perf intel-pt: Factor out intel_pt_8b_tsc()
[linux/fpc-iii.git] / drivers / rtc / interface.c
blob4124f4dd376b33c532e94da4783ea6467186393f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * RTC subsystem, interface functions
5 * Copyright (C) 2005 Tower Technologies
6 * Author: Alessandro Zummo <a.zummo@towertech.it>
8 * based on arch/arm/common/rtctime.c
9 */
11 #include <linux/rtc.h>
12 #include <linux/sched.h>
13 #include <linux/module.h>
14 #include <linux/log2.h>
15 #include <linux/workqueue.h>
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/rtc.h>
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
23 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
25 time64_t secs;
27 if (!rtc->offset_secs)
28 return;
30 secs = rtc_tm_to_time64(tm);
33 * Since the reading time values from RTC device are always in the RTC
34 * original valid range, but we need to skip the overlapped region
35 * between expanded range and original range, which is no need to add
36 * the offset.
38 if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
39 (rtc->start_secs < rtc->range_min &&
40 secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
41 return;
43 rtc_time64_to_tm(secs + rtc->offset_secs, tm);
46 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
48 time64_t secs;
50 if (!rtc->offset_secs)
51 return;
53 secs = rtc_tm_to_time64(tm);
56 * If the setting time values are in the valid range of RTC hardware
57 * device, then no need to subtract the offset when setting time to RTC
58 * device. Otherwise we need to subtract the offset to make the time
59 * values are valid for RTC hardware device.
61 if (secs >= rtc->range_min && secs <= rtc->range_max)
62 return;
64 rtc_time64_to_tm(secs - rtc->offset_secs, tm);
67 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
69 if (rtc->range_min != rtc->range_max) {
70 time64_t time = rtc_tm_to_time64(tm);
71 time64_t range_min = rtc->set_start_time ? rtc->start_secs :
72 rtc->range_min;
73 time64_t range_max = rtc->set_start_time ?
74 (rtc->start_secs + rtc->range_max - rtc->range_min) :
75 rtc->range_max;
77 if (time < range_min || time > range_max)
78 return -ERANGE;
81 return 0;
84 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
86 int err;
88 if (!rtc->ops) {
89 err = -ENODEV;
90 } else if (!rtc->ops->read_time) {
91 err = -EINVAL;
92 } else {
93 memset(tm, 0, sizeof(struct rtc_time));
94 err = rtc->ops->read_time(rtc->dev.parent, tm);
95 if (err < 0) {
96 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
97 err);
98 return err;
101 rtc_add_offset(rtc, tm);
103 err = rtc_valid_tm(tm);
104 if (err < 0)
105 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
107 return err;
110 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
112 int err;
114 err = mutex_lock_interruptible(&rtc->ops_lock);
115 if (err)
116 return err;
118 err = __rtc_read_time(rtc, tm);
119 mutex_unlock(&rtc->ops_lock);
121 trace_rtc_read_time(rtc_tm_to_time64(tm), err);
122 return err;
124 EXPORT_SYMBOL_GPL(rtc_read_time);
126 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
128 int err;
130 err = rtc_valid_tm(tm);
131 if (err != 0)
132 return err;
134 err = rtc_valid_range(rtc, tm);
135 if (err)
136 return err;
138 rtc_subtract_offset(rtc, tm);
140 err = mutex_lock_interruptible(&rtc->ops_lock);
141 if (err)
142 return err;
144 if (!rtc->ops)
145 err = -ENODEV;
146 else if (rtc->ops->set_time)
147 err = rtc->ops->set_time(rtc->dev.parent, tm);
148 else
149 err = -EINVAL;
151 pm_stay_awake(rtc->dev.parent);
152 mutex_unlock(&rtc->ops_lock);
153 /* A timer might have just expired */
154 schedule_work(&rtc->irqwork);
156 trace_rtc_set_time(rtc_tm_to_time64(tm), err);
157 return err;
159 EXPORT_SYMBOL_GPL(rtc_set_time);
161 static int rtc_read_alarm_internal(struct rtc_device *rtc,
162 struct rtc_wkalrm *alarm)
164 int err;
166 err = mutex_lock_interruptible(&rtc->ops_lock);
167 if (err)
168 return err;
170 if (!rtc->ops) {
171 err = -ENODEV;
172 } else if (!rtc->ops->read_alarm) {
173 err = -EINVAL;
174 } else {
175 alarm->enabled = 0;
176 alarm->pending = 0;
177 alarm->time.tm_sec = -1;
178 alarm->time.tm_min = -1;
179 alarm->time.tm_hour = -1;
180 alarm->time.tm_mday = -1;
181 alarm->time.tm_mon = -1;
182 alarm->time.tm_year = -1;
183 alarm->time.tm_wday = -1;
184 alarm->time.tm_yday = -1;
185 alarm->time.tm_isdst = -1;
186 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
189 mutex_unlock(&rtc->ops_lock);
191 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
192 return err;
195 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
197 int err;
198 struct rtc_time before, now;
199 int first_time = 1;
200 time64_t t_now, t_alm;
201 enum { none, day, month, year } missing = none;
202 unsigned int days;
204 /* The lower level RTC driver may return -1 in some fields,
205 * creating invalid alarm->time values, for reasons like:
207 * - The hardware may not be capable of filling them in;
208 * many alarms match only on time-of-day fields, not
209 * day/month/year calendar data.
