1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
15 #include "print-tree.h"
17 #include "compression.h"
19 #include "inode-map.h"
21 /* magic values for the inode_only field in btrfs_log_inode:
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
32 * directory trouble cases
34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35 * log, we must force a full commit before doing an fsync of the directory
36 * where the unlink was done.
37 * ---> record transid of last unlink/rename per directory
41 * rename foo/some_dir foo2/some_dir
43 * fsync foo/some_dir/some_file
45 * The fsync above will unlink the original some_dir without recording
46 * it in its new location (foo2). After a crash, some_dir will be gone
47 * unless the fsync of some_file forces a full commit
49 * 2) we must log any new names for any file or dir that is in the fsync
50 * log. ---> check inode while renaming/linking.
52 * 2a) we must log any new names for any file or dir during rename
53 * when the directory they are being removed from was logged.
54 * ---> check inode and old parent dir during rename
56 * 2a is actually the more important variant. With the extra logging
57 * a crash might unlink the old name without recreating the new one
59 * 3) after a crash, we must go through any directories with a link count
60 * of zero and redo the rm -rf
67 * The directory f1 was fully removed from the FS, but fsync was never
68 * called on f1, only its parent dir. After a crash the rm -rf must
69 * be replayed. This must be able to recurse down the entire
70 * directory tree. The inode link count fixup code takes care of the
75 * stages for the tree walking. The first
76 * stage (0) is to only pin down the blocks we find
77 * the second stage (1) is to make sure that all the inodes
78 * we find in the log are created in the subvolume.
80 * The last stage is to deal with directories and links and extents
81 * and all the other fun semantics
83 #define LOG_WALK_PIN_ONLY 0
84 #define LOG_WALK_REPLAY_INODES 1
85 #define LOG_WALK_REPLAY_DIR_INDEX 2
86 #define LOG_WALK_REPLAY_ALL 3
88 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
89 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
93 struct btrfs_log_ctx
*ctx
);
94 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
,
96 struct btrfs_path
*path
, u64 objectid
);
97 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
,
99 struct btrfs_root
*log
,
100 struct btrfs_path
*path
,
101 u64 dirid
, int del_all
);
104 * tree logging is a special write ahead log used to make sure that
105 * fsyncs and O_SYNCs can happen without doing full tree commits.
107 * Full tree commits are expensive because they require commonly
108 * modified blocks to be recowed, creating many dirty pages in the
109 * extent tree an 4x-6x higher write load than ext3.
111 * Instead of doing a tree commit on every fsync, we use the
112 * key ranges and transaction ids to find items for a given file or directory
113 * that have changed in this transaction. Those items are copied into
114 * a special tree (one per subvolume root), that tree is written to disk
115 * and then the fsync is considered complete.
117 * After a crash, items are copied out of the log-tree back into the
118 * subvolume tree. Any file data extents found are recorded in the extent
119 * allocation tree, and the log-tree freed.
121 * The log tree is read three times, once to pin down all the extents it is
122 * using in ram and once, once to create all the inodes logged in the tree
123 * and once to do all the other items.
127 * start a sub transaction and setup the log tree
128 * this increments the log tree writer count to make the people
129 * syncing the tree wait for us to finish
131 static int start_log_trans(struct btrfs_trans_handle
*trans
,
132 struct btrfs_root
*root
,
133 struct btrfs_log_ctx
*ctx
)
135 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
138 mutex_lock(&root
->log_mutex
);
140 if (root
->log_root
) {
141 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
146 if (!root
->log_start_pid
) {
147 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
148 root
->log_start_pid
= current
->pid
;
149 } else if (root
->log_start_pid
!= current
->pid
) {
150 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
153 mutex_lock(&fs_info
->tree_log_mutex
);
154 if (!fs_info
->log_root_tree
)
155 ret
= btrfs_init_log_root_tree(trans
, fs_info
);
156 mutex_unlock(&fs_info
->tree_log_mutex
);
160 ret
= btrfs_add_log_tree(trans
, root
);
164 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
165 root
->log_start_pid
= current
->pid
;
168 atomic_inc(&root
->log_batch
);
169 atomic_inc(&root
->log_writers
);
171 int index
= root
->log_transid
% 2;
172 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
173 ctx
->log_transid
= root
->log_transid
;
177 mutex_unlock(&root
->log_mutex
);
182 * returns 0 if there was a log transaction running and we were able
183 * to join, or returns -ENOENT if there were not transactions
186 static int join_running_log_trans(struct btrfs_root
*root
)
194 mutex_lock(&root
->log_mutex
);
195 if (root
->log_root
) {
197 atomic_inc(&root
->log_writers
);
199 mutex_unlock(&root
->log_mutex
);
204 * This either makes the current running log transaction wait
205 * until you call btrfs_end_log_trans() or it makes any future
206 * log transactions wait until you call btrfs_end_log_trans()
208 int btrfs_pin_log_trans(struct btrfs_root
*root
)
212 mutex_lock(&root
->log_mutex
);
213 atomic_inc(&root
->log_writers
);
214 mutex_unlock(&root
->log_mutex
);
219 * indicate we're done making changes to the log tree
220 * and wake up anyone waiting to do a sync
222 void btrfs_end_log_trans(struct btrfs_root
*root
)
224 if (atomic_dec_and_test(&root
->log_writers
)) {
225 /* atomic_dec_and_test implies a barrier */
226 cond_wake_up_nomb(&root
->log_writer_wait
);
232 * the walk control struct is used to pass state down the chain when
233 * processing the log tree. The stage field tells us which part
234 * of the log tree processing we are currently doing. The others
235 * are state fields used for that specific part
237 struct walk_control
{
238 /* should we free the extent on disk when done? This is used
239 * at transaction commit time while freeing a log tree
243 /* should we write out the extent buffer? This is used
244 * while flushing the log tree to disk during a sync
248 /* should we wait for the extent buffer io to finish? Also used
249 * while flushing the log tree to disk for a sync
253 /* pin only walk, we record which extents on disk belong to the
258 /* what stage of the replay code we're currently in */
261 /* the root we are currently replaying */
262 struct btrfs_root
*replay_dest
;
264 /* the trans handle for the current replay */
265 struct btrfs_trans_handle
*trans
;
267 /* the function that gets used to process blocks we find in the
268 * tree. Note the extent_buffer might not be up to date when it is
269 * passed in, and it must be checked or read if you need the data
272 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
273 struct walk_control
*wc
, u64 gen
, int level
);
277 * process_func used to pin down extents, write them or wait on them
279 static int process_one_buffer(struct btrfs_root
*log
,
280 struct extent_buffer
*eb
,
281 struct walk_control
*wc
, u64 gen
, int level
)
283 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
287 * If this fs is mixed then we need to be able to process the leaves to
288 * pin down any logged extents, so we have to read the block.
290 if (btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
291 ret
= btrfs_read_buffer(eb
, gen
, level
, NULL
);
297 ret
= btrfs_pin_extent_for_log_replay(fs_info
, eb
->start
,
300 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
301 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
302 ret
= btrfs_exclude_logged_extents(fs_info
, eb
);
304 btrfs_write_tree_block(eb
);
306 btrfs_wait_tree_block_writeback(eb
);
312 * Item overwrite used by replay and tree logging. eb, slot and key all refer
313 * to the src data we are copying out.
315 * root is the tree we are copying into, and path is a scratch
316 * path for use in this function (it should be released on entry and
317 * will be released on exit).
319 * If the key is already in the destination tree the existing item is
320 * overwritten. If the existing item isn't big enough, it is extended.
321 * If it is too large, it is truncated.
323 * If the key isn't in the destination yet, a new item is inserted.
325 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
326 struct btrfs_root
*root
,
327 struct btrfs_path
*path
,
328 struct extent_buffer
*eb
, int slot
,
329 struct btrfs_key
*key
)
331 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
334 u64 saved_i_size
= 0;
335 int save_old_i_size
= 0;
336 unsigned long src_ptr
;
337 unsigned long dst_ptr
;
338 int overwrite_root
= 0;
339 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
341 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
344 item_size
= btrfs_item_size_nr(eb
, slot
);
345 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
347 /* look for the key in the destination tree */
348 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
355 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
357 if (dst_size
!= item_size
)
360 if (item_size
== 0) {
361 btrfs_release_path(path
);
364 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
365 src_copy
= kmalloc(item_size
, GFP_NOFS
);
366 if (!dst_copy
|| !src_copy
) {
367 btrfs_release_path(path
);
373 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
375 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
376 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
378 ret
= memcmp(dst_copy
, src_copy
, item_size
);
383 * they have the same contents, just return, this saves
384 * us from cowing blocks in the destination tree and doing
385 * extra writes that may not have been done by a previous
389 btrfs_release_path(path
);
394 * We need to load the old nbytes into the inode so when we
395 * replay the extents we've logged we get the right nbytes.
398 struct btrfs_inode_item
*item
;
402 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
403 struct btrfs_inode_item
);
404 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
405 item
= btrfs_item_ptr(eb
, slot
,
406 struct btrfs_inode_item
);
407 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
410 * If this is a directory we need to reset the i_size to
411 * 0 so that we can set it up properly when replaying
412 * the rest of the items in this log.
414 mode
= btrfs_inode_mode(eb
, item
);
416 btrfs_set_inode_size(eb
, item
, 0);
418 } else if (inode_item
) {
419 struct btrfs_inode_item
*item
;
423 * New inode, set nbytes to 0 so that the nbytes comes out
424 * properly when we replay the extents.
426 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
427 btrfs_set_inode_nbytes(eb
, item
, 0);
430 * If this is a directory we need to reset the i_size to 0 so
431 * that we can set it up properly when replaying the rest of
432 * the items in this log.
434 mode
= btrfs_inode_mode(eb
, item
);
436 btrfs_set_inode_size(eb
, item
, 0);
439 btrfs_release_path(path
);
440 /* try to insert the key into the destination tree */
441 path
->skip_release_on_error
= 1;
442 ret
= btrfs_insert_empty_item(trans
, root
, path
,
444 path
->skip_release_on_error
= 0;
446 /* make sure any existing item is the correct size */
447 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
449 found_size
= btrfs_item_size_nr(path
->nodes
[0],
451 if (found_size
> item_size
)
452 btrfs_truncate_item(fs_info
, path
, item_size
, 1);
453 else if (found_size
< item_size
)
454 btrfs_extend_item(fs_info
, path
,
455 item_size
- found_size
);
459 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
462 /* don't overwrite an existing inode if the generation number
463 * was logged as zero. This is done when the tree logging code
464 * is just logging an inode to make sure it exists after recovery.
466 * Also, don't overwrite i_size on directories during replay.
467 * log replay inserts and removes directory items based on the
468 * state of the tree found in the subvolume, and i_size is modified
471 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
472 struct btrfs_inode_item
*src_item
;
473 struct btrfs_inode_item
*dst_item
;
475 src_item
= (struct btrfs_inode_item
*)src_ptr
;
476 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
478 if (btrfs_inode_generation(eb
, src_item
) == 0) {
479 struct extent_buffer
*dst_eb
= path
->nodes
[0];
480 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
483 * For regular files an ino_size == 0 is used only when
484 * logging that an inode exists, as part of a directory
485 * fsync, and the inode wasn't fsynced before. In this
486 * case don't set the size of the inode in the fs/subvol
487 * tree, otherwise we would be throwing valid data away.
489 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
490 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
492 struct btrfs_map_token token
;
494 btrfs_init_map_token(&token
);
495 btrfs_set_token_inode_size(dst_eb
, dst_item
,
501 if (overwrite_root
&&
502 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
503 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
505 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
510 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
513 if (save_old_i_size
) {
514 struct btrfs_inode_item
*dst_item
;
515 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
516 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
519 /* make sure the generation is filled in */
520 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
521 struct btrfs_inode_item
*dst_item
;
522 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
523 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
524 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
529 btrfs_mark_buffer_dirty(path
->nodes
[0]);
530 btrfs_release_path(path
);
535 * simple helper to read an inode off the disk from a given root
536 * This can only be called for subvolume roots and not for the log
538 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
541 struct btrfs_key key
;
544 key
.objectid
= objectid
;
545 key
.type
= BTRFS_INODE_ITEM_KEY
;
547 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
550 } else if (is_bad_inode(inode
)) {
557 /* replays a single extent in 'eb' at 'slot' with 'key' into the
558 * subvolume 'root'. path is released on entry and should be released
561 * extents in the log tree have not been allocated out of the extent
562 * tree yet. So, this completes the allocation, taking a reference
563 * as required if the extent already exists or creating a new extent
564 * if it isn't in the extent allocation tree yet.
566 * The extent is inserted into the file, dropping any existing extents
567 * from the file that overlap the new one.
569 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
570 struct btrfs_root
*root
,
571 struct btrfs_path
*path
,
572 struct extent_buffer
*eb
, int slot
,
573 struct btrfs_key
*key
)
575 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
578 u64 start
= key
->offset
;
580 struct btrfs_file_extent_item
*item
;
581 struct inode
*inode
= NULL
;
585 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
586 found_type
= btrfs_file_extent_type(eb
, item
);
588 if (found_type
== BTRFS_FILE_EXTENT_REG
||
589 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
590 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
591 extent_end
= start
+ nbytes
;
594 * We don't add to the inodes nbytes if we are prealloc or a
597 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
599 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
600 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
601 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
602 extent_end
= ALIGN(start
+ size
,
603 fs_info
->sectorsize
);
609 inode
= read_one_inode(root
, key
->objectid
);
616 * first check to see if we already have this extent in the
617 * file. This must be done before the btrfs_drop_extents run
618 * so we don't try to drop this extent.
620 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
621 btrfs_ino(BTRFS_I(inode
)), start
, 0);
624 (found_type
== BTRFS_FILE_EXTENT_REG
||
625 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
626 struct btrfs_file_extent_item cmp1
;
627 struct btrfs_file_extent_item cmp2
;
628 struct btrfs_file_extent_item
*existing
;
629 struct extent_buffer
*leaf
;
631 leaf
= path
->nodes
[0];
632 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
633 struct btrfs_file_extent_item
);
635 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
637 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
641 * we already have a pointer to this exact extent,
642 * we don't have to do anything
644 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
645 btrfs_release_path(path
);
649 btrfs_release_path(path
);
651 /* drop any overlapping extents */
652 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
656 if (found_type
== BTRFS_FILE_EXTENT_REG
||
657 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
659 unsigned long dest_offset
;
660 struct btrfs_key ins
;
662 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0 &&
663 btrfs_fs_incompat(fs_info
, NO_HOLES
))
666 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
670 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
672 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
673 (unsigned long)item
, sizeof(*item
));
675 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
676 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
677 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
678 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
681 * Manually record dirty extent, as here we did a shallow
682 * file extent item copy and skip normal backref update,
683 * but modifying extent tree all by ourselves.
684 * So need to manually record dirty extent for qgroup,
685 * as the owner of the file extent changed from log tree
686 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
688 ret
= btrfs_qgroup_trace_extent(trans
, fs_info
,
689 btrfs_file_extent_disk_bytenr(eb
, item
),
690 btrfs_file_extent_disk_num_bytes(eb
, item
),
695 if (ins
.objectid
> 0) {
698 LIST_HEAD(ordered_sums
);
700 * is this extent already allocated in the extent
701 * allocation tree? If so, just add a reference
703 ret
= btrfs_lookup_data_extent(fs_info
, ins
.objectid
,
706 ret
= btrfs_inc_extent_ref(trans
, root
,
707 ins
.objectid
, ins
.offset
,
708 0, root
->root_key
.objectid
,
709 key
->objectid
, offset
);
714 * insert the extent pointer in the extent
717 ret
= btrfs_alloc_logged_file_extent(trans
,
719 root
->root_key
.objectid
,
720 key
->objectid
, offset
, &ins
);
724 btrfs_release_path(path
);
726 if (btrfs_file_extent_compression(eb
, item
)) {
727 csum_start
= ins
.objectid
;
728 csum_end
= csum_start
+ ins
.offset
;
730 csum_start
= ins
.objectid
+
731 btrfs_file_extent_offset(eb
, item
);
732 csum_end
= csum_start
+
733 btrfs_file_extent_num_bytes(eb
, item
);
736 ret
= btrfs_lookup_csums_range(root
->log_root
,
737 csum_start
, csum_end
- 1,
742 * Now delete all existing cums in the csum root that
743 * cover our range. We do this because we can have an
744 * extent that is completely referenced by one file
745 * extent item and partially referenced by another
746 * file extent item (like after using the clone or
747 * extent_same ioctls). In this case if we end up doing
748 * the replay of the one that partially references the
749 * extent first, and we do not do the csum deletion
750 * below, we can get 2 csum items in the csum tree that
751 * overlap each other. For example, imagine our log has
752 * the two following file extent items:
754 * key (257 EXTENT_DATA 409600)
755 * extent data disk byte 12845056 nr 102400
756 * extent data offset 20480 nr 20480 ram 102400
758 * key (257 EXTENT_DATA 819200)
759 * extent data disk byte 12845056 nr 102400
760 * extent data offset 0 nr 102400 ram 102400
762 * Where the second one fully references the 100K extent
763 * that starts at disk byte 12845056, and the log tree
764 * has a single csum item that covers the entire range
767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
769 * After the first file extent item is replayed, the
770 * csum tree gets the following csum item:
772 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
774 * Which covers the 20K sub-range starting at offset 20K
775 * of our extent. Now when we replay the second file
776 * extent item, if we do not delete existing csum items
777 * that cover any of its blocks, we end up getting two
778 * csum items in our csum tree that overlap each other:
780 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
781 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
783 * Which is a problem, because after this anyone trying
784 * to lookup up for the checksum of any block of our
785 * extent starting at an offset of 40K or higher, will
786 * end up looking at the second csum item only, which
787 * does not contain the checksum for any block starting
788 * at offset 40K or higher of our extent.
