2 * Copyright © 2006-2014 Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * Authors: David Woodhouse <dwmw2@infradead.org>,
14 * Ashok Raj <ashok.raj@intel.com>,
15 * Shaohua Li <shaohua.li@intel.com>,
16 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
17 * Fenghua Yu <fenghua.yu@intel.com>
18 * Joerg Roedel <jroedel@suse.de>
21 #define pr_fmt(fmt) "DMAR: " fmt
22 #define dev_fmt(fmt) pr_fmt(fmt)
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/memory.h>
37 #include <linux/cpu.h>
38 #include <linux/timer.h>
40 #include <linux/iova.h>
41 #include <linux/iommu.h>
42 #include <linux/intel-iommu.h>
43 #include <linux/syscore_ops.h>
44 #include <linux/tboot.h>
45 #include <linux/dmi.h>
46 #include <linux/pci-ats.h>
47 #include <linux/memblock.h>
48 #include <linux/dma-contiguous.h>
49 #include <linux/dma-direct.h>
50 #include <linux/crash_dump.h>
51 #include <linux/numa.h>
52 #include <asm/irq_remapping.h>
53 #include <asm/cacheflush.h>
54 #include <asm/iommu.h>
56 #include "irq_remapping.h"
57 #include "intel-pasid.h"
59 #define ROOT_SIZE VTD_PAGE_SIZE
60 #define CONTEXT_SIZE VTD_PAGE_SIZE
62 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
63 #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
64 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
65 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
67 #define IOAPIC_RANGE_START (0xfee00000)
68 #define IOAPIC_RANGE_END (0xfeefffff)
69 #define IOVA_START_ADDR (0x1000)
71 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
73 #define MAX_AGAW_WIDTH 64
74 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
76 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
77 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
79 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
80 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
81 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
82 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
83 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
85 /* IO virtual address start page frame number */
86 #define IOVA_START_PFN (1)
88 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
90 /* page table handling */
91 #define LEVEL_STRIDE (9)
92 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
95 * This bitmap is used to advertise the page sizes our hardware support
96 * to the IOMMU core, which will then use this information to split
97 * physically contiguous memory regions it is mapping into page sizes
100 * Traditionally the IOMMU core just handed us the mappings directly,
101 * after making sure the size is an order of a 4KiB page and that the
102 * mapping has natural alignment.
104 * To retain this behavior, we currently advertise that we support
105 * all page sizes that are an order of 4KiB.
107 * If at some point we'd like to utilize the IOMMU core's new behavior,
108 * we could change this to advertise the real page sizes we support.
110 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
112 static inline int agaw_to_level(int agaw
)
117 static inline int agaw_to_width(int agaw
)
119 return min_t(int, 30 + agaw
* LEVEL_STRIDE
, MAX_AGAW_WIDTH
);
122 static inline int width_to_agaw(int width
)
124 return DIV_ROUND_UP(width
- 30, LEVEL_STRIDE
);
127 static inline unsigned int level_to_offset_bits(int level
)
129 return (level
- 1) * LEVEL_STRIDE
;
132 static inline int pfn_level_offset(unsigned long pfn
, int level
)
134 return (pfn
>> level_to_offset_bits(level
)) & LEVEL_MASK
;
137 static inline unsigned long level_mask(int level
)
139 return -1UL << level_to_offset_bits(level
);
142 static inline unsigned long level_size(int level
)
144 return 1UL << level_to_offset_bits(level
);
147 static inline unsigned long align_to_level(unsigned long pfn
, int level
)
149 return (pfn
+ level_size(level
) - 1) & level_mask(level
);
152 static inline unsigned long lvl_to_nr_pages(unsigned int lvl
)
154 return 1 << min_t(int, (lvl
- 1) * LEVEL_STRIDE
, MAX_AGAW_PFN_WIDTH
);
157 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
158 are never going to work. */
159 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn
)
161 return dma_pfn
>> (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
164 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn
)
166 return mm_pfn
<< (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
168 static inline unsigned long page_to_dma_pfn(struct page
*pg
)
170 return mm_to_dma_pfn(page_to_pfn(pg
));
172 static inline unsigned long virt_to_dma_pfn(void *p
)
174 return page_to_dma_pfn(virt_to_page(p
));
177 /* global iommu list, set NULL for ignored DMAR units */
178 static struct intel_iommu
**g_iommus
;
180 static void __init
check_tylersburg_isoch(void);
181 static int rwbf_quirk
;
184 * set to 1 to panic kernel if can't successfully enable VT-d
185 * (used when kernel is launched w/ TXT)
187 static int force_on
= 0;
188 int intel_iommu_tboot_noforce
;
189 static int no_platform_optin
;
191 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
194 * Take a root_entry and return the Lower Context Table Pointer (LCTP)
197 static phys_addr_t
root_entry_lctp(struct root_entry
*re
)
202 return re
->lo
& VTD_PAGE_MASK
;
206 * Take a root_entry and return the Upper Context Table Pointer (UCTP)
209 static phys_addr_t
root_entry_uctp(struct root_entry
*re
)
214 return re
->hi
& VTD_PAGE_MASK
;
217 static inline void context_clear_pasid_enable(struct context_entry
*context
)
219 context
->lo
&= ~(1ULL << 11);
222 static inline bool context_pasid_enabled(struct context_entry
*context
)
224 return !!(context
->lo
& (1ULL << 11));
227 static inline void context_set_copied(struct context_entry
*context
)
229 context
->hi
|= (1ull << 3);
232 static inline bool context_copied(struct context_entry
*context
)
234 return !!(context
->hi
& (1ULL << 3));
237 static inline bool __context_present(struct context_entry
*context
)
239 return (context
->lo
& 1);
242 bool context_present(struct context_entry
*context
)
244 return context_pasid_enabled(context
) ?
245 __context_present(context
) :
246 __context_present(context
) && !context_copied(context
);
249 static inline void context_set_present(struct context_entry
*context
)
254 static inline void context_set_fault_enable(struct context_entry
*context
)
256 context
->lo
&= (((u64
)-1) << 2) | 1;
259 static inline void context_set_translation_type(struct context_entry
*context
,
262 context
->lo
&= (((u64
)-1) << 4) | 3;
263 context
->lo
|= (value
& 3) << 2;
266 static inline void context_set_address_root(struct context_entry
*context
,
269 context
->lo
&= ~VTD_PAGE_MASK
;
270 context
->lo
|= value
& VTD_PAGE_MASK
;
273 static inline void context_set_address_width(struct context_entry
*context
,
276 context
->hi
|= value
& 7;
279 static inline void context_set_domain_id(struct context_entry
*context
,
282 context
->hi
|= (value
& ((1 << 16) - 1)) << 8;
285 static inline int context_domain_id(struct context_entry
*c
)
287 return((c
->hi
>> 8) & 0xffff);
290 static inline void context_clear_entry(struct context_entry
*context
)
297 * This domain is a statically identity mapping domain.
298 * 1. This domain creats a static 1:1 mapping to all usable memory.
299 * 2. It maps to each iommu if successful.
300 * 3. Each iommu mapps to this domain if successful.
302 static struct dmar_domain
*si_domain
;
303 static int hw_pass_through
= 1;
306 * Domain represents a virtual machine, more than one devices
307 * across iommus may be owned in one domain, e.g. kvm guest.
309 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 0)
311 /* si_domain contains mulitple devices */
312 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 1)
314 #define for_each_domain_iommu(idx, domain) \
315 for (idx = 0; idx < g_num_of_iommus; idx++) \
316 if (domain->iommu_refcnt[idx])
318 struct dmar_rmrr_unit
{
319 struct list_head list
; /* list of rmrr units */
320 struct acpi_dmar_header
*hdr
; /* ACPI header */
321 u64 base_address
; /* reserved base address*/
322 u64 end_address
; /* reserved end address */
323 struct dmar_dev_scope
*devices
; /* target devices */
324 int devices_cnt
; /* target device count */
325 struct iommu_resv_region
*resv
; /* reserved region handle */
328 struct dmar_atsr_unit
{
329 struct list_head list
; /* list of ATSR units */
330 struct acpi_dmar_header
*hdr
; /* ACPI header */
331 struct dmar_dev_scope
*devices
; /* target devices */
332 int devices_cnt
; /* target device count */
333 u8 include_all
:1; /* include all ports */
336 static LIST_HEAD(dmar_atsr_units
);
337 static LIST_HEAD(dmar_rmrr_units
);
339 #define for_each_rmrr_units(rmrr) \
340 list_for_each_entry(rmrr, &dmar_rmrr_units, list)
342 /* bitmap for indexing intel_iommus */
343 static int g_num_of_iommus
;
345 static void domain_exit(struct dmar_domain
*domain
);
346 static void domain_remove_dev_info(struct dmar_domain
*domain
);
347 static void dmar_remove_one_dev_info(struct device
*dev
);
348 static void __dmar_remove_one_dev_info(struct device_domain_info
*info
);
349 static void domain_context_clear(struct intel_iommu
*iommu
,
351 static int domain_detach_iommu(struct dmar_domain
*domain
,
352 struct intel_iommu
*iommu
);
354 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
355 int dmar_disabled
= 0;
357 int dmar_disabled
= 1;
358 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
360 int intel_iommu_enabled
= 0;
361 EXPORT_SYMBOL_GPL(intel_iommu_enabled
);
363 static int dmar_map_gfx
= 1;
364 static int dmar_forcedac
;
365 static int intel_iommu_strict
;
366 static int intel_iommu_superpage
= 1;
367 static int intel_iommu_sm
;
368 static int iommu_identity_mapping
;
370 #define IDENTMAP_ALL 1
371 #define IDENTMAP_GFX 2
372 #define IDENTMAP_AZALIA 4
374 #define sm_supported(iommu) (intel_iommu_sm && ecap_smts((iommu)->ecap))
375 #define pasid_supported(iommu) (sm_supported(iommu) && \
376 ecap_pasid((iommu)->ecap))
378 int intel_iommu_gfx_mapped
;
379 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped
);
381 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
382 static DEFINE_SPINLOCK(device_domain_lock
);
383 static LIST_HEAD(device_domain_list
);
386 * Iterate over elements in device_domain_list and call the specified
387 * callback @fn against each element.
389 int for_each_device_domain(int (*fn
)(struct device_domain_info
*info
,
390 void *data
), void *data
)
394 struct device_domain_info
*info
;
396 spin_lock_irqsave(&device_domain_lock
, flags
);
397 list_for_each_entry(info
, &device_domain_list
, global
) {
398 ret
= fn(info
, data
);
400 spin_unlock_irqrestore(&device_domain_lock
, flags
);
404 spin_unlock_irqrestore(&device_domain_lock
, flags
);
409 const struct iommu_ops intel_iommu_ops
;
411 static bool translation_pre_enabled(struct intel_iommu
*iommu
)
413 return (iommu
->flags
& VTD_FLAG_TRANS_PRE_ENABLED
);
416 static void clear_translation_pre_enabled(struct intel_iommu
*iommu
)
418 iommu
->flags
&= ~VTD_FLAG_TRANS_PRE_ENABLED
;
421 static void init_translation_status(struct intel_iommu
*iommu
)
425 gsts
= readl(iommu
->reg
+ DMAR_GSTS_REG
);
426 if (gsts
& DMA_GSTS_TES
)
427 iommu
->flags
|= VTD_FLAG_TRANS_PRE_ENABLED
;
430 /* Convert generic 'struct iommu_domain to private struct dmar_domain */
431 static struct dmar_domain
*to_dmar_domain(struct iommu_domain
*dom
)
433 return container_of(dom
, struct dmar_domain
, domain
);
436 static int __init
intel_iommu_setup(char *str
)
441 if (!strncmp(str
, "on", 2)) {
443 pr_info("IOMMU enabled\n");
444 } else if (!strncmp(str
, "off", 3)) {
446 no_platform_optin
= 1;
447 pr_info("IOMMU disabled\n");
448 } else if (!strncmp(str
, "igfx_off", 8)) {
450 pr_info("Disable GFX device mapping\n");
451 } else if (!strncmp(str
, "forcedac", 8)) {
452 pr_info("Forcing DAC for PCI devices\n");
454 } else if (!strncmp(str
, "strict", 6)) {
455 pr_info("Disable batched IOTLB flush\n");
456 intel_iommu_strict
= 1;
457 } else if (!strncmp(str
, "sp_off", 6)) {
458 pr_info("Disable supported super page\n");
459 intel_iommu_superpage
= 0;
460 } else if (!strncmp(str
, "sm_on", 5)) {
461 pr_info("Intel-IOMMU: scalable mode supported\n");
463 } else if (!strncmp(str
, "tboot_noforce", 13)) {
465 "Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
466 intel_iommu_tboot_noforce
= 1;
469 str
+= strcspn(str
, ",");
475 __setup("intel_iommu=", intel_iommu_setup
);
477 static struct kmem_cache
*iommu_domain_cache
;
478 static struct kmem_cache
*iommu_devinfo_cache
;
480 static struct dmar_domain
* get_iommu_domain(struct intel_iommu
*iommu
, u16 did
)
482 struct dmar_domain
**domains
;
485 domains
= iommu
->domains
[idx
];
489 return domains
[did
& 0xff];
492 static void set_iommu_domain(struct intel_iommu
*iommu
, u16 did
,
493 struct dmar_domain
*domain
)
495 struct dmar_domain
**domains
;
498 if (!iommu
->domains
[idx
]) {
499 size_t size
= 256 * sizeof(struct dmar_domain
*);
500 iommu
->domains
[idx
] = kzalloc(size
, GFP_ATOMIC
);
503 domains
= iommu
->domains
[idx
];
504 if (WARN_ON(!domains
))
507 domains
[did
& 0xff] = domain
;
510 void *alloc_pgtable_page(int node
)
515 page
= alloc_pages_node(node
, GFP_ATOMIC
| __GFP_ZERO
, 0);
517 vaddr
= page_address(page
);
521 void free_pgtable_page(void *vaddr
)
523 free_page((unsigned long)vaddr
);
526 static inline void *alloc_domain_mem(void)
528 return kmem_cache_alloc(iommu_domain_cache
, GFP_ATOMIC
);
531 static void free_domain_mem(void *vaddr
)
533 kmem_cache_free(iommu_domain_cache
, vaddr
);
536 static inline void * alloc_devinfo_mem(void)
538 return kmem_cache_alloc(iommu_devinfo_cache
, GFP_ATOMIC
);
541 static inline void free_devinfo_mem(void *vaddr
)
543 kmem_cache_free(iommu_devinfo_cache
, vaddr
);
546 static inline int domain_type_is_vm(struct dmar_domain
*domain
)
548 return domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
;
551 static inline int domain_type_is_si(struct dmar_domain
*domain
)
553 return domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
;
556 static inline int domain_type_is_vm_or_si(struct dmar_domain
*domain
)
558 return domain
->flags
& (DOMAIN_FLAG_VIRTUAL_MACHINE
|
559 DOMAIN_FLAG_STATIC_IDENTITY
);
562 static inline int domain_pfn_supported(struct dmar_domain
*domain
,
565 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
567 return !(addr_width
< BITS_PER_LONG
&& pfn
>> addr_width
);
570 static int __iommu_calculate_agaw(struct intel_iommu
*iommu
, int max_gaw
)
575 sagaw
= cap_sagaw(iommu
->cap
);
576 for (agaw
= width_to_agaw(max_gaw
);
578 if (test_bit(agaw
, &sagaw
))
586 * Calculate max SAGAW for each iommu.
588 int iommu_calculate_max_sagaw(struct intel_iommu
*iommu
)
590 return __iommu_calculate_agaw(iommu
, MAX_AGAW_WIDTH
);
594 * calculate agaw for each iommu.
595 * "SAGAW" may be different across iommus, use a default agaw, and
596 * get a supported less agaw for iommus that don't support the default agaw.
598 int iommu_calculate_agaw(struct intel_iommu
*iommu
)
600 return __iommu_calculate_agaw(iommu
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
603 /* This functionin only returns single iommu in a domain */
604 struct intel_iommu
*domain_get_iommu(struct dmar_domain
*domain
)
608 /* si_domain and vm domain should not get here. */
609 BUG_ON(domain_type_is_vm_or_si(domain
));
610 for_each_domain_iommu(iommu_id
, domain
)
613 if (iommu_id
< 0 || iommu_id
>= g_num_of_iommus
)
616 return g_iommus
[iommu_id
];
619 static void domain_update_iommu_coherency(struct dmar_domain
*domain
)
621 struct dmar_drhd_unit
*drhd
;
622 struct intel_iommu
*iommu
;
626 domain
->iommu_coherency
= 1;
628 for_each_domain_iommu(i
, domain
) {
630 if (!ecap_coherent(g_iommus
[i
]->ecap
)) {
631 domain
->iommu_coherency
= 0;
638 /* No hardware attached; use lowest common denominator */
640 for_each_active_iommu(iommu
, drhd
) {
641 if (!ecap_coherent(iommu
->ecap
)) {
642 domain
->iommu_coherency
= 0;
649 static int domain_update_iommu_snooping(struct intel_iommu
*skip
)
651 struct dmar_drhd_unit
*drhd
;
652 struct intel_iommu
*iommu
;
656 for_each_active_iommu(iommu
, drhd
) {
658 if (!ecap_sc_support(iommu
->ecap
)) {
669 static int domain_update_iommu_superpage(struct intel_iommu
*skip
)
671 struct dmar_drhd_unit
*drhd
;
672 struct intel_iommu
*iommu
;
675 if (!intel_iommu_superpage
) {
679 /* set iommu_superpage to the smallest common denominator */
681 for_each_active_iommu(iommu
, drhd
) {
683 mask
&= cap_super_page_val(iommu
->cap
);
693 /* Some capabilities may be different across iommus */
694 static void domain_update_iommu_cap(struct dmar_domain
*domain
)
696 domain_update_iommu_coherency(domain
);
697 domain
->iommu_snooping
= domain_update_iommu_snooping(NULL
);
698 domain
->iommu_superpage
= domain_update_iommu_superpage(NULL
);
701 struct context_entry
*iommu_context_addr(struct intel_iommu
*iommu
, u8 bus
,
704 struct root_entry
*root
= &iommu
->root_entry
[bus
];
705 struct context_entry
*context
;
709 if (sm_supported(iommu
)) {
717 context
= phys_to_virt(*entry
& VTD_PAGE_MASK
);
719 unsigned long phy_addr
;
723 context
= alloc_pgtable_page(iommu
->node
);
727 __iommu_flush_cache(iommu
, (void *)context
, CONTEXT_SIZE
);
728 phy_addr
= virt_to_phys((void *)context
);
729 *entry
= phy_addr
| 1;
730 __iommu_flush_cache(iommu
, entry
, sizeof(*entry
));
732 return &context
[devfn
];
735 static int iommu_dummy(struct device
*dev
)
737 return dev
->archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
;
740 static struct intel_iommu
*device_to_iommu(struct device
*dev
, u8
*bus
, u8
*devfn
)
742 struct dmar_drhd_unit
*drhd
= NULL
;
743 struct intel_iommu
*iommu
;
745 struct pci_dev
*ptmp
, *pdev
= NULL
;
749 if (iommu_dummy(dev
))
752 if (dev_is_pci(dev
)) {
753 struct pci_dev
*pf_pdev
;
755 pdev
= to_pci_dev(dev
);
758 /* VMD child devices currently cannot be handled individually */
759 if (is_vmd(pdev
->bus
))
763 /* VFs aren't listed in scope tables; we need to look up
764 * the PF instead to find the IOMMU. */
765 pf_pdev
= pci_physfn(pdev
);
767 segment
= pci_domain_nr(pdev
->bus
);
768 } else if (has_acpi_companion(dev
))
769 dev
= &ACPI_COMPANION(dev
)->dev
;
772 for_each_active_iommu(iommu
, drhd
) {
773 if (pdev
&& segment
!= drhd
->segment
)
776 for_each_active_dev_scope(drhd
->devices
,
777 drhd
->devices_cnt
, i
, tmp
) {
779 /* For a VF use its original BDF# not that of the PF
780 * which we used for the IOMMU lookup. Strictly speaking
781 * we could do this for all PCI devices; we only need to
782 * get the BDF# from the scope table for ACPI matches. */
783 if (pdev
&& pdev
->is_virtfn
)
786 *bus
= drhd
->devices
[i
].bus
;
787 *devfn
= drhd
->devices
[i
].devfn
;
791 if (!pdev
|| !dev_is_pci(tmp
))
794 ptmp
= to_pci_dev(tmp
);
795 if (ptmp
->subordinate
&&
796 ptmp
->subordinate
->number
<= pdev
->bus
->number
&&
797 ptmp
->subordinate
->busn_res
.end
>= pdev
->bus
->number
)
801 if (pdev
&& drhd
->include_all
) {
803 *bus
= pdev
->bus
->number
;
804 *devfn
= pdev
->devfn
;
815 static void domain_flush_cache(struct dmar_domain
*domain
,
816 void *addr
, int size
)
818 if (!domain
->iommu_coherency
)
819 clflush_cache_range(addr
, size
);
822 static int device_context_mapped(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
824 struct context_entry
*context
;
828 spin_lock_irqsave(&iommu
->lock
, flags
);
829 context
= iommu_context_addr(iommu
, bus
, devfn
, 0);
831 ret
= context_present(context
);
832 spin_unlock_irqrestore(&iommu
->lock
, flags
);
836 static void free_context_table(struct intel_iommu
*iommu
)
840 struct context_entry
*context
;
842 spin_lock_irqsave(&iommu
->lock
, flags
);
843 if (!iommu
->root_entry
) {
846 for (i
= 0; i
< ROOT_ENTRY_NR
; i
++) {
847 context
= iommu_context_addr(iommu
, i
, 0, 0);
849 free_pgtable_page(context
);
851 if (!sm_supported(iommu
))
854 context
= iommu_context_addr(iommu
, i
, 0x80, 0);
856 free_pgtable_page(context
);
859 free_pgtable_page(iommu
->root_entry
);
860 iommu
->root_entry
= NULL
;
862 spin_unlock_irqrestore(&iommu
->lock
, flags
);
865 static struct dma_pte
*pfn_to_dma_pte(struct dmar_domain
*domain
,
866 unsigned long pfn
, int *target_level
)
868 struct dma_pte
*parent
, *pte
;
869 int level
= agaw_to_level(domain
->agaw
);
872 BUG_ON(!domain
->pgd
);
874 if (!domain_pfn_supported(domain
, pfn
))
875 /* Address beyond IOMMU's addressing capabilities. */
878 parent
= domain
->pgd
;
883 offset
= pfn_level_offset(pfn
, level
);
884 pte
= &parent
[offset
];
885 if (!*target_level
&& (dma_pte_superpage(pte
) || !dma_pte_present(pte
)))
887 if (level
== *target_level
)
890 if (!dma_pte_present(pte
)) {
893 tmp_page
= alloc_pgtable_page(domain
->nid
);
898 domain_flush_cache(domain
, tmp_page
, VTD_PAGE_SIZE
);
899 pteval
= ((uint64_t)virt_to_dma_pfn(tmp_page
) << VTD_PAGE_SHIFT
) | DMA_PTE_READ
| DMA_PTE_WRITE
;
900 if (cmpxchg64(&pte
->val
, 0ULL, pteval
))
901 /* Someone else set it while we were thinking; use theirs. */
902 free_pgtable_page(tmp_page
);
904 domain_flush_cache(domain
, pte
, sizeof(*pte
));
909 parent
= phys_to_virt(dma_pte_addr(pte
));
914 *target_level
= level
;
920 /* return address's pte at specific level */
921 static struct dma_pte
*dma_pfn_level_pte(struct dmar_domain
*domain
,
923 int level
, int *large_page
)
925 struct dma_pte
*parent
, *pte
;
926 int total
= agaw_to_level(domain
->agaw
);
929 parent
= domain
->pgd
;
930 while (level
<= total
) {
931 offset
= pfn_level_offset(pfn
, total
);
932 pte
= &parent
[offset
];
936 if (!dma_pte_present(pte
)) {
941 if (dma_pte_superpage(pte
)) {
946 parent
= phys_to_virt(dma_pte_addr(pte
));
952 /* clear last level pte, a tlb flush should be followed */
953 static void dma_pte_clear_range(struct dmar_domain
*domain
,
954 unsigned long start_pfn
,
955 unsigned long last_pfn
)
957 unsigned int large_page
;
958 struct dma_pte
*first_pte
, *pte
;
960 BUG_ON(!domain_pfn_supported(domain
, start_pfn
));
961 BUG_ON(!domain_pfn_supported(domain
, last_pfn
));
962 BUG_ON(start_pfn
> last_pfn
);
964 /* we don't need lock here; nobody else touches the iova range */
967 first_pte
= pte
= dma_pfn_level_pte(domain
, start_pfn
, 1, &large_page
);
969 start_pfn
= align_to_level(start_pfn
+ 1, large_page
+ 1);
974 start_pfn
+= lvl_to_nr_pages(large_page
);
976 } while (start_pfn
<= last_pfn
&& !first_pte_in_page(pte
));
978 domain_flush_cache(domain
, first_pte
,
979 (void *)pte
- (void *)first_pte
);
981 } while (start_pfn
&& start_pfn
<= last_pfn
);
984 static void dma_pte_free_level(struct dmar_domain
*domain
, int level
,
985 int retain_level
, struct dma_pte
*pte
,
986 unsigned long pfn
, unsigned long start_pfn
,
987 unsigned long last_pfn
)
989 pfn
= max(start_pfn
, pfn
);
990 pte
= &pte
[pfn_level_offset(pfn
, level
)];
993 unsigned long level_pfn
;
994 struct dma_pte
*level_pte
;
996 if (!dma_pte_present(pte
) || dma_pte_superpage(pte
))
999 level_pfn
= pfn
& level_mask(level
);
1000 level_pte
= phys_to_virt(dma_pte_addr(pte
));
1003 dma_pte_free_level(domain
, level
- 1, retain_level
,
1004 level_pte
, level_pfn
, start_pfn
,
1009 * Free the page table if we're below the level we want to
1010 * retain and the range covers the entire table.