211 * - Some hardware uses illegal values as "wildcard" match
212 * values, which non-Linux firmware (like a BIOS) may try
213 * to set up as e.g. "alarm 15 minutes after each hour".
214 * Linux uses only oneshot alarms.
216 * When we see that here, we deal with it by using values from
217 * a current RTC timestamp for any missing (-1) values. The
218 * RTC driver prevents "periodic alarm" modes.
220 * But this can be racey, because some fields of the RTC timestamp
221 * may have wrapped in the interval since we read the RTC alarm,
222 * which would lead to us inserting inconsistent values in place
223 * of the -1 fields.
225 * Reading the alarm and timestamp in the reverse sequence
226 * would have the same race condition, and not solve the issue.
228 * So, we must first read the RTC timestamp,
229 * then read the RTC alarm value,
230 * and then read a second RTC timestamp.
232 * If any fields of the second timestamp have changed
233 * when compared with the first timestamp, then we know
234 * our timestamp may be inconsistent with that used by
235 * the low-level rtc_read_alarm_internal() function.
237 * So, when the two timestamps disagree, we just loop and do
238 * the process again to get a fully consistent set of values.
240 * This could all instead be done in the lower level driver,
241 * but since more than one lower level RTC implementation needs it,
242 * then it's probably best best to do it here instead of there..
245 /* Get the "before" timestamp */
246 err = rtc_read_time(rtc, &before);
247 if (err < 0)
248 return err;
249 do {
250 if (!first_time)
251 memcpy(&before, &now, sizeof(struct rtc_time));
252 first_time = 0;
254 /* get the RTC alarm values, which may be incomplete */
255 err = rtc_read_alarm_internal(rtc, alarm);
256 if (err)
257 return err;
259 /* full-function RTCs won't have such missing fields */
260 if (rtc_valid_tm(&alarm->time) == 0) {
261 rtc_add_offset(rtc, &alarm->time);
262 return 0;
265 /* get the "after" timestamp, to detect wrapped fields */
266 err = rtc_read_time(rtc, &now);
267 if (err < 0)
268 return err;
270 /* note that tm_sec is a "don't care" value here: */
271 } while (before.tm_min != now.tm_min ||
272 before.tm_hour != now.tm_hour ||
273 before.tm_mon != now.tm_mon ||
274 before.tm_year != now.tm_year);
276 /* Fill in the missing alarm fields using the timestamp; we
277 * know there's at least one since alarm->time is invalid.
279 if (alarm->time.tm_sec == -1)
280 alarm->time.tm_sec = now.tm_sec;
281 if (alarm->time.tm_min == -1)
282 alarm->time.tm_min = now.tm_min;
283 if (alarm->time.tm_hour == -1)
284 alarm->time.tm_hour = now.tm_hour;
286 /* For simplicity, only support date rollover for now */
287 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
288 alarm->time.tm_mday = now.tm_mday;
289 missing = day;
291 if ((unsigned int)alarm->time.tm_mon >= 12) {
292 alarm->time.tm_mon = now.tm_mon;
293 if (missing == none)
294 missing = month;
296 if (alarm->time.tm_year == -1) {
297 alarm->time.tm_year = now.tm_year;
298 if (missing == none)
299 missing = year;
302 /* Can't proceed if alarm is still invalid after replacing
303 * missing fields.