790 while (!list_empty(&ordered_sums
)) {
791 struct btrfs_ordered_sum
*sums
;
792 sums
= list_entry(ordered_sums
.next
,
793 struct btrfs_ordered_sum
,
796 ret
= btrfs_del_csums(trans
, fs_info
,
800 ret
= btrfs_csum_file_blocks(trans
,
801 fs_info
->csum_root
, sums
);
802 list_del(&sums
->list
);
808 btrfs_release_path(path
);
810 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
811 /* inline extents are easy, we just overwrite them */
812 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
817 inode_add_bytes(inode
, nbytes
);
819 ret
= btrfs_update_inode(trans
, root
, inode
);
827 * when cleaning up conflicts between the directory names in the
828 * subvolume, directory names in the log and directory names in the
829 * inode back references, we may have to unlink inodes from directories.
831 * This is a helper function to do the unlink of a specific directory
834 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
835 struct btrfs_root
*root
,
836 struct btrfs_path
*path
,
837 struct btrfs_inode
*dir
,
838 struct btrfs_dir_item
*di
)
843 struct extent_buffer
*leaf
;
844 struct btrfs_key location
;
847 leaf
= path
->nodes
[0];
849 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
850 name_len
= btrfs_dir_name_len(leaf
, di
);
851 name
= kmalloc(name_len
, GFP_NOFS
);
855 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
856 btrfs_release_path(path
);
858 inode
= read_one_inode(root
, location
.objectid
);
864 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
868 ret
= btrfs_unlink_inode(trans
, root
, dir
, BTRFS_I(inode
), name
,
873 ret
= btrfs_run_delayed_items(trans
);
881 * helper function to see if a given name and sequence number found
882 * in an inode back reference are already in a directory and correctly
883 * point to this inode
885 static noinline
int inode_in_dir(struct btrfs_root
*root
,
886 struct btrfs_path
*path
,
887 u64 dirid
, u64 objectid
, u64 index
,
888 const char *name
, int name_len
)
890 struct btrfs_dir_item
*di
;
891 struct btrfs_key location
;
894 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
895 index
, name
, name_len
, 0);
896 if (di
&& !IS_ERR(di
)) {
897 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
898 if (location
.objectid
!= objectid
)
902 btrfs_release_path(path
);
904 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
905 if (di
&& !IS_ERR(di
)) {
906 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
907 if (location
.objectid
!= objectid
)
913 btrfs_release_path(path
);
918 * helper function to check a log tree for a named back reference in
919 * an inode. This is used to decide if a back reference that is
920 * found in the subvolume conflicts with what we find in the log.
922 * inode backreferences may have multiple refs in a single item,
923 * during replay we process one reference at a time, and we don't
924 * want to delete valid links to a file from the subvolume if that
925 * link is also in the log.
927 static noinline
int backref_in_log(struct btrfs_root
*log
,
928 struct btrfs_key
*key
,
930 const char *name
, int namelen
)
932 struct btrfs_path
*path
;
933 struct btrfs_inode_ref
*ref
;
935 unsigned long ptr_end
;
936 unsigned long name_ptr
;
942 path
= btrfs_alloc_path();
946 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
950 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
952 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
953 if (btrfs_find_name_in_ext_backref(path
->nodes
[0],
956 name
, namelen
, NULL
))
962 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
963 ptr_end
= ptr
+ item_size
;
964 while (ptr
< ptr_end
) {
965 ref
= (struct btrfs_inode_ref
*)ptr
;
966 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
967 if (found_name_len
== namelen
) {
968 name_ptr
= (unsigned long)(ref
+ 1);
969 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
976 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
979 btrfs_free_path(path
);
983 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
984 struct btrfs_root
*root
,
985 struct btrfs_path
*path
,
986 struct btrfs_root
*log_root
,
987 struct btrfs_inode
*dir
,
988 struct btrfs_inode
*inode
,
989 u64 inode_objectid
, u64 parent_objectid
,
990 u64 ref_index
, char *name
, int namelen
,
996 struct extent_buffer
*leaf
;
997 struct btrfs_dir_item
*di
;
998 struct btrfs_key search_key
;
999 struct btrfs_inode_extref
*extref
;
1002 /* Search old style refs */
1003 search_key
.objectid
= inode_objectid
;
1004 search_key
.type
= BTRFS_INODE_REF_KEY
;
1005 search_key
.offset
= parent_objectid
;
1006 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1008 struct btrfs_inode_ref
*victim_ref
;
1010 unsigned long ptr_end
;
1012 leaf
= path
->nodes
[0];
1014 /* are we trying to overwrite a back ref for the root directory
1015 * if so, just jump out, we're done
1017 if (search_key
.objectid
== search_key
.offset
)
1020 /* check all the names in this back reference to see
1021 * if they are in the log. if so, we allow them to stay
1022 * otherwise they must be unlinked as a conflict
1024 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1025 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1026 while (ptr
< ptr_end
) {
1027 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1028 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1030 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1034 read_extent_buffer(leaf
, victim_name
,
1035 (unsigned long)(victim_ref
+ 1),
1038 if (!backref_in_log(log_root
, &search_key
,
1042 inc_nlink(&inode
->vfs_inode
);
1043 btrfs_release_path(path
);
1045 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1046 victim_name
, victim_name_len
);
1050 ret
= btrfs_run_delayed_items(trans
);
1058 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1062 * NOTE: we have searched root tree and checked the
1063 * corresponding ref, it does not need to check again.
1067 btrfs_release_path(path
);
1069 /* Same search but for extended refs */
1070 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1071 inode_objectid
, parent_objectid
, 0,
1073 if (!IS_ERR_OR_NULL(extref
)) {
1077 struct inode
*victim_parent
;
1079 leaf
= path
->nodes
[0];
1081 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1082 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1084 while (cur_offset
< item_size
) {
1085 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1087 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1089 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1092 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1095 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1098 search_key
.objectid
= inode_objectid
;
1099 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1100 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1104 if (!backref_in_log(log_root
, &search_key
,
1105 parent_objectid
, victim_name
,
1108 victim_parent
= read_one_inode(root
,
1110 if (victim_parent
) {
1111 inc_nlink(&inode
->vfs_inode
);
1112 btrfs_release_path(path
);
1114 ret
= btrfs_unlink_inode(trans
, root
,
1115 BTRFS_I(victim_parent
),
1120 ret
= btrfs_run_delayed_items(
1123 iput(victim_parent
);
1132 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1136 btrfs_release_path(path
);
1138 /* look for a conflicting sequence number */
1139 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1140 ref_index
, name
, namelen
, 0);
1141 if (di
&& !IS_ERR(di
)) {
1142 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1146 btrfs_release_path(path
);
1148 /* look for a conflicing name */
1149 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1151 if (di
&& !IS_ERR(di
)) {
1152 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1156 btrfs_release_path(path
);
1161 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1162 u32
*namelen
, char **name
, u64
*index
,
1163 u64
*parent_objectid
)
1165 struct btrfs_inode_extref
*extref
;
1167 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1169 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1170 *name
= kmalloc(*namelen
, GFP_NOFS
);
1174 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1178 *index
= btrfs_inode_extref_index(eb
, extref
);
1179 if (parent_objectid
)
1180 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1185 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1186 u32
*namelen
, char **name
, u64
*index
)
1188 struct btrfs_inode_ref
*ref
;
1190 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1192 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1193 *name
= kmalloc(*namelen
, GFP_NOFS
);
1197 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1200 *index
= btrfs_inode_ref_index(eb
, ref
);
1206 * Take an inode reference item from the log tree and iterate all names from the
1207 * inode reference item in the subvolume tree with the same key (if it exists).
1208 * For any name that is not in the inode reference item from the log tree, do a
1209 * proper unlink of that name (that is, remove its entry from the inode
1210 * reference item and both dir index keys).
1212 static int unlink_old_inode_refs(struct btrfs_trans_handle
*trans
,
1213 struct btrfs_root
*root
,
1214 struct btrfs_path
*path
,
1215 struct btrfs_inode
*inode
,
1216 struct extent_buffer
*log_eb
,
1218 struct btrfs_key
*key
)
1221 unsigned long ref_ptr
;
1222 unsigned long ref_end
;
1223 struct extent_buffer
*eb
;
1226 btrfs_release_path(path
);
1227 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
1235 eb
= path
->nodes
[0];
1236 ref_ptr
= btrfs_item_ptr_offset(eb
, path
->slots
[0]);
1237 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, path
->slots
[0]);
1238 while (ref_ptr
< ref_end
) {
1243 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1244 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1247 parent_id
= key
->offset
;
1248 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1254 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1255 ret
= btrfs_find_name_in_ext_backref(log_eb
, log_slot
,
1259 ret
= btrfs_find_name_in_backref(log_eb
, log_slot
, name
,
1265 btrfs_release_path(path
);
1266 dir
= read_one_inode(root
, parent_id
);
1272 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
1273 inode
, name
, namelen
);
1283 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1284 ref_ptr
+= sizeof(struct btrfs_inode_extref
);
1286 ref_ptr
+= sizeof(struct btrfs_inode_ref
);
1290 btrfs_release_path(path
);
1295 * replay one inode back reference item found in the log tree.
1296 * eb, slot and key refer to the buffer and key found in the log tree.
1297 * root is the destination we are replaying into, and path is for temp
1298 * use by this function. (it should be released on return).
1300 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1301 struct btrfs_root
*root
,
1302 struct btrfs_root
*log
,
1303 struct btrfs_path
*path
,
1304 struct extent_buffer
*eb
, int slot
,
1305 struct btrfs_key
*key
)
1307 struct inode
*dir
= NULL
;
1308 struct inode
*inode
= NULL
;
1309 unsigned long ref_ptr
;
1310 unsigned long ref_end
;
1314 int search_done
= 0;
1315 int log_ref_ver
= 0;
1316 u64 parent_objectid
;
1319 int ref_struct_size
;
1321 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1322 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1324 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1325 struct btrfs_inode_extref
*r
;
1327 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1329 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1330 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1332 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1333 parent_objectid
= key
->offset
;
1335 inode_objectid
= key
->objectid
;
1338 * it is possible that we didn't log all the parent directories
1339 * for a given inode. If we don't find the dir, just don't
1340 * copy the back ref in. The link count fixup code will take
1343 dir
= read_one_inode(root
, parent_objectid
);
1349 inode
= read_one_inode(root
, inode_objectid
);
1355 while (ref_ptr
< ref_end
) {
1357 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1358 &ref_index
, &parent_objectid
);
1360 * parent object can change from one array
1364 dir
= read_one_inode(root
, parent_objectid
);
1370 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1376 /* if we already have a perfect match, we're done */
1377 if (!inode_in_dir(root
, path
, btrfs_ino(BTRFS_I(dir
)),
1378 btrfs_ino(BTRFS_I(inode
)), ref_index
,
1381 * look for a conflicting back reference in the
1382 * metadata. if we find one we have to unlink that name
1383 * of the file before we add our new link. Later on, we
1384 * overwrite any existing back reference, and we don't
1385 * want to create dangling pointers in the directory.
1389 ret
= __add_inode_ref(trans
, root
, path
, log
,
1394 ref_index
, name
, namelen
,
1403 /* insert our name */
1404 ret
= btrfs_add_link(trans
, BTRFS_I(dir
),
1406 name
, namelen
, 0, ref_index
);
1410 btrfs_update_inode(trans
, root
, inode
);
1413 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1423 * Before we overwrite the inode reference item in the subvolume tree
1424 * with the item from the log tree, we must unlink all names from the
1425 * parent directory that are in the subvolume's tree inode reference
1426 * item, otherwise we end up with an inconsistent subvolume tree where
1427 * dir index entries exist for a name but there is no inode reference
1428 * item with the same name.
1430 ret
= unlink_old_inode_refs(trans
, root
, path
, BTRFS_I(inode
), eb
, slot
,
1435 /* finally write the back reference in the inode */
1436 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1438 btrfs_release_path(path
);
1445 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1446 struct btrfs_root
*root
, u64 ino
)
1450 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1457 static int count_inode_extrefs(struct btrfs_root
*root
,
1458 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1462 unsigned int nlink
= 0;
1465 u64 inode_objectid
= btrfs_ino(inode
);
1468 struct btrfs_inode_extref
*extref
;
1469 struct extent_buffer
*leaf
;
1472 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1477 leaf
= path
->nodes
[0];
1478 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1479 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1482 while (cur_offset
< item_size
) {
1483 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1484 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1488 cur_offset
+= name_len
+ sizeof(*extref
);
1492 btrfs_release_path(path
);
1494 btrfs_release_path(path
);
1496 if (ret
< 0 && ret
!= -ENOENT
)
1501 static int count_inode_refs(struct btrfs_root
*root
,
1502 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1505 struct btrfs_key key
;
1506 unsigned int nlink
= 0;
1508 unsigned long ptr_end
;
1510 u64 ino
= btrfs_ino(inode
);
1513 key
.type
= BTRFS_INODE_REF_KEY
;
1514 key
.offset
= (u64
)-1;
1517 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1521 if (path
->slots
[0] == 0)
1526 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1528 if (key
.objectid
!= ino
||
1529 key
.type
!= BTRFS_INODE_REF_KEY
)
1531 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1532 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1534 while (ptr
< ptr_end
) {
1535 struct btrfs_inode_ref
*ref
;
1537 ref
= (struct btrfs_inode_ref
*)ptr
;
1538 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1540 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1544 if (key
.offset
== 0)
1546 if (path
->slots
[0] > 0) {
1551 btrfs_release_path(path
);
1553 btrfs_release_path(path
);
1559 * There are a few corners where the link count of the file can't
1560 * be properly maintained during replay. So, instead of adding
1561 * lots of complexity to the log code, we just scan the backrefs
1562 * for any file that has been through replay.
1564 * The scan will update the link count on the inode to reflect the
1565 * number of back refs found. If it goes down to zero, the iput
1566 * will free the inode.