1012 if (level
< retain_level
&& !(start_pfn
> level_pfn
||
1013 last_pfn
< level_pfn
+ level_size(level
) - 1)) {
1015 domain_flush_cache(domain
, pte
, sizeof(*pte
));
1016 free_pgtable_page(level_pte
);
1019 pfn
+= level_size(level
);
1020 } while (!first_pte_in_page(++pte
) && pfn
<= last_pfn
);
1024 * clear last level (leaf) ptes and free page table pages below the
1025 * level we wish to keep intact.
1027 static void dma_pte_free_pagetable(struct dmar_domain
*domain
,
1028 unsigned long start_pfn
,
1029 unsigned long last_pfn
,
1032 BUG_ON(!domain_pfn_supported(domain
, start_pfn
));
1033 BUG_ON(!domain_pfn_supported(domain
, last_pfn
));
1034 BUG_ON(start_pfn
> last_pfn
);
1036 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
1038 /* We don't need lock here; nobody else touches the iova range */
1039 dma_pte_free_level(domain
, agaw_to_level(domain
->agaw
), retain_level
,
1040 domain
->pgd
, 0, start_pfn
, last_pfn
);
1043 if (start_pfn
== 0 && last_pfn
== DOMAIN_MAX_PFN(domain
->gaw
)) {
1044 free_pgtable_page(domain
->pgd
);
1049 /* When a page at a given level is being unlinked from its parent, we don't
1050 need to *modify* it at all. All we need to do is make a list of all the
1051 pages which can be freed just as soon as we've flushed the IOTLB and we
1052 know the hardware page-walk will no longer touch them.
1053 The 'pte' argument is the *parent* PTE, pointing to the page that is to
1055 static struct page
*dma_pte_list_pagetables(struct dmar_domain
*domain
,
1056 int level
, struct dma_pte
*pte
,
1057 struct page
*freelist
)
1061 pg
= pfn_to_page(dma_pte_addr(pte
) >> PAGE_SHIFT
);
1062 pg
->freelist
= freelist
;
1068 pte
= page_address(pg
);
1070 if (dma_pte_present(pte
) && !dma_pte_superpage(pte
))
1071 freelist
= dma_pte_list_pagetables(domain
, level
- 1,
1074 } while (!first_pte_in_page(pte
));
1079 static struct page
*dma_pte_clear_level(struct dmar_domain
*domain
, int level
,
1080 struct dma_pte
*pte
, unsigned long pfn
,
1081 unsigned long start_pfn
,
1082 unsigned long last_pfn
,
1083 struct page
*freelist
)
1085 struct dma_pte
*first_pte
= NULL
, *last_pte
= NULL
;
1087 pfn
= max(start_pfn
, pfn
);
1088 pte
= &pte
[pfn_level_offset(pfn
, level
)];
1091 unsigned long level_pfn
;
1093 if (!dma_pte_present(pte
))
1096 level_pfn
= pfn
& level_mask(level
);
1098 /* If range covers entire pagetable, free it */
1099 if (start_pfn
<= level_pfn
&&
1100 last_pfn
>= level_pfn
+ level_size(level
) - 1) {
1101 /* These suborbinate page tables are going away entirely. Don't
1102 bother to clear them; we're just going to *free* them. */
1103 if (level
> 1 && !dma_pte_superpage(pte
))
1104 freelist
= dma_pte_list_pagetables(domain
, level
- 1, pte
, freelist
);
1110 } else if (level
> 1) {
1111 /* Recurse down into a level that isn't *entirely* obsolete */
1112 freelist
= dma_pte_clear_level(domain
, level
- 1,
1113 phys_to_virt(dma_pte_addr(pte
)),
1114 level_pfn
, start_pfn
, last_pfn
,
1118 pfn
+= level_size(level
);
1119 } while (!first_pte_in_page(++pte
) && pfn
<= last_pfn
);
1122 domain_flush_cache(domain
, first_pte
,
1123 (void *)++last_pte
- (void *)first_pte
);
1128 /* We can't just free the pages because the IOMMU may still be walking
1129 the page tables, and may have cached the intermediate levels. The
1130 pages can only be freed after the IOTLB flush has been done. */
1131 static struct page
*domain_unmap(struct dmar_domain
*domain
,
1132 unsigned long start_pfn
,
1133 unsigned long last_pfn
)
1135 struct page
*freelist
;
1137 BUG_ON(!domain_pfn_supported(domain
, start_pfn
));
1138 BUG_ON(!domain_pfn_supported(domain
, last_pfn
));
1139 BUG_ON(start_pfn
> last_pfn
);
1141 /* we don't need lock here; nobody else touches the iova range */
1142 freelist
= dma_pte_clear_level(domain
, agaw_to_level(domain
->agaw
),
1143 domain
->pgd
, 0, start_pfn
, last_pfn
, NULL
);
1146 if (start_pfn
== 0 && last_pfn
== DOMAIN_MAX_PFN(domain
->gaw
)) {
1147 struct page
*pgd_page
= virt_to_page(domain
->pgd
);
1148 pgd_page
->freelist
= freelist
;
1149 freelist
= pgd_page
;
1157 static void dma_free_pagelist(struct page
*freelist
)
1161 while ((pg
= freelist
)) {
1162 freelist
= pg
->freelist
;
1163 free_pgtable_page(page_address(pg
));
1167 static void iova_entry_free(unsigned long data
)
1169 struct page
*freelist
= (struct page
*)data
;
1171 dma_free_pagelist(freelist
);
1174 /* iommu handling */
1175 static int iommu_alloc_root_entry(struct intel_iommu
*iommu
)
1177 struct root_entry
*root
;
1178 unsigned long flags
;
1180 root
= (struct root_entry
*)alloc_pgtable_page(iommu
->node
);
1182 pr_err("Allocating root entry for %s failed\n",
1187 __iommu_flush_cache(iommu
, root
, ROOT_SIZE
);
1189 spin_lock_irqsave(&iommu
->lock
, flags
);
1190 iommu
->root_entry
= root
;
1191 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1196 static void iommu_set_root_entry(struct intel_iommu
*iommu
)
1202 addr
= virt_to_phys(iommu
->root_entry
);
1203 if (sm_supported(iommu
))
1204 addr
|= DMA_RTADDR_SMT
;
1206 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1207 dmar_writeq(iommu
->reg
+ DMAR_RTADDR_REG
, addr
);
1209 writel(iommu
->gcmd
| DMA_GCMD_SRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
1211 /* Make sure hardware complete it */
1212 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1213 readl
, (sts
& DMA_GSTS_RTPS
), sts
);
1215 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1218 void iommu_flush_write_buffer(struct intel_iommu
*iommu
)
1223 if (!rwbf_quirk
&& !cap_rwbf(iommu
->cap
))
1226 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1227 writel(iommu
->gcmd
| DMA_GCMD_WBF
, iommu
->reg
+ DMAR_GCMD_REG
);
1229 /* Make sure hardware complete it */
1230 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1231 readl
, (!(val
& DMA_GSTS_WBFS
)), val
);
1233 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1236 /* return value determine if we need a write buffer flush */
1237 static void __iommu_flush_context(struct intel_iommu
*iommu
,
1238 u16 did
, u16 source_id
, u8 function_mask
,
1245 case DMA_CCMD_GLOBAL_INVL
:
1246 val
= DMA_CCMD_GLOBAL_INVL
;
1248 case DMA_CCMD_DOMAIN_INVL
:
1249 val
= DMA_CCMD_DOMAIN_INVL
|DMA_CCMD_DID(did
);
1251 case DMA_CCMD_DEVICE_INVL
:
1252 val
= DMA_CCMD_DEVICE_INVL
|DMA_CCMD_DID(did
)
1253 | DMA_CCMD_SID(source_id
) | DMA_CCMD_FM(function_mask
);
1258 val
|= DMA_CCMD_ICC
;
1260 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1261 dmar_writeq(iommu
->reg
+ DMAR_CCMD_REG
, val
);
1263 /* Make sure hardware complete it */
1264 IOMMU_WAIT_OP(iommu
, DMAR_CCMD_REG
,
1265 dmar_readq
, (!(val
& DMA_CCMD_ICC
)), val
);
1267 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1270 /* return value determine if we need a write buffer flush */
1271 static void __iommu_flush_iotlb(struct intel_iommu
*iommu
, u16 did
,
1272 u64 addr
, unsigned int size_order
, u64 type
)
1274 int tlb_offset
= ecap_iotlb_offset(iommu
->ecap
);
1275 u64 val
= 0, val_iva
= 0;
1279 case DMA_TLB_GLOBAL_FLUSH
:
1280 /* global flush doesn't need set IVA_REG */
1281 val
= DMA_TLB_GLOBAL_FLUSH
|DMA_TLB_IVT
;
1283 case DMA_TLB_DSI_FLUSH
:
1284 val
= DMA_TLB_DSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
1286 case DMA_TLB_PSI_FLUSH
:
1287 val
= DMA_TLB_PSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
1288 /* IH bit is passed in as part of address */
1289 val_iva
= size_order
| addr
;
1294 /* Note: set drain read/write */
1297 * This is probably to be super secure.. Looks like we can
1298 * ignore it without any impact.
1300 if (cap_read_drain(iommu
->cap
))
1301 val
|= DMA_TLB_READ_DRAIN
;
1303 if (cap_write_drain(iommu
->cap
))
1304 val
|= DMA_TLB_WRITE_DRAIN
;
1306 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1307 /* Note: Only uses first TLB reg currently */
1309 dmar_writeq(iommu
->reg
+ tlb_offset
, val_iva
);
1310 dmar_writeq(iommu
->reg
+ tlb_offset
+ 8, val
);
1312 /* Make sure hardware complete it */
1313 IOMMU_WAIT_OP(iommu
, tlb_offset
+ 8,
1314 dmar_readq
, (!(val
& DMA_TLB_IVT
)), val
);
1316 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1318 /* check IOTLB invalidation granularity */
1319 if (DMA_TLB_IAIG(val
) == 0)
1320 pr_err("Flush IOTLB failed\n");
1321 if (DMA_TLB_IAIG(val
) != DMA_TLB_IIRG(type
))
1322 pr_debug("TLB flush request %Lx, actual %Lx\n",
1323 (unsigned long long)DMA_TLB_IIRG(type
),
1324 (unsigned long long)DMA_TLB_IAIG(val
));
1327 static struct device_domain_info
*
1328 iommu_support_dev_iotlb (struct dmar_domain
*domain
, struct intel_iommu
*iommu
,
1331 struct device_domain_info
*info
;
1333 assert_spin_locked(&device_domain_lock
);
1338 list_for_each_entry(info
, &domain
->devices
, link
)
1339 if (info
->iommu
== iommu
&& info
->bus
== bus
&&
1340 info
->devfn
== devfn
) {
1341 if (info
->ats_supported
&& info
->dev
)
1349 static void domain_update_iotlb(struct dmar_domain
*domain
)
1351 struct device_domain_info
*info
;
1352 bool has_iotlb_device
= false;
1354 assert_spin_locked(&device_domain_lock
);
1356 list_for_each_entry(info
, &domain
->devices
, link
) {
1357 struct pci_dev
*pdev
;
1359 if (!info
->dev
|| !dev_is_pci(info
->dev
))
1362 pdev
= to_pci_dev(info
->dev
);
1363 if (pdev
->ats_enabled
) {
1364 has_iotlb_device
= true;
1369 domain
->has_iotlb_device
= has_iotlb_device
;
1372 static void iommu_enable_dev_iotlb(struct device_domain_info
*info
)
1374 struct pci_dev
*pdev
;
1376 assert_spin_locked(&device_domain_lock
);
1378 if (!info
|| !dev_is_pci(info
->dev
))
1381 pdev
= to_pci_dev(info
->dev
);
1382 /* For IOMMU that supports device IOTLB throttling (DIT), we assign
1383 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
1384 * queue depth at PF level. If DIT is not set, PFSID will be treated as
1385 * reserved, which should be set to 0.
1387 if (!ecap_dit(info
->iommu
->ecap
))
1390 struct pci_dev
*pf_pdev
;
1392 /* pdev will be returned if device is not a vf */
1393 pf_pdev
= pci_physfn(pdev
);
1394 info
->pfsid
= pci_dev_id(pf_pdev
);
1397 #ifdef CONFIG_INTEL_IOMMU_SVM
1398 /* The PCIe spec, in its wisdom, declares that the behaviour of
1399 the device if you enable PASID support after ATS support is
1400 undefined. So always enable PASID support on devices which
1401 have it, even if we can't yet know if we're ever going to
1403 if (info
->pasid_supported
&& !pci_enable_pasid(pdev
, info
->pasid_supported
& ~1))
1404 info
->pasid_enabled
= 1;
1406 if (info
->pri_supported
&&
1407 (info
->pasid_enabled
? pci_prg_resp_pasid_required(pdev
) : 1) &&
1408 !pci_reset_pri(pdev
) && !pci_enable_pri(pdev
, 32))
1409 info
->pri_enabled
= 1;
1411 if (!pdev
->untrusted
&& info
->ats_supported
&&
1412 pci_ats_page_aligned(pdev
) &&
1413 !pci_enable_ats(pdev
, VTD_PAGE_SHIFT
)) {
1414 info
->ats_enabled
= 1;
1415 domain_update_iotlb(info
->domain
);
1416 info
->ats_qdep
= pci_ats_queue_depth(pdev
);
1420 static void iommu_disable_dev_iotlb(struct device_domain_info
*info
)
1422 struct pci_dev
*pdev
;
1424 assert_spin_locked(&device_domain_lock
);
1426 if (!dev_is_pci(info
->dev
))
1429 pdev
= to_pci_dev(info
->dev
);
1431 if (info
->ats_enabled
) {
1432 pci_disable_ats(pdev
);
1433 info
->ats_enabled
= 0;
1434 domain_update_iotlb(info
->domain
);
1436 #ifdef CONFIG_INTEL_IOMMU_SVM
1437 if (info
->pri_enabled
) {
1438 pci_disable_pri(pdev
);
1439 info
->pri_enabled
= 0;
1441 if (info
->pasid_enabled
) {
1442 pci_disable_pasid(pdev
);
1443 info
->pasid_enabled
= 0;
1448 static void iommu_flush_dev_iotlb(struct dmar_domain
*domain
,
1449 u64 addr
, unsigned mask
)
1452 unsigned long flags
;
1453 struct device_domain_info
*info
;
1455 if (!domain
->has_iotlb_device
)
1458 spin_lock_irqsave(&device_domain_lock
, flags
);
1459 list_for_each_entry(info
, &domain
->devices
, link
) {
1460 if (!info
->ats_enabled
)
1463 sid
= info
->bus
<< 8 | info
->devfn
;
1464 qdep
= info
->ats_qdep
;
1465 qi_flush_dev_iotlb(info
->iommu
, sid
, info
->pfsid
,
1468 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1471 static void iommu_flush_iotlb_psi(struct intel_iommu
*iommu
,
1472 struct dmar_domain
*domain
,
1473 unsigned long pfn
, unsigned int pages
,
1476 unsigned int mask
= ilog2(__roundup_pow_of_two(pages
));
1477 uint64_t addr
= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
1478 u16 did
= domain
->iommu_did
[iommu
->seq_id
];
1485 * Fallback to domain selective flush if no PSI support or the size is
1487 * PSI requires page size to be 2 ^ x, and the base address is naturally
1488 * aligned to the size
1490 if (!cap_pgsel_inv(iommu
->cap
) || mask
> cap_max_amask_val(iommu
->cap
))
1491 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
1494 iommu
->flush
.flush_iotlb(iommu
, did
, addr
| ih
, mask
,
1498 * In caching mode, changes of pages from non-present to present require
1499 * flush. However, device IOTLB doesn't need to be flushed in this case.
