq_sched_alloc_tags(struct request_queue *q,
434 struct blk_mq_hw_ctx *hctx,
435 unsigned int hctx_idx)
437 struct blk_mq_tag_set *set = q->tag_set;
438 int ret;
440 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
441 set->reserved_tags);
442 if (!hctx->sched_tags)
443 return -ENOMEM;
445 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
446 if (ret)
447 blk_mq_sched_free_tags(set, hctx, hctx_idx);
449 return ret;
452 static void blk_mq_sched_tags_teardown(struct request_queue *q)
454 struct blk_mq_tag_set *set = q->tag_set;
455 struct blk_mq_hw_ctx *hctx;
456 int i;
458 queue_for_each_hw_ctx(q, hctx, i)
459 blk_mq_sched_free_tags(set, hctx, i);
462 int blk_mq_sched_init_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
463 unsigned int hctx_idx)
465 struct elevator_queue *e = q->elevator;
466 int ret;
468 if (!e)
469 return 0;
471 ret = blk_mq_sched_alloc_tags(q, hctx, hctx_idx);
472 if (ret)
473 return ret;
475 if (e->type->ops.mq.init_hctx) {
476 ret = e->type->ops.mq.init_hctx(hctx, hctx_idx);
477 if (ret) {
478 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
479 return ret;
483 blk_mq_debugfs_register_sched_hctx(q, hctx);
485 return 0;
488 void blk_mq_sched_exit_hctx(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
489 unsigned int hctx_idx)
491 struct elevator_queue *e = q->elevator;
493 if (!e)
494 return;
496 blk_mq_debugfs_unregister_sched_hctx(hctx);
498 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
499 e->type->ops.mq.exit_hctx(hctx, hctx_idx);
500 hctx->sched_data = NULL;
503 blk_mq_sched_free_tags(q->tag_set, hctx, hctx_idx);
506 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
508 struct blk_mq_hw_ctx *hctx;
509 struct elevator_queue *eq;
510 unsigned int i;
511 int ret;
513 if (!e) {
514 q->elevator = NULL;
515 return 0;
519 * Default to double of smaller one between hw queue_depth and 128,
520 * since we don't split into sync/async like the old code did.
521 * Additionally, this is a per-hw queue depth.
523 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
524 BLKDEV_MAX_RQ);
526 queue_for_each_hw_ctx(q, hctx, i) {
527 ret = blk_mq_sched_alloc_tags(q, hctx, i);
528 if (ret)
529 goto err;
532 ret = e->ops.mq.init_sched(q, e);
533 if (ret)
534 goto err;
536 blk_mq_debugfs_register_sched(q);
538 queue_for_each_hw_ctx(q, hctx, i) {
539 if (e->ops.mq.init_hctx) {
540 ret = e->ops.mq.init_hctx(hctx, i);
541 if (ret) {
542 eq = q->elevator;
543 blk_mq_exit_sched(q, eq);
544 kobject_put(&eq->kobj);
545 return ret;
548 blk_mq_debugfs_register_sched_hctx(q, hctx);
551 return 0;
553 err:
554 blk_mq_sched_tags_teardown(q);
555 q->elevator = NULL;
556 return ret;
559 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
561 struct blk_mq_hw_ctx *hctx;
562 unsigned int i;
564 queue_for_each_hw_ctx(q, hctx, i) {
565 blk_mq_debugfs_unregister_sched_hctx(hctx);
566 if (e->type->ops.mq.exit_hctx && hctx->sched_data) {
567 e->type->ops.mq.exit_hctx(hctx, i);
568 hctx->sched_data = NULL;
571 blk_mq_debugfs_unregister_sched(q);
572 if (e->type->ops.mq.exit_sched)
573 e->type->ops.mq.exit_sched(e);
574 blk_mq_sched_tags_teardown(q);
575 q->elevator = NULL;
578 int blk_mq_sched_init(struct request_queue *q)
580 int ret;
582 mutex_lock(&q->sysfs_lock);
583 ret = elevator_init(q, NULL);
584 mutex_unlock(&q->sysfs_lock);
586 return ret;