1568 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1569 struct btrfs_root
*root
,
1570 struct inode
*inode
)
1572 struct btrfs_path
*path
;
1575 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1577 path
= btrfs_alloc_path();
1581 ret
= count_inode_refs(root
, BTRFS_I(inode
), path
);
1587 ret
= count_inode_extrefs(root
, BTRFS_I(inode
), path
);
1595 if (nlink
!= inode
->i_nlink
) {
1596 set_nlink(inode
, nlink
);
1597 btrfs_update_inode(trans
, root
, inode
);
1599 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1601 if (inode
->i_nlink
== 0) {
1602 if (S_ISDIR(inode
->i_mode
)) {
1603 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1608 ret
= insert_orphan_item(trans
, root
, ino
);
1612 btrfs_free_path(path
);
1616 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1617 struct btrfs_root
*root
,
1618 struct btrfs_path
*path
)
1621 struct btrfs_key key
;
1622 struct inode
*inode
;
1624 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1625 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1626 key
.offset
= (u64
)-1;
1628 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1633 if (path
->slots
[0] == 0)
1638 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1639 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1640 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1643 ret
= btrfs_del_item(trans
, root
, path
);
1647 btrfs_release_path(path
);
1648 inode
= read_one_inode(root
, key
.offset
);
1652 ret
= fixup_inode_link_count(trans
, root
, inode
);
1658 * fixup on a directory may create new entries,
1659 * make sure we always look for the highset possible
1662 key
.offset
= (u64
)-1;
1666 btrfs_release_path(path
);
1672 * record a given inode in the fixup dir so we can check its link
1673 * count when replay is done. The link count is incremented here
1674 * so the inode won't go away until we check it
1676 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1677 struct btrfs_root
*root
,
1678 struct btrfs_path
*path
,
1681 struct btrfs_key key
;
1683 struct inode
*inode
;
1685 inode
= read_one_inode(root
, objectid
);
1689 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1690 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1691 key
.offset
= objectid
;
1693 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1695 btrfs_release_path(path
);
1697 if (!inode
->i_nlink
)
1698 set_nlink(inode
, 1);
1701 ret
= btrfs_update_inode(trans
, root
, inode
);
1702 } else if (ret
== -EEXIST
) {
1705 BUG(); /* Logic Error */
1713 * when replaying the log for a directory, we only insert names
1714 * for inodes that actually exist. This means an fsync on a directory
1715 * does not implicitly fsync all the new files in it
1717 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1718 struct btrfs_root
*root
,
1719 u64 dirid
, u64 index
,
1720 char *name
, int name_len
,
1721 struct btrfs_key
*location
)
1723 struct inode
*inode
;
1727 inode
= read_one_inode(root
, location
->objectid
);
1731 dir
= read_one_inode(root
, dirid
);
1737 ret
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
), name
,
1738 name_len
, 1, index
);
1740 /* FIXME, put inode into FIXUP list */
1748 * Return true if an inode reference exists in the log for the given name,
1749 * inode and parent inode.
1751 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1752 const char *name
, const int name_len
,
1753 const u64 dirid
, const u64 ino
)
1755 struct btrfs_key search_key
;
1757 search_key
.objectid
= ino
;
1758 search_key
.type
= BTRFS_INODE_REF_KEY
;
1759 search_key
.offset
= dirid
;
1760 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1763 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1764 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1765 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1772 * take a single entry in a log directory item and replay it into
1775 * if a conflicting item exists in the subdirectory already,
1776 * the inode it points to is unlinked and put into the link count
1779 * If a name from the log points to a file or directory that does
1780 * not exist in the FS, it is skipped. fsyncs on directories
1781 * do not force down inodes inside that directory, just changes to the
1782 * names or unlinks in a directory.
1784 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1785 * non-existing inode) and 1 if the name was replayed.
1787 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1788 struct btrfs_root
*root
,
1789 struct btrfs_path
*path
,
1790 struct extent_buffer
*eb
,
1791 struct btrfs_dir_item
*di
,
1792 struct btrfs_key
*key
)
1796 struct btrfs_dir_item
*dst_di
;
1797 struct btrfs_key found_key
;
1798 struct btrfs_key log_key
;
1803 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1804 bool name_added
= false;
1806 dir
= read_one_inode(root
, key
->objectid
);
1810 name_len
= btrfs_dir_name_len(eb
, di
);
1811 name
= kmalloc(name_len
, GFP_NOFS
);
1817 log_type
= btrfs_dir_type(eb
, di
);
1818 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1821 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1822 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1827 btrfs_release_path(path
);
1829 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1830 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1832 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1833 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1842 if (IS_ERR_OR_NULL(dst_di
)) {
1843 /* we need a sequence number to insert, so we only
1844 * do inserts for the BTRFS_DIR_INDEX_KEY types
1846 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1851 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1852 /* the existing item matches the logged item */
1853 if (found_key
.objectid
== log_key
.objectid
&&
1854 found_key
.type
== log_key
.type
&&
1855 found_key
.offset
== log_key
.offset
&&
1856 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1857 update_size
= false;
1862 * don't drop the conflicting directory entry if the inode
1863 * for the new entry doesn't exist
1868 ret
= drop_one_dir_item(trans
, root
, path
, BTRFS_I(dir
), dst_di
);
1872 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1875 btrfs_release_path(path
);
1876 if (!ret
&& update_size
) {
1877 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ name_len
* 2);
1878 ret
= btrfs_update_inode(trans
, root
, dir
);
1882 if (!ret
&& name_added
)
1887 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1888 key
->objectid
, log_key
.objectid
)) {
1889 /* The dentry will be added later. */
1891 update_size
= false;
1894 btrfs_release_path(path
);
1895 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
1896 name
, name_len
, &log_key
);
1897 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1901 update_size
= false;
1907 * find all the names in a directory item and reconcile them into
1908 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1909 * one name in a directory item, but the same code gets used for
1910 * both directory index types
1912 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1913 struct btrfs_root
*root
,
1914 struct btrfs_path
*path
,
1915 struct extent_buffer
*eb
, int slot
,
1916 struct btrfs_key
*key
)
1919 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1920 struct btrfs_dir_item
*di
;
1923 unsigned long ptr_end
;
1924 struct btrfs_path
*fixup_path
= NULL
;
1926 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1927 ptr_end
= ptr
+ item_size
;
1928 while (ptr
< ptr_end
) {
1929 di
= (struct btrfs_dir_item
*)ptr
;
1930 name_len
= btrfs_dir_name_len(eb
, di
);
1931 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1934 ptr
= (unsigned long)(di
+ 1);
1938 * If this entry refers to a non-directory (directories can not
1939 * have a link count > 1) and it was added in the transaction
1940 * that was not committed, make sure we fixup the link count of
1941 * the inode it the entry points to. Otherwise something like
1942 * the following would result in a directory pointing to an
1943 * inode with a wrong link that does not account for this dir
1951 * ln testdir/bar testdir/bar_link
1952 * ln testdir/foo testdir/foo_link
1953 * xfs_io -c "fsync" testdir/bar
1957 * mount fs, log replay happens
1959 * File foo would remain with a link count of 1 when it has two
1960 * entries pointing to it in the directory testdir. This would
1961 * make it impossible to ever delete the parent directory has
1962 * it would result in stale dentries that can never be deleted.
1964 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
1965 struct btrfs_key di_key
;
1968 fixup_path
= btrfs_alloc_path();
1975 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1976 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
1983 btrfs_free_path(fixup_path
);
1988 * directory replay has two parts. There are the standard directory
1989 * items in the log copied from the subvolume, and range items
1990 * created in the log while the subvolume was logged.
1992 * The range items tell us which parts of the key space the log
1993 * is authoritative for. During replay, if a key in the subvolume
1994 * directory is in a logged range item, but not actually in the log
1995 * that means it was deleted from the directory before the fsync
1996 * and should be removed.
1998 static noinline
int find_dir_range(struct btrfs_root
*root
,
1999 struct btrfs_path
*path
,
2000 u64 dirid
, int key_type
,
2001 u64
*start_ret
, u64
*end_ret
)
2003 struct btrfs_key key
;
2005 struct btrfs_dir_log_item
*item
;
2009 if (*start_ret
== (u64
)-1)
2012 key
.objectid
= dirid
;
2013 key
.type
= key_type
;
2014 key
.offset
= *start_ret
;
2016 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2020 if (path
->slots
[0] == 0)
2025 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2027 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
2031 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2032 struct btrfs_dir_log_item
);
2033 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
2035 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
2037 *start_ret
= key
.offset
;
2038 *end_ret
= found_end
;
2043 /* check the next slot in the tree to see if it is a valid item */
2044 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2046 if (path
->slots
[0] >= nritems
) {
2047 ret
= btrfs_next_leaf(root
, path
);
2052 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2054 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
2058 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2059 struct btrfs_dir_log_item
);
2060 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
2061 *start_ret
= key
.offset
;
2062 *end_ret
= found_end
;
2065 btrfs_release_path(path
);
2070 * this looks for a given directory item in the log. If the directory
2071 * item is not in the log, the item is removed and the inode it points
2074 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
2075 struct btrfs_root
*root
,
2076 struct btrfs_root
*log
,
2077 struct btrfs_path
*path
,
2078 struct btrfs_path
*log_path
,
2080 struct btrfs_key
*dir_key
)
2083 struct extent_buffer
*eb
;
2086 struct btrfs_dir_item
*di
;
2087 struct btrfs_dir_item
*log_di
;
2090 unsigned long ptr_end
;
2092 struct inode
*inode
;
2093 struct btrfs_key location
;
2096 eb
= path
->nodes
[0];
2097 slot
= path
->slots
[0];
2098 item_size
= btrfs_item_size_nr(eb
, slot
);
2099 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2100 ptr_end
= ptr
+ item_size
;
2101 while (ptr
< ptr_end
) {
2102 di
= (struct btrfs_dir_item
*)ptr
;
2103 name_len
= btrfs_dir_name_len(eb
, di
);
2104 name
= kmalloc(name_len
, GFP_NOFS
);
2109 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
2112 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2113 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2116 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2117 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2123 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
2124 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2125 btrfs_release_path(path
);
2126 btrfs_release_path(log_path
);
2127 inode
= read_one_inode(root
, location
.objectid
);
2133 ret
= link_to_fixup_dir(trans
, root
,
2134 path
, location
.objectid
);
2142 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
2143 BTRFS_I(inode
), name
, name_len
);
2145 ret
= btrfs_run_delayed_items(trans
);
2151 /* there might still be more names under this key
2152 * check and repeat if required
2154 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2160 } else if (IS_ERR(log_di
)) {
2162 return PTR_ERR(log_di
);
2164 btrfs_release_path(log_path
);
2167 ptr
= (unsigned long)(di
+ 1);
2172 btrfs_release_path(path
);
2173 btrfs_release_path(log_path
);
2177 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2178 struct btrfs_root
*root
,
2179 struct btrfs_root
*log
,
2180 struct btrfs_path
*path
,
2183 struct btrfs_key search_key
;
2184 struct btrfs_path
*log_path
;
2189 log_path
= btrfs_alloc_path();
2193 search_key
.objectid
= ino
;
2194 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2195 search_key
.offset
= 0;
2197 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2201 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2202 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2203 struct btrfs_key key
;
2204 struct btrfs_dir_item
*di
;
2205 struct btrfs_dir_item
*log_di
;
2209 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2210 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2215 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2216 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2218 while (cur
< total_size
) {
2219 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2220 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2221 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2224 name
= kmalloc(name_len
, GFP_NOFS
);
2229 read_extent_buffer(path
->nodes
[0], name
,
2230 (unsigned long)(di
+ 1), name_len
);
2232 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2234 btrfs_release_path(log_path
);
2236 /* Doesn't exist in log tree, so delete it. */
2237 btrfs_release_path(path
);
2238 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2239 name
, name_len
, -1);
2246 ret
= btrfs_delete_one_dir_name(trans
, root
,
2250 btrfs_release_path(path
);
2255 if (IS_ERR(log_di
)) {
2256 ret
= PTR_ERR(log_di
);
2260 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2263 ret
= btrfs_next_leaf(root
, path
);
2269 btrfs_free_path(log_path
);
2270 btrfs_release_path(path
);
2276 * deletion replay happens before we copy any new directory items
2277 * out of the log or out of backreferences from inodes. It
2278 * scans the log to find ranges of keys that log is authoritative for,
2279 * and then scans the directory to find items in those ranges that are
2280 * not present in the log.
2282 * Anything we don't find in the log is unlinked and removed from the
2285 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2286 struct btrfs_root
*root
,
2287 struct btrfs_root
*log
,
2288 struct btrfs_path
*path
,
2289 u64 dirid
, int del_all
)
2293 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2295 struct btrfs_key dir_key
;
2296 struct btrfs_key found_key
;
2297 struct btrfs_path
*log_path
;
2300 dir_key
.objectid
= dirid
;
2301 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2302 log_path
= btrfs_alloc_path();
2306 dir
= read_one_inode(root
, dirid
);
2307 /* it isn't an error if the inode isn't there, that can happen
2308 * because we replay the deletes before we copy in the inode item
2312 btrfs_free_path(log_path
);
2320 range_end
= (u64
)-1;
2322 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2323 &range_start
, &range_end
);
2328 dir_key
.offset
= range_start
;
2331 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2336 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2337 if (path
->slots
[0] >= nritems
) {
2338 ret
= btrfs_next_leaf(root
, path
);
2344 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2346 if (found_key
.objectid
!= dirid
||
2347 found_key
.type
!= dir_key
.type
)
2350 if (found_key
.offset
> range_end
)
2353 ret
= check_item_in_log(trans
, root
, log
, path
,
2358 if (found_key
.offset
== (u64
)-1)
2360 dir_key
.offset
= found_key
.offset
+ 1;
2362 btrfs_release_path(path
);
2363 if (range_end
== (u64
)-1)
2365 range_start
= range_end
+ 1;
2370 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2371 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2372 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2373 btrfs_release_path(path
);
2377 btrfs_release_path(path
);
2378 btrfs_free_path(log_path
);
2384 * the process_func used to replay items from the log tree. This
2385 * gets called in two different stages. The first stage just looks
2386 * for inodes and makes sure they are all copied into the subvolume.
2388 * The second stage copies all the other item types from the log into
2389 * the subvolume. The two stage approach is slower, but gets rid of
2390 * lots of complexity around inodes referencing other inodes that exist
2391 * only in the log (references come from either directory items or inode
2394 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2395 struct walk_control
*wc
, u64 gen
, int level
)
2398 struct btrfs_path
*path
;
2399 struct btrfs_root
*root
= wc
->replay_dest
;
2400 struct btrfs_key key
;
2404 ret
= btrfs_read_buffer(eb
, gen
, level
, NULL
);
2408 level
= btrfs_header_level(eb
);
2413 path
= btrfs_alloc_path();
2417 nritems
= btrfs_header_nritems(eb
);
2418 for (i
= 0; i
< nritems
; i
++) {
2419 btrfs_item_key_to_cpu(eb
, &key
, i
);
2421 /* inode keys are done during the first stage */
2422 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2423 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2424 struct btrfs_inode_item
*inode_item
;
2427 inode_item
= btrfs_item_ptr(eb
, i
,
2428 struct btrfs_inode_item
);
2429 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2430 path
, key
.objectid
);
2433 mode
= btrfs_inode_mode(eb
, inode_item
);
2434 if (S_ISDIR(mode
)) {
2435 ret
= replay_dir_deletes(wc
->trans
,
2436 root
, log
, path
, key
.objectid
, 0);
2440 ret
= overwrite_item(wc
->trans
, root
, path
,
2446 * Before replaying extents, truncate the inode to its
2447 * size. We need to do it now and not after log replay
2448 * because before an fsync we can have prealloc extents
2449 * added beyond the inode's i_size. If we did it after,
2450 * through orphan cleanup for example, we would drop
2451 * those prealloc extents just after replaying them.
2453 if (S_ISREG(mode
)) {
2454 struct inode
*inode
;
2457 inode
= read_one_inode(root
, key
.objectid
);
2462 from
= ALIGN(i_size_read(inode
),
2463 root
->fs_info
->sectorsize
);
2464 ret
= btrfs_drop_extents(wc
->trans
, root
, inode
,
2467 * If the nlink count is zero here, the iput
2468 * will free the inode. We bump it to make
2469 * sure it doesn't get freed until the link
2470 * count fixup is done.