1501 if (!cap_caching_mode(iommu
->cap
) || !map
)
1502 iommu_flush_dev_iotlb(domain
, addr
, mask
);
1505 /* Notification for newly created mappings */
1506 static inline void __mapping_notify_one(struct intel_iommu
*iommu
,
1507 struct dmar_domain
*domain
,
1508 unsigned long pfn
, unsigned int pages
)
1510 /* It's a non-present to present mapping. Only flush if caching mode */
1511 if (cap_caching_mode(iommu
->cap
))
1512 iommu_flush_iotlb_psi(iommu
, domain
, pfn
, pages
, 0, 1);
1514 iommu_flush_write_buffer(iommu
);
1517 static void iommu_flush_iova(struct iova_domain
*iovad
)
1519 struct dmar_domain
*domain
;
1522 domain
= container_of(iovad
, struct dmar_domain
, iovad
);
1524 for_each_domain_iommu(idx
, domain
) {
1525 struct intel_iommu
*iommu
= g_iommus
[idx
];
1526 u16 did
= domain
->iommu_did
[iommu
->seq_id
];
1528 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0, DMA_TLB_DSI_FLUSH
);
1530 if (!cap_caching_mode(iommu
->cap
))
1531 iommu_flush_dev_iotlb(get_iommu_domain(iommu
, did
),
1532 0, MAX_AGAW_PFN_WIDTH
);
1536 static void iommu_disable_protect_mem_regions(struct intel_iommu
*iommu
)
1539 unsigned long flags
;
1541 if (!cap_plmr(iommu
->cap
) && !cap_phmr(iommu
->cap
))
1544 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
1545 pmen
= readl(iommu
->reg
+ DMAR_PMEN_REG
);
1546 pmen
&= ~DMA_PMEN_EPM
;
1547 writel(pmen
, iommu
->reg
+ DMAR_PMEN_REG
);
1549 /* wait for the protected region status bit to clear */
1550 IOMMU_WAIT_OP(iommu
, DMAR_PMEN_REG
,
1551 readl
, !(pmen
& DMA_PMEN_PRS
), pmen
);
1553 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1556 static void iommu_enable_translation(struct intel_iommu
*iommu
)
1559 unsigned long flags
;
1561 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
1562 iommu
->gcmd
|= DMA_GCMD_TE
;
1563 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1565 /* Make sure hardware complete it */
1566 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1567 readl
, (sts
& DMA_GSTS_TES
), sts
);
1569 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1572 static void iommu_disable_translation(struct intel_iommu
*iommu
)
1577 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1578 iommu
->gcmd
&= ~DMA_GCMD_TE
;
1579 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1581 /* Make sure hardware complete it */
1582 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1583 readl
, (!(sts
& DMA_GSTS_TES
)), sts
);
1585 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1589 static int iommu_init_domains(struct intel_iommu
*iommu
)
1591 u32 ndomains
, nlongs
;
1594 ndomains
= cap_ndoms(iommu
->cap
);
1595 pr_debug("%s: Number of Domains supported <%d>\n",
1596 iommu
->name
, ndomains
);
1597 nlongs
= BITS_TO_LONGS(ndomains
);
1599 spin_lock_init(&iommu
->lock
);
1601 iommu
->domain_ids
= kcalloc(nlongs
, sizeof(unsigned long), GFP_KERNEL
);
1602 if (!iommu
->domain_ids
) {
1603 pr_err("%s: Allocating domain id array failed\n",
1608 size
= (ALIGN(ndomains
, 256) >> 8) * sizeof(struct dmar_domain
**);
1609 iommu
->domains
= kzalloc(size
, GFP_KERNEL
);
1611 if (iommu
->domains
) {
1612 size
= 256 * sizeof(struct dmar_domain
*);
1613 iommu
->domains
[0] = kzalloc(size
, GFP_KERNEL
);
1616 if (!iommu
->domains
|| !iommu
->domains
[0]) {
1617 pr_err("%s: Allocating domain array failed\n",
1619 kfree(iommu
->domain_ids
);
1620 kfree(iommu
->domains
);
1621 iommu
->domain_ids
= NULL
;
1622 iommu
->domains
= NULL
;
1629 * If Caching mode is set, then invalid translations are tagged
1630 * with domain-id 0, hence we need to pre-allocate it. We also
1631 * use domain-id 0 as a marker for non-allocated domain-id, so
1632 * make sure it is not used for a real domain.
1634 set_bit(0, iommu
->domain_ids
);
1637 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
1638 * entry for first-level or pass-through translation modes should
1639 * be programmed with a domain id different from those used for
1640 * second-level or nested translation. We reserve a domain id for
1643 if (sm_supported(iommu
))
1644 set_bit(FLPT_DEFAULT_DID
, iommu
->domain_ids
);
1649 static void disable_dmar_iommu(struct intel_iommu
*iommu
)
1651 struct device_domain_info
*info
, *tmp
;
1652 unsigned long flags
;
1654 if (!iommu
->domains
|| !iommu
->domain_ids
)
1658 spin_lock_irqsave(&device_domain_lock
, flags
);
1659 list_for_each_entry_safe(info
, tmp
, &device_domain_list
, global
) {
1660 struct dmar_domain
*domain
;
1662 if (info
->iommu
!= iommu
)
1665 if (!info
->dev
|| !info
->domain
)
1668 domain
= info
->domain
;
1670 __dmar_remove_one_dev_info(info
);
1672 if (!domain_type_is_vm_or_si(domain
)) {
1674 * The domain_exit() function can't be called under
1675 * device_domain_lock, as it takes this lock itself.
1676 * So release the lock here and re-run the loop
1679 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1680 domain_exit(domain
);
1684 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1686 if (iommu
->gcmd
& DMA_GCMD_TE
)
1687 iommu_disable_translation(iommu
);
1690 static void free_dmar_iommu(struct intel_iommu
*iommu
)
1692 if ((iommu
->domains
) && (iommu
->domain_ids
)) {
1693 int elems
= ALIGN(cap_ndoms(iommu
->cap
), 256) >> 8;
1696 for (i
= 0; i
< elems
; i
++)
1697 kfree(iommu
->domains
[i
]);
1698 kfree(iommu
->domains
);
1699 kfree(iommu
->domain_ids
);
1700 iommu
->domains
= NULL
;
1701 iommu
->domain_ids
= NULL
;
1704 g_iommus
[iommu
->seq_id
] = NULL
;
1706 /* free context mapping */
1707 free_context_table(iommu
);
1709 #ifdef CONFIG_INTEL_IOMMU_SVM
1710 if (pasid_supported(iommu
)) {
1711 if (ecap_prs(iommu
->ecap
))
1712 intel_svm_finish_prq(iommu
);
1717 static struct dmar_domain
*alloc_domain(int flags
)
1719 struct dmar_domain
*domain
;
1721 domain
= alloc_domain_mem();
1725 memset(domain
, 0, sizeof(*domain
));
1726 domain
->nid
= NUMA_NO_NODE
;
1727 domain
->flags
= flags
;
1728 domain
->has_iotlb_device
= false;
1729 INIT_LIST_HEAD(&domain
->devices
);
1734 /* Must be called with iommu->lock */
1735 static int domain_attach_iommu(struct dmar_domain
*domain
,
1736 struct intel_iommu
*iommu
)
1738 unsigned long ndomains
;
1741 assert_spin_locked(&device_domain_lock
);
1742 assert_spin_locked(&iommu
->lock
);
1744 domain
->iommu_refcnt
[iommu
->seq_id
] += 1;
1745 domain
->iommu_count
+= 1;
1746 if (domain
->iommu_refcnt
[iommu
->seq_id
] == 1) {
1747 ndomains
= cap_ndoms(iommu
->cap
);
1748 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1750 if (num
>= ndomains
) {
1751 pr_err("%s: No free domain ids\n", iommu
->name
);
1752 domain
->iommu_refcnt
[iommu
->seq_id
] -= 1;
1753 domain
->iommu_count
-= 1;
1757 set_bit(num
, iommu
->domain_ids
);
1758 set_iommu_domain(iommu
, num
, domain
);
1760 domain
->iommu_did
[iommu
->seq_id
] = num
;
1761 domain
->nid
= iommu
->node
;
1763 domain_update_iommu_cap(domain
);
1769 static int domain_detach_iommu(struct dmar_domain
*domain
,
1770 struct intel_iommu
*iommu
)
1774 assert_spin_locked(&device_domain_lock
);
1775 assert_spin_locked(&iommu
->lock
);
1777 domain
->iommu_refcnt
[iommu
->seq_id
] -= 1;
1778 count
= --domain
->iommu_count
;
1779 if (domain
->iommu_refcnt
[iommu
->seq_id
] == 0) {
1780 num
= domain
->iommu_did
[iommu
->seq_id
];
1781 clear_bit(num
, iommu
->domain_ids
);
1782 set_iommu_domain(iommu
, num
, NULL
);
1784 domain_update_iommu_cap(domain
);
1785 domain
->iommu_did
[iommu
->seq_id
] = 0;
1791 static struct iova_domain reserved_iova_list
;
1792 static struct lock_class_key reserved_rbtree_key
;
1794 static int dmar_init_reserved_ranges(void)
1796 struct pci_dev
*pdev
= NULL
;
1800 init_iova_domain(&reserved_iova_list
, VTD_PAGE_SIZE
, IOVA_START_PFN
);
1802 lockdep_set_class(&reserved_iova_list
.iova_rbtree_lock
,
1803 &reserved_rbtree_key
);
1805 /* IOAPIC ranges shouldn't be accessed by DMA */
1806 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(IOAPIC_RANGE_START
),
1807 IOVA_PFN(IOAPIC_RANGE_END
));
1809 pr_err("Reserve IOAPIC range failed\n");
1813 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1814 for_each_pci_dev(pdev
) {
1817 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++) {
1818 r
= &pdev
->resource
[i
];
1819 if (!r
->flags
|| !(r
->flags
& IORESOURCE_MEM
))
1821 iova
= reserve_iova(&reserved_iova_list
,
1825 pci_err(pdev
, "Reserve iova for %pR failed\n", r
);
1833 static void domain_reserve_special_ranges(struct dmar_domain
*domain
)
1835 copy_reserved_iova(&reserved_iova_list
, &domain
->iovad
);
1838 static inline int guestwidth_to_adjustwidth(int gaw
)
1841 int r
= (gaw
- 12) % 9;
1852 static int domain_init(struct dmar_domain
*domain
, struct intel_iommu
*iommu
,
1855 int adjust_width
, agaw
;
1856 unsigned long sagaw
;
1859 init_iova_domain(&domain
->iovad
, VTD_PAGE_SIZE
, IOVA_START_PFN
);
1861 err
= init_iova_flush_queue(&domain
->iovad
,
1862 iommu_flush_iova
, iova_entry_free
);
1866 domain_reserve_special_ranges(domain
);
1868 /* calculate AGAW */
1869 if (guest_width
> cap_mgaw(iommu
->cap
))
1870 guest_width
= cap_mgaw(iommu
->cap
);
1871 domain
->gaw
= guest_width
;
1872 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
1873 agaw
= width_to_agaw(adjust_width
);
1874 sagaw
= cap_sagaw(iommu
->cap
);
1875 if (!test_bit(agaw
, &sagaw
)) {
1876 /* hardware doesn't support it, choose a bigger one */
1877 pr_debug("Hardware doesn't support agaw %d\n", agaw
);
1878 agaw
= find_next_bit(&sagaw
, 5, agaw
);
1882 domain
->agaw
= agaw
;
1884 if (ecap_coherent(iommu
->ecap
))
1885 domain
->iommu_coherency
= 1;
1887 domain
->iommu_coherency
= 0;
1889 if (ecap_sc_support(iommu
->ecap
))
1890 domain
->iommu_snooping
= 1;
1892 domain
->iommu_snooping
= 0;
1894 if (intel_iommu_superpage
)
1895 domain
->iommu_superpage
= fls(cap_super_page_val(iommu
->cap
));
1897 domain
->iommu_superpage
= 0;
1899 domain
->nid
= iommu
->node
;
1901 /* always allocate the top pgd */
1902 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page(domain
->nid
);
1905 __iommu_flush_cache(iommu
, domain
->pgd
, PAGE_SIZE
);
1909 static void domain_exit(struct dmar_domain
*domain
)
1911 struct page
*freelist
;
1913 /* Remove associated devices and clear attached or cached domains */
1915 domain_remove_dev_info(domain
);
1919 put_iova_domain(&domain
->iovad
);
1921 freelist
= domain_unmap(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1923 dma_free_pagelist(freelist
);
1925 free_domain_mem(domain
);
1929 * Get the PASID directory size for scalable mode context entry.
1930 * Value of X in the PDTS field of a scalable mode context entry
1931 * indicates PASID directory with 2^(X + 7) entries.
1933 static inline unsigned long context_get_sm_pds(struct pasid_table
*table
)
1937 max_pde
= table
->max_pasid
>> PASID_PDE_SHIFT
;
1938 pds
= find_first_bit((unsigned long *)&max_pde
, MAX_NR_PASID_BITS
);
1946 * Set the RID_PASID field of a scalable mode context entry. The
1947 * IOMMU hardware will use the PASID value set in this field for
1948 * DMA translations of DMA requests without PASID.
1951 context_set_sm_rid2pasid(struct context_entry
*context
, unsigned long pasid
)
1953 context
->hi
|= pasid
& ((1 << 20) - 1);
1954 context
->hi
|= (1 << 20);
1958 * Set the DTE(Device-TLB Enable) field of a scalable mode context
1961 static inline void context_set_sm_dte(struct context_entry
*context
)
1963 context
->lo
|= (1 << 2);
1967 * Set the PRE(Page Request Enable) field of a scalable mode context
1970 static inline void context_set_sm_pre(struct context_entry
*context
)
1972 context
->lo
|= (1 << 4);
1975 /* Convert value to context PASID directory size field coding. */
1976 #define context_pdts(pds) (((pds) & 0x7) << 9)
1978 static int domain_context_mapping_one(struct dmar_domain
*domain
,
1979 struct intel_iommu
*iommu
,
1980 struct pasid_table
*table
,
1983 u16 did
= domain
->iommu_did
[iommu
->seq_id
];
1984 int translation
= CONTEXT_TT_MULTI_LEVEL
;
1985 struct device_domain_info
*info
= NULL
;
1986 struct context_entry
*context
;
1987 unsigned long flags
;
1992 if (hw_pass_through
&& domain_type_is_si(domain
))
1993 translation
= CONTEXT_TT_PASS_THROUGH
;
1995 pr_debug("Set context mapping for %02x:%02x.%d\n",
1996 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1998 BUG_ON(!domain
->pgd
);
2000 spin_lock_irqsave(&device_domain_lock
, flags
);
2001 spin_lock(&iommu
->lock
);
2004 context
= iommu_context_addr(iommu
, bus
, devfn
, 1);
2009 if (context_present(context
))
2013 * For kdump cases, old valid entries may be cached due to the
2014 * in-flight DMA and copied pgtable, but there is no unmapping
2015 * behaviour for them, thus we need an explicit cache flush for
2016 * the newly-mapped device. For kdump, at this point, the device
2017 * is supposed to finish reset at its driver probe stage, so no
2018 * in-flight DMA will exist, and we don't need to worry anymore
2021 if (context_copied(context
)) {
2022 u16 did_old
= context_domain_id(context
);
2024 if (did_old
< cap_ndoms(iommu
->cap
)) {
2025 iommu
->flush
.flush_context(iommu
, did_old
,
2026 (((u16
)bus
) << 8) | devfn
,
2027 DMA_CCMD_MASK_NOBIT
,
2028 DMA_CCMD_DEVICE_INVL
);
2029 iommu
->flush
.flush_iotlb(iommu
, did_old
, 0, 0,
2034 context_clear_entry(context
);
2036 if (sm_supported(iommu
)) {
2041 /* Setup the PASID DIR pointer: */
2042 pds
= context_get_sm_pds(table
);
2043 context
->lo
= (u64
)virt_to_phys(table
->table
) |
2046 /* Setup the RID_PASID field: */
2047 context_set_sm_rid2pasid(context
, PASID_RID2PASID
);
2050 * Setup the Device-TLB enable bit and Page request
2053 info
= iommu_support_dev_iotlb(domain
, iommu
, bus
, devfn
);
2054 if (info
&& info
->ats_supported
)
2055 context_set_sm_dte(context
);
2056 if (info
&& info
->pri_supported
)
2057 context_set_sm_pre(context
);
2059 struct dma_pte
*pgd
= domain
->pgd
;
2062 context_set_domain_id(context
, did
);
2064 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
2066 * Skip top levels of page tables for iommu which has
2067 * less agaw than default. Unnecessary for PT mode.
2069 for (agaw
= domain
->agaw
; agaw
> iommu
->agaw
; agaw
--) {
2071 pgd
= phys_to_virt(dma_pte_addr(pgd
));
2072 if (!dma_pte_present(pgd
))
2076 info
= iommu_support_dev_iotlb(domain
, iommu
, bus
, devfn
);
2077 if (info
&& info
->ats_supported
)
2078 translation
= CONTEXT_TT_DEV_IOTLB
;
2080 translation
= CONTEXT_TT_MULTI_LEVEL
;
2082 context_set_address_root(context
, virt_to_phys(pgd
));
2083 context_set_address_width(context
, agaw
);
2086 * In pass through mode, AW must be programmed to
2087 * indicate the largest AGAW value supported by
2088 * hardware. And ASR is ignored by hardware.
2090 context_set_address_width(context
, iommu
->msagaw
);
2093 context_set_translation_type(context
, translation
);
2096 context_set_fault_enable(context
);
2097 context_set_present(context
);
2098 domain_flush_cache(domain
, context
, sizeof(*context
));
2101 * It's a non-present to present mapping. If hardware doesn't cache
2102 * non-present entry we only need to flush the write-buffer. If the
2103 * _does_ cache non-present entries, then it does so in the special
2104 * domain #0, which we have to flush:
2106 if (cap_caching_mode(iommu
->cap
)) {
2107 iommu
->flush
.flush_context(iommu
, 0,
2108 (((u16
)bus
) << 8) | devfn
,
2109 DMA_CCMD_MASK_NOBIT
,
2110 DMA_CCMD_DEVICE_INVL
);
2111 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0, DMA_TLB_DSI_FLUSH
);
2113 iommu_flush_write_buffer(iommu
);
2115 iommu_enable_dev_iotlb(info
);
2120 spin_unlock(&iommu
->lock
);
2121 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2126 struct domain_context_mapping_data
{
2127 struct dmar_domain
*domain
;
2128 struct intel_iommu
*iommu
;
2129 struct pasid_table
*table
;
2132 static int domain_context_mapping_cb(struct pci_dev
*pdev
,
2133 u16 alias
, void *opaque
)
2135 struct domain_context_mapping_data
*data
= opaque
;
2137 return domain_context_mapping_one(data
->domain
, data
->iommu
,
2138 data
->table
, PCI_BUS_NUM(alias
),
2143 domain_context_mapping(struct dmar_domain
*domain
, struct device
*dev
)
2145 struct domain_context_mapping_data data
;
2146 struct pasid_table
*table
;
2147 struct intel_iommu
*iommu
;
2150 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
2154 table
= intel_pasid_get_table(dev
);
2156 if (!dev_is_pci(dev
))
2157 return domain_context_mapping_one(domain
, iommu
, table
,
2160 data
.domain
= domain
;
2164 return pci_for_each_dma_alias(to_pci_dev(dev
),
2165 &domain_context_mapping_cb
, &data
);
2168 static int domain_context_mapped_cb(struct pci_dev
*pdev
,
2169 u16 alias
, void *opaque
)
2171 struct intel_iommu
*iommu
= opaque
;
2173 return !device_context_mapped(iommu
, PCI_BUS_NUM(alias
), alias
& 0xff);
2176 static int domain_context_mapped(struct device
*dev
)
2178 struct intel_iommu
*iommu
;
2181 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
2185 if (!dev_is_pci(dev
))
2186 return device_context_mapped(iommu
, bus
, devfn
);
2188 return !pci_for_each_dma_alias(to_pci_dev(dev
),
2189 domain_context_mapped_cb
, iommu
);
2192 /* Returns a number of VTD pages, but aligned to MM page size */
2193 static inline unsigned long aligned_nrpages(unsigned long host_addr
,
2196 host_addr
&= ~PAGE_MASK
;
2197 return PAGE_ALIGN(host_addr
+ size
) >> VTD_PAGE_SHIFT
;
2200 /* Return largest possible superpage level for a given mapping */
2201 static inline int hardware_largepage_caps(struct dmar_domain
*domain
,
2202 unsigned long iov_pfn
,
2203 unsigned long phy_pfn
,
2204 unsigned long pages
)
2206 int support
, level
= 1;
2207 unsigned long pfnmerge
;
2209 support
= domain
->iommu_superpage
;
2211 /* To use a large page, the virtual *and* physical addresses
2212 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
2213 of them will mean we have to use smaller pages. So just
2214 merge them and check both at once. */
2215 pfnmerge
= iov_pfn
| phy_pfn
;
2217 while (support
&& !(pfnmerge
& ~VTD_STRIDE_MASK
)) {
2218 pages
>>= VTD_STRIDE_SHIFT
;
2221 pfnmerge
>>= VTD_STRIDE_SHIFT
;
2228 static int __domain_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
2229 struct scatterlist
*sg
, unsigned long phys_pfn
,
2230 unsigned long nr_pages
, int prot
)
2232 struct dma_pte
*first_pte
= NULL
, *pte
= NULL
;
2233 phys_addr_t
uninitialized_var(pteval
);
2234 unsigned long sg_res
= 0;
2235 unsigned int largepage_lvl
= 0;
2236 unsigned long lvl_pages
= 0;
2238 BUG_ON(!domain_pfn_supported(domain
, iov_pfn
+ nr_pages
- 1));
2240 if ((prot
& (DMA_PTE_READ
|DMA_PTE_WRITE
)) == 0)
2243 prot
&= DMA_PTE_READ
| DMA_PTE_WRITE
| DMA_PTE_SNP
;
2247 pteval
= ((phys_addr_t
)phys_pfn
<< VTD_PAGE_SHIFT
) | prot
;
2250 while (nr_pages
> 0) {
2254 unsigned int pgoff
= sg
->offset
& ~PAGE_MASK
;
2256 sg_res
= aligned_nrpages(sg
->offset
, sg
->length
);
2257 sg
->dma_address
= ((dma_addr_t
)iov_pfn
<< VTD_PAGE_SHIFT
) + pgoff
;
2258 sg
->dma_length
= sg
->length
;
2259 pteval
= (sg_phys(sg
) - pgoff
) | prot
;
2260 phys_pfn
= pteval
>> VTD_PAGE_SHIFT
;
2264 largepage_lvl
= hardware_largepage_caps(domain
, iov_pfn
, phys_pfn
, sg_res
);
2266 first_pte
= pte
= pfn_to_dma_pte(domain
, iov_pfn
, &largepage_lvl
);
2269 /* It is large page*/
2270 if (largepage_lvl
> 1) {
2271 unsigned long nr_superpages
, end_pfn
;
2273 pteval
|= DMA_PTE_LARGE_PAGE
;
2274 lvl_pages
= lvl_to_nr_pages(largepage_lvl
);
2276 nr_superpages
= sg_res
/ lvl_pages
;
2277 end_pfn
= iov_pfn
+ nr_superpages
* lvl_pages
- 1;
2280 * Ensure that old small page tables are
2281 * removed to make room for superpage(s).