305 err = rtc_valid_tm(&alarm->time);
306 if (err)
307 goto done;
309 /* with luck, no rollover is needed */
310 t_now = rtc_tm_to_time64(&now);
311 t_alm = rtc_tm_to_time64(&alarm->time);
312 if (t_now < t_alm)
313 goto done;
315 switch (missing) {
316 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
317 * that will trigger at 5am will do so at 5am Tuesday, which
318 * could also be in the next month or year. This is a common
319 * case, especially for PCs.
321 case day:
322 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
323 t_alm += 24 * 60 * 60;
324 rtc_time64_to_tm(t_alm, &alarm->time);
325 break;
327 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
328 * be next month. An alarm matching on the 30th, 29th, or 28th
329 * may end up in the month after that! Many newer PCs support
330 * this type of alarm.
332 case month:
333 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
334 do {
335 if (alarm->time.tm_mon < 11) {
336 alarm->time.tm_mon++;
337 } else {
338 alarm->time.tm_mon = 0;
339 alarm->time.tm_year++;
341 days = rtc_month_days(alarm->time.tm_mon,
342 alarm->time.tm_year);
343 } while (days < alarm->time.tm_mday);
344 break;
346 /* Year rollover ... easy except for leap years! */
347 case year:
348 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
349 do {
350 alarm->time.tm_year++;
351 } while (!is_leap_year(alarm->time.tm_year + 1900) &&
352 rtc_valid_tm(&alarm->time) != 0);
353 break;
355 default:
356 dev_warn(&rtc->dev, "alarm rollover not handled\n");
359 err = rtc_valid_tm(&alarm->time);
361 done:
362 if (err)
363 dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
364 &alarm->time);
366 return err;
369 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
371 int err;
373 err = mutex_lock_interruptible(&rtc->ops_lock);
374 if (err)
375 return err;
376 if (!rtc->ops) {
377 err = -ENODEV;
378 } else if (!rtc->ops->read_alarm) {
379 err = -EINVAL;
380 } else {
381 memset(alarm, 0, sizeof(struct rtc_wkalrm));
382 alarm->enabled = rtc->aie_timer.enabled;
383 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
385 mutex_unlock(&rtc->ops_lock);
387 trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
388 return err;
390 EXPORT_SYMBOL_GPL(rtc_read_alarm);
392 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
394 struct rtc_time tm;
395 time64_t now, scheduled;
396 int err;
398 err = rtc_valid_tm(&alarm->time);
399 if (err)
400 return err;
402 scheduled = rtc_tm_to_time64(&alarm->time);
404 /* Make sure we're not setting alarms in the past */
405 err = __rtc_read_time(rtc, &tm);
406 if (err)
407 return err;
408 now = rtc_tm_to_time64(&tm);
409 if (scheduled <= now)
410 return -ETIME;
412 * XXX - We just checked to make sure the alarm time is not
413 * in the past, but there is still a race window where if
414 * the is alarm set for the next second and the second ticks
415 * over right here, before we set the alarm.
418 rtc_subtract_offset(rtc, &alarm->time);
420 if (!rtc->ops)
421 err = -ENODEV;
422 else if (!rtc->ops->set_alarm)
423 err = -EINVAL;
424 else
425 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
427 trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
428 return err;
431 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
433 int err;
435 if (!rtc->ops)
436 return -ENODEV;
437 else if (!rtc->ops->set_alarm)
438 return -EINVAL;
440 err = rtc_valid_tm(&alarm->time);
441 if (err != 0)
442 return err;
444 err = rtc_valid_range(rtc, &alarm->time);
445 if (err)
446 return err;
448 err = mutex_lock_interruptible(&rtc->ops_lock);
449 if (err)
450 return err;
451 if (rtc->aie_timer.enabled)
452 rtc_timer_remove(rtc, &rtc->aie_timer);
454 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
455 rtc->aie_timer.period = 0;
456 if (alarm->enabled)
457 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
459 mutex_unlock(&rtc->ops_lock);
461 return err;
463 EXPORT_SYMBOL_GPL(rtc_set_alarm);
465 /* Called once per device from rtc_device_register */
466 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
468 int err;
469 struct rtc_time now;
471 err = rtc_valid_tm(&alarm->time);
472 if (err != 0)
473 return err;
475 err = rtc_read_time(rtc, &now);
476 if (err)
477 return err;
479 err = mutex_lock_interruptible(&rtc->ops_lock);
480 if (err)
481 return err;
483 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
484 rtc->aie_timer.period = 0;
486 /* Alarm has to be enabled & in the future for us to enqueue it */