2473 if (inode
->i_nlink
== 0)
2475 /* Update link count and nbytes. */
2476 ret
= btrfs_update_inode(wc
->trans
,
2484 ret
= link_to_fixup_dir(wc
->trans
, root
,
2485 path
, key
.objectid
);
2490 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2491 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2492 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2498 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2501 /* these keys are simply copied */
2502 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2503 ret
= overwrite_item(wc
->trans
, root
, path
,
2507 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2508 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2509 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2511 if (ret
&& ret
!= -ENOENT
)
2514 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2515 ret
= replay_one_extent(wc
->trans
, root
, path
,
2519 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2520 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2526 btrfs_free_path(path
);
2530 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2531 struct btrfs_root
*root
,
2532 struct btrfs_path
*path
, int *level
,
2533 struct walk_control
*wc
)
2535 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2539 struct extent_buffer
*next
;
2540 struct extent_buffer
*cur
;
2541 struct extent_buffer
*parent
;
2545 WARN_ON(*level
< 0);
2546 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2548 while (*level
> 0) {
2549 struct btrfs_key first_key
;
2551 WARN_ON(*level
< 0);
2552 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2553 cur
= path
->nodes
[*level
];
2555 WARN_ON(btrfs_header_level(cur
) != *level
);
2557 if (path
->slots
[*level
] >=
2558 btrfs_header_nritems(cur
))
2561 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2562 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2563 btrfs_node_key_to_cpu(cur
, &first_key
, path
->slots
[*level
]);
2564 blocksize
= fs_info
->nodesize
;
2566 parent
= path
->nodes
[*level
];
2567 root_owner
= btrfs_header_owner(parent
);
2569 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
2571 return PTR_ERR(next
);
2574 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
,
2577 free_extent_buffer(next
);
2581 path
->slots
[*level
]++;
2583 ret
= btrfs_read_buffer(next
, ptr_gen
,
2584 *level
- 1, &first_key
);
2586 free_extent_buffer(next
);
2591 btrfs_tree_lock(next
);
2592 btrfs_set_lock_blocking(next
);
2593 clean_tree_block(fs_info
, next
);
2594 btrfs_wait_tree_block_writeback(next
);
2595 btrfs_tree_unlock(next
);
2597 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2598 clear_extent_buffer_dirty(next
);
2601 WARN_ON(root_owner
!=
2602 BTRFS_TREE_LOG_OBJECTID
);
2603 ret
= btrfs_free_and_pin_reserved_extent(
2607 free_extent_buffer(next
);
2611 free_extent_buffer(next
);
2614 ret
= btrfs_read_buffer(next
, ptr_gen
, *level
- 1, &first_key
);
2616 free_extent_buffer(next
);
2620 WARN_ON(*level
<= 0);
2621 if (path
->nodes
[*level
-1])
2622 free_extent_buffer(path
->nodes
[*level
-1]);
2623 path
->nodes
[*level
-1] = next
;
2624 *level
= btrfs_header_level(next
);
2625 path
->slots
[*level
] = 0;
2628 WARN_ON(*level
< 0);
2629 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2631 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2637 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2638 struct btrfs_root
*root
,
2639 struct btrfs_path
*path
, int *level
,
2640 struct walk_control
*wc
)
2642 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2648 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2649 slot
= path
->slots
[i
];
2650 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2653 WARN_ON(*level
== 0);
2656 struct extent_buffer
*parent
;
2657 if (path
->nodes
[*level
] == root
->node
)
2658 parent
= path
->nodes
[*level
];
2660 parent
= path
->nodes
[*level
+ 1];
2662 root_owner
= btrfs_header_owner(parent
);
2663 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2664 btrfs_header_generation(path
->nodes
[*level
]),
2670 struct extent_buffer
*next
;
2672 next
= path
->nodes
[*level
];
2675 btrfs_tree_lock(next
);
2676 btrfs_set_lock_blocking(next
);
2677 clean_tree_block(fs_info
, next
);
2678 btrfs_wait_tree_block_writeback(next
);
2679 btrfs_tree_unlock(next
);
2681 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2682 clear_extent_buffer_dirty(next
);
2685 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2686 ret
= btrfs_free_and_pin_reserved_extent(
2688 path
->nodes
[*level
]->start
,
2689 path
->nodes
[*level
]->len
);
2693 free_extent_buffer(path
->nodes
[*level
]);
2694 path
->nodes
[*level
] = NULL
;
2702 * drop the reference count on the tree rooted at 'snap'. This traverses
2703 * the tree freeing any blocks that have a ref count of zero after being
2706 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2707 struct btrfs_root
*log
, struct walk_control
*wc
)
2709 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2713 struct btrfs_path
*path
;
2716 path
= btrfs_alloc_path();
2720 level
= btrfs_header_level(log
->node
);
2722 path
->nodes
[level
] = log
->node
;
2723 extent_buffer_get(log
->node
);
2724 path
->slots
[level
] = 0;
2727 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2735 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2744 /* was the root node processed? if not, catch it here */
2745 if (path
->nodes
[orig_level
]) {
2746 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2747 btrfs_header_generation(path
->nodes
[orig_level
]),
2752 struct extent_buffer
*next
;
2754 next
= path
->nodes
[orig_level
];
2757 btrfs_tree_lock(next
);
2758 btrfs_set_lock_blocking(next
);
2759 clean_tree_block(fs_info
, next
);
2760 btrfs_wait_tree_block_writeback(next
);
2761 btrfs_tree_unlock(next
);
2763 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2764 clear_extent_buffer_dirty(next
);
2767 WARN_ON(log
->root_key
.objectid
!=
2768 BTRFS_TREE_LOG_OBJECTID
);
2769 ret
= btrfs_free_and_pin_reserved_extent(fs_info
,
2770 next
->start
, next
->len
);
2777 btrfs_free_path(path
);
2782 * helper function to update the item for a given subvolumes log root
2783 * in the tree of log roots
2785 static int update_log_root(struct btrfs_trans_handle
*trans
,
2786 struct btrfs_root
*log
)
2788 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2791 if (log
->log_transid
== 1) {
2792 /* insert root item on the first sync */
2793 ret
= btrfs_insert_root(trans
, fs_info
->log_root_tree
,
2794 &log
->root_key
, &log
->root_item
);
2796 ret
= btrfs_update_root(trans
, fs_info
->log_root_tree
,
2797 &log
->root_key
, &log
->root_item
);
2802 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2805 int index
= transid
% 2;
2808 * we only allow two pending log transactions at a time,
2809 * so we know that if ours is more than 2 older than the
2810 * current transaction, we're done
2813 prepare_to_wait(&root
->log_commit_wait
[index
],
2814 &wait
, TASK_UNINTERRUPTIBLE
);
2816 if (!(root
->log_transid_committed
< transid
&&
2817 atomic_read(&root
->log_commit
[index
])))
2820 mutex_unlock(&root
->log_mutex
);
2822 mutex_lock(&root
->log_mutex
);
2824 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2827 static void wait_for_writer(struct btrfs_root
*root
)
2832 prepare_to_wait(&root
->log_writer_wait
, &wait
,
2833 TASK_UNINTERRUPTIBLE
);
2834 if (!atomic_read(&root
->log_writers
))
2837 mutex_unlock(&root
->log_mutex
);
2839 mutex_lock(&root
->log_mutex
);
2841 finish_wait(&root
->log_writer_wait
, &wait
);
2844 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2845 struct btrfs_log_ctx
*ctx
)
2850 mutex_lock(&root
->log_mutex
);
2851 list_del_init(&ctx
->list
);
2852 mutex_unlock(&root
->log_mutex
);
2856 * Invoked in log mutex context, or be sure there is no other task which
2857 * can access the list.
2859 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2860 int index
, int error
)
2862 struct btrfs_log_ctx
*ctx
;
2863 struct btrfs_log_ctx
*safe
;
2865 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2866 list_del_init(&ctx
->list
);
2867 ctx
->log_ret
= error
;
2870 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2874 * btrfs_sync_log does sends a given tree log down to the disk and
2875 * updates the super blocks to record it. When this call is done,
2876 * you know that any inodes previously logged are safely on disk only
2879 * Any other return value means you need to call btrfs_commit_transaction.
2880 * Some of the edge cases for fsyncing directories that have had unlinks
2881 * or renames done in the past mean that sometimes the only safe
2882 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2883 * that has happened.
2885 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2886 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2892 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2893 struct btrfs_root
*log
= root
->log_root
;
2894 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
2895 int log_transid
= 0;
2896 struct btrfs_log_ctx root_log_ctx
;
2897 struct blk_plug plug
;
2899 mutex_lock(&root
->log_mutex
);
2900 log_transid
= ctx
->log_transid
;
2901 if (root
->log_transid_committed
>= log_transid
) {
2902 mutex_unlock(&root
->log_mutex
);
2903 return ctx
->log_ret
;
2906 index1
= log_transid
% 2;
2907 if (atomic_read(&root
->log_commit
[index1
])) {
2908 wait_log_commit(root
, log_transid
);
2909 mutex_unlock(&root
->log_mutex
);
2910 return ctx
->log_ret
;
2912 ASSERT(log_transid
== root
->log_transid
);
2913 atomic_set(&root
->log_commit
[index1
], 1);
2915 /* wait for previous tree log sync to complete */
2916 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2917 wait_log_commit(root
, log_transid
- 1);
2920 int batch
= atomic_read(&root
->log_batch
);
2921 /* when we're on an ssd, just kick the log commit out */
2922 if (!btrfs_test_opt(fs_info
, SSD
) &&
2923 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2924 mutex_unlock(&root
->log_mutex
);
2925 schedule_timeout_uninterruptible(1);
2926 mutex_lock(&root
->log_mutex
);
2928 wait_for_writer(root
);
2929 if (batch
== atomic_read(&root
->log_batch
))
2933 /* bail out if we need to do a full commit */
2934 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
2936 btrfs_free_logged_extents(log
, log_transid
);
2937 mutex_unlock(&root
->log_mutex
);
2941 if (log_transid
% 2 == 0)
2942 mark
= EXTENT_DIRTY
;
2946 /* we start IO on all the marked extents here, but we don't actually
2947 * wait for them until later.
2949 blk_start_plug(&plug
);
2950 ret
= btrfs_write_marked_extents(fs_info
, &log
->dirty_log_pages
, mark
);
2952 blk_finish_plug(&plug
);
2953 btrfs_abort_transaction(trans
, ret
);
2954 btrfs_free_logged_extents(log
, log_transid
);
2955 btrfs_set_log_full_commit(fs_info
, trans
);
2956 mutex_unlock(&root
->log_mutex
);
2960 btrfs_set_root_node(&log
->root_item
, log
->node
);
2962 root
->log_transid
++;
2963 log
->log_transid
= root
->log_transid
;
2964 root
->log_start_pid
= 0;
2966 * IO has been started, blocks of the log tree have WRITTEN flag set
2967 * in their headers. new modifications of the log will be written to
2968 * new positions. so it's safe to allow log writers to go in.
2970 mutex_unlock(&root
->log_mutex
);
2972 btrfs_init_log_ctx(&root_log_ctx
, NULL
);
2974 mutex_lock(&log_root_tree
->log_mutex
);
2975 atomic_inc(&log_root_tree
->log_batch
);
2976 atomic_inc(&log_root_tree
->log_writers
);
2978 index2
= log_root_tree
->log_transid
% 2;
2979 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2980 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2982 mutex_unlock(&log_root_tree
->log_mutex
);
2984 ret
= update_log_root(trans
, log
);
2986 mutex_lock(&log_root_tree
->log_mutex
);
2987 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2988 /* atomic_dec_and_test implies a barrier */
2989 cond_wake_up_nomb(&log_root_tree
->log_writer_wait
);
2993 if (!list_empty(&root_log_ctx
.list
))
2994 list_del_init(&root_log_ctx
.list
);
2996 blk_finish_plug(&plug
);
2997 btrfs_set_log_full_commit(fs_info
, trans
);
2999 if (ret
!= -ENOSPC
) {
3000 btrfs_abort_transaction(trans
, ret
);
3001 mutex_unlock(&log_root_tree
->log_mutex
);
3004 btrfs_wait_tree_log_extents(log
, mark
);
3005 btrfs_free_logged_extents(log
, log_transid
);
3006 mutex_unlock(&log_root_tree
->log_mutex
);
3011 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
3012 blk_finish_plug(&plug
);
3013 list_del_init(&root_log_ctx
.list
);
3014 mutex_unlock(&log_root_tree
->log_mutex
);
3015 ret
= root_log_ctx
.log_ret
;
3019 index2
= root_log_ctx
.log_transid
% 2;
3020 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
3021 blk_finish_plug(&plug
);
3022 ret
= btrfs_wait_tree_log_extents(log
, mark
);
3023 btrfs_wait_logged_extents(trans
, log
, log_transid
);
3024 wait_log_commit(log_root_tree
,
3025 root_log_ctx
.log_transid
);
3026 mutex_unlock(&log_root_tree
->log_mutex
);
3028 ret
= root_log_ctx
.log_ret
;
3031 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
3032 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
3034 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
3035 wait_log_commit(log_root_tree
,
3036 root_log_ctx
.log_transid
- 1);
3039 wait_for_writer(log_root_tree
);
3042 * now that we've moved on to the tree of log tree roots,
3043 * check the full commit flag again
3045 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
3046 blk_finish_plug(&plug
);
3047 btrfs_wait_tree_log_extents(log
, mark
);
3048 btrfs_free_logged_extents(log
, log_transid
);
3049 mutex_unlock(&log_root_tree
->log_mutex
);
3051 goto out_wake_log_root
;
3054 ret
= btrfs_write_marked_extents(fs_info
,
3055 &log_root_tree
->dirty_log_pages
,
3056 EXTENT_DIRTY
| EXTENT_NEW
);
3057 blk_finish_plug(&plug
);
3059 btrfs_set_log_full_commit(fs_info
, trans
);
3060 btrfs_abort_transaction(trans
, ret
);
3061 btrfs_free_logged_extents(log
, log_transid
);
3062 mutex_unlock(&log_root_tree
->log_mutex
);
3063 goto out_wake_log_root
;
3065 ret
= btrfs_wait_tree_log_extents(log
, mark
);
3067 ret
= btrfs_wait_tree_log_extents(log_root_tree
,
3068 EXTENT_NEW
| EXTENT_DIRTY
);
3070 btrfs_set_log_full_commit(fs_info
, trans
);
3071 btrfs_free_logged_extents(log
, log_transid
);
3072 mutex_unlock(&log_root_tree
->log_mutex
);
3073 goto out_wake_log_root
;
3075 btrfs_wait_logged_extents(trans
, log
, log_transid
);
3077 btrfs_set_super_log_root(fs_info
->super_for_commit
,
3078 log_root_tree
->node
->start
);
3079 btrfs_set_super_log_root_level(fs_info
->super_for_commit
,
3080 btrfs_header_level(log_root_tree
->node
));
3082 log_root_tree
->log_transid
++;
3083 mutex_unlock(&log_root_tree
->log_mutex
);
3086 * nobody else is going to jump in and write the the ctree
3087 * super here because the log_commit atomic below is protecting
3088 * us. We must be called with a transaction handle pinning
3089 * the running transaction open, so a full commit can't hop
3090 * in and cause problems either.
3092 ret
= write_all_supers(fs_info
, 1);
3094 btrfs_set_log_full_commit(fs_info
, trans
);
3095 btrfs_abort_transaction(trans
, ret
);
3096 goto out_wake_log_root
;
3099 mutex_lock(&root
->log_mutex
);
3100 if (root
->last_log_commit
< log_transid
)
3101 root
->last_log_commit
= log_transid
;
3102 mutex_unlock(&root
->log_mutex
);
3105 mutex_lock(&log_root_tree
->log_mutex
);
3106 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
3108 log_root_tree
->log_transid_committed
++;
3109 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
3110 mutex_unlock(&log_root_tree
->log_mutex
);
3113 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3114 * all the updates above are seen by the woken threads. It might not be
3115 * necessary, but proving that seems to be hard.
3117 cond_wake_up(&log_root_tree
->log_commit_wait
[index2
]);
3119 mutex_lock(&root
->log_mutex
);
3120 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
3121 root
->log_transid_committed
++;
3122 atomic_set(&root
->log_commit
[index1
], 0);
3123 mutex_unlock(&root
->log_mutex
);
3126 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3127 * all the updates above are seen by the woken threads. It might not be
3128 * necessary, but proving that seems to be hard.
3130 cond_wake_up(&root
->log_commit_wait
[index1
]);
3134 static void free_log_tree(struct btrfs_trans_handle
*trans
,
3135 struct btrfs_root
*log
)
3140 struct walk_control wc
= {
3142 .process_func
= process_one_buffer
3145 ret
= walk_log_tree(trans
, log
, &wc
);
3146 /* I don't think this can happen but just in case */
3148 btrfs_abort_transaction(trans
, ret
);
3151 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
3153 EXTENT_DIRTY
| EXTENT_NEW
| EXTENT_NEED_WAIT
,
3158 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
3159 EXTENT_DIRTY
| EXTENT_NEW
| EXTENT_NEED_WAIT
);
3163 * We may have short-circuited the log tree with the full commit logic
3164 * and left ordered extents on our list, so clear these out to keep us
3165 * from leaking inodes and memory.