2282 * We're adding new large pages, so make sure
2283 * we don't remove their parent tables.
2285 dma_pte_free_pagetable(domain
, iov_pfn
, end_pfn
,
2288 pteval
&= ~(uint64_t)DMA_PTE_LARGE_PAGE
;
2292 /* We don't need lock here, nobody else
2293 * touches the iova range
2295 tmp
= cmpxchg64_local(&pte
->val
, 0ULL, pteval
);
2297 static int dumps
= 5;
2298 pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
2299 iov_pfn
, tmp
, (unsigned long long)pteval
);
2302 debug_dma_dump_mappings(NULL
);
2307 lvl_pages
= lvl_to_nr_pages(largepage_lvl
);
2309 BUG_ON(nr_pages
< lvl_pages
);
2310 BUG_ON(sg_res
< lvl_pages
);
2312 nr_pages
-= lvl_pages
;
2313 iov_pfn
+= lvl_pages
;
2314 phys_pfn
+= lvl_pages
;
2315 pteval
+= lvl_pages
* VTD_PAGE_SIZE
;
2316 sg_res
-= lvl_pages
;
2318 /* If the next PTE would be the first in a new page, then we
2319 need to flush the cache on the entries we've just written.
2320 And then we'll need to recalculate 'pte', so clear it and
2321 let it get set again in the if (!pte) block above.
2323 If we're done (!nr_pages) we need to flush the cache too.
2325 Also if we've been setting superpages, we may need to
2326 recalculate 'pte' and switch back to smaller pages for the
2327 end of the mapping, if the trailing size is not enough to
2328 use another superpage (i.e. sg_res < lvl_pages). */
2330 if (!nr_pages
|| first_pte_in_page(pte
) ||
2331 (largepage_lvl
> 1 && sg_res
< lvl_pages
)) {
2332 domain_flush_cache(domain
, first_pte
,
2333 (void *)pte
- (void *)first_pte
);
2337 if (!sg_res
&& nr_pages
)
2343 static int domain_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
2344 struct scatterlist
*sg
, unsigned long phys_pfn
,
2345 unsigned long nr_pages
, int prot
)
2348 struct intel_iommu
*iommu
;
2350 /* Do the real mapping first */
2351 ret
= __domain_mapping(domain
, iov_pfn
, sg
, phys_pfn
, nr_pages
, prot
);
2355 /* Notify about the new mapping */
2356 if (domain_type_is_vm(domain
)) {
2357 /* VM typed domains can have more than one IOMMUs */
2360 for_each_domain_iommu(iommu_id
, domain
) {
2361 iommu
= g_iommus
[iommu_id
];
2362 __mapping_notify_one(iommu
, domain
, iov_pfn
, nr_pages
);
2365 /* General domains only have one IOMMU */
2366 iommu
= domain_get_iommu(domain
);
2367 __mapping_notify_one(iommu
, domain
, iov_pfn
, nr_pages
);
2373 static inline int domain_sg_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
2374 struct scatterlist
*sg
, unsigned long nr_pages
,
2377 return domain_mapping(domain
, iov_pfn
, sg
, 0, nr_pages
, prot
);
2380 static inline int domain_pfn_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
2381 unsigned long phys_pfn
, unsigned long nr_pages
,
2384 return domain_mapping(domain
, iov_pfn
, NULL
, phys_pfn
, nr_pages
, prot
);
2387 static void domain_context_clear_one(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
2389 unsigned long flags
;
2390 struct context_entry
*context
;
2396 spin_lock_irqsave(&iommu
->lock
, flags
);
2397 context
= iommu_context_addr(iommu
, bus
, devfn
, 0);
2399 spin_unlock_irqrestore(&iommu
->lock
, flags
);
2402 did_old
= context_domain_id(context
);
2403 context_clear_entry(context
);
2404 __iommu_flush_cache(iommu
, context
, sizeof(*context
));
2405 spin_unlock_irqrestore(&iommu
->lock
, flags
);
2406 iommu
->flush
.flush_context(iommu
,
2408 (((u16
)bus
) << 8) | devfn
,
2409 DMA_CCMD_MASK_NOBIT
,
2410 DMA_CCMD_DEVICE_INVL
);
2411 iommu
->flush
.flush_iotlb(iommu
,
2418 static inline void unlink_domain_info(struct device_domain_info
*info
)
2420 assert_spin_locked(&device_domain_lock
);
2421 list_del(&info
->link
);
2422 list_del(&info
->global
);
2424 info
->dev
->archdata
.iommu
= NULL
;
2427 static void domain_remove_dev_info(struct dmar_domain
*domain
)
2429 struct device_domain_info
*info
, *tmp
;
2430 unsigned long flags
;
2432 spin_lock_irqsave(&device_domain_lock
, flags
);
2433 list_for_each_entry_safe(info
, tmp
, &domain
->devices
, link
)
2434 __dmar_remove_one_dev_info(info
);
2435 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2440 * Note: we use struct device->archdata.iommu stores the info
2442 static struct dmar_domain
*find_domain(struct device
*dev
)
2444 struct device_domain_info
*info
;
2446 /* No lock here, assumes no domain exit in normal case */
2447 info
= dev
->archdata
.iommu
;
2449 return info
->domain
;
2453 static inline struct device_domain_info
*
2454 dmar_search_domain_by_dev_info(int segment
, int bus
, int devfn
)
2456 struct device_domain_info
*info
;
2458 list_for_each_entry(info
, &device_domain_list
, global
)
2459 if (info
->iommu
->segment
== segment
&& info
->bus
== bus
&&
2460 info
->devfn
== devfn
)
2466 static struct dmar_domain
*dmar_insert_one_dev_info(struct intel_iommu
*iommu
,
2469 struct dmar_domain
*domain
)
2471 struct dmar_domain
*found
= NULL
;
2472 struct device_domain_info
*info
;
2473 unsigned long flags
;
2476 info
= alloc_devinfo_mem();
2481 info
->devfn
= devfn
;
2482 info
->ats_supported
= info
->pasid_supported
= info
->pri_supported
= 0;
2483 info
->ats_enabled
= info
->pasid_enabled
= info
->pri_enabled
= 0;
2486 info
->domain
= domain
;
2487 info
->iommu
= iommu
;
2488 info
->pasid_table
= NULL
;
2489 info
->auxd_enabled
= 0;
2490 INIT_LIST_HEAD(&info
->auxiliary_domains
);
2492 if (dev
&& dev_is_pci(dev
)) {
2493 struct pci_dev
*pdev
= to_pci_dev(info
->dev
);
2495 if (!pdev
->untrusted
&&
2496 !pci_ats_disabled() &&
2497 ecap_dev_iotlb_support(iommu
->ecap
) &&
2498 pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
) &&
2499 dmar_find_matched_atsr_unit(pdev
))
2500 info
->ats_supported
= 1;
2502 if (sm_supported(iommu
)) {
2503 if (pasid_supported(iommu
)) {
2504 int features
= pci_pasid_features(pdev
);
2506 info
->pasid_supported
= features
| 1;
2509 if (info
->ats_supported
&& ecap_prs(iommu
->ecap
) &&
2510 pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
))
2511 info
->pri_supported
= 1;
2515 spin_lock_irqsave(&device_domain_lock
, flags
);
2517 found
= find_domain(dev
);
2520 struct device_domain_info
*info2
;
2521 info2
= dmar_search_domain_by_dev_info(iommu
->segment
, bus
, devfn
);
2523 found
= info2
->domain
;
2529 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2530 free_devinfo_mem(info
);
2531 /* Caller must free the original domain */
2535 spin_lock(&iommu
->lock
);
2536 ret
= domain_attach_iommu(domain
, iommu
);
2537 spin_unlock(&iommu
->lock
);
2540 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2541 free_devinfo_mem(info
);
2545 list_add(&info
->link
, &domain
->devices
);
2546 list_add(&info
->global
, &device_domain_list
);
2548 dev
->archdata
.iommu
= info
;
2549 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2551 /* PASID table is mandatory for a PCI device in scalable mode. */
2552 if (dev
&& dev_is_pci(dev
) && sm_supported(iommu
)) {
2553 ret
= intel_pasid_alloc_table(dev
);
2555 dev_err(dev
, "PASID table allocation failed\n");
2556 dmar_remove_one_dev_info(dev
);
2560 /* Setup the PASID entry for requests without PASID: */
2561 spin_lock(&iommu
->lock
);
2562 if (hw_pass_through
&& domain_type_is_si(domain
))
2563 ret
= intel_pasid_setup_pass_through(iommu
, domain
,
2564 dev
, PASID_RID2PASID
);
2566 ret
= intel_pasid_setup_second_level(iommu
, domain
,
2567 dev
, PASID_RID2PASID
);
2568 spin_unlock(&iommu
->lock
);
2570 dev_err(dev
, "Setup RID2PASID failed\n");
2571 dmar_remove_one_dev_info(dev
);
2576 if (dev
&& domain_context_mapping(domain
, dev
)) {
2577 dev_err(dev
, "Domain context map failed\n");
2578 dmar_remove_one_dev_info(dev
);
2585 static int get_last_alias(struct pci_dev
*pdev
, u16 alias
, void *opaque
)
2587 *(u16
*)opaque
= alias
;
2591 static struct dmar_domain
*find_or_alloc_domain(struct device
*dev
, int gaw
)
2593 struct device_domain_info
*info
;
2594 struct dmar_domain
*domain
= NULL
;
2595 struct intel_iommu
*iommu
;
2597 unsigned long flags
;
2600 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
2604 if (dev_is_pci(dev
)) {
2605 struct pci_dev
*pdev
= to_pci_dev(dev
);
2607 pci_for_each_dma_alias(pdev
, get_last_alias
, &dma_alias
);
2609 spin_lock_irqsave(&device_domain_lock
, flags
);
2610 info
= dmar_search_domain_by_dev_info(pci_domain_nr(pdev
->bus
),
2611 PCI_BUS_NUM(dma_alias
),
2614 iommu
= info
->iommu
;
2615 domain
= info
->domain
;
2617 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2619 /* DMA alias already has a domain, use it */
2624 /* Allocate and initialize new domain for the device */
2625 domain
= alloc_domain(0);
2628 if (domain_init(domain
, iommu
, gaw
)) {
2629 domain_exit(domain
);
2638 static struct dmar_domain
*set_domain_for_dev(struct device
*dev
,
2639 struct dmar_domain
*domain
)
2641 struct intel_iommu
*iommu
;
2642 struct dmar_domain
*tmp
;
2643 u16 req_id
, dma_alias
;
2646 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
2650 req_id
= ((u16
)bus
<< 8) | devfn
;
2652 if (dev_is_pci(dev
)) {
2653 struct pci_dev
*pdev
= to_pci_dev(dev
);
2655 pci_for_each_dma_alias(pdev
, get_last_alias
, &dma_alias
);
2657 /* register PCI DMA alias device */
2658 if (req_id
!= dma_alias
) {
2659 tmp
= dmar_insert_one_dev_info(iommu
, PCI_BUS_NUM(dma_alias
),
2660 dma_alias
& 0xff, NULL
, domain
);
2662 if (!tmp
|| tmp
!= domain
)
2667 tmp
= dmar_insert_one_dev_info(iommu
, bus
, devfn
, dev
, domain
);
2668 if (!tmp
|| tmp
!= domain
)
2674 static struct dmar_domain
*get_domain_for_dev(struct device
*dev
, int gaw
)
2676 struct dmar_domain
*domain
, *tmp
;
2678 domain
= find_domain(dev
);
2682 domain
= find_or_alloc_domain(dev
, gaw
);
2686 tmp
= set_domain_for_dev(dev
, domain
);
2687 if (!tmp
|| domain
!= tmp
) {
2688 domain_exit(domain
);
2697 static int iommu_domain_identity_map(struct dmar_domain
*domain
,
2698 unsigned long long start
,
2699 unsigned long long end
)
2701 unsigned long first_vpfn
= start
>> VTD_PAGE_SHIFT
;
2702 unsigned long last_vpfn
= end
>> VTD_PAGE_SHIFT
;
2704 if (!reserve_iova(&domain
->iovad
, dma_to_mm_pfn(first_vpfn
),
2705 dma_to_mm_pfn(last_vpfn
))) {
2706 pr_err("Reserving iova failed\n");
2710 pr_debug("Mapping reserved region %llx-%llx\n", start
, end
);
2712 * RMRR range might have overlap with physical memory range,
2715 dma_pte_clear_range(domain
, first_vpfn
, last_vpfn
);
2717 return __domain_mapping(domain
, first_vpfn
, NULL
,
2718 first_vpfn
, last_vpfn
- first_vpfn
+ 1,
2719 DMA_PTE_READ
|DMA_PTE_WRITE
);
2722 static int domain_prepare_identity_map(struct device
*dev
,
2723 struct dmar_domain
*domain
,
2724 unsigned long long start
,
2725 unsigned long long end
)
2727 /* For _hardware_ passthrough, don't bother. But for software
2728 passthrough, we do it anyway -- it may indicate a memory
2729 range which is reserved in E820, so which didn't get set
2730 up to start with in si_domain */
2731 if (domain
== si_domain
&& hw_pass_through
) {
2732 dev_warn(dev
, "Ignoring identity map for HW passthrough [0x%Lx - 0x%Lx]\n",
2737 dev_info(dev
, "Setting identity map [0x%Lx - 0x%Lx]\n", start
, end
);
2740 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2741 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2742 dmi_get_system_info(DMI_BIOS_VENDOR
),
2743 dmi_get_system_info(DMI_BIOS_VERSION
),
2744 dmi_get_system_info(DMI_PRODUCT_VERSION
));
2748 if (end
>> agaw_to_width(domain
->agaw
)) {
2749 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2750 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2751 agaw_to_width(domain
->agaw
),
2752 dmi_get_system_info(DMI_BIOS_VENDOR
),
2753 dmi_get_system_info(DMI_BIOS_VERSION
),
2754 dmi_get_system_info(DMI_PRODUCT_VERSION
));
2758 return iommu_domain_identity_map(domain
, start
, end
);
2761 static int iommu_prepare_identity_map(struct device
*dev
,
2762 unsigned long long start
,
2763 unsigned long long end
)
2765 struct dmar_domain
*domain
;
2768 domain
= get_domain_for_dev(dev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2772 ret
= domain_prepare_identity_map(dev
, domain
, start
, end
);
2774 domain_exit(domain
);
2779 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit
*rmrr
,
2782 if (dev
->archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
2784 return iommu_prepare_identity_map(dev
, rmrr
->base_address
,
2788 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2789 static inline void iommu_prepare_isa(void)
2791 struct pci_dev
*pdev
;
2794 pdev
= pci_get_class(PCI_CLASS_BRIDGE_ISA
<< 8, NULL
);
2798 pr_info("Prepare 0-16MiB unity mapping for LPC\n");
2799 ret
= iommu_prepare_identity_map(&pdev
->dev
, 0, 16*1024*1024 - 1);
2802 pr_err("Failed to create 0-16MiB identity map - floppy might not work\n");
2807 static inline void iommu_prepare_isa(void)
2811 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2813 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
);
2815 static int __init
si_domain_init(int hw
)
2819 si_domain
= alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY
);
2823 if (md_domain_init(si_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
2824 domain_exit(si_domain
);
2828 pr_debug("Identity mapping domain allocated\n");
2833 for_each_online_node(nid
) {
2834 unsigned long start_pfn
, end_pfn
;
2837 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
2838 ret
= iommu_domain_identity_map(si_domain
,
2839 PFN_PHYS(start_pfn
), PFN_PHYS(end_pfn
));
2848 static int identity_mapping(struct device
*dev
)
2850 struct device_domain_info
*info
;
2852 if (likely(!iommu_identity_mapping
))
2855 info
= dev
->archdata
.iommu
;
2856 if (info
&& info
!= DUMMY_DEVICE_DOMAIN_INFO
)
2857 return (info
->domain
== si_domain
);
2862 static int domain_add_dev_info(struct dmar_domain
*domain
, struct device
*dev
)
2864 struct dmar_domain
*ndomain
;
2865 struct intel_iommu
*iommu
;
2868 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
2872 ndomain
= dmar_insert_one_dev_info(iommu
, bus
, devfn
, dev
, domain
);
2873 if (ndomain
!= domain
)
2879 static bool device_has_rmrr(struct device
*dev
)
2881 struct dmar_rmrr_unit
*rmrr
;
2886 for_each_rmrr_units(rmrr
) {
2888 * Return TRUE if this RMRR contains the device that
2891 for_each_active_dev_scope(rmrr
->devices
,
2892 rmrr
->devices_cnt
, i
, tmp
)
2903 * There are a couple cases where we need to restrict the functionality of
2904 * devices associated with RMRRs. The first is when evaluating a device for
2905 * identity mapping because problems exist when devices are moved in and out
2906 * of domains and their respective RMRR information is lost. This means that
2907 * a device with associated RMRRs will never be in a "passthrough" domain.
2908 * The second is use of the device through the IOMMU API. This interface
2909 * expects to have full control of the IOVA space for the device. We cannot
2910 * satisfy both the requirement that RMRR access is maintained and have an
2911 * unencumbered IOVA space. We also have no ability to quiesce the device's
2912 * use of the RMRR space or even inform the IOMMU API user of the restriction.
2913 * We therefore prevent devices associated with an RMRR from participating in
2914 * the IOMMU API, which eliminates them from device assignment.
2916 * In both cases we assume that PCI USB devices with RMRRs have them largely
2917 * for historical reasons and that the RMRR space is not actively used post
2918 * boot. This exclusion may change if vendors begin to abuse it.
2920 * The same exception is made for graphics devices, with the requirement that
2921 * any use of the RMRR regions will be torn down before assigning the device
2924 static bool device_is_rmrr_locked(struct device
*dev
)
2926 if (!device_has_rmrr(dev
))
2929 if (dev_is_pci(dev
)) {
2930 struct pci_dev
*pdev
= to_pci_dev(dev
);
2932 if (IS_USB_DEVICE(pdev
) || IS_GFX_DEVICE(pdev
))
2939 static int iommu_should_identity_map(struct device
*dev
, int startup
)
2941 if (dev_is_pci(dev
)) {
2942 struct pci_dev
*pdev
= to_pci_dev(dev
);
2944 if (device_is_rmrr_locked(dev
))
2948 * Prevent any device marked as untrusted from getting
2949 * placed into the statically identity mapping domain.
2951 if (pdev
->untrusted
)
2954 if ((iommu_identity_mapping
& IDENTMAP_AZALIA
) && IS_AZALIA(pdev
))
2957 if ((iommu_identity_mapping
& IDENTMAP_GFX
) && IS_GFX_DEVICE(pdev
))
2960 if (!(iommu_identity_mapping
& IDENTMAP_ALL
))
2964 * We want to start off with all devices in the 1:1 domain, and
2965 * take them out later if we find they can't access all of memory.