3167 btrfs_free_logged_extents(log
, 0);
3168 btrfs_free_logged_extents(log
, 1);
3170 free_extent_buffer(log
->node
);
3175 * free all the extents used by the tree log. This should be called
3176 * at commit time of the full transaction
3178 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3180 if (root
->log_root
) {
3181 free_log_tree(trans
, root
->log_root
);
3182 root
->log_root
= NULL
;
3187 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3188 struct btrfs_fs_info
*fs_info
)
3190 if (fs_info
->log_root_tree
) {
3191 free_log_tree(trans
, fs_info
->log_root_tree
);
3192 fs_info
->log_root_tree
= NULL
;
3198 * If both a file and directory are logged, and unlinks or renames are
3199 * mixed in, we have a few interesting corners:
3201 * create file X in dir Y
3202 * link file X to X.link in dir Y
3204 * unlink file X but leave X.link
3207 * After a crash we would expect only X.link to exist. But file X
3208 * didn't get fsync'd again so the log has back refs for X and X.link.
3210 * We solve this by removing directory entries and inode backrefs from the
3211 * log when a file that was logged in the current transaction is
3212 * unlinked. Any later fsync will include the updated log entries, and
3213 * we'll be able to reconstruct the proper directory items from backrefs.
3215 * This optimizations allows us to avoid relogging the entire inode
3216 * or the entire directory.
3218 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3219 struct btrfs_root
*root
,
3220 const char *name
, int name_len
,
3221 struct btrfs_inode
*dir
, u64 index
)
3223 struct btrfs_root
*log
;
3224 struct btrfs_dir_item
*di
;
3225 struct btrfs_path
*path
;
3229 u64 dir_ino
= btrfs_ino(dir
);
3231 if (dir
->logged_trans
< trans
->transid
)
3234 ret
= join_running_log_trans(root
);
3238 mutex_lock(&dir
->log_mutex
);
3240 log
= root
->log_root
;
3241 path
= btrfs_alloc_path();
3247 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3248 name
, name_len
, -1);
3254 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3255 bytes_del
+= name_len
;
3261 btrfs_release_path(path
);
3262 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3263 index
, name
, name_len
, -1);
3269 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3270 bytes_del
+= name_len
;
3277 /* update the directory size in the log to reflect the names
3281 struct btrfs_key key
;
3283 key
.objectid
= dir_ino
;
3285 key
.type
= BTRFS_INODE_ITEM_KEY
;
3286 btrfs_release_path(path
);
3288 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3294 struct btrfs_inode_item
*item
;
3297 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3298 struct btrfs_inode_item
);
3299 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3300 if (i_size
> bytes_del
)
3301 i_size
-= bytes_del
;
3304 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3305 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3308 btrfs_release_path(path
);
3311 btrfs_free_path(path
);
3313 mutex_unlock(&dir
->log_mutex
);
3314 if (ret
== -ENOSPC
) {
3315 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3318 btrfs_abort_transaction(trans
, ret
);
3320 btrfs_end_log_trans(root
);
3325 /* see comments for btrfs_del_dir_entries_in_log */
3326 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3327 struct btrfs_root
*root
,
3328 const char *name
, int name_len
,
3329 struct btrfs_inode
*inode
, u64 dirid
)
3331 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3332 struct btrfs_root
*log
;
3336 if (inode
->logged_trans
< trans
->transid
)
3339 ret
= join_running_log_trans(root
);
3342 log
= root
->log_root
;
3343 mutex_lock(&inode
->log_mutex
);
3345 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3347 mutex_unlock(&inode
->log_mutex
);
3348 if (ret
== -ENOSPC
) {
3349 btrfs_set_log_full_commit(fs_info
, trans
);
3351 } else if (ret
< 0 && ret
!= -ENOENT
)
3352 btrfs_abort_transaction(trans
, ret
);
3353 btrfs_end_log_trans(root
);
3359 * creates a range item in the log for 'dirid'. first_offset and
3360 * last_offset tell us which parts of the key space the log should
3361 * be considered authoritative for.
3363 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3364 struct btrfs_root
*log
,
3365 struct btrfs_path
*path
,
3366 int key_type
, u64 dirid
,
3367 u64 first_offset
, u64 last_offset
)
3370 struct btrfs_key key
;
3371 struct btrfs_dir_log_item
*item
;
3373 key
.objectid
= dirid
;
3374 key
.offset
= first_offset
;
3375 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3376 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3378 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3379 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3383 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3384 struct btrfs_dir_log_item
);
3385 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3386 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3387 btrfs_release_path(path
);
3392 * log all the items included in the current transaction for a given
3393 * directory. This also creates the range items in the log tree required
3394 * to replay anything deleted before the fsync
3396 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3397 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3398 struct btrfs_path
*path
,
3399 struct btrfs_path
*dst_path
, int key_type
,
3400 struct btrfs_log_ctx
*ctx
,
3401 u64 min_offset
, u64
*last_offset_ret
)
3403 struct btrfs_key min_key
;
3404 struct btrfs_root
*log
= root
->log_root
;
3405 struct extent_buffer
*src
;
3410 u64 first_offset
= min_offset
;
3411 u64 last_offset
= (u64
)-1;
3412 u64 ino
= btrfs_ino(inode
);
3414 log
= root
->log_root
;
3416 min_key
.objectid
= ino
;
3417 min_key
.type
= key_type
;
3418 min_key
.offset
= min_offset
;
3420 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3423 * we didn't find anything from this transaction, see if there
3424 * is anything at all
3426 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3427 min_key
.objectid
= ino
;
3428 min_key
.type
= key_type
;
3429 min_key
.offset
= (u64
)-1;
3430 btrfs_release_path(path
);
3431 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3433 btrfs_release_path(path
);
3436 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3438 /* if ret == 0 there are items for this type,
3439 * create a range to tell us the last key of this type.
3440 * otherwise, there are no items in this directory after
3441 * *min_offset, and we create a range to indicate that.
3444 struct btrfs_key tmp
;
3445 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3447 if (key_type
== tmp
.type
)
3448 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3453 /* go backward to find any previous key */
3454 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3456 struct btrfs_key tmp
;
3457 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3458 if (key_type
== tmp
.type
) {
3459 first_offset
= tmp
.offset
;
3460 ret
= overwrite_item(trans
, log
, dst_path
,
3461 path
->nodes
[0], path
->slots
[0],
3469 btrfs_release_path(path
);
3471 /* find the first key from this transaction again */
3472 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3473 if (WARN_ON(ret
!= 0))
3477 * we have a block from this transaction, log every item in it
3478 * from our directory
3481 struct btrfs_key tmp
;
3482 src
= path
->nodes
[0];
3483 nritems
= btrfs_header_nritems(src
);
3484 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3485 struct btrfs_dir_item
*di
;
3487 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3489 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3491 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3499 * We must make sure that when we log a directory entry,
3500 * the corresponding inode, after log replay, has a
3501 * matching link count. For example:
3507 * xfs_io -c "fsync" mydir
3509 * <mount fs and log replay>
3511 * Would result in a fsync log that when replayed, our
3512 * file inode would have a link count of 1, but we get
3513 * two directory entries pointing to the same inode.
3514 * After removing one of the names, it would not be
3515 * possible to remove the other name, which resulted
3516 * always in stale file handle errors, and would not
3517 * be possible to rmdir the parent directory, since
3518 * its i_size could never decrement to the value
3519 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3521 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3522 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3524 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3525 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3526 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3527 ctx
->log_new_dentries
= true;
3529 path
->slots
[0] = nritems
;
3532 * look ahead to the next item and see if it is also
3533 * from this directory and from this transaction
3535 ret
= btrfs_next_leaf(root
, path
);
3538 last_offset
= (u64
)-1;
3543 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3544 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3545 last_offset
= (u64
)-1;
3548 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3549 ret
= overwrite_item(trans
, log
, dst_path
,
3550 path
->nodes
[0], path
->slots
[0],
3555 last_offset
= tmp
.offset
;
3560 btrfs_release_path(path
);
3561 btrfs_release_path(dst_path
);
3564 *last_offset_ret
= last_offset
;
3566 * insert the log range keys to indicate where the log
3569 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3570 ino
, first_offset
, last_offset
);
3578 * logging directories is very similar to logging inodes, We find all the items
3579 * from the current transaction and write them to the log.
3581 * The recovery code scans the directory in the subvolume, and if it finds a
3582 * key in the range logged that is not present in the log tree, then it means
3583 * that dir entry was unlinked during the transaction.
3585 * In order for that scan to work, we must include one key smaller than
3586 * the smallest logged by this transaction and one key larger than the largest
3587 * key logged by this transaction.
3589 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3590 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3591 struct btrfs_path
*path
,
3592 struct btrfs_path
*dst_path
,
3593 struct btrfs_log_ctx
*ctx
)
3598 int key_type
= BTRFS_DIR_ITEM_KEY
;
3604 ret
= log_dir_items(trans
, root
, inode
, path
, dst_path
, key_type
,
3605 ctx
, min_key
, &max_key
);
3608 if (max_key
== (u64
)-1)
3610 min_key
= max_key
+ 1;
3613 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3614 key_type
= BTRFS_DIR_INDEX_KEY
;
3621 * a helper function to drop items from the log before we relog an
3622 * inode. max_key_type indicates the highest item type to remove.
3623 * This cannot be run for file data extents because it does not
3624 * free the extents they point to.
3626 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3627 struct btrfs_root
*log
,
3628 struct btrfs_path
*path
,
3629 u64 objectid
, int max_key_type
)
3632 struct btrfs_key key
;
3633 struct btrfs_key found_key
;
3636 key
.objectid
= objectid
;
3637 key
.type
= max_key_type
;
3638 key
.offset
= (u64
)-1;
3641 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3642 BUG_ON(ret
== 0); /* Logic error */
3646 if (path
->slots
[0] == 0)
3650 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3653 if (found_key
.objectid
!= objectid
)
3656 found_key
.offset
= 0;
3658 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3661 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3662 path
->slots
[0] - start_slot
+ 1);
3664 * If start slot isn't 0 then we don't need to re-search, we've
3665 * found the last guy with the objectid in this tree.
3667 if (ret
|| start_slot
!= 0)
3669 btrfs_release_path(path
);
3671 btrfs_release_path(path
);
3677 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3678 struct extent_buffer
*leaf
,
3679 struct btrfs_inode_item
*item
,
3680 struct inode
*inode
, int log_inode_only
,
3683 struct btrfs_map_token token
;
3685 btrfs_init_map_token(&token
);
3687 if (log_inode_only
) {
3688 /* set the generation to zero so the recover code
3689 * can tell the difference between an logging
3690 * just to say 'this inode exists' and a logging
3691 * to say 'update this inode with these values'
3693 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3694 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3696 btrfs_set_token_inode_generation(leaf
, item
,
3697 BTRFS_I(inode
)->generation
,
3699 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3702 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3703 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3704 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3705 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3707 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3708 inode
->i_atime
.tv_sec
, &token
);
3709 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3710 inode
->i_atime
.tv_nsec
, &token
);
3712 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3713 inode
->i_mtime
.tv_sec
, &token
);
3714 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3715 inode
->i_mtime
.tv_nsec
, &token
);
3717 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3718 inode
->i_ctime
.tv_sec
, &token
);
3719 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3720 inode
->i_ctime
.tv_nsec
, &token
);
3722 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3725 btrfs_set_token_inode_sequence(leaf
, item
,
3726 inode_peek_iversion(inode
), &token
);
3727 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3728 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3729 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3730 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3733 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3734 struct btrfs_root
*log
, struct btrfs_path
*path
,
3735 struct btrfs_inode
*inode
)
3737 struct btrfs_inode_item
*inode_item
;
3740 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3741 &inode
->location
, sizeof(*inode_item
));
3742 if (ret
&& ret
!= -EEXIST
)
3744 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3745 struct btrfs_inode_item
);
3746 fill_inode_item(trans
, path
->nodes
[0], inode_item
, &inode
->vfs_inode
,
3748 btrfs_release_path(path
);
3752 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3753 struct btrfs_inode
*inode
,
3754 struct btrfs_path
*dst_path
,
3755 struct btrfs_path
*src_path
, u64
*last_extent
,
3756 int start_slot
, int nr
, int inode_only
,
3759 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
3760 unsigned long src_offset
;
3761 unsigned long dst_offset
;
3762 struct btrfs_root
*log
= inode
->root
->log_root
;
3763 struct btrfs_file_extent_item
*extent
;
3764 struct btrfs_inode_item
*inode_item
;
3765 struct extent_buffer
*src
= src_path
->nodes
[0];
3766 struct btrfs_key first_key
, last_key
, key
;
3768 struct btrfs_key
*ins_keys
;
3772 struct list_head ordered_sums
;
3773 int skip_csum
= inode
->flags
& BTRFS_INODE_NODATASUM
;
3774 bool has_extents
= false;
3775 bool need_find_last_extent
= true;
3778 INIT_LIST_HEAD(&ordered_sums
);
3780 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3781 nr
* sizeof(u32
), GFP_NOFS
);
3785 first_key
.objectid
= (u64
)-1;
3787 ins_sizes
= (u32
*)ins_data
;
3788 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3790 for (i
= 0; i
< nr
; i
++) {
3791 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3792 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3794 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3795 ins_keys
, ins_sizes
, nr
);
3801 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3802 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3803 dst_path
->slots
[0]);
3805 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3808 last_key
= ins_keys
[i
];
3810 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3811 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3813 struct btrfs_inode_item
);
3814 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3816 inode_only
== LOG_INODE_EXISTS
,
3819 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3820 src_offset
, ins_sizes
[i
]);
3824 * We set need_find_last_extent here in case we know we were
3825 * processing other items and then walk into the first extent in
3826 * the inode. If we don't hit an extent then nothing changes,
3827 * we'll do the last search the next time around.
3829 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3831 if (first_key
.objectid
== (u64
)-1)
3832 first_key
= ins_keys
[i
];
3834 need_find_last_extent
= false;
3837 /* take a reference on file data extents so that truncates
3838 * or deletes of this inode don't have to relog the inode
3841 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3844 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3845 struct btrfs_file_extent_item
);
3847 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3850 found_type
= btrfs_file_extent_type(src
, extent
);
3851 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3853 ds
= btrfs_file_extent_disk_bytenr(src
,
3855 /* ds == 0 is a hole */
3859 dl
= btrfs_file_extent_disk_num_bytes(src
,
3861 cs
= btrfs_file_extent_offset(src
, extent
);
3862 cl
= btrfs_file_extent_num_bytes(src
,
3864 if (btrfs_file_extent_compression(src
,
3870 ret
= btrfs_lookup_csums_range(
3872 ds
+ cs
, ds
+ cs
+ cl
- 1,
3875 btrfs_release_path(dst_path
);
3883 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3884 btrfs_release_path(dst_path
);
3888 * we have to do this after the loop above to avoid changing the
3889 * log tree while trying to change the log tree.
3892 while (!list_empty(&ordered_sums
)) {
3893 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3894 struct btrfs_ordered_sum
,
3897 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3898 list_del(&sums
->list
);
3905 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3907 * We don't have any leafs between our current one and the one
3908 * we processed before that can have file extent items for our
3909 * inode (and have a generation number smaller than our current
3912 need_find_last_extent
= false;
3916 * Because we use btrfs_search_forward we could skip leaves that were
3917 * not modified and then assume *last_extent is valid when it really
3918 * isn't. So back up to the previous leaf and read the end of the last
3919 * extent before we go and fill in holes.
3921 if (need_find_last_extent
) {
3924 ret
= btrfs_prev_leaf(inode
->root
, src_path
);
3929 if (src_path
->slots
[0])
3930 src_path
->slots
[0]--;
3931 src
= src_path
->nodes
[0];
3932 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3933 if (key
.objectid
!= btrfs_ino(inode
) ||
3934 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3936 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3937 struct btrfs_file_extent_item
);
3938 if (btrfs_file_extent_type(src
, extent
) ==
3939 BTRFS_FILE_EXTENT_INLINE
) {
3940 len
= btrfs_file_extent_inline_len(src
,
3943 *last_extent
= ALIGN(key
.offset
+ len
,
3944 fs_info
->sectorsize
);
3946 len
= btrfs_file_extent_num_bytes(src
, extent
);
3947 *last_extent
= key
.offset
+ len
;
3951 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3952 * things could have happened
3954 * 1) A merge could have happened, so we could currently be on a leaf
3955 * that holds what we were copying in the first place.
3956 * 2) A split could have happened, and now not all of the items we want
3957 * are on the same leaf.
3959 * So we need to adjust how we search for holes, we need to drop the
3960 * path and re-search for the first extent key we found, and then walk
3961 * forward until we hit the last one we copied.
3963 if (need_find_last_extent
) {
3964 /* btrfs_prev_leaf could return 1 without releasing the path */
3965 btrfs_release_path(src_path
);
3966 ret
= btrfs_search_slot(NULL
, inode
->root
, &first_key
,
3971 src
= src_path
->nodes
[0];
3972 i
= src_path
->slots
[0];
3978 * Ok so here we need to go through and fill in any holes we may have
3979 * to make sure that holes are punched for those areas in case they had
3980 * extents previously.
3986 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3987 ret
= btrfs_next_leaf(inode
->root
, src_path
);
3991 src
= src_path
->nodes
[0];
3993 need_find_last_extent
= true;
3996 btrfs_item_key_to_cpu(src
, &key
, i
);
3997 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3999 if (key
.objectid
!= btrfs_ino(inode
) ||
4000 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
4004 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
4005 if (btrfs_file_extent_type(src
, extent
) ==
4006 BTRFS_FILE_EXTENT_INLINE
) {
4007 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
4008 extent_end
= ALIGN(key
.offset
+ len
,
4009 fs_info
->sectorsize
);
4011 len
= btrfs_file_extent_num_bytes(src
, extent
);
4012 extent_end
= key
.offset
+ len
;
4016 if (*last_extent
== key
.offset
) {
4017 *last_extent
= extent_end
;
4020 offset
= *last_extent
;
4021 len
= key
.offset
- *last_extent
;
4022 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
4023 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4026 *last_extent
= extent_end
;
4030 * Check if there is a hole between the last extent found in our leaf
4031 * and the first extent in the next leaf. If there is one, we need to
4032 * log an explicit hole so that at replay time we can punch the hole.
4035 key
.objectid
== btrfs_ino(inode
) &&
4036 key
.type
== BTRFS_EXTENT_DATA_KEY
&&
4037 i
== btrfs_header_nritems(src_path
->nodes
[0])) {
4038 ret
= btrfs_next_leaf(inode
->root
, src_path
);
4039 need_find_last_extent
= true;
4042 } else if (ret
== 0) {
4043 btrfs_item_key_to_cpu(src_path
->nodes
[0], &key
,
4044 src_path
->slots
[0]);
4045 if (key
.objectid
== btrfs_ino(inode
) &&
4046 key
.type
== BTRFS_EXTENT_DATA_KEY
&&
4047 *last_extent
< key
.offset
) {
4048 const u64 len
= key
.offset
- *last_extent
;
4050 ret
= btrfs_insert_file_extent(trans
, log
,
4059 * Need to let the callers know we dropped the path so they should
4062 if (!ret
&& need_find_last_extent
)
4067 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
4069 struct extent_map
*em1
, *em2
;
4071 em1
= list_entry(a
, struct extent_map
, list
);
4072 em2
= list_entry(b
, struct extent_map
, list
);
4074 if (em1
->start
< em2
->start
)
4076 else if (em1
->start
> em2
->start
)
4081 static int log_extent_csums(struct btrfs_trans_handle
*trans
,
4082 struct btrfs_inode
*inode
,
4083 struct btrfs_root
*root
,
4084 const struct extent_map
*em
)
4086 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4087 struct btrfs_root
*log
= root
->log_root
;
4090 LIST_HEAD(ordered_sums
);
4093 if (inode
->flags
& BTRFS_INODE_NODATASUM
||
4094 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
4095 em
->block_start
== EXTENT_MAP_HOLE
)
4098 /* If we're compressed we have to save the entire range of csums. */
4099 if (em
->compress_type
) {
4101 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4103 csum_offset
= em
->mod_start
- em
->start
;
4104 csum_len
= em
->mod_len
;
4107 /* block start is already adjusted for the file extent offset. */
4108 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
,
4109 em
->block_start
+ csum_offset
,
4110 em
->block_start
+ csum_offset
+
4111 csum_len
- 1, &ordered_sums
, 0);
4115 while (!list_empty(&ordered_sums
)) {
4116 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4117 struct btrfs_ordered_sum
,
4120 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
4121 list_del(&sums
->list
);
4128 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4129 struct btrfs_inode
*inode
, struct btrfs_root
*root
,
4130 const struct extent_map
*em
,
4131 struct btrfs_path
*path
,
4132 const struct list_head
*logged_list
,
4133 struct btrfs_log_ctx
*ctx
)
4135 struct btrfs_root
*log
= root
->log_root
;
4136 struct btrfs_file_extent_item
*fi
;
4137 struct extent_buffer
*leaf
;
4138 struct btrfs_map_token token
;
4139 struct btrfs_key key
;
4140 u64 extent_offset
= em
->start
- em
->orig_start
;
4143 int extent_inserted
= 0;
4144 bool ordered_io_err
= false;
4146 ret
= log_extent_csums(trans
, inode
, root
, em
);
4150 if (ordered_io_err
) {
4155 btrfs_init_map_token(&token
);
4157 ret
= __btrfs_drop_extents(trans
, log
, &inode
->vfs_inode
, path
, em
->start
,
4158 em
->start
+ em
->len
, NULL
, 0, 1,
4159 sizeof(*fi
), &extent_inserted
);
4163 if (!extent_inserted
) {
4164 key
.objectid
= btrfs_ino(inode
);
4165 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4166 key
.offset
= em
->start
;
4168 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4173 leaf
= path
->nodes
[0];
4174 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4175 struct btrfs_file_extent_item
);
4177 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
4179 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4180 btrfs_set_token_file_extent_type(leaf
, fi
,
4181 BTRFS_FILE_EXTENT_PREALLOC
,
4184 btrfs_set_token_file_extent_type(leaf
, fi
,
4185 BTRFS_FILE_EXTENT_REG
,
4188 block_len
= max(em
->block_len
, em
->orig_block_len
);
4189 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4190 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4193 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4195 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4196 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4198 extent_offset
, &token
);
4199 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4202 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4203 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4207 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4208 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4209 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4210 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4212 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4213 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4214 btrfs_mark_buffer_dirty(leaf
);
4216 btrfs_release_path(path
);
4222 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4223 * lose them after doing a fast fsync and replaying the log. We scan the
4224 * subvolume's root instead of iterating the inode's extent map tree because
4225 * otherwise we can log incorrect extent items based on extent map conversion.
4226 * That can happen due to the fact that extent maps are merged when they
4227 * are not in the extent map tree's list of modified extents.
4229 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle
*trans
,
4230 struct btrfs_inode
*inode
,
4231 struct btrfs_path
*path
)
4233 struct btrfs_root
*root
= inode
->root
;
4234 struct btrfs_key key
;
4235 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4236 const u64 ino
= btrfs_ino(inode
);
4237 struct btrfs_path
*dst_path
= NULL
;
4238 u64 last_extent
= (u64
)-1;
4243 if (!(inode
->flags
& BTRFS_INODE_PREALLOC
))
4247 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4248 key
.offset
= i_size
;
4249 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4254 struct extent_buffer
*leaf
= path
->nodes
[0];
4255 int slot
= path
->slots
[0];
4257 if (slot
>= btrfs_header_nritems(leaf
)) {
4259 ret
= copy_items(trans
, inode
, dst_path
, path
,
4260 &last_extent
, start_slot
,
4266 ret
= btrfs_next_leaf(root
, path
);
4276 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4277 if (key
.objectid
> ino
)
4279 if (WARN_ON_ONCE(key
.objectid
< ino
) ||
4280 key
.type
< BTRFS_EXTENT_DATA_KEY
||
4281 key
.offset
< i_size
) {
4285 if (last_extent
== (u64
)-1) {
4286 last_extent
= key
.offset
;
4288 * Avoid logging extent items logged in past fsync calls
4289 * and leading to duplicate keys in the log tree.
4292 ret
= btrfs_truncate_inode_items(trans
,
4296 BTRFS_EXTENT_DATA_KEY
);
4297 } while (ret
== -EAGAIN
);
4306 dst_path
= btrfs_alloc_path();
4314 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4315 start_slot
, ins_nr
, 1, 0);
4320 btrfs_release_path(path
);
4321 btrfs_free_path(dst_path
);
4325 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4326 struct btrfs_root
*root
,
4327 struct btrfs_inode
*inode
,
4328 struct btrfs_path
*path
,
4329 struct list_head
*logged_list
,
4330 struct btrfs_log_ctx
*ctx
,
4334 struct extent_map
*em
, *n
;
4335 struct list_head extents
;
4336 struct extent_map_tree
*tree
= &inode
->extent_tree
;
4337 u64 logged_start
, logged_end
;
4342 INIT_LIST_HEAD(&extents
);
4344 down_write(&inode
->dio_sem
);
4345 write_lock(&tree
->lock
);
4346 test_gen
= root
->fs_info
->last_trans_committed
;
4347 logged_start
= start
;
4350 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4351 list_del_init(&em
->list
);
4353 * Just an arbitrary number, this can be really CPU intensive
4354 * once we start getting a lot of extents, and really once we
4355 * have a bunch of extents we just want to commit since it will
4358 if (++num
> 32768) {
4359 list_del_init(&tree
->modified_extents
);
4364 if (em
->generation
<= test_gen
)
4367 /* We log prealloc extents beyond eof later. */
4368 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) &&
4369 em
->start
>= i_size_read(&inode
->vfs_inode
))
4372 if (em
->start
< logged_start
)
4373 logged_start
= em
->start
;
4374 if ((em
->start
+ em
->len
- 1) > logged_end
)
4375 logged_end
= em
->start
+ em
->len
- 1;
4377 /* Need a ref to keep it from getting evicted from cache */
4378 refcount_inc(&em
->refs
);
4379 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4380 list_add_tail(&em
->list
, &extents
);
4384 list_sort(NULL
, &extents
, extent_cmp
);
4385 btrfs_get_logged_extents(inode
, logged_list
, logged_start
, logged_end
);
4387 * Some ordered extents started by fsync might have completed
4388 * before we could collect them into the list logged_list, which
4389 * means they're gone, not in our logged_list nor in the inode's
4390 * ordered tree. We want the application/user space to know an
4391 * error happened while attempting to persist file data so that
4392 * it can take proper action. If such error happened, we leave
4393 * without writing to the log tree and the fsync must report the
4394 * file data write error and not commit the current transaction.
4396 ret
= filemap_check_errors(inode
->vfs_inode
.i_mapping
);
4400 while (!list_empty(&extents
)) {
4401 em
= list_entry(extents
.next
, struct extent_map
, list
);
4403 list_del_init(&em
->list
);
4406 * If we had an error we just need to delete everybody from our
4410 clear_em_logging(tree
, em
);
4411 free_extent_map(em
);
4415 write_unlock(&tree
->lock
);
4417 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
4419 write_lock(&tree
->lock
);
4420 clear_em_logging(tree
, em
);
4421 free_extent_map(em
);
4423 WARN_ON(!list_empty(&extents
));
4424 write_unlock(&tree
->lock
);
4425 up_write(&inode
->dio_sem
);
4427 btrfs_release_path(path
);
4429 ret
= btrfs_log_prealloc_extents(trans
, inode
, path
);
4434 static int logged_inode_size(struct btrfs_root
*log
, struct btrfs_inode
*inode
,
4435 struct btrfs_path
*path
, u64
*size_ret
)
4437 struct btrfs_key key
;
4440 key
.objectid
= btrfs_ino(inode
);
4441 key
.type
= BTRFS_INODE_ITEM_KEY
;
4444 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4447 } else if (ret
> 0) {
4450 struct btrfs_inode_item
*item
;
4452 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4453 struct btrfs_inode_item
);
4454 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4457 btrfs_release_path(path
);
4462 * At the moment we always log all xattrs. This is to figure out at log replay
4463 * time which xattrs must have their deletion replayed. If a xattr is missing
4464 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4465 * because if a xattr is deleted, the inode is fsynced and a power failure
4466 * happens, causing the log to be replayed the next time the fs is mounted,
4467 * we want the xattr to not exist anymore (same behaviour as other filesystems
4468 * with a journal, ext3/4, xfs, f2fs, etc).
4470 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4471 struct btrfs_root
*root
,
4472 struct btrfs_inode
*inode
,
4473 struct btrfs_path
*path
,
4474 struct btrfs_path
*dst_path
)
4477 struct btrfs_key key
;
4478 const u64 ino
= btrfs_ino(inode
);
4483 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4486 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4491 int slot
= path
->slots
[0];
4492 struct extent_buffer
*leaf
= path
->nodes
[0];
4493 int nritems
= btrfs_header_nritems(leaf
);
4495 if (slot
>= nritems
) {
4497 u64 last_extent
= 0;
4499 ret
= copy_items(trans
, inode
, dst_path
, path
,
4500 &last_extent
, start_slot
,
4502 /* can't be 1, extent items aren't processed */
4508 ret
= btrfs_next_leaf(root
, path
);
4516 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4517 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4527 u64 last_extent
= 0;
4529 ret
= copy_items(trans
, inode
, dst_path
, path
,
4530 &last_extent
, start_slot
,
4532 /* can't be 1, extent items aren't processed */
4542 * If the no holes feature is enabled we need to make sure any hole between the
4543 * last extent and the i_size of our inode is explicitly marked in the log. This
4544 * is to make sure that doing something like:
4546 * 1) create file with 128Kb of data
4547 * 2) truncate file to 64Kb
4548 * 3) truncate file to 256Kb
4550 * 5) <crash/power failure>
4551 * 6) mount fs and trigger log replay
4553 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4554 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4555 * file correspond to a hole. The presence of explicit holes in a log tree is
4556 * what guarantees that log replay will remove/adjust file extent items in the
4559 * Here we do not need to care about holes between extents, that is already done
4560 * by copy_items(). We also only need to do this in the full sync path, where we
4561 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4562 * lookup the list of modified extent maps and if any represents a hole, we
4563 * insert a corresponding extent representing a hole in the log tree.
4565 static int btrfs_log_trailing_hole(struct btrfs_trans_handle
*trans
,
4566 struct btrfs_root
*root
,
4567 struct btrfs_inode
*inode
,
4568 struct btrfs_path
*path
)
4570 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4572 struct btrfs_key key
;
4575 struct extent_buffer
*leaf
;
4576 struct btrfs_root
*log
= root
->log_root
;
4577 const u64 ino
= btrfs_ino(inode
);
4578 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4580 if (!btrfs_fs_incompat(fs_info
, NO_HOLES
))
4584 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4585 key
.offset
= (u64
)-1;
4587 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4592 ASSERT(path
->slots
[0] > 0);
4594 leaf
= path
->nodes
[0];
4595 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4597 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
4598 /* inode does not have any extents */
4602 struct btrfs_file_extent_item
*extent
;
4606 * If there's an extent beyond i_size, an explicit hole was
4607 * already inserted by copy_items().
4609 if (key
.offset
>= i_size
)
4612 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
4613 struct btrfs_file_extent_item
);
4615 if (btrfs_file_extent_type(leaf
, extent
) ==
4616 BTRFS_FILE_EXTENT_INLINE
) {
4617 len
= btrfs_file_extent_inline_len(leaf
,
4620 ASSERT(len
== i_size
||
4621 (len
== fs_info
->sectorsize
&&
4622 btrfs_file_extent_compression(leaf
, extent
) !=
4623 BTRFS_COMPRESS_NONE
));
4627 len
= btrfs_file_extent_num_bytes(leaf
, extent
);
4628 /* Last extent goes beyond i_size, no need to log a hole. */
4629 if (key
.offset
+ len
> i_size
)
4631 hole_start
= key
.offset
+ len
;
4632 hole_size
= i_size
- hole_start
;
4634 btrfs_release_path(path
);
4636 /* Last extent ends at i_size. */
4640 hole_size
= ALIGN(hole_size
, fs_info
->sectorsize
);
4641 ret
= btrfs_insert_file_extent(trans
, log
, ino
, hole_start
, 0, 0,
4642 hole_size
, 0, hole_size
, 0, 0, 0);
4647 * When we are logging a new inode X, check if it doesn't have a reference that
4648 * matches the reference from some other inode Y created in a past transaction
4649 * and that was renamed in the current transaction. If we don't do this, then at
4650 * log replay time we can lose inode Y (and all its files if it's a directory):
4653 * echo "hello world" > /mnt/x/foobar
4656 * mkdir /mnt/x # or touch /mnt/x
4657 * xfs_io -c fsync /mnt/x
4659 * mount fs, trigger log replay
4661 * After the log replay procedure, we would lose the first directory and all its
4662 * files (file foobar).