2967 * However, we can't do this for PCI devices behind bridges,
2968 * because all PCI devices behind the same bridge will end up
2969 * with the same source-id on their transactions.
2971 * Practically speaking, we can't change things around for these
2972 * devices at run-time, because we can't be sure there'll be no
2973 * DMA transactions in flight for any of their siblings.
2975 * So PCI devices (unless they're on the root bus) as well as
2976 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2977 * the 1:1 domain, just in _case_ one of their siblings turns out
2978 * not to be able to map all of memory.
2980 if (!pci_is_pcie(pdev
)) {
2981 if (!pci_is_root_bus(pdev
->bus
))
2983 if (pdev
->class >> 8 == PCI_CLASS_BRIDGE_PCI
)
2985 } else if (pci_pcie_type(pdev
) == PCI_EXP_TYPE_PCI_BRIDGE
)
2988 if (device_has_rmrr(dev
))
2993 * At boot time, we don't yet know if devices will be 64-bit capable.
2994 * Assume that they will — if they turn out not to be, then we can
2995 * take them out of the 1:1 domain later.
2999 * If the device's dma_mask is less than the system's memory
3000 * size then this is not a candidate for identity mapping.
3002 u64 dma_mask
= *dev
->dma_mask
;
3004 if (dev
->coherent_dma_mask
&&
3005 dev
->coherent_dma_mask
< dma_mask
)
3006 dma_mask
= dev
->coherent_dma_mask
;
3008 return dma_mask
>= dma_get_required_mask(dev
);
3014 static int __init
dev_prepare_static_identity_mapping(struct device
*dev
, int hw
)
3018 if (!iommu_should_identity_map(dev
, 1))
3021 ret
= domain_add_dev_info(si_domain
, dev
);
3023 dev_info(dev
, "%s identity mapping\n",
3024 hw
? "Hardware" : "Software");
3025 else if (ret
== -ENODEV
)
3026 /* device not associated with an iommu */
3033 static int __init
iommu_prepare_static_identity_mapping(int hw
)
3035 struct pci_dev
*pdev
= NULL
;
3036 struct dmar_drhd_unit
*drhd
;
3037 /* To avoid a -Wunused-but-set-variable warning. */
3038 struct intel_iommu
*iommu __maybe_unused
;
3043 for_each_pci_dev(pdev
) {
3044 ret
= dev_prepare_static_identity_mapping(&pdev
->dev
, hw
);
3049 for_each_active_iommu(iommu
, drhd
)
3050 for_each_active_dev_scope(drhd
->devices
, drhd
->devices_cnt
, i
, dev
) {
3051 struct acpi_device_physical_node
*pn
;
3052 struct acpi_device
*adev
;
3054 if (dev
->bus
!= &acpi_bus_type
)
3057 adev
= to_acpi_device(dev
);
3058 mutex_lock(&adev
->physical_node_lock
);
3059 list_for_each_entry(pn
, &adev
->physical_node_list
, node
) {
3060 ret
= dev_prepare_static_identity_mapping(pn
->dev
, hw
);
3064 mutex_unlock(&adev
->physical_node_lock
);
3072 static void intel_iommu_init_qi(struct intel_iommu
*iommu
)
3075 * Start from the sane iommu hardware state.
3076 * If the queued invalidation is already initialized by us
3077 * (for example, while enabling interrupt-remapping) then
3078 * we got the things already rolling from a sane state.
3082 * Clear any previous faults.
3084 dmar_fault(-1, iommu
);
3086 * Disable queued invalidation if supported and already enabled
3087 * before OS handover.
3089 dmar_disable_qi(iommu
);
3092 if (dmar_enable_qi(iommu
)) {
3094 * Queued Invalidate not enabled, use Register Based Invalidate
3096 iommu
->flush
.flush_context
= __iommu_flush_context
;
3097 iommu
->flush
.flush_iotlb
= __iommu_flush_iotlb
;
3098 pr_info("%s: Using Register based invalidation\n",
3101 iommu
->flush
.flush_context
= qi_flush_context
;
3102 iommu
->flush
.flush_iotlb
= qi_flush_iotlb
;
3103 pr_info("%s: Using Queued invalidation\n", iommu
->name
);
3107 static int copy_context_table(struct intel_iommu
*iommu
,
3108 struct root_entry
*old_re
,
3109 struct context_entry
**tbl
,
3112 int tbl_idx
, pos
= 0, idx
, devfn
, ret
= 0, did
;
3113 struct context_entry
*new_ce
= NULL
, ce
;
3114 struct context_entry
*old_ce
= NULL
;
3115 struct root_entry re
;
3116 phys_addr_t old_ce_phys
;
3118 tbl_idx
= ext
? bus
* 2 : bus
;
3119 memcpy(&re
, old_re
, sizeof(re
));
3121 for (devfn
= 0; devfn
< 256; devfn
++) {
3122 /* First calculate the correct index */
3123 idx
= (ext
? devfn
* 2 : devfn
) % 256;
3126 /* First save what we may have and clean up */
3128 tbl
[tbl_idx
] = new_ce
;
3129 __iommu_flush_cache(iommu
, new_ce
,
3139 old_ce_phys
= root_entry_lctp(&re
);
3141 old_ce_phys
= root_entry_uctp(&re
);
3144 if (ext
&& devfn
== 0) {
3145 /* No LCTP, try UCTP */
3154 old_ce
= memremap(old_ce_phys
, PAGE_SIZE
,
3159 new_ce
= alloc_pgtable_page(iommu
->node
);
3166 /* Now copy the context entry */
3167 memcpy(&ce
, old_ce
+ idx
, sizeof(ce
));
3169 if (!__context_present(&ce
))
3172 did
= context_domain_id(&ce
);
3173 if (did
>= 0 && did
< cap_ndoms(iommu
->cap
))
3174 set_bit(did
, iommu
->domain_ids
);
3177 * We need a marker for copied context entries. This
3178 * marker needs to work for the old format as well as
3179 * for extended context entries.
3181 * Bit 67 of the context entry is used. In the old
3182 * format this bit is available to software, in the
3183 * extended format it is the PGE bit, but PGE is ignored
3184 * by HW if PASIDs are disabled (and thus still
3187 * So disable PASIDs first and then mark the entry
3188 * copied. This means that we don't copy PASID
3189 * translations from the old kernel, but this is fine as
3190 * faults there are not fatal.
3192 context_clear_pasid_enable(&ce
);
3193 context_set_copied(&ce
);
3198 tbl
[tbl_idx
+ pos
] = new_ce
;
3200 __iommu_flush_cache(iommu
, new_ce
, VTD_PAGE_SIZE
);
3209 static int copy_translation_tables(struct intel_iommu
*iommu
)
3211 struct context_entry
**ctxt_tbls
;
3212 struct root_entry
*old_rt
;
3213 phys_addr_t old_rt_phys
;
3214 int ctxt_table_entries
;
3215 unsigned long flags
;
3220 rtaddr_reg
= dmar_readq(iommu
->reg
+ DMAR_RTADDR_REG
);
3221 ext
= !!(rtaddr_reg
& DMA_RTADDR_RTT
);
3222 new_ext
= !!ecap_ecs(iommu
->ecap
);
3225 * The RTT bit can only be changed when translation is disabled,
3226 * but disabling translation means to open a window for data
3227 * corruption. So bail out and don't copy anything if we would
3228 * have to change the bit.
3233 old_rt_phys
= rtaddr_reg
& VTD_PAGE_MASK
;
3237 old_rt
= memremap(old_rt_phys
, PAGE_SIZE
, MEMREMAP_WB
);
3241 /* This is too big for the stack - allocate it from slab */
3242 ctxt_table_entries
= ext
? 512 : 256;
3244 ctxt_tbls
= kcalloc(ctxt_table_entries
, sizeof(void *), GFP_KERNEL
);
3248 for (bus
= 0; bus
< 256; bus
++) {
3249 ret
= copy_context_table(iommu
, &old_rt
[bus
],
3250 ctxt_tbls
, bus
, ext
);
3252 pr_err("%s: Failed to copy context table for bus %d\n",
3258 spin_lock_irqsave(&iommu
->lock
, flags
);
3260 /* Context tables are copied, now write them to the root_entry table */
3261 for (bus
= 0; bus
< 256; bus
++) {
3262 int idx
= ext
? bus
* 2 : bus
;
3265 if (ctxt_tbls
[idx
]) {
3266 val
= virt_to_phys(ctxt_tbls
[idx
]) | 1;
3267 iommu
->root_entry
[bus
].lo
= val
;
3270 if (!ext
|| !ctxt_tbls
[idx
+ 1])
3273 val
= virt_to_phys(ctxt_tbls
[idx
+ 1]) | 1;
3274 iommu
->root_entry
[bus
].hi
= val
;
3277 spin_unlock_irqrestore(&iommu
->lock
, flags
);
3281 __iommu_flush_cache(iommu
, iommu
->root_entry
, PAGE_SIZE
);
3291 static int __init
init_dmars(void)
3293 struct dmar_drhd_unit
*drhd
;
3294 struct dmar_rmrr_unit
*rmrr
;
3295 bool copied_tables
= false;
3297 struct intel_iommu
*iommu
;
3303 * initialize and program root entry to not present
3306 for_each_drhd_unit(drhd
) {
3308 * lock not needed as this is only incremented in the single
3309 * threaded kernel __init code path all other access are read
3312 if (g_num_of_iommus
< DMAR_UNITS_SUPPORTED
) {
3316 pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED
);
3319 /* Preallocate enough resources for IOMMU hot-addition */
3320 if (g_num_of_iommus
< DMAR_UNITS_SUPPORTED
)
3321 g_num_of_iommus
= DMAR_UNITS_SUPPORTED
;
3323 g_iommus
= kcalloc(g_num_of_iommus
, sizeof(struct intel_iommu
*),
3326 pr_err("Allocating global iommu array failed\n");
3331 for_each_active_iommu(iommu
, drhd
) {
3333 * Find the max pasid size of all IOMMU's in the system.
3334 * We need to ensure the system pasid table is no bigger
3335 * than the smallest supported.
3337 if (pasid_supported(iommu
)) {
3338 u32 temp
= 2 << ecap_pss(iommu
->ecap
);
3340 intel_pasid_max_id
= min_t(u32
, temp
,
3341 intel_pasid_max_id
);
3344 g_iommus
[iommu
->seq_id
] = iommu
;
3346 intel_iommu_init_qi(iommu
);
3348 ret
= iommu_init_domains(iommu
);
3352 init_translation_status(iommu
);
3354 if (translation_pre_enabled(iommu
) && !is_kdump_kernel()) {
3355 iommu_disable_translation(iommu
);
3356 clear_translation_pre_enabled(iommu
);
3357 pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
3363 * we could share the same root & context tables
3364 * among all IOMMU's. Need to Split it later.
3366 ret
= iommu_alloc_root_entry(iommu
);
3370 if (translation_pre_enabled(iommu
)) {
3371 pr_info("Translation already enabled - trying to copy translation structures\n");
3373 ret
= copy_translation_tables(iommu
);
3376 * We found the IOMMU with translation
3377 * enabled - but failed to copy over the
3378 * old root-entry table. Try to proceed
3379 * by disabling translation now and
3380 * allocating a clean root-entry table.
3381 * This might cause DMAR faults, but
3382 * probably the dump will still succeed.
3384 pr_err("Failed to copy translation tables from previous kernel for %s\n",
3386 iommu_disable_translation(iommu
);
3387 clear_translation_pre_enabled(iommu
);
3389 pr_info("Copied translation tables from previous kernel for %s\n",
3391 copied_tables
= true;
3395 if (!ecap_pass_through(iommu
->ecap
))
3396 hw_pass_through
= 0;
3397 #ifdef CONFIG_INTEL_IOMMU_SVM
3398 if (pasid_supported(iommu
))
3399 intel_svm_init(iommu
);
3404 * Now that qi is enabled on all iommus, set the root entry and flush
3405 * caches. This is required on some Intel X58 chipsets, otherwise the
3406 * flush_context function will loop forever and the boot hangs.
3408 for_each_active_iommu(iommu
, drhd
) {
3409 iommu_flush_write_buffer(iommu
);
3410 iommu_set_root_entry(iommu
);
3411 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
3412 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
3415 if (iommu_pass_through
)
3416 iommu_identity_mapping
|= IDENTMAP_ALL
;
3418 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
3423 iommu_identity_mapping
|= IDENTMAP_GFX
;
3425 check_tylersburg_isoch();
3427 if (iommu_identity_mapping
) {
3428 ret
= si_domain_init(hw_pass_through
);
3435 * If we copied translations from a previous kernel in the kdump
3436 * case, we can not assign the devices to domains now, as that
3437 * would eliminate the old mappings. So skip this part and defer
3438 * the assignment to device driver initialization time.
3444 * If pass through is not set or not enabled, setup context entries for
3445 * identity mappings for rmrr, gfx, and isa and may fall back to static
3446 * identity mapping if iommu_identity_mapping is set.
3448 if (iommu_identity_mapping
) {
3449 ret
= iommu_prepare_static_identity_mapping(hw_pass_through
);
3451 pr_crit("Failed to setup IOMMU pass-through\n");
3457 * for each dev attached to rmrr
3459 * locate drhd for dev, alloc domain for dev
3460 * allocate free domain
3461 * allocate page table entries for rmrr
3462 * if context not allocated for bus
3463 * allocate and init context
3464 * set present in root table for this bus
3465 * init context with domain, translation etc
3469 pr_info("Setting RMRR:\n");
3470 for_each_rmrr_units(rmrr
) {
3471 /* some BIOS lists non-exist devices in DMAR table. */
3472 for_each_active_dev_scope(rmrr
->devices
, rmrr
->devices_cnt
,
3474 ret
= iommu_prepare_rmrr_dev(rmrr
, dev
);
3476 pr_err("Mapping reserved region failed\n");
3480 iommu_prepare_isa();
3487 * global invalidate context cache
3488 * global invalidate iotlb
3489 * enable translation
3491 for_each_iommu(iommu
, drhd
) {
3492 if (drhd
->ignored
) {
3494 * we always have to disable PMRs or DMA may fail on
3498 iommu_disable_protect_mem_regions(iommu
);
3502 iommu_flush_write_buffer(iommu
);
3504 #ifdef CONFIG_INTEL_IOMMU_SVM
3505 if (pasid_supported(iommu
) && ecap_prs(iommu
->ecap
)) {
3507 * Call dmar_alloc_hwirq() with dmar_global_lock held,
3508 * could cause possible lock race condition.
3510 up_write(&dmar_global_lock
);
3511 ret
= intel_svm_enable_prq(iommu
);
3512 down_write(&dmar_global_lock
);
3517 ret
= dmar_set_interrupt(iommu
);
3521 if (!translation_pre_enabled(iommu
))
3522 iommu_enable_translation(iommu
);
3524 iommu_disable_protect_mem_regions(iommu
);
3530 for_each_active_iommu(iommu
, drhd
) {
3531 disable_dmar_iommu(iommu
);
3532 free_dmar_iommu(iommu
);
3541 /* This takes a number of _MM_ pages, not VTD pages */
3542 static unsigned long intel_alloc_iova(struct device
*dev
,
3543 struct dmar_domain
*domain
,
3544 unsigned long nrpages
, uint64_t dma_mask
)
3546 unsigned long iova_pfn
;
3548 /* Restrict dma_mask to the width that the iommu can handle */
3549 dma_mask
= min_t(uint64_t, DOMAIN_MAX_ADDR(domain
->gaw
), dma_mask
);
3550 /* Ensure we reserve the whole size-aligned region */
3551 nrpages
= __roundup_pow_of_two(nrpages
);
3553 if (!dmar_forcedac
&& dma_mask
> DMA_BIT_MASK(32)) {
3555 * First try to allocate an io virtual address in
3556 * DMA_BIT_MASK(32) and if that fails then try allocating
3559 iova_pfn
= alloc_iova_fast(&domain
->iovad
, nrpages
,
3560 IOVA_PFN(DMA_BIT_MASK(32)), false);
3564 iova_pfn
= alloc_iova_fast(&domain
->iovad
, nrpages
,
3565 IOVA_PFN(dma_mask
), true);
3566 if (unlikely(!iova_pfn
)) {
3567 dev_err(dev
, "Allocating %ld-page iova failed", nrpages
);
3574 struct dmar_domain
*get_valid_domain_for_dev(struct device
*dev
)
3576 struct dmar_domain
*domain
, *tmp
;
3577 struct dmar_rmrr_unit
*rmrr
;
3578 struct device
*i_dev
;
3581 domain
= find_domain(dev
);
3585 domain
= find_or_alloc_domain(dev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
3589 /* We have a new domain - setup possible RMRRs for the device */
3591 for_each_rmrr_units(rmrr
) {
3592 for_each_active_dev_scope(rmrr
->devices
, rmrr
->devices_cnt
,
3597 ret
= domain_prepare_identity_map(dev
, domain
,
3601 dev_err(dev
, "Mapping reserved region failed\n");
3606 tmp
= set_domain_for_dev(dev
, domain
);
3607 if (!tmp
|| domain
!= tmp
) {
3608 domain_exit(domain
);
3615 dev_err(dev
, "Allocating domain failed\n");
3621 /* Check if the dev needs to go through non-identity map and unmap process.*/
3622 static bool iommu_need_mapping(struct device
*dev
)
3626 if (iommu_dummy(dev
))
3629 if (!iommu_identity_mapping
)
3632 found
= identity_mapping(dev
);
3634 if (iommu_should_identity_map(dev
, 0))
3638 * 32 bit DMA is removed from si_domain and fall back to
3639 * non-identity mapping.
3641 dmar_remove_one_dev_info(dev
);
3642 dev_info(dev
, "32bit DMA uses non-identity mapping\n");
3645 * In case of a detached 64 bit DMA device from vm, the device
3646 * is put into si_domain for identity mapping.
3648 if (iommu_should_identity_map(dev
, 0) &&
3649 !domain_add_dev_info(si_domain
, dev
)) {
3650 dev_info(dev
, "64bit DMA uses identity mapping\n");
3658 static dma_addr_t
__intel_map_single(struct device
*dev
, phys_addr_t paddr
,
3659 size_t size
, int dir
, u64 dma_mask
)
3661 struct dmar_domain
*domain
;
3662 phys_addr_t start_paddr
;
3663 unsigned long iova_pfn
;
3666 struct intel_iommu
*iommu
;
3667 unsigned long paddr_pfn
= paddr
>> PAGE_SHIFT
;
3669 BUG_ON(dir
== DMA_NONE
);
3671 domain
= get_valid_domain_for_dev(dev
);
3673 return DMA_MAPPING_ERROR
;
3675 iommu
= domain_get_iommu(domain
);
3676 size
= aligned_nrpages(paddr
, size
);
3678 iova_pfn
= intel_alloc_iova(dev
, domain
, dma_to_mm_pfn(size
), dma_mask
);
3683 * Check if DMAR supports zero-length reads on write only
3686 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
3687 !cap_zlr(iommu
->cap
))
3688 prot
|= DMA_PTE_READ
;
3689 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
3690 prot
|= DMA_PTE_WRITE
;
3692 * paddr - (paddr + size) might be partial page, we should map the whole
3693 * page. Note: if two part of one page are separately mapped, we
3694 * might have two guest_addr mapping to the same host paddr, but this
3695 * is not a big problem
3697 ret
= domain_pfn_mapping(domain
, mm_to_dma_pfn(iova_pfn
),
3698 mm_to_dma_pfn(paddr_pfn
), size
, prot
);
3702 start_paddr
= (phys_addr_t
)iova_pfn
<< PAGE_SHIFT
;
3703 start_paddr
+= paddr
& ~PAGE_MASK
;
3708 free_iova_fast(&domain
->iovad
, iova_pfn
, dma_to_mm_pfn(size
));
3709 dev_err(dev
, "Device request: %zx@%llx dir %d --- failed\n",
3710 size
, (unsigned long long)paddr
, dir
);
3711 return DMA_MAPPING_ERROR
;
3714 static dma_addr_t
intel_map_page(struct device
*dev
, struct page
*page
,
3715 unsigned long offset
, size_t size
,
3716 enum dma_data_direction dir
,
3717 unsigned long attrs
)
3719 if (iommu_need_mapping(dev
))
3720 return __intel_map_single(dev
, page_to_phys(page
) + offset
,
3721 size
, dir
, *dev
->dma_mask
);
3722 return dma_direct_map_page(dev
, page
, offset
, size
, dir
, attrs
);
3725 static dma_addr_t
intel_map_resource(struct device
*dev
, phys_addr_t phys_addr
,
3726 size_t size
, enum dma_data_direction dir
,
3727 unsigned long attrs
)
3729 if (iommu_need_mapping(dev
))
3730 return __intel_map_single(dev
, phys_addr
, size
, dir
,
3732 return dma_direct_map_resource(dev
, phys_addr
, size
, dir
, attrs
);
3735 static void intel_unmap(struct device
*dev
, dma_addr_t dev_addr
, size_t size
)
3737 struct dmar_domain
*domain
;
3738 unsigned long start_pfn
, last_pfn
;
3739 unsigned long nrpages
;
3740 unsigned long iova_pfn
;
3741 struct intel_iommu
*iommu
;
3742 struct page
*freelist
;
3743 struct pci_dev
*pdev
= NULL
;
3745 domain
= find_domain(dev
);
3748 iommu
= domain_get_iommu(domain
);
3750 iova_pfn
= IOVA_PFN(dev_addr
);
3752 nrpages
= aligned_nrpages(dev_addr
, size
);
3753 start_pfn
= mm_to_dma_pfn(iova_pfn
);
3754 last_pfn
= start_pfn
+ nrpages
- 1;
3756 if (dev_is_pci(dev
))
3757 pdev
= to_pci_dev(dev
);
3759 dev_dbg(dev
, "Device unmapping: pfn %lx-%lx\n", start_pfn
, last_pfn
);
3761 freelist
= domain_unmap(domain
, start_pfn
, last_pfn
);
3763 if (intel_iommu_strict
|| (pdev
&& pdev
->untrusted
)) {
3764 iommu_flush_iotlb_psi(iommu
, domain
, start_pfn
,
3765 nrpages
, !freelist
, 0);
3767 free_iova_fast(&domain
->iovad
, iova_pfn
, dma_to_mm_pfn(nrpages
));
3768 dma_free_pagelist(freelist
);
3770 queue_iova(&domain
->iovad
, iova_pfn
, nrpages
,
3771 (unsigned long)freelist
);
3773 * queue up the release of the unmap to save the 1/6th of the
3774 * cpu used up by the iotlb flush operation...