4663 * For the case where inode Y is not a directory we simply end up losing it:
4665 * echo "123" > /mnt/foo
4667 * mv /mnt/foo /mnt/bar
4668 * echo "abc" > /mnt/foo
4669 * xfs_io -c fsync /mnt/foo
4672 * We also need this for cases where a snapshot entry is replaced by some other
4673 * entry (file or directory) otherwise we end up with an unreplayable log due to
4674 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4675 * if it were a regular entry:
4678 * btrfs subvolume snapshot /mnt /mnt/x/snap
4679 * btrfs subvolume delete /mnt/x/snap
4682 * fsync /mnt/x or fsync some new file inside it
4685 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4686 * the same transaction.
4688 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4690 const struct btrfs_key
*key
,
4691 struct btrfs_inode
*inode
,
4695 struct btrfs_path
*search_path
;
4698 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4700 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4702 search_path
= btrfs_alloc_path();
4705 search_path
->search_commit_root
= 1;
4706 search_path
->skip_locking
= 1;
4708 while (cur_offset
< item_size
) {
4712 unsigned long name_ptr
;
4713 struct btrfs_dir_item
*di
;
4715 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4716 struct btrfs_inode_ref
*iref
;
4718 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4719 parent
= key
->offset
;
4720 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4721 name_ptr
= (unsigned long)(iref
+ 1);
4722 this_len
= sizeof(*iref
) + this_name_len
;
4724 struct btrfs_inode_extref
*extref
;
4726 extref
= (struct btrfs_inode_extref
*)(ptr
+
4728 parent
= btrfs_inode_extref_parent(eb
, extref
);
4729 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4730 name_ptr
= (unsigned long)&extref
->name
;
4731 this_len
= sizeof(*extref
) + this_name_len
;
4734 if (this_name_len
> name_len
) {
4737 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4742 name_len
= this_name_len
;
4746 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4747 di
= btrfs_lookup_dir_item(NULL
, inode
->root
, search_path
,
4748 parent
, name
, this_name_len
, 0);
4749 if (di
&& !IS_ERR(di
)) {
4750 struct btrfs_key di_key
;
4752 btrfs_dir_item_key_to_cpu(search_path
->nodes
[0],
4754 if (di_key
.type
== BTRFS_INODE_ITEM_KEY
) {
4756 *other_ino
= di_key
.objectid
;
4761 } else if (IS_ERR(di
)) {
4765 btrfs_release_path(search_path
);
4767 cur_offset
+= this_len
;
4771 btrfs_free_path(search_path
);
4776 /* log a single inode in the tree log.
4777 * At least one parent directory for this inode must exist in the tree
4778 * or be logged already.
4780 * Any items from this inode changed by the current transaction are copied
4781 * to the log tree. An extra reference is taken on any extents in this
4782 * file, allowing us to avoid a whole pile of corner cases around logging
4783 * blocks that have been removed from the tree.
4785 * See LOG_INODE_ALL and related defines for a description of what inode_only
4788 * This handles both files and directories.
4790 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4791 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
4795 struct btrfs_log_ctx
*ctx
)
4797 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4798 struct btrfs_path
*path
;
4799 struct btrfs_path
*dst_path
;
4800 struct btrfs_key min_key
;
4801 struct btrfs_key max_key
;
4802 struct btrfs_root
*log
= root
->log_root
;
4803 LIST_HEAD(logged_list
);
4804 u64 last_extent
= 0;
4808 int ins_start_slot
= 0;
4810 bool fast_search
= false;
4811 u64 ino
= btrfs_ino(inode
);
4812 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
4813 u64 logged_isize
= 0;
4814 bool need_log_inode_item
= true;
4815 bool xattrs_logged
= false;
4817 path
= btrfs_alloc_path();
4820 dst_path
= btrfs_alloc_path();
4822 btrfs_free_path(path
);
4826 min_key
.objectid
= ino
;
4827 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4830 max_key
.objectid
= ino
;
4833 /* today the code can only do partial logging of directories */
4834 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
4835 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4836 &inode
->runtime_flags
) &&
4837 inode_only
>= LOG_INODE_EXISTS
))
4838 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4840 max_key
.type
= (u8
)-1;
4841 max_key
.offset
= (u64
)-1;
4844 * Only run delayed items if we are a dir or a new file.
4845 * Otherwise commit the delayed inode only, which is needed in
4846 * order for the log replay code to mark inodes for link count
4847 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4849 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
4850 inode
->generation
> fs_info
->last_trans_committed
)
4851 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4853 ret
= btrfs_commit_inode_delayed_inode(inode
);
4856 btrfs_free_path(path
);
4857 btrfs_free_path(dst_path
);
4861 if (inode_only
== LOG_OTHER_INODE
) {
4862 inode_only
= LOG_INODE_EXISTS
;
4863 mutex_lock_nested(&inode
->log_mutex
, SINGLE_DEPTH_NESTING
);
4865 mutex_lock(&inode
->log_mutex
);
4869 * a brute force approach to making sure we get the most uptodate
4870 * copies of everything.
4872 if (S_ISDIR(inode
->vfs_inode
.i_mode
)) {
4873 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4875 if (inode_only
== LOG_INODE_EXISTS
)
4876 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
4877 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4879 if (inode_only
== LOG_INODE_EXISTS
) {
4881 * Make sure the new inode item we write to the log has
4882 * the same isize as the current one (if it exists).
4883 * This is necessary to prevent data loss after log
4884 * replay, and also to prevent doing a wrong expanding
4885 * truncate - for e.g. create file, write 4K into offset
4886 * 0, fsync, write 4K into offset 4096, add hard link,
4887 * fsync some other file (to sync log), power fail - if
4888 * we use the inode's current i_size, after log replay
4889 * we get a 8Kb file, with the last 4Kb extent as a hole
4890 * (zeroes), as if an expanding truncate happened,
4891 * instead of getting a file of 4Kb only.
4893 err
= logged_inode_size(log
, inode
, path
, &logged_isize
);
4897 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4898 &inode
->runtime_flags
)) {
4899 if (inode_only
== LOG_INODE_EXISTS
) {
4900 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4901 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4904 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4905 &inode
->runtime_flags
);
4906 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4907 &inode
->runtime_flags
);
4909 ret
= btrfs_truncate_inode_items(trans
,
4910 log
, &inode
->vfs_inode
, 0, 0);
4915 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4916 &inode
->runtime_flags
) ||
4917 inode_only
== LOG_INODE_EXISTS
) {
4918 if (inode_only
== LOG_INODE_ALL
)
4920 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4921 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4924 if (inode_only
== LOG_INODE_ALL
)
4937 ret
= btrfs_search_forward(root
, &min_key
,
4938 path
, trans
->transid
);
4946 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4947 if (min_key
.objectid
!= ino
)
4949 if (min_key
.type
> max_key
.type
)
4952 if (min_key
.type
== BTRFS_INODE_ITEM_KEY
)
4953 need_log_inode_item
= false;
4955 if ((min_key
.type
== BTRFS_INODE_REF_KEY
||
4956 min_key
.type
== BTRFS_INODE_EXTREF_KEY
) &&
4957 inode
->generation
== trans
->transid
) {
4960 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
4961 path
->slots
[0], &min_key
, inode
,
4966 } else if (ret
> 0 && ctx
&&
4967 other_ino
!= btrfs_ino(BTRFS_I(ctx
->inode
))) {
4968 struct btrfs_key inode_key
;
4969 struct inode
*other_inode
;
4975 ins_start_slot
= path
->slots
[0];
4977 ret
= copy_items(trans
, inode
, dst_path
, path
,
4978 &last_extent
, ins_start_slot
,
4986 btrfs_release_path(path
);
4987 inode_key
.objectid
= other_ino
;
4988 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
4989 inode_key
.offset
= 0;
4990 other_inode
= btrfs_iget(fs_info
->sb
,
4994 * If the other inode that had a conflicting dir
4995 * entry was deleted in the current transaction,
4996 * we don't need to do more work nor fallback to
4997 * a transaction commit.
4999 if (IS_ERR(other_inode
) &&
5000 PTR_ERR(other_inode
) == -ENOENT
) {
5002 } else if (IS_ERR(other_inode
)) {
5003 err
= PTR_ERR(other_inode
);
5007 * We are safe logging the other inode without
5008 * acquiring its i_mutex as long as we log with
5009 * the LOG_INODE_EXISTS mode. We're safe against
5010 * concurrent renames of the other inode as well
5011 * because during a rename we pin the log and
5012 * update the log with the new name before we
5015 err
= btrfs_log_inode(trans
, root
,
5016 BTRFS_I(other_inode
),
5017 LOG_OTHER_INODE
, 0, LLONG_MAX
,
5027 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5028 if (min_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
5031 ret
= copy_items(trans
, inode
, dst_path
, path
,
5032 &last_extent
, ins_start_slot
,
5033 ins_nr
, inode_only
, logged_isize
);
5040 btrfs_release_path(path
);
5046 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
5049 } else if (!ins_nr
) {
5050 ins_start_slot
= path
->slots
[0];
5055 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
5056 ins_start_slot
, ins_nr
, inode_only
,
5064 btrfs_release_path(path
);
5068 ins_start_slot
= path
->slots
[0];
5071 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5073 if (path
->slots
[0] < nritems
) {
5074 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
5079 ret
= copy_items(trans
, inode
, dst_path
, path
,
5080 &last_extent
, ins_start_slot
,
5081 ins_nr
, inode_only
, logged_isize
);
5089 btrfs_release_path(path
);
5091 if (min_key
.offset
< (u64
)-1) {
5093 } else if (min_key
.type
< max_key
.type
) {
5101 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
5102 ins_start_slot
, ins_nr
, inode_only
,
5112 btrfs_release_path(path
);
5113 btrfs_release_path(dst_path
);
5114 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
5117 xattrs_logged
= true;
5118 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
5119 btrfs_release_path(path
);
5120 btrfs_release_path(dst_path
);
5121 err
= btrfs_log_trailing_hole(trans
, root
, inode
, path
);
5126 btrfs_release_path(path
);
5127 btrfs_release_path(dst_path
);
5128 if (need_log_inode_item
) {
5129 err
= log_inode_item(trans
, log
, dst_path
, inode
);
5130 if (!err
&& !xattrs_logged
) {
5131 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
,
5133 btrfs_release_path(path
);
5139 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
5140 &logged_list
, ctx
, start
, end
);
5145 } else if (inode_only
== LOG_INODE_ALL
) {
5146 struct extent_map
*em
, *n
;
5148 write_lock(&em_tree
->lock
);
5150 * We can't just remove every em if we're called for a ranged
5151 * fsync - that is, one that doesn't cover the whole possible
5152 * file range (0 to LLONG_MAX). This is because we can have
5153 * em's that fall outside the range we're logging and therefore
5154 * their ordered operations haven't completed yet
5155 * (btrfs_finish_ordered_io() not invoked yet). This means we
5156 * didn't get their respective file extent item in the fs/subvol
5157 * tree yet, and need to let the next fast fsync (one which
5158 * consults the list of modified extent maps) find the em so
5159 * that it logs a matching file extent item and waits for the
5160 * respective ordered operation to complete (if it's still
5163 * Removing every em outside the range we're logging would make
5164 * the next fast fsync not log their matching file extent items,
5165 * therefore making us lose data after a log replay.
5167 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
5169 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
5171 if (em
->mod_start
>= start
&& mod_end
<= end
)
5172 list_del_init(&em
->list
);
5174 write_unlock(&em_tree
->lock
);
5177 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5178 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
5186 spin_lock(&inode
->lock
);
5187 inode
->logged_trans
= trans
->transid
;
5188 inode
->last_log_commit
= inode
->last_sub_trans
;
5189 spin_unlock(&inode
->lock
);
5192 btrfs_put_logged_extents(&logged_list
);
5194 btrfs_submit_logged_extents(&logged_list
, log
);
5195 mutex_unlock(&inode
->log_mutex
);
5197 btrfs_free_path(path
);
5198 btrfs_free_path(dst_path
);
5203 * Check if we must fallback to a transaction commit when logging an inode.
5204 * This must be called after logging the inode and is used only in the context
5205 * when fsyncing an inode requires the need to log some other inode - in which
5206 * case we can't lock the i_mutex of each other inode we need to log as that
5207 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5208 * log inodes up or down in the hierarchy) or rename operations for example. So
5209 * we take the log_mutex of the inode after we have logged it and then check for
5210 * its last_unlink_trans value - this is safe because any task setting
5211 * last_unlink_trans must take the log_mutex and it must do this before it does
5212 * the actual unlink operation, so if we do this check before a concurrent task
5213 * sets last_unlink_trans it means we've logged a consistent version/state of
5214 * all the inode items, otherwise we are not sure and must do a transaction
5215 * commit (the concurrent task might have only updated last_unlink_trans before
5216 * we logged the inode or it might have also done the unlink).
5218 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle
*trans
,
5219 struct btrfs_inode
*inode
)
5221 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
5224 mutex_lock(&inode
->log_mutex
);
5225 if (inode
->last_unlink_trans
> fs_info
->last_trans_committed
) {
5227 * Make sure any commits to the log are forced to be full
5230 btrfs_set_log_full_commit(fs_info
, trans
);
5233 mutex_unlock(&inode
->log_mutex
);
5239 * follow the dentry parent pointers up the chain and see if any
5240 * of the directories in it require a full commit before they can
5241 * be logged. Returns zero if nothing special needs to be done or 1 if
5242 * a full commit is required.
5244 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
5245 struct btrfs_inode
*inode
,
5246 struct dentry
*parent
,
5247 struct super_block
*sb
,
5251 struct dentry
*old_parent
= NULL
;
5252 struct btrfs_inode
*orig_inode
= inode
;
5255 * for regular files, if its inode is already on disk, we don't
5256 * have to worry about the parents at all. This is because
5257 * we can use the last_unlink_trans field to record renames
5258 * and other fun in this file.
5260 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5261 inode
->generation
<= last_committed
&&
5262 inode
->last_unlink_trans
<= last_committed
)
5265 if (!S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5266 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5268 inode
= BTRFS_I(d_inode(parent
));
5273 * If we are logging a directory then we start with our inode,
5274 * not our parent's inode, so we need to skip setting the
5275 * logged_trans so that further down in the log code we don't
5276 * think this inode has already been logged.
5278 if (inode
!= orig_inode
)
5279 inode
->logged_trans
= trans
->transid
;
5282 if (btrfs_must_commit_transaction(trans
, inode
)) {
5287 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5290 if (IS_ROOT(parent
)) {
5291 inode
= BTRFS_I(d_inode(parent
));
5292 if (btrfs_must_commit_transaction(trans
, inode
))
5297 parent
= dget_parent(parent
);
5299 old_parent
= parent
;
5300 inode
= BTRFS_I(d_inode(parent
));
5308 struct btrfs_dir_list
{
5310 struct list_head list
;
5314 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5315 * details about the why it is needed.
5316 * This is a recursive operation - if an existing dentry corresponds to a
5317 * directory, that directory's new entries are logged too (same behaviour as
5318 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5319 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5320 * complains about the following circular lock dependency / possible deadlock:
5324 * lock(&type->i_mutex_dir_key#3/2);
5325 * lock(sb_internal#2);
5326 * lock(&type->i_mutex_dir_key#3/2);
5327 * lock(&sb->s_type->i_mutex_key#14);
5329 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5330 * sb_start_intwrite() in btrfs_start_transaction().
5331 * Not locking i_mutex of the inodes is still safe because:
5333 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5334 * that while logging the inode new references (names) are added or removed
5335 * from the inode, leaving the logged inode item with a link count that does
5336 * not match the number of logged inode reference items. This is fine because
5337 * at log replay time we compute the real number of links and correct the
5338 * link count in the inode item (see replay_one_buffer() and
5339 * link_to_fixup_dir());
5341 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5342 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5343 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5344 * has a size that doesn't match the sum of the lengths of all the logged
5345 * names. This does not result in a problem because if a dir_item key is
5346 * logged but its matching dir_index key is not logged, at log replay time we
5347 * don't use it to replay the respective name (see replay_one_name()). On the
5348 * other hand if only the dir_index key ends up being logged, the respective
5349 * name is added to the fs/subvol tree with both the dir_item and dir_index
5350 * keys created (see replay_one_name()).
5351 * The directory's inode item with a wrong i_size is not a problem as well,
5352 * since we don't use it at log replay time to set the i_size in the inode
5353 * item of the fs/subvol tree (see overwrite_item()).
5355 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5356 struct btrfs_root
*root
,
5357 struct btrfs_inode
*start_inode
,
5358 struct btrfs_log_ctx
*ctx
)
5360 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5361 struct btrfs_root
*log
= root
->log_root
;
5362 struct btrfs_path
*path
;
5363 LIST_HEAD(dir_list
);
5364 struct btrfs_dir_list
*dir_elem
;
5367 path
= btrfs_alloc_path();
5371 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5373 btrfs_free_path(path
);
5376 dir_elem
->ino
= btrfs_ino(start_inode
);
5377 list_add_tail(&dir_elem
->list
, &dir_list
);
5379 while (!list_empty(&dir_list
)) {
5380 struct extent_buffer
*leaf
;
5381 struct btrfs_key min_key
;
5385 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5388 goto next_dir_inode
;
5390 min_key
.objectid
= dir_elem
->ino
;
5391 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5394 btrfs_release_path(path
);
5395 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5397 goto next_dir_inode
;
5398 } else if (ret
> 0) {
5400 goto next_dir_inode
;
5404 leaf
= path
->nodes
[0];
5405 nritems
= btrfs_header_nritems(leaf
);
5406 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5407 struct btrfs_dir_item
*di
;
5408 struct btrfs_key di_key
;
5409 struct inode
*di_inode
;
5410 struct btrfs_dir_list
*new_dir_elem
;
5411 int log_mode
= LOG_INODE_EXISTS
;
5414 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5415 if (min_key
.objectid
!= dir_elem
->ino
||
5416 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5417 goto next_dir_inode
;
5419 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5420 type
= btrfs_dir_type(leaf
, di
);
5421 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5422 type
!= BTRFS_FT_DIR
)
5424 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5425 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5428 btrfs_release_path(path
);
5429 di_inode
= btrfs_iget(fs_info
->sb
, &di_key
, root
, NULL
);
5430 if (IS_ERR(di_inode
)) {
5431 ret
= PTR_ERR(di_inode
);
5432 goto next_dir_inode
;
5435 if (btrfs_inode_in_log(BTRFS_I(di_inode
), trans
->transid
)) {
5440 ctx
->log_new_dentries
= false;
5441 if (type
== BTRFS_FT_DIR
|| type
== BTRFS_FT_SYMLINK
)
5442 log_mode
= LOG_INODE_ALL
;
5443 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(di_inode
),
5444 log_mode
, 0, LLONG_MAX
, ctx
);
5446 btrfs_must_commit_transaction(trans
, BTRFS_I(di_inode
)))
5450 goto next_dir_inode
;
5451 if (ctx
->log_new_dentries
) {
5452 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5454 if (!new_dir_elem
) {
5456 goto next_dir_inode
;
5458 new_dir_elem
->ino
= di_key
.objectid
;
5459 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5464 ret
= btrfs_next_leaf(log
, path
);
5466 goto next_dir_inode
;
5467 } else if (ret
> 0) {
5469 goto next_dir_inode
;
5473 if (min_key
.offset
< (u64
)-1) {
5478 list_del(&dir_elem
->list
);
5482 btrfs_free_path(path
);
5486 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5487 struct btrfs_inode
*inode
,
5488 struct btrfs_log_ctx
*ctx
)
5490 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5492 struct btrfs_path
*path
;
5493 struct btrfs_key key
;
5494 struct btrfs_root
*root
= inode
->root
;
5495 const u64 ino
= btrfs_ino(inode
);
5497 path
= btrfs_alloc_path();
5500 path
->skip_locking
= 1;
5501 path
->search_commit_root
= 1;
5504 key
.type
= BTRFS_INODE_REF_KEY
;
5506 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5511 struct extent_buffer
*leaf
= path
->nodes
[0];
5512 int slot
= path
->slots
[0];
5517 if (slot
>= btrfs_header_nritems(leaf
)) {
5518 ret
= btrfs_next_leaf(root
, path
);
5526 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5527 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5528 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5531 item_size
= btrfs_item_size_nr(leaf
, slot
);
5532 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5533 while (cur_offset
< item_size
) {
5534 struct btrfs_key inode_key
;
5535 struct inode
*dir_inode
;
5537 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5538 inode_key
.offset
= 0;
5540 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5541 struct btrfs_inode_extref
*extref
;
5543 extref
= (struct btrfs_inode_extref
*)
5545 inode_key
.objectid
= btrfs_inode_extref_parent(
5547 cur_offset
+= sizeof(*extref
);
5548 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5551 inode_key
.objectid
= key
.offset
;
5552 cur_offset
= item_size
;
5555 dir_inode
= btrfs_iget(fs_info
->sb
, &inode_key
,
5557 /* If parent inode was deleted, skip it. */
5558 if (IS_ERR(dir_inode
))
5562 ctx
->log_new_dentries
= false;
5563 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(dir_inode
),
5564 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5566 btrfs_must_commit_transaction(trans
, BTRFS_I(dir_inode
)))
5568 if (!ret
&& ctx
&& ctx
->log_new_dentries
)
5569 ret
= log_new_dir_dentries(trans
, root
,
5570 BTRFS_I(dir_inode
), ctx
);
5579 btrfs_free_path(path
);
5584 * helper function around btrfs_log_inode to make sure newly created
5585 * parent directories also end up in the log. A minimal inode and backref
5586 * only logging is done of any parent directories that are older than
5587 * the last committed transaction
5589 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5590 struct btrfs_inode
*inode
,
5591 struct dentry
*parent
,
5595 struct btrfs_log_ctx
*ctx
)
5597 struct btrfs_root
*root
= inode
->root
;
5598 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5599 struct super_block
*sb
;
5600 struct dentry
*old_parent
= NULL
;
5602 u64 last_committed
= fs_info
->last_trans_committed
;
5603 bool log_dentries
= false;
5604 struct btrfs_inode
*orig_inode
= inode
;
5606 sb
= inode
->vfs_inode
.i_sb
;
5608 if (btrfs_test_opt(fs_info
, NOTREELOG
)) {
5614 * The prev transaction commit doesn't complete, we need do
5615 * full commit by ourselves.
5617 if (fs_info
->last_trans_log_full_commit
>
5618 fs_info
->last_trans_committed
) {
5623 if (btrfs_root_refs(&root
->root_item
) == 0) {
5628 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
, sb
,
5633 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
5634 ret
= BTRFS_NO_LOG_SYNC
;
5638 ret
= start_log_trans(trans
, root
, ctx
);
5642 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
5647 * for regular files, if its inode is already on disk, we don't
5648 * have to worry about the parents at all. This is because
5649 * we can use the last_unlink_trans field to record renames
5650 * and other fun in this file.
5652 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5653 inode
->generation
<= last_committed
&&
5654 inode
->last_unlink_trans
<= last_committed
) {
5659 if (S_ISDIR(inode
->vfs_inode
.i_mode
) && ctx
&& ctx
->log_new_dentries
)
5660 log_dentries
= true;
5663 * On unlink we must make sure all our current and old parent directory
5664 * inodes are fully logged. This is to prevent leaving dangling
5665 * directory index entries in directories that were our parents but are
5666 * not anymore. Not doing this results in old parent directory being
5667 * impossible to delete after log replay (rmdir will always fail with
5668 * error -ENOTEMPTY).
5674 * ln testdir/foo testdir/bar
5676 * unlink testdir/bar
5677 * xfs_io -c fsync testdir/foo
5679 * mount fs, triggers log replay
5681 * If we don't log the parent directory (testdir), after log replay the
5682 * directory still has an entry pointing to the file inode using the bar
5683 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5684 * the file inode has a link count of 1.
5690 * ln foo testdir/foo2
5691 * ln foo testdir/foo3
5693 * unlink testdir/foo3
5694 * xfs_io -c fsync foo
5696 * mount fs, triggers log replay
5698 * Similar as the first example, after log replay the parent directory
5699 * testdir still has an entry pointing to the inode file with name foo3
5700 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5701 * and has a link count of 2.
5703 if (inode
->last_unlink_trans
> last_committed
) {
5704 ret
= btrfs_log_all_parents(trans
, orig_inode
, ctx
);
5710 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5713 inode
= BTRFS_I(d_inode(parent
));
5714 if (root
!= inode
->root
)
5717 if (inode
->generation
> last_committed
) {
5718 ret
= btrfs_log_inode(trans
, root
, inode
,
5719 LOG_INODE_EXISTS
, 0, LLONG_MAX
, ctx
);
5723 if (IS_ROOT(parent
))
5726 parent
= dget_parent(parent
);
5728 old_parent
= parent
;
5731 ret
= log_new_dir_dentries(trans
, root
, orig_inode
, ctx
);
5737 btrfs_set_log_full_commit(fs_info
, trans
);
5742 btrfs_remove_log_ctx(root
, ctx
);
5743 btrfs_end_log_trans(root
);
5749 * it is not safe to log dentry if the chunk root has added new
5750 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5751 * If this returns 1, you must commit the transaction to safely get your
5754 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
5755 struct dentry
*dentry
,
5758 struct btrfs_log_ctx
*ctx
)
5760 struct dentry
*parent
= dget_parent(dentry
);
5763 ret
= btrfs_log_inode_parent(trans
, BTRFS_I(d_inode(dentry
)), parent
,
5764 start
, end
, LOG_INODE_ALL
, ctx
);
5771 * should be called during mount to recover any replay any log trees
5774 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
5777 struct btrfs_path
*path
;
5778 struct btrfs_trans_handle
*trans
;
5779 struct btrfs_key key
;
5780 struct btrfs_key found_key
;
5781 struct btrfs_key tmp_key
;
5782 struct btrfs_root
*log
;
5783 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
5784 struct walk_control wc
= {
5785 .process_func
= process_one_buffer
,
5789 path
= btrfs_alloc_path();
5793 set_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5795 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
5796 if (IS_ERR(trans
)) {
5797 ret
= PTR_ERR(trans
);
5804 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
5806 btrfs_handle_fs_error(fs_info
, ret
,
5807 "Failed to pin buffers while recovering log root tree.");
5812 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
5813 key
.offset
= (u64
)-1;
5814 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5817 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
5820 btrfs_handle_fs_error(fs_info
, ret
,
5821 "Couldn't find tree log root.");
5825 if (path
->slots
[0] == 0)
5829 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
5831 btrfs_release_path(path
);
5832 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
5835 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
5838 btrfs_handle_fs_error(fs_info
, ret
,
5839 "Couldn't read tree log root.");
5843 tmp_key
.objectid
= found_key
.offset
;
5844 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
5845 tmp_key
.offset
= (u64
)-1;
5847 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
5848 if (IS_ERR(wc
.replay_dest
)) {
5849 ret
= PTR_ERR(wc
.replay_dest
);
5850 free_extent_buffer(log
->node
);
5851 free_extent_buffer(log
->commit_root
);
5853 btrfs_handle_fs_error(fs_info
, ret
,
5854 "Couldn't read target root for tree log recovery.");
5858 wc
.replay_dest
->log_root
= log
;
5859 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
5860 ret
= walk_log_tree(trans
, log
, &wc
);
5862 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5863 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
5867 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5868 struct btrfs_root
*root
= wc
.replay_dest
;
5870 btrfs_release_path(path
);
5873 * We have just replayed everything, and the highest
5874 * objectid of fs roots probably has changed in case
5875 * some inode_item's got replayed.
5877 * root->objectid_mutex is not acquired as log replay
5878 * could only happen during mount.
5880 ret
= btrfs_find_highest_objectid(root
,
5881 &root
->highest_objectid
);
5884 key
.offset
= found_key
.offset
- 1;
5885 wc
.replay_dest
->log_root
= NULL
;
5886 free_extent_buffer(log
->node
);
5887 free_extent_buffer(log
->commit_root
);
5893 if (found_key
.offset
== 0)
5896 btrfs_release_path(path
);
5898 /* step one is to pin it all, step two is to replay just inodes */
5901 wc
.process_func
= replay_one_buffer
;
5902 wc
.stage
= LOG_WALK_REPLAY_INODES
;
5905 /* step three is to replay everything */
5906 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
5911 btrfs_free_path(path
);
5913 /* step 4: commit the transaction, which also unpins the blocks */
5914 ret
= btrfs_commit_transaction(trans
);
5918 free_extent_buffer(log_root_tree
->node
);
5919 log_root_tree
->log_root
= NULL
;
5920 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5921 kfree(log_root_tree
);
5926 btrfs_end_transaction(wc
.trans
);
5927 btrfs_free_path(path
);
5932 * there are some corner cases where we want to force a full
5933 * commit instead of allowing a directory to be logged.
5935 * They revolve around files there were unlinked from the directory, and
5936 * this function updates the parent directory so that a full commit is
5937 * properly done if it is fsync'd later after the unlinks are done.
5939 * Must be called before the unlink operations (updates to the subvolume tree,
5940 * inodes, etc) are done.
5942 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
5943 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
5947 * when we're logging a file, if it hasn't been renamed
5948 * or unlinked, and its inode is fully committed on disk,
5949 * we don't have to worry about walking up the directory chain
5950 * to log its parents.
5952 * So, we use the last_unlink_trans field to put this transid
5953 * into the file. When the file is logged we check it and
5954 * don't log the parents if the file is fully on disk.
5956 mutex_lock(&inode
->log_mutex
);
5957 inode
->last_unlink_trans
= trans
->transid
;
5958 mutex_unlock(&inode
->log_mutex
);
5961 * if this directory was already logged any new
5962 * names for this file/dir will get recorded
5965 if (dir
->logged_trans
== trans
->transid
)
5969 * if the inode we're about to unlink was logged,
5970 * the log will be properly updated for any new names
5972 if (inode
->logged_trans
== trans
->transid
)
5976 * when renaming files across directories, if the directory
5977 * there we're unlinking from gets fsync'd later on, there's
5978 * no way to find the destination directory later and fsync it
5979 * properly. So, we have to be conservative and force commits
5980 * so the new name gets discovered.
5985 /* we can safely do the unlink without any special recording */
5989 mutex_lock(&dir
->log_mutex
);
5990 dir
->last_unlink_trans
= trans
->transid
;
5991 mutex_unlock(&dir
->log_mutex
);
5995 * Make sure that if someone attempts to fsync the parent directory of a deleted
5996 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5997 * that after replaying the log tree of the parent directory's root we will not
5998 * see the snapshot anymore and at log replay time we will not see any log tree
5999 * corresponding to the deleted snapshot's root, which could lead to replaying
6000 * it after replaying the log tree of the parent directory (which would replay
6001 * the snapshot delete operation).
6003 * Must be called before the actual snapshot destroy operation (updates to the
6004 * parent root and tree of tree roots trees, etc) are done.
6006 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
6007 struct btrfs_inode
*dir
)
6009 mutex_lock(&dir
->log_mutex
);
6010 dir
->last_unlink_trans
= trans
->transid
;
6011 mutex_unlock(&dir
->log_mutex
);
6015 * Call this after adding a new name for a file and it will properly
6016 * update the log to reflect the new name.
6018 * It will return zero if all goes well, and it will return 1 if a
6019 * full transaction commit is required.
6021 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
6022 struct btrfs_inode
*inode
, struct btrfs_inode
*old_dir
,
6023 struct dentry
*parent
)
6025 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6028 * this will force the logging code to walk the dentry chain
6031 if (!S_ISDIR(inode
->vfs_inode
.i_mode
))
6032 inode
->last_unlink_trans
= trans
->transid
;
6035 * if this inode hasn't been logged and directory we're renaming it
6036 * from hasn't been logged, we don't need to log it
6038 if (inode
->logged_trans
<= fs_info
->last_trans_committed
&&
6039 (!old_dir
|| old_dir
->logged_trans
<= fs_info
->last_trans_committed
))
6042 return btrfs_log_inode_parent(trans
, inode
, parent
, 0, LLONG_MAX
,
6043 LOG_INODE_EXISTS
, NULL
);