3779 static void intel_unmap_page(struct device
*dev
, dma_addr_t dev_addr
,
3780 size_t size
, enum dma_data_direction dir
,
3781 unsigned long attrs
)
3783 if (iommu_need_mapping(dev
))
3784 intel_unmap(dev
, dev_addr
, size
);
3786 dma_direct_unmap_page(dev
, dev_addr
, size
, dir
, attrs
);
3789 static void intel_unmap_resource(struct device
*dev
, dma_addr_t dev_addr
,
3790 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
3792 if (iommu_need_mapping(dev
))
3793 intel_unmap(dev
, dev_addr
, size
);
3796 static void *intel_alloc_coherent(struct device
*dev
, size_t size
,
3797 dma_addr_t
*dma_handle
, gfp_t flags
,
3798 unsigned long attrs
)
3800 struct page
*page
= NULL
;
3803 if (!iommu_need_mapping(dev
))
3804 return dma_direct_alloc(dev
, size
, dma_handle
, flags
, attrs
);
3806 size
= PAGE_ALIGN(size
);
3807 order
= get_order(size
);
3809 if (gfpflags_allow_blocking(flags
)) {
3810 unsigned int count
= size
>> PAGE_SHIFT
;
3812 page
= dma_alloc_from_contiguous(dev
, count
, order
,
3813 flags
& __GFP_NOWARN
);
3817 page
= alloc_pages(flags
, order
);
3820 memset(page_address(page
), 0, size
);
3822 *dma_handle
= __intel_map_single(dev
, page_to_phys(page
), size
,
3824 dev
->coherent_dma_mask
);
3825 if (*dma_handle
!= DMA_MAPPING_ERROR
)
3826 return page_address(page
);
3827 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
3828 __free_pages(page
, order
);
3833 static void intel_free_coherent(struct device
*dev
, size_t size
, void *vaddr
,
3834 dma_addr_t dma_handle
, unsigned long attrs
)
3837 struct page
*page
= virt_to_page(vaddr
);
3839 if (!iommu_need_mapping(dev
))
3840 return dma_direct_free(dev
, size
, vaddr
, dma_handle
, attrs
);
3842 size
= PAGE_ALIGN(size
);
3843 order
= get_order(size
);
3845 intel_unmap(dev
, dma_handle
, size
);
3846 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
3847 __free_pages(page
, order
);
3850 static void intel_unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
3851 int nelems
, enum dma_data_direction dir
,
3852 unsigned long attrs
)
3854 dma_addr_t startaddr
= sg_dma_address(sglist
) & PAGE_MASK
;
3855 unsigned long nrpages
= 0;
3856 struct scatterlist
*sg
;
3859 if (!iommu_need_mapping(dev
))
3860 return dma_direct_unmap_sg(dev
, sglist
, nelems
, dir
, attrs
);
3862 for_each_sg(sglist
, sg
, nelems
, i
) {
3863 nrpages
+= aligned_nrpages(sg_dma_address(sg
), sg_dma_len(sg
));
3866 intel_unmap(dev
, startaddr
, nrpages
<< VTD_PAGE_SHIFT
);
3869 static int intel_map_sg(struct device
*dev
, struct scatterlist
*sglist
, int nelems
,
3870 enum dma_data_direction dir
, unsigned long attrs
)
3873 struct dmar_domain
*domain
;
3876 unsigned long iova_pfn
;
3878 struct scatterlist
*sg
;
3879 unsigned long start_vpfn
;
3880 struct intel_iommu
*iommu
;
3882 BUG_ON(dir
== DMA_NONE
);
3883 if (!iommu_need_mapping(dev
))
3884 return dma_direct_map_sg(dev
, sglist
, nelems
, dir
, attrs
);
3886 domain
= get_valid_domain_for_dev(dev
);
3890 iommu
= domain_get_iommu(domain
);
3892 for_each_sg(sglist
, sg
, nelems
, i
)
3893 size
+= aligned_nrpages(sg
->offset
, sg
->length
);
3895 iova_pfn
= intel_alloc_iova(dev
, domain
, dma_to_mm_pfn(size
),
3898 sglist
->dma_length
= 0;
3903 * Check if DMAR supports zero-length reads on write only
3906 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
3907 !cap_zlr(iommu
->cap
))
3908 prot
|= DMA_PTE_READ
;
3909 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
3910 prot
|= DMA_PTE_WRITE
;
3912 start_vpfn
= mm_to_dma_pfn(iova_pfn
);
3914 ret
= domain_sg_mapping(domain
, start_vpfn
, sglist
, size
, prot
);
3915 if (unlikely(ret
)) {
3916 dma_pte_free_pagetable(domain
, start_vpfn
,
3917 start_vpfn
+ size
- 1,
3918 agaw_to_level(domain
->agaw
) + 1);
3919 free_iova_fast(&domain
->iovad
, iova_pfn
, dma_to_mm_pfn(size
));
3926 static const struct dma_map_ops intel_dma_ops
= {
3927 .alloc
= intel_alloc_coherent
,
3928 .free
= intel_free_coherent
,
3929 .map_sg
= intel_map_sg
,
3930 .unmap_sg
= intel_unmap_sg
,
3931 .map_page
= intel_map_page
,
3932 .unmap_page
= intel_unmap_page
,
3933 .map_resource
= intel_map_resource
,
3934 .unmap_resource
= intel_unmap_resource
,
3935 .dma_supported
= dma_direct_supported
,
3938 static inline int iommu_domain_cache_init(void)
3942 iommu_domain_cache
= kmem_cache_create("iommu_domain",
3943 sizeof(struct dmar_domain
),
3948 if (!iommu_domain_cache
) {
3949 pr_err("Couldn't create iommu_domain cache\n");
3956 static inline int iommu_devinfo_cache_init(void)
3960 iommu_devinfo_cache
= kmem_cache_create("iommu_devinfo",
3961 sizeof(struct device_domain_info
),
3965 if (!iommu_devinfo_cache
) {
3966 pr_err("Couldn't create devinfo cache\n");
3973 static int __init
iommu_init_mempool(void)
3976 ret
= iova_cache_get();
3980 ret
= iommu_domain_cache_init();
3984 ret
= iommu_devinfo_cache_init();
3988 kmem_cache_destroy(iommu_domain_cache
);
3995 static void __init
iommu_exit_mempool(void)
3997 kmem_cache_destroy(iommu_devinfo_cache
);
3998 kmem_cache_destroy(iommu_domain_cache
);
4002 static void quirk_ioat_snb_local_iommu(struct pci_dev
*pdev
)
4004 struct dmar_drhd_unit
*drhd
;
4008 /* We know that this device on this chipset has its own IOMMU.
4009 * If we find it under a different IOMMU, then the BIOS is lying
4010 * to us. Hope that the IOMMU for this device is actually
4011 * disabled, and it needs no translation...
4013 rc
= pci_bus_read_config_dword(pdev
->bus
, PCI_DEVFN(0, 0), 0xb0, &vtbar
);
4015 /* "can't" happen */
4016 dev_info(&pdev
->dev
, "failed to run vt-d quirk\n");
4019 vtbar
&= 0xffff0000;
4021 /* we know that the this iommu should be at offset 0xa000 from vtbar */
4022 drhd
= dmar_find_matched_drhd_unit(pdev
);
4023 if (WARN_TAINT_ONCE(!drhd
|| drhd
->reg_base_addr
- vtbar
!= 0xa000,
4024 TAINT_FIRMWARE_WORKAROUND
,
4025 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
4026 pdev
->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
4028 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_IOAT_SNB
, quirk_ioat_snb_local_iommu
);
4030 static void __init
init_no_remapping_devices(void)
4032 struct dmar_drhd_unit
*drhd
;
4036 for_each_drhd_unit(drhd
) {
4037 if (!drhd
->include_all
) {
4038 for_each_active_dev_scope(drhd
->devices
,
4039 drhd
->devices_cnt
, i
, dev
)
4041 /* ignore DMAR unit if no devices exist */
4042 if (i
== drhd
->devices_cnt
)
4047 for_each_active_drhd_unit(drhd
) {
4048 if (drhd
->include_all
)
4051 for_each_active_dev_scope(drhd
->devices
,
4052 drhd
->devices_cnt
, i
, dev
)
4053 if (!dev_is_pci(dev
) || !IS_GFX_DEVICE(to_pci_dev(dev
)))
4055 if (i
< drhd
->devices_cnt
)
4058 /* This IOMMU has *only* gfx devices. Either bypass it or
4059 set the gfx_mapped flag, as appropriate */
4060 if (!dmar_map_gfx
) {
4062 for_each_active_dev_scope(drhd
->devices
,
4063 drhd
->devices_cnt
, i
, dev
)
4064 dev
->archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
4069 #ifdef CONFIG_SUSPEND
4070 static int init_iommu_hw(void)
4072 struct dmar_drhd_unit
*drhd
;
4073 struct intel_iommu
*iommu
= NULL
;
4075 for_each_active_iommu(iommu
, drhd
)
4077 dmar_reenable_qi(iommu
);
4079 for_each_iommu(iommu
, drhd
) {
4080 if (drhd
->ignored
) {
4082 * we always have to disable PMRs or DMA may fail on
4086 iommu_disable_protect_mem_regions(iommu
);
4090 iommu_flush_write_buffer(iommu
);
4092 iommu_set_root_entry(iommu
);
4094 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
4095 DMA_CCMD_GLOBAL_INVL
);
4096 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
4097 iommu_enable_translation(iommu
);
4098 iommu_disable_protect_mem_regions(iommu
);
4104 static void iommu_flush_all(void)
4106 struct dmar_drhd_unit
*drhd
;
4107 struct intel_iommu
*iommu
;
4109 for_each_active_iommu(iommu
, drhd
) {
4110 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
4111 DMA_CCMD_GLOBAL_INVL
);
4112 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
4113 DMA_TLB_GLOBAL_FLUSH
);
4117 static int iommu_suspend(void)
4119 struct dmar_drhd_unit
*drhd
;
4120 struct intel_iommu
*iommu
= NULL
;
4123 for_each_active_iommu(iommu
, drhd
) {
4124 iommu
->iommu_state
= kcalloc(MAX_SR_DMAR_REGS
, sizeof(u32
),
4126 if (!iommu
->iommu_state
)
4132 for_each_active_iommu(iommu
, drhd
) {
4133 iommu_disable_translation(iommu
);
4135 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
4137 iommu
->iommu_state
[SR_DMAR_FECTL_REG
] =
4138 readl(iommu
->reg
+ DMAR_FECTL_REG
);
4139 iommu
->iommu_state
[SR_DMAR_FEDATA_REG
] =
4140 readl(iommu
->reg
+ DMAR_FEDATA_REG
);
4141 iommu
->iommu_state
[SR_DMAR_FEADDR_REG
] =
4142 readl(iommu
->reg
+ DMAR_FEADDR_REG
);
4143 iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
] =
4144 readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
4146 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
4151 for_each_active_iommu(iommu
, drhd
)
4152 kfree(iommu
->iommu_state
);
4157 static void iommu_resume(void)
4159 struct dmar_drhd_unit
*drhd
;
4160 struct intel_iommu
*iommu
= NULL
;
4163 if (init_iommu_hw()) {
4165 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
4167 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
4171 for_each_active_iommu(iommu
, drhd
) {
4173 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
4175 writel(iommu
->iommu_state
[SR_DMAR_FECTL_REG
],
4176 iommu
->reg
+ DMAR_FECTL_REG
);
4177 writel(iommu
->iommu_state
[SR_DMAR_FEDATA_REG
],
4178 iommu
->reg
+ DMAR_FEDATA_REG
);
4179 writel(iommu
->iommu_state
[SR_DMAR_FEADDR_REG
],
4180 iommu
->reg
+ DMAR_FEADDR_REG
);
4181 writel(iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
],
4182 iommu
->reg
+ DMAR_FEUADDR_REG
);
4184 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
4187 for_each_active_iommu(iommu
, drhd
)
4188 kfree(iommu
->iommu_state
);
4191 static struct syscore_ops iommu_syscore_ops
= {
4192 .resume
= iommu_resume
,
4193 .suspend
= iommu_suspend
,
4196 static void __init
init_iommu_pm_ops(void)
4198 register_syscore_ops(&iommu_syscore_ops
);
4202 static inline void init_iommu_pm_ops(void) {}
4203 #endif /* CONFIG_PM */
4206 int __init
dmar_parse_one_rmrr(struct acpi_dmar_header
*header
, void *arg
)
4208 struct acpi_dmar_reserved_memory
*rmrr
;
4209 int prot
= DMA_PTE_READ
|DMA_PTE_WRITE
;
4210 struct dmar_rmrr_unit
*rmrru
;
4213 rmrru
= kzalloc(sizeof(*rmrru
), GFP_KERNEL
);
4217 rmrru
->hdr
= header
;
4218 rmrr
= (struct acpi_dmar_reserved_memory
*)header
;
4219 rmrru
->base_address
= rmrr
->base_address
;
4220 rmrru
->end_address
= rmrr
->end_address
;
4222 length
= rmrr
->end_address
- rmrr
->base_address
+ 1;
4223 rmrru
->resv
= iommu_alloc_resv_region(rmrr
->base_address
, length
, prot
,
4228 rmrru
->devices
= dmar_alloc_dev_scope((void *)(rmrr
+ 1),
4229 ((void *)rmrr
) + rmrr
->header
.length
,
4230 &rmrru
->devices_cnt
);
4231 if (rmrru
->devices_cnt
&& rmrru
->devices
== NULL
)
4234 list_add(&rmrru
->list
, &dmar_rmrr_units
);
4245 static struct dmar_atsr_unit
*dmar_find_atsr(struct acpi_dmar_atsr
*atsr
)
4247 struct dmar_atsr_unit
*atsru
;
4248 struct acpi_dmar_atsr
*tmp
;
4250 list_for_each_entry_rcu(atsru
, &dmar_atsr_units
, list
) {
4251 tmp
= (struct acpi_dmar_atsr
*)atsru
->hdr
;
4252 if (atsr
->segment
!= tmp
->segment
)
4254 if (atsr
->header
.length
!= tmp
->header
.length
)
4256 if (memcmp(atsr
, tmp
, atsr
->header
.length
) == 0)
4263 int dmar_parse_one_atsr(struct acpi_dmar_header
*hdr
, void *arg
)
4265 struct acpi_dmar_atsr
*atsr
;
4266 struct dmar_atsr_unit
*atsru
;
4268 if (system_state
>= SYSTEM_RUNNING
&& !intel_iommu_enabled
)
4271 atsr
= container_of(hdr
, struct acpi_dmar_atsr
, header
);
4272 atsru
= dmar_find_atsr(atsr
);
4276 atsru
= kzalloc(sizeof(*atsru
) + hdr
->length
, GFP_KERNEL
);
4281 * If memory is allocated from slab by ACPI _DSM method, we need to
4282 * copy the memory content because the memory buffer will be freed
4285 atsru
->hdr
= (void *)(atsru
+ 1);
4286 memcpy(atsru
->hdr
, hdr
, hdr
->length
);
4287 atsru
->include_all
= atsr
->flags
& 0x1;
4288 if (!atsru
->include_all
) {
4289 atsru
->devices
= dmar_alloc_dev_scope((void *)(atsr
+ 1),
4290 (void *)atsr
+ atsr
->header
.length
,
4291 &atsru
->devices_cnt
);
4292 if (atsru
->devices_cnt
&& atsru
->devices
== NULL
) {
4298 list_add_rcu(&atsru
->list
, &dmar_atsr_units
);
4303 static void intel_iommu_free_atsr(struct dmar_atsr_unit
*atsru
)
4305 dmar_free_dev_scope(&atsru
->devices
, &atsru
->devices_cnt
);
4309 int dmar_release_one_atsr(struct acpi_dmar_header
*hdr
, void *arg
)
4311 struct acpi_dmar_atsr
*atsr
;
4312 struct dmar_atsr_unit
*atsru
;
4314 atsr
= container_of(hdr
, struct acpi_dmar_atsr
, header
);
4315 atsru
= dmar_find_atsr(atsr
);
4317 list_del_rcu(&atsru
->list
);
4319 intel_iommu_free_atsr(atsru
);
4325 int dmar_check_one_atsr(struct acpi_dmar_header
*hdr
, void *arg
)
4329 struct acpi_dmar_atsr
*atsr
;
4330 struct dmar_atsr_unit
*atsru
;
4332 atsr
= container_of(hdr
, struct acpi_dmar_atsr
, header
);
4333 atsru
= dmar_find_atsr(atsr
);
4337 if (!atsru
->include_all
&& atsru
->devices
&& atsru
->devices_cnt
) {
4338 for_each_active_dev_scope(atsru
->devices
, atsru
->devices_cnt
,
4346 static int intel_iommu_add(struct dmar_drhd_unit
*dmaru
)
4349 struct intel_iommu
*iommu
= dmaru
->iommu
;
4351 if (g_iommus
[iommu
->seq_id
])
4354 if (hw_pass_through
&& !ecap_pass_through(iommu
->ecap
)) {
4355 pr_warn("%s: Doesn't support hardware pass through.\n",
4359 if (!ecap_sc_support(iommu
->ecap
) &&
4360 domain_update_iommu_snooping(iommu
)) {
4361 pr_warn("%s: Doesn't support snooping.\n",
4365 sp
= domain_update_iommu_superpage(iommu
) - 1;
4366 if (sp
>= 0 && !(cap_super_page_val(iommu
->cap
) & (1 << sp
))) {
4367 pr_warn("%s: Doesn't support large page.\n",
4373 * Disable translation if already enabled prior to OS handover.
4375 if (iommu
->gcmd
& DMA_GCMD_TE
)
4376 iommu_disable_translation(iommu
);
4378 g_iommus
[iommu
->seq_id
] = iommu
;
4379 ret
= iommu_init_domains(iommu
);
4381 ret
= iommu_alloc_root_entry(iommu
);
4385 #ifdef CONFIG_INTEL_IOMMU_SVM
4386 if (pasid_supported(iommu
))
4387 intel_svm_init(iommu
);
4390 if (dmaru
->ignored
) {
4392 * we always have to disable PMRs or DMA may fail on this device
4395 iommu_disable_protect_mem_regions(iommu
);
4399 intel_iommu_init_qi(iommu
);
4400 iommu_flush_write_buffer(iommu
);
4402 #ifdef CONFIG_INTEL_IOMMU_SVM
4403 if (pasid_supported(iommu
) && ecap_prs(iommu
->ecap
)) {
4404 ret
= intel_svm_enable_prq(iommu
);
4409 ret
= dmar_set_interrupt(iommu
);
4413 iommu_set_root_entry(iommu
);
4414 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
4415 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
4416 iommu_enable_translation(iommu
);
4418 iommu_disable_protect_mem_regions(iommu
);
4422 disable_dmar_iommu(iommu
);
4424 free_dmar_iommu(iommu
);
4428 int dmar_iommu_hotplug(struct dmar_drhd_unit
*dmaru
, bool insert
)
4431 struct intel_iommu
*iommu
= dmaru
->iommu
;
4433 if (!intel_iommu_enabled
)
4439 ret
= intel_iommu_add(dmaru
);
4441 disable_dmar_iommu(iommu
);
4442 free_dmar_iommu(iommu
);
4448 static void intel_iommu_free_dmars(void)
4450 struct dmar_rmrr_unit
*rmrru
, *rmrr_n
;
4451 struct dmar_atsr_unit
*atsru
, *atsr_n
;
4453 list_for_each_entry_safe(rmrru
, rmrr_n
, &dmar_rmrr_units
, list
) {
4454 list_del(&rmrru
->list
);
4455 dmar_free_dev_scope(&rmrru
->devices
, &rmrru
->devices_cnt
);
4460 list_for_each_entry_safe(atsru
, atsr_n
, &dmar_atsr_units
, list
) {
4461 list_del(&atsru
->list
);
4462 intel_iommu_free_atsr(atsru
);
4466 int dmar_find_matched_atsr_unit(struct pci_dev
*dev
)
4469 struct pci_bus
*bus
;
4470 struct pci_dev
*bridge
= NULL
;
4472 struct acpi_dmar_atsr
*atsr
;
4473 struct dmar_atsr_unit
*atsru
;
4475 dev
= pci_physfn(dev
);
4476 for (bus
= dev
->bus
; bus
; bus
= bus
->parent
) {
4478 /* If it's an integrated device, allow ATS */
4481 /* Connected via non-PCIe: no ATS */
4482 if (!pci_is_pcie(bridge
) ||
4483 pci_pcie_type(bridge
) == PCI_EXP_TYPE_PCI_BRIDGE
)
4485 /* If we found the root port, look it up in the ATSR */
4486 if (pci_pcie_type(bridge
) == PCI_EXP_TYPE_ROOT_PORT
)
4491 list_for_each_entry_rcu(atsru
, &dmar_atsr_units
, list
) {
4492 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
4493 if (atsr
->segment
!= pci_domain_nr(dev
->bus
))
4496 for_each_dev_scope(atsru
->devices
, atsru
->devices_cnt
, i
, tmp
)
4497 if (tmp
== &bridge
->dev
)
4500 if (atsru
->include_all
)
4510 int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info
*info
)
4513 struct dmar_rmrr_unit
*rmrru
;
4514 struct dmar_atsr_unit
*atsru
;
4515 struct acpi_dmar_atsr
*atsr
;
4516 struct acpi_dmar_reserved_memory
*rmrr
;
4518 if (!intel_iommu_enabled
&& system_state
>= SYSTEM_RUNNING
)
4521 list_for_each_entry(rmrru
, &dmar_rmrr_units
, list
) {
4522 rmrr
= container_of(rmrru
->hdr
,
4523 struct acpi_dmar_reserved_memory
, header
);
4524 if (info
->event
== BUS_NOTIFY_ADD_DEVICE
) {
4525 ret
= dmar_insert_dev_scope(info
, (void *)(rmrr
+ 1),
4526 ((void *)rmrr
) + rmrr
->header
.length
,
4527 rmrr
->segment
, rmrru
->devices
,
4528 rmrru
->devices_cnt
);
4531 } else if (info
->event
== BUS_NOTIFY_REMOVED_DEVICE
) {
4532 dmar_remove_dev_scope(info
, rmrr
->segment
,
4533 rmrru
->devices
, rmrru
->devices_cnt
);
4537 list_for_each_entry(atsru
, &dmar_atsr_units
, list
) {
4538 if (atsru
->include_all
)
4541 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
4542 if (info
->event
== BUS_NOTIFY_ADD_DEVICE
) {
4543 ret
= dmar_insert_dev_scope(info
, (void *)(atsr
+ 1),
4544 (void *)atsr
+ atsr
->header
.length
,
4545 atsr
->segment
, atsru
->devices
,
4546 atsru
->devices_cnt
);
4551 } else if (info
->event
== BUS_NOTIFY_REMOVED_DEVICE
) {
4552 if (dmar_remove_dev_scope(info
, atsr
->segment
,
4553 atsru
->devices
, atsru
->devices_cnt
))
4562 * Here we only respond to action of unbound device from driver.
4564 * Added device is not attached to its DMAR domain here yet. That will happen
4565 * when mapping the device to iova.
4567 static int device_notifier(struct notifier_block
*nb
,
4568 unsigned long action
, void *data
)
4570 struct device
*dev
= data
;
4571 struct dmar_domain
*domain
;
4573 if (iommu_dummy(dev
))
4576 if (action
== BUS_NOTIFY_REMOVED_DEVICE
) {
4577 domain
= find_domain(dev
);
4581 dmar_remove_one_dev_info(dev
);
4582 if (!domain_type_is_vm_or_si(domain
) &&
4583 list_empty(&domain
->devices
))
4584 domain_exit(domain
);
4585 } else if (action
== BUS_NOTIFY_ADD_DEVICE
) {
4586 if (iommu_should_identity_map(dev
, 1))
4587 domain_add_dev_info(si_domain
, dev
);
4593 static struct notifier_block device_nb
= {
4594 .notifier_call
= device_notifier
,
4597 static int intel_iommu_memory_notifier(struct notifier_block
*nb
,
4598 unsigned long val
, void *v
)
4600 struct memory_notify
*mhp
= v
;
4601 unsigned long long start
, end
;
4602 unsigned long start_vpfn
, last_vpfn
;
4605 case MEM_GOING_ONLINE
:
4606 start
= mhp
->start_pfn
<< PAGE_SHIFT
;
4607 end
= ((mhp
->start_pfn
+ mhp
->nr_pages
) << PAGE_SHIFT
) - 1;
4608 if (iommu_domain_identity_map(si_domain
, start
, end
)) {
4609 pr_warn("Failed to build identity map for [%llx-%llx]\n",
4616 case MEM_CANCEL_ONLINE
:
4617 start_vpfn
= mm_to_dma_pfn(mhp
->start_pfn
);
4618 last_vpfn
= mm_to_dma_pfn(mhp
->start_pfn
+ mhp
->nr_pages
- 1);
4619 while (start_vpfn
<= last_vpfn
) {
4621 struct dmar_drhd_unit
*drhd
;
4622 struct intel_iommu
*iommu
;
4623 struct page
*freelist
;
4625 iova
= find_iova(&si_domain
->iovad
, start_vpfn
);
4627 pr_debug("Failed get IOVA for PFN %lx\n",
4632 iova
= split_and_remove_iova(&si_domain
->iovad
, iova
,
4633 start_vpfn
, last_vpfn
);
4635 pr_warn("Failed to split IOVA PFN [%lx-%lx]\n",
4636 start_vpfn
, last_vpfn
);
4640 freelist
= domain_unmap(si_domain
, iova
->pfn_lo
,
4644 for_each_active_iommu(iommu
, drhd
)
4645 iommu_flush_iotlb_psi(iommu
, si_domain
,
4646 iova
->pfn_lo
, iova_size(iova
),
4649 dma_free_pagelist(freelist
);
4651 start_vpfn
= iova
->pfn_hi
+ 1;
4652 free_iova_mem(iova
);
4660 static struct notifier_block intel_iommu_memory_nb
= {
4661 .notifier_call
= intel_iommu_memory_notifier
,
4665 static void free_all_cpu_cached_iovas(unsigned int cpu
)
4669 for (i
= 0; i
< g_num_of_iommus
; i
++) {
4670 struct intel_iommu
*iommu
= g_iommus
[i
];
4671 struct dmar_domain
*domain
;
4677 for (did
= 0; did
< cap_ndoms(iommu
->cap
); did
++) {
4678 domain
= get_iommu_domain(iommu
, (u16
)did
);
4682 free_cpu_cached_iovas(cpu
, &domain
->iovad
);
4687 static int intel_iommu_cpu_dead(unsigned int cpu
)
4689 free_all_cpu_cached_iovas(cpu
);
4693 static void intel_disable_iommus(void)
4695 struct intel_iommu
*iommu
= NULL
;
4696 struct dmar_drhd_unit
*drhd
;
4698 for_each_iommu(iommu
, drhd
)
4699 iommu_disable_translation(iommu
);
4702 static inline struct intel_iommu
*dev_to_intel_iommu(struct device
*dev
)
4704 struct iommu_device
*iommu_dev
= dev_to_iommu_device(dev
);
4706 return container_of(iommu_dev
, struct intel_iommu
, iommu
);
4709 static ssize_t
intel_iommu_show_version(struct device
*dev
,
4710 struct device_attribute
*attr
,
4713 struct intel_iommu
*iommu
= dev_to_intel_iommu(dev
);
4714 u32 ver
= readl(iommu
->reg
+ DMAR_VER_REG
);
4715 return sprintf(buf
, "%d:%d\n",
4716 DMAR_VER_MAJOR(ver
), DMAR_VER_MINOR(ver
));
4718 static DEVICE_ATTR(version
, S_IRUGO
, intel_iommu_show_version
, NULL
);
4720 static ssize_t
intel_iommu_show_address(struct device
*dev
,
4721 struct device_attribute
*attr
,
4724 struct intel_iommu
*iommu
= dev_to_intel_iommu(dev
);
4725 return sprintf(buf
, "%llx\n", iommu
->reg_phys
);
4727 static DEVICE_ATTR(address
, S_IRUGO
, intel_iommu_show_address
, NULL
);
4729 static ssize_t
intel_iommu_show_cap(struct device
*dev
,
4730 struct device_attribute
*attr
,
4733 struct intel_iommu
*iommu
= dev_to_intel_iommu(dev
);
4734 return sprintf(buf
, "%llx\n", iommu
->cap
);
4736 static DEVICE_ATTR(cap
, S_IRUGO
, intel_iommu_show_cap
, NULL
);
4738 static ssize_t
intel_iommu_show_ecap(struct device
*dev
,
4739 struct device_attribute
*attr
,
4742 struct intel_iommu
*iommu
= dev_to_intel_iommu(dev
);
4743 return sprintf(buf
, "%llx\n", iommu
->ecap
);
4745 static DEVICE_ATTR(ecap
, S_IRUGO
, intel_iommu_show_ecap
, NULL
);
4747 static ssize_t
intel_iommu_show_ndoms(struct device
*dev
,
4748 struct device_attribute
*attr
,
4751 struct intel_iommu
*iommu
= dev_to_intel_iommu(dev
);
4752 return sprintf(buf
, "%ld\n", cap_ndoms(iommu
->cap
));
4754 static DEVICE_ATTR(domains_supported
, S_IRUGO
, intel_iommu_show_ndoms
, NULL
);
4756 static ssize_t
intel_iommu_show_ndoms_used(struct device
*dev
,
4757 struct device_attribute
*attr
,
4760 struct intel_iommu
*iommu
= dev_to_intel_iommu(dev
);
4761 return sprintf(buf
, "%d\n", bitmap_weight(iommu
->domain_ids
,
4762 cap_ndoms(iommu
->cap
)));
4764 static DEVICE_ATTR(domains_used
, S_IRUGO
, intel_iommu_show_ndoms_used
, NULL
);
4766 static struct attribute
*intel_iommu_attrs
[] = {
4767 &dev_attr_version
.attr
,
4768 &dev_attr_address
.attr
,
4770 &dev_attr_ecap
.attr
,
4771 &dev_attr_domains_supported
.attr
,
4772 &dev_attr_domains_used
.attr
,
4776 static struct attribute_group intel_iommu_group
= {
4777 .name
= "intel-iommu",
4778 .attrs
= intel_iommu_attrs
,
4781 const struct attribute_group
*intel_iommu_groups
[] = {
4786 static int __init
platform_optin_force_iommu(void)
4788 struct pci_dev
*pdev
= NULL
;
4789 bool has_untrusted_dev
= false;
4791 if (!dmar_platform_optin() || no_platform_optin
)
4794 for_each_pci_dev(pdev
) {
4795 if (pdev
->untrusted
) {
4796 has_untrusted_dev
= true;
4801 if (!has_untrusted_dev
)
4804 if (no_iommu
|| dmar_disabled
)
4805 pr_info("Intel-IOMMU force enabled due to platform opt in\n");
4808 * If Intel-IOMMU is disabled by default, we will apply identity
4809 * map for all devices except those marked as being untrusted.
4812 iommu_identity_mapping
|= IDENTMAP_ALL
;
4815 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4823 int __init
intel_iommu_init(void)
4826 struct dmar_drhd_unit
*drhd
;
4827 struct intel_iommu
*iommu
;
4830 * Intel IOMMU is required for a TXT/tboot launch or platform
4831 * opt in, so enforce that.
4833 force_on
= tboot_force_iommu() || platform_optin_force_iommu();
4835 if (iommu_init_mempool()) {
4837 panic("tboot: Failed to initialize iommu memory\n");
4841 down_write(&dmar_global_lock
);
4842 if (dmar_table_init()) {
4844 panic("tboot: Failed to initialize DMAR table\n");
4848 if (dmar_dev_scope_init() < 0) {
4850 panic("tboot: Failed to initialize DMAR device scope\n");
4854 up_write(&dmar_global_lock
);
4857 * The bus notifier takes the dmar_global_lock, so lockdep will
4858 * complain later when we register it under the lock.
4860 dmar_register_bus_notifier();
4862 down_write(&dmar_global_lock
);
4864 if (no_iommu
|| dmar_disabled
) {
4866 * We exit the function here to ensure IOMMU's remapping and
4867 * mempool aren't setup, which means that the IOMMU's PMRs
4868 * won't be disabled via the call to init_dmars(). So disable
4869 * it explicitly here. The PMRs were setup by tboot prior to
4870 * calling SENTER, but the kernel is expected to reset/tear
4873 if (intel_iommu_tboot_noforce
) {
4874 for_each_iommu(iommu
, drhd
)
4875 iommu_disable_protect_mem_regions(iommu
);
4879 * Make sure the IOMMUs are switched off, even when we
4880 * boot into a kexec kernel and the previous kernel left
4883 intel_disable_iommus();
4887 if (list_empty(&dmar_rmrr_units
))
4888 pr_info("No RMRR found\n");
4890 if (list_empty(&dmar_atsr_units
))
4891 pr_info("No ATSR found\n");
4893 if (dmar_init_reserved_ranges()) {
4895 panic("tboot: Failed to reserve iommu ranges\n");
4896 goto out_free_reserved_range
;
4900 intel_iommu_gfx_mapped
= 1;
4902 init_no_remapping_devices();
4907 panic("tboot: Failed to initialize DMARs\n");
4908 pr_err("Initialization failed\n");
4909 goto out_free_reserved_range
;
4911 up_write(&dmar_global_lock
);
4912 pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
4914 #if defined(CONFIG_X86) && defined(CONFIG_SWIOTLB)
4917 dma_ops
= &intel_dma_ops
;
4919 init_iommu_pm_ops();
4921 for_each_active_iommu(iommu
, drhd
) {
4922 iommu_device_sysfs_add(&iommu
->iommu
, NULL
,
4925 iommu_device_set_ops(&iommu
->iommu
, &intel_iommu_ops
);
4926 iommu_device_register(&iommu
->iommu
);
4929 bus_set_iommu(&pci_bus_type
, &intel_iommu_ops
);
4930 bus_register_notifier(&pci_bus_type
, &device_nb
);
4931 if (si_domain
&& !hw_pass_through
)
4932 register_memory_notifier(&intel_iommu_memory_nb
);
4933 cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD
, "iommu/intel:dead", NULL
,
4934 intel_iommu_cpu_dead
);
4935 intel_iommu_enabled
= 1;
4936 intel_iommu_debugfs_init();
4940 out_free_reserved_range
:
4941 put_iova_domain(&reserved_iova_list
);
4943 intel_iommu_free_dmars();
4944 up_write(&dmar_global_lock
);
4945 iommu_exit_mempool();
4949 static int domain_context_clear_one_cb(struct pci_dev
*pdev
, u16 alias
, void *opaque
)
4951 struct intel_iommu
*iommu
= opaque
;
4953 domain_context_clear_one(iommu
, PCI_BUS_NUM(alias
), alias
& 0xff);
4958 * NB - intel-iommu lacks any sort of reference counting for the users of
4959 * dependent devices. If multiple endpoints have intersecting dependent
4960 * devices, unbinding the driver from any one of them will possibly leave
4961 * the others unable to operate.
4963 static void domain_context_clear(struct intel_iommu
*iommu
, struct device
*dev
)
4965 if (!iommu
|| !dev
|| !dev_is_pci(dev
))
4968 pci_for_each_dma_alias(to_pci_dev(dev
), &domain_context_clear_one_cb
, iommu
);
4971 static void __dmar_remove_one_dev_info(struct device_domain_info
*info
)
4973 struct intel_iommu
*iommu
;
4974 unsigned long flags
;
4976 assert_spin_locked(&device_domain_lock
);
4981 iommu
= info
->iommu
;
4984 if (dev_is_pci(info
->dev
) && sm_supported(iommu
))
4985 intel_pasid_tear_down_entry(iommu
, info
->dev
,
4988 iommu_disable_dev_iotlb(info
);
4989 domain_context_clear(iommu
, info
->dev
);
4990 intel_pasid_free_table(info
->dev
);
4993 unlink_domain_info(info
);
4995 spin_lock_irqsave(&iommu
->lock
, flags
);
4996 domain_detach_iommu(info
->domain
, iommu
);
4997 spin_unlock_irqrestore(&iommu
->lock
, flags
);
4999 free_devinfo_mem(info
);
5002 static void dmar_remove_one_dev_info(struct device
*dev
)
5004 struct device_domain_info
*info
;
5005 unsigned long flags
;
5007 spin_lock_irqsave(&device_domain_lock
, flags
);
5008 info
= dev
->archdata
.iommu
;
5009 __dmar_remove_one_dev_info(info
);
5010 spin_unlock_irqrestore(&device_domain_lock
, flags
);
5013 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
)
5017 init_iova_domain(&domain
->iovad
, VTD_PAGE_SIZE
, IOVA_START_PFN
);
5018 domain_reserve_special_ranges(domain
);
5020 /* calculate AGAW */
5021 domain
->gaw
= guest_width
;
5022 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
5023 domain
->agaw
= width_to_agaw(adjust_width
);
5025 domain
->iommu_coherency
= 0;
5026 domain
->iommu_snooping
= 0;
5027 domain
->iommu_superpage
= 0;
5028 domain
->max_addr
= 0;
5030 /* always allocate the top pgd */
5031 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page(domain
->nid
);
5034 domain_flush_cache(domain
, domain
->pgd
, PAGE_SIZE
);
5038 static struct iommu_domain
*intel_iommu_domain_alloc(unsigned type
)
5040 struct dmar_domain
*dmar_domain
;
5041 struct iommu_domain
*domain
;
5043 if (type
!= IOMMU_DOMAIN_UNMANAGED
)
5046 dmar_domain
= alloc_domain(DOMAIN_FLAG_VIRTUAL_MACHINE
);
5048 pr_err("Can't allocate dmar_domain\n");
5051 if (md_domain_init(dmar_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
5052 pr_err("Domain initialization failed\n");
5053 domain_exit(dmar_domain
);
5056 domain_update_iommu_cap(dmar_domain
);
5058 domain
= &dmar_domain
->domain
;
5059 domain
->geometry
.aperture_start
= 0;
5060 domain
->geometry
.aperture_end
= __DOMAIN_MAX_ADDR(dmar_domain
->gaw
);
5061 domain
->geometry
.force_aperture
= true;
5066 static void intel_iommu_domain_free(struct iommu_domain
*domain
)
5068 domain_exit(to_dmar_domain(domain
));
5072 * Check whether a @domain could be attached to the @dev through the
5073 * aux-domain attach/detach APIs.
5076 is_aux_domain(struct device
*dev
, struct iommu_domain
*domain
)
5078 struct device_domain_info
*info
= dev
->archdata
.iommu
;
5080 return info
&& info
->auxd_enabled
&&
5081 domain
->type
== IOMMU_DOMAIN_UNMANAGED
;
5084 static void auxiliary_link_device(struct dmar_domain
*domain
,
5087 struct device_domain_info
*info
= dev
->archdata
.iommu
;
5089 assert_spin_locked(&device_domain_lock
);
5093 domain
->auxd_refcnt
++;
5094 list_add(&domain
->auxd
, &info
->auxiliary_domains
);
5097 static void auxiliary_unlink_device(struct dmar_domain
*domain
,
5100 struct device_domain_info
*info
= dev
->archdata
.iommu
;
5102 assert_spin_locked(&device_domain_lock
);
5106 list_del(&domain
->auxd
);
5107 domain
->auxd_refcnt
--;
5109 if (!domain
->auxd_refcnt
&& domain
->default_pasid
> 0)
5110 intel_pasid_free_id(domain
->default_pasid
);
5113 static int aux_domain_add_dev(struct dmar_domain
*domain
,
5118 unsigned long flags
;
5119 struct intel_iommu
*iommu
;
5121 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
5125 if (domain
->default_pasid
<= 0) {
5128 pasid
= intel_pasid_alloc_id(domain
, PASID_MIN
,
5129 pci_max_pasids(to_pci_dev(dev
)),
5132 pr_err("Can't allocate default pasid\n");
5135 domain
->default_pasid
= pasid
;
5138 spin_lock_irqsave(&device_domain_lock
, flags
);
5140 * iommu->lock must be held to attach domain to iommu and setup the
5141 * pasid entry for second level translation.
5143 spin_lock(&iommu
->lock
);
5144 ret
= domain_attach_iommu(domain
, iommu
);
5148 /* Setup the PASID entry for mediated devices: */
5149 ret
= intel_pasid_setup_second_level(iommu
, domain
, dev
,
5150 domain
->default_pasid
);
5153 spin_unlock(&iommu
->lock
);
5155 auxiliary_link_device(domain
, dev
);
5157 spin_unlock_irqrestore(&device_domain_lock
, flags
);
5162 domain_detach_iommu(domain
, iommu
);
5164 spin_unlock(&iommu
->lock
);
5165 spin_unlock_irqrestore(&device_domain_lock
, flags
);
5166 if (!domain
->auxd_refcnt
&& domain
->default_pasid
> 0)
5167 intel_pasid_free_id(domain
->default_pasid
);
5172 static void aux_domain_remove_dev(struct dmar_domain
*domain
,
5175 struct device_domain_info
*info
;
5176 struct intel_iommu
*iommu
;
5177 unsigned long flags
;
5179 if (!is_aux_domain(dev
, &domain
->domain
))
5182 spin_lock_irqsave(&device_domain_lock
, flags
);
5183 info
= dev
->archdata
.iommu
;
5184 iommu
= info
->iommu
;
5186 auxiliary_unlink_device(domain
, dev
);
5188 spin_lock(&iommu
->lock
);
5189 intel_pasid_tear_down_entry(iommu
, dev
, domain
->default_pasid
);
5190 domain_detach_iommu(domain
, iommu
);
5191 spin_unlock(&iommu
->lock
);
5193 spin_unlock_irqrestore(&device_domain_lock
, flags
);
5196 static int prepare_domain_attach_device(struct iommu_domain
*domain
,
5199 struct dmar_domain
*dmar_domain
= to_dmar_domain(domain
);
5200 struct intel_iommu
*iommu
;
5204 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
5208 /* check if this iommu agaw is sufficient for max mapped address */
5209 addr_width
= agaw_to_width(iommu
->agaw
);
5210 if (addr_width
> cap_mgaw(iommu
->cap
))
5211 addr_width
= cap_mgaw(iommu
->cap
);
5213 if (dmar_domain
->max_addr
> (1LL << addr_width
)) {
5214 dev_err(dev
, "%s: iommu width (%d) is not "
5215 "sufficient for the mapped address (%llx)\n",
5216 __func__
, addr_width
, dmar_domain
->max_addr
);
5219 dmar_domain
->gaw
= addr_width
;
5222 * Knock out extra levels of page tables if necessary
5224 while (iommu
->agaw
< dmar_domain
->agaw
) {
5225 struct dma_pte
*pte
;
5227 pte
= dmar_domain
->pgd
;
5228 if (dma_pte_present(pte
)) {
5229 dmar_domain
->pgd
= (struct dma_pte
*)
5230 phys_to_virt(dma_pte_addr(pte
));
5231 free_pgtable_page(pte
);
5233 dmar_domain
->agaw
--;
5239 static int intel_iommu_attach_device(struct iommu_domain
*domain
,
5244 if (device_is_rmrr_locked(dev
)) {
5245 dev_warn(dev
, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement. Contact your platform vendor.\n");
5249 if (is_aux_domain(dev
, domain
))
5252 /* normally dev is not mapped */
5253 if (unlikely(domain_context_mapped(dev
))) {
5254 struct dmar_domain
*old_domain
;
5256 old_domain
= find_domain(dev
);
5259 dmar_remove_one_dev_info(dev
);
5262 if (!domain_type_is_vm_or_si(old_domain
) &&
5263 list_empty(&old_domain
->devices
))
5264 domain_exit(old_domain
);
5268 ret
= prepare_domain_attach_device(domain
, dev
);
5272 return domain_add_dev_info(to_dmar_domain(domain
), dev
);
5275 static int intel_iommu_aux_attach_device(struct iommu_domain
*domain
,
5280 if (!is_aux_domain(dev
, domain
))
5283 ret
= prepare_domain_attach_device(domain
, dev
);
5287 return aux_domain_add_dev(to_dmar_domain(domain
), dev
);
5290 static void intel_iommu_detach_device(struct iommu_domain
*domain
,
5293 dmar_remove_one_dev_info(dev
);
5296 static void intel_iommu_aux_detach_device(struct iommu_domain
*domain
,
5299 aux_domain_remove_dev(to_dmar_domain(domain
), dev
);
5302 static int intel_iommu_map(struct iommu_domain
*domain
,
5303 unsigned long iova
, phys_addr_t hpa
,
5304 size_t size
, int iommu_prot
)
5306 struct dmar_domain
*dmar_domain
= to_dmar_domain(domain
);
5311 if (iommu_prot
& IOMMU_READ
)
5312 prot
|= DMA_PTE_READ
;
5313 if (iommu_prot
& IOMMU_WRITE
)
5314 prot
|= DMA_PTE_WRITE
;
5315 if ((iommu_prot
& IOMMU_CACHE
) && dmar_domain
->iommu_snooping
)
5316 prot
|= DMA_PTE_SNP
;
5318 max_addr
= iova
+ size
;
5319 if (dmar_domain
->max_addr
< max_addr
) {
5322 /* check if minimum agaw is sufficient for mapped address */
5323 end
= __DOMAIN_MAX_ADDR(dmar_domain
->gaw
) + 1;
5324 if (end
< max_addr
) {
5325 pr_err("%s: iommu width (%d) is not "
5326 "sufficient for the mapped address (%llx)\n",
5327 __func__
, dmar_domain
->gaw
, max_addr
);
5330 dmar_domain
->max_addr
= max_addr
;
5332 /* Round up size to next multiple of PAGE_SIZE, if it and
5333 the low bits of hpa would take us onto the next page */
5334 size
= aligned_nrpages(hpa
, size
);
5335 ret
= domain_pfn_mapping(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
5336 hpa
>> VTD_PAGE_SHIFT
, size
, prot
);
5340 static size_t intel_iommu_unmap(struct iommu_domain
*domain
,
5341 unsigned long iova
, size_t size
)
5343 struct dmar_domain
*dmar_domain
= to_dmar_domain(domain
);
5344 struct page
*freelist
= NULL
;
5345 unsigned long start_pfn
, last_pfn
;
5346 unsigned int npages
;
5347 int iommu_id
, level
= 0;
5349 /* Cope with horrid API which requires us to unmap more than the
5350 size argument if it happens to be a large-page mapping. */
5351 BUG_ON(!pfn_to_dma_pte(dmar_domain
, iova
>> VTD_PAGE_SHIFT
, &level
));
5353 if (size
< VTD_PAGE_SIZE
<< level_to_offset_bits(level
))
5354 size
= VTD_PAGE_SIZE
<< level_to_offset_bits(level
);
5356 start_pfn
= iova
>> VTD_PAGE_SHIFT
;
5357 last_pfn
= (iova
+ size
- 1) >> VTD_PAGE_SHIFT
;
5359 freelist
= domain_unmap(dmar_domain
, start_pfn
, last_pfn
);
5361 npages
= last_pfn
- start_pfn
+ 1;
5363 for_each_domain_iommu(iommu_id
, dmar_domain
)
5364 iommu_flush_iotlb_psi(g_iommus
[iommu_id
], dmar_domain
,
5365 start_pfn
, npages
, !freelist
, 0);
5367 dma_free_pagelist(freelist
);
5369 if (dmar_domain
->max_addr
== iova
+ size
)
5370 dmar_domain
->max_addr
= iova
;
5375 static phys_addr_t
intel_iommu_iova_to_phys(struct iommu_domain
*domain
,
5378 struct dmar_domain
*dmar_domain
= to_dmar_domain(domain
);
5379 struct dma_pte
*pte
;
5383 pte
= pfn_to_dma_pte(dmar_domain
, iova
>> VTD_PAGE_SHIFT
, &level
);
5385 phys
= dma_pte_addr(pte
);
5390 static inline bool scalable_mode_support(void)
5392 struct dmar_drhd_unit
*drhd
;
5393 struct intel_iommu
*iommu
;
5397 for_each_active_iommu(iommu
, drhd
) {
5398 if (!sm_supported(iommu
)) {
5408 static inline bool iommu_pasid_support(void)
5410 struct dmar_drhd_unit
*drhd
;
5411 struct intel_iommu
*iommu
;
5415 for_each_active_iommu(iommu
, drhd
) {
5416 if (!pasid_supported(iommu
)) {
5426 static bool intel_iommu_capable(enum iommu_cap cap
)
5428 if (cap
== IOMMU_CAP_CACHE_COHERENCY
)
5429 return domain_update_iommu_snooping(NULL
) == 1;
5430 if (cap
== IOMMU_CAP_INTR_REMAP
)
5431 return irq_remapping_enabled
== 1;
5436 static int intel_iommu_add_device(struct device
*dev
)
5438 struct intel_iommu
*iommu
;
5439 struct iommu_group
*group
;
5442 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
5446 iommu_device_link(&iommu
->iommu
, dev
);
5448 group
= iommu_group_get_for_dev(dev
);
5451 return PTR_ERR(group
);
5453 iommu_group_put(group
);
5457 static void intel_iommu_remove_device(struct device
*dev
)
5459 struct intel_iommu
*iommu
;
5462 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
5466 iommu_group_remove_device(dev
);
5468 iommu_device_unlink(&iommu
->iommu
, dev
);
5471 static void intel_iommu_get_resv_regions(struct device
*device
,
5472 struct list_head
*head
)
5474 struct iommu_resv_region
*reg
;
5475 struct dmar_rmrr_unit
*rmrr
;
5476 struct device
*i_dev
;
5480 for_each_rmrr_units(rmrr
) {
5481 for_each_active_dev_scope(rmrr
->devices
, rmrr
->devices_cnt
,
5483 if (i_dev
!= device
)
5486 list_add_tail(&rmrr
->resv
->list
, head
);
5491 reg
= iommu_alloc_resv_region(IOAPIC_RANGE_START
,
5492 IOAPIC_RANGE_END
- IOAPIC_RANGE_START
+ 1,
5496 list_add_tail(®
->list
, head
);
5499 static void intel_iommu_put_resv_regions(struct device
*dev
,
5500 struct list_head
*head
)
5502 struct iommu_resv_region
*entry
, *next
;
5504 list_for_each_entry_safe(entry
, next
, head
, list
) {
5505 if (entry
->type
== IOMMU_RESV_MSI
)
5510 int intel_iommu_enable_pasid(struct intel_iommu
*iommu
, struct device
*dev
)
5512 struct device_domain_info
*info
;
5513 struct context_entry
*context
;
5514 struct dmar_domain
*domain
;
5515 unsigned long flags
;
5519 domain
= get_valid_domain_for_dev(dev
);
5523 spin_lock_irqsave(&device_domain_lock
, flags
);
5524 spin_lock(&iommu
->lock
);
5527 info
= dev
->archdata
.iommu
;
5528 if (!info
|| !info
->pasid_supported
)
5531 context
= iommu_context_addr(iommu
, info
->bus
, info
->devfn
, 0);
5532 if (WARN_ON(!context
))
5535 ctx_lo
= context
[0].lo
;
5537 if (!(ctx_lo
& CONTEXT_PASIDE
)) {
5538 ctx_lo
|= CONTEXT_PASIDE
;
5539 context
[0].lo
= ctx_lo
;
5541 iommu
->flush
.flush_context(iommu
,
5542 domain
->iommu_did
[iommu
->seq_id
],
5543 PCI_DEVID(info
->bus
, info
->devfn
),
5544 DMA_CCMD_MASK_NOBIT
,
5545 DMA_CCMD_DEVICE_INVL
);
5548 /* Enable PASID support in the device, if it wasn't already */
5549 if (!info
->pasid_enabled
)
5550 iommu_enable_dev_iotlb(info
);
5555 spin_unlock(&iommu
->lock
);
5556 spin_unlock_irqrestore(&device_domain_lock
, flags
);
5561 #ifdef CONFIG_INTEL_IOMMU_SVM
5562 struct intel_iommu
*intel_svm_device_to_iommu(struct device
*dev
)
5564 struct intel_iommu
*iommu
;
5567 if (iommu_dummy(dev
)) {
5569 "No IOMMU translation for device; cannot enable SVM\n");
5573 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
5575 dev_err(dev
, "No IOMMU for device; cannot enable SVM\n");
5581 #endif /* CONFIG_INTEL_IOMMU_SVM */
5583 static int intel_iommu_enable_auxd(struct device
*dev
)
5585 struct device_domain_info
*info
;
5586 struct intel_iommu
*iommu
;
5587 unsigned long flags
;
5591 iommu
= device_to_iommu(dev
, &bus
, &devfn
);
5592 if (!iommu
|| dmar_disabled
)
5595 if (!sm_supported(iommu
) || !pasid_supported(iommu
))
5598 ret
= intel_iommu_enable_pasid(iommu
, dev
);
5602 spin_lock_irqsave(&device_domain_lock
, flags
);
5603 info
= dev
->archdata
.iommu
;
5604 info
->auxd_enabled
= 1;
5605 spin_unlock_irqrestore(&device_domain_lock
, flags
);
5610 static int intel_iommu_disable_auxd(struct device
*dev
)
5612 struct device_domain_info
*info
;
5613 unsigned long flags
;
5615 spin_lock_irqsave(&device_domain_lock
, flags
);
5616 info
= dev
->archdata
.iommu
;
5617 if (!WARN_ON(!info
))
5618 info
->auxd_enabled
= 0;
5619 spin_unlock_irqrestore(&device_domain_lock
, flags
);
5625 * A PCI express designated vendor specific extended capability is defined
5626 * in the section 3.7 of Intel scalable I/O virtualization technical spec
5627 * for system software and tools to detect endpoint devices supporting the
5628 * Intel scalable IO virtualization without host driver dependency.
5630 * Returns the address of the matching extended capability structure within
5631 * the device's PCI configuration space or 0 if the device does not support
5634 static int siov_find_pci_dvsec(struct pci_dev
*pdev
)
5639 pos
= pci_find_next_ext_capability(pdev
, 0, 0x23);
5641 pci_read_config_word(pdev
, pos
+ 4, &vendor
);
5642 pci_read_config_word(pdev
, pos
+ 8, &id
);
5643 if (vendor
== PCI_VENDOR_ID_INTEL
&& id
== 5)
5646 pos
= pci_find_next_ext_capability(pdev
, pos
, 0x23);
5653 intel_iommu_dev_has_feat(struct device
*dev
, enum iommu_dev_features feat
)
5655 if (feat
== IOMMU_DEV_FEAT_AUX
) {
5658 if (!dev_is_pci(dev
) || dmar_disabled
||
5659 !scalable_mode_support() || !iommu_pasid_support())
5662 ret
= pci_pasid_features(to_pci_dev(dev
));
5666 return !!siov_find_pci_dvsec(to_pci_dev(dev
));
5673 intel_iommu_dev_enable_feat(struct device
*dev
, enum iommu_dev_features feat
)
5675 if (feat
== IOMMU_DEV_FEAT_AUX
)
5676 return intel_iommu_enable_auxd(dev
);
5682 intel_iommu_dev_disable_feat(struct device
*dev
, enum iommu_dev_features feat
)
5684 if (feat
== IOMMU_DEV_FEAT_AUX
)
5685 return intel_iommu_disable_auxd(dev
);
5691 intel_iommu_dev_feat_enabled(struct device
*dev
, enum iommu_dev_features feat
)
5693 struct device_domain_info
*info
= dev
->archdata
.iommu
;
5695 if (feat
== IOMMU_DEV_FEAT_AUX
)
5696 return scalable_mode_support() && info
&& info
->auxd_enabled
;
5702 intel_iommu_aux_get_pasid(struct iommu_domain
*domain
, struct device
*dev
)
5704 struct dmar_domain
*dmar_domain
= to_dmar_domain(domain
);
5706 return dmar_domain
->default_pasid
> 0 ?
5707 dmar_domain
->default_pasid
: -EINVAL
;
5710 const struct iommu_ops intel_iommu_ops
= {
5711 .capable
= intel_iommu_capable
,
5712 .domain_alloc
= intel_iommu_domain_alloc
,
5713 .domain_free
= intel_iommu_domain_free
,
5714 .attach_dev
= intel_iommu_attach_device
,
5715 .detach_dev
= intel_iommu_detach_device
,
5716 .aux_attach_dev
= intel_iommu_aux_attach_device
,
5717 .aux_detach_dev
= intel_iommu_aux_detach_device
,
5718 .aux_get_pasid
= intel_iommu_aux_get_pasid
,
5719 .map
= intel_iommu_map
,
5720 .unmap
= intel_iommu_unmap
,
5721 .iova_to_phys
= intel_iommu_iova_to_phys
,
5722 .add_device
= intel_iommu_add_device
,
5723 .remove_device
= intel_iommu_remove_device
,
5724 .get_resv_regions
= intel_iommu_get_resv_regions
,
5725 .put_resv_regions
= intel_iommu_put_resv_regions
,
5726 .device_group
= pci_device_group
,
5727 .dev_has_feat
= intel_iommu_dev_has_feat
,
5728 .dev_feat_enabled
= intel_iommu_dev_feat_enabled
,
5729 .dev_enable_feat
= intel_iommu_dev_enable_feat
,
5730 .dev_disable_feat
= intel_iommu_dev_disable_feat
,
5731 .pgsize_bitmap
= INTEL_IOMMU_PGSIZES
,
5734 static void quirk_iommu_g4x_gfx(struct pci_dev
*dev
)
5736 /* G4x/GM45 integrated gfx dmar support is totally busted. */
5737 pci_info(dev
, "Disabling IOMMU for graphics on this chipset\n");
5741 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_g4x_gfx
);
5742 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e00, quirk_iommu_g4x_gfx
);
5743 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e10, quirk_iommu_g4x_gfx
);
5744 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e20, quirk_iommu_g4x_gfx
);
5745 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e30, quirk_iommu_g4x_gfx
);
5746 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e40, quirk_iommu_g4x_gfx
);
5747 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e90, quirk_iommu_g4x_gfx
);
5749 static void quirk_iommu_rwbf(struct pci_dev
*dev
)
5752 * Mobile 4 Series Chipset neglects to set RWBF capability,
5753 * but needs it. Same seems to hold for the desktop versions.
5755 pci_info(dev
, "Forcing write-buffer flush capability\n");
5759 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_rwbf
);
5760 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e00, quirk_iommu_rwbf
);
5761 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e10, quirk_iommu_rwbf
);
5762 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e20, quirk_iommu_rwbf
);
5763 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e30, quirk_iommu_rwbf
);
5764 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e40, quirk_iommu_rwbf
);
5765 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e90, quirk_iommu_rwbf
);
5768 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
5769 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
5770 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
5771 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
5772 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
5773 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
5774 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
5775 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
5777 static void quirk_calpella_no_shadow_gtt(struct pci_dev
*dev
)
5781 if (pci_read_config_word(dev
, GGC
, &ggc
))
5784 if (!(ggc
& GGC_MEMORY_VT_ENABLED
)) {
5785 pci_info(dev
, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
5787 } else if (dmar_map_gfx
) {
5788 /* we have to ensure the gfx device is idle before we flush */
5789 pci_info(dev
, "Disabling batched IOTLB flush on Ironlake\n");
5790 intel_iommu_strict
= 1;
5793 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0040, quirk_calpella_no_shadow_gtt
);
5794 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0044, quirk_calpella_no_shadow_gtt
);
5795 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0062, quirk_calpella_no_shadow_gtt
);
5796 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x006a, quirk_calpella_no_shadow_gtt
);
5798 /* On Tylersburg chipsets, some BIOSes have been known to enable the
5799 ISOCH DMAR unit for the Azalia sound device, but not give it any
5800 TLB entries, which causes it to deadlock. Check for that. We do
5801 this in a function called from init_dmars(), instead of in a PCI
5802 quirk, because we don't want to print the obnoxious "BIOS broken"
5803 message if VT-d is actually disabled.
5805 static void __init
check_tylersburg_isoch(void)
5807 struct pci_dev
*pdev
;
5808 uint32_t vtisochctrl
;
5810 /* If there's no Azalia in the system anyway, forget it. */
5811 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x3a3e, NULL
);
5816 /* System Management Registers. Might be hidden, in which case
5817 we can't do the sanity check. But that's OK, because the
5818 known-broken BIOSes _don't_ actually hide it, so far. */
5819 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x342e, NULL
);
5823 if (pci_read_config_dword(pdev
, 0x188, &vtisochctrl
)) {
5830 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
5831 if (vtisochctrl
& 1)
5834 /* Drop all bits other than the number of TLB entries */
5835 vtisochctrl
&= 0x1c;
5837 /* If we have the recommended number of TLB entries (16), fine. */
5838 if (vtisochctrl
== 0x10)
5841 /* Zero TLB entries? You get to ride the short bus to school. */
5843 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
5844 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
5845 dmi_get_system_info(DMI_BIOS_VENDOR
),
5846 dmi_get_system_info(DMI_BIOS_VERSION
),
5847 dmi_get_system_info(DMI_PRODUCT_VERSION
));
5848 iommu_identity_mapping
|= IDENTMAP_AZALIA
;
5852 pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",