487 if (alarm->enabled && (rtc_tm_to_ktime(now) <
488 rtc->aie_timer.node.expires)) {
489 rtc->aie_timer.enabled = 1;
490 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
491 trace_rtc_timer_enqueue(&rtc->aie_timer);
493 mutex_unlock(&rtc->ops_lock);
494 return err;
496 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
498 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
500 int err;
502 err = mutex_lock_interruptible(&rtc->ops_lock);
503 if (err)
504 return err;
506 if (rtc->aie_timer.enabled != enabled) {
507 if (enabled)
508 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
509 else
510 rtc_timer_remove(rtc, &rtc->aie_timer);
513 if (err)
514 /* nothing */;
515 else if (!rtc->ops)
516 err = -ENODEV;
517 else if (!rtc->ops->alarm_irq_enable)
518 err = -EINVAL;
519 else
520 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
522 mutex_unlock(&rtc->ops_lock);
524 trace_rtc_alarm_irq_enable(enabled, err);
525 return err;
527 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
529 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
531 int err;
533 err = mutex_lock_interruptible(&rtc->ops_lock);
534 if (err)
535 return err;
537 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
538 if (enabled == 0 && rtc->uie_irq_active) {
539 mutex_unlock(&rtc->ops_lock);
540 return rtc_dev_update_irq_enable_emul(rtc, 0);
542 #endif
543 /* make sure we're changing state */
544 if (rtc->uie_rtctimer.enabled == enabled)
545 goto out;
547 if (rtc->uie_unsupported) {
548 err = -EINVAL;
549 goto out;
552 if (enabled) {
553 struct rtc_time tm;
554 ktime_t now, onesec;
556 __rtc_read_time(rtc, &tm);
557 onesec = ktime_set(1, 0);
558 now = rtc_tm_to_ktime(tm);
559 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
560 rtc->uie_rtctimer.period = ktime_set(1, 0);
561 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
562 } else {
563 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
566 out:
567 mutex_unlock(&rtc->ops_lock);
568 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
570 * Enable emulation if the driver returned -EINVAL to signal that it has
571 * been configured without interrupts or they are not available at the
572 * moment.
574 if (err == -EINVAL)
575 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
576 #endif
577 return err;
579 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
582 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
583 * @rtc: pointer to the rtc device
585 * This function is called when an AIE, UIE or PIE mode interrupt
586 * has occurred (or been emulated).
589 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
591 unsigned long flags;
593 /* mark one irq of the appropriate mode */
594 spin_lock_irqsave(&rtc->irq_lock, flags);
595 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
596 spin_unlock_irqrestore(&rtc->irq_lock, flags);
598 wake_up_interruptible(&rtc->irq_queue);
599 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
603 * rtc_aie_update_irq - AIE mode rtctimer hook
604 * @rtc: pointer to the rtc_device
606 * This functions is called when the aie_timer expires.
608 void rtc_aie_update_irq(struct rtc_device *rtc)
610 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
614 * rtc_uie_update_irq - UIE mode rtctimer hook
615 * @rtc: pointer to the rtc_device
617 * This functions is called when the uie_timer expires.
619 void rtc_uie_update_irq(struct rtc_device *rtc)
621 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
625 * rtc_pie_update_irq - PIE mode hrtimer hook
626 * @timer: pointer to the pie mode hrtimer
628 * This function is used to emulate PIE mode interrupts
629 * using an hrtimer. This function is called when the periodic
630 * hrtimer expires.
632 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
634 struct rtc_device *rtc;
635 ktime_t period;
636 int count;
638 rtc = container_of(timer, struct rtc_device, pie_timer);
640 period = NSEC_PER_SEC / rtc->irq_freq;
641 count = hrtimer_forward_now(timer, period);
643 rtc_handle_legacy_irq(rtc, count, RTC_PF);
645 return HRTIMER_RESTART;
649 * rtc_update_irq - Triggered when a RTC interrupt occurs.
650 * @rtc: the rtc device
651 * @num: how many irqs are being reported (usually one)
652 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
653 * Context: any
655 void rtc_update_irq(struct rtc_device *rtc,
656 unsigned long num, unsigned long events)
658 if (IS_ERR_OR_NULL(rtc))
659 return;
661 pm_stay_awake(rtc->dev.parent);
662 schedule_work(&rtc->irqwork);
664 EXPORT_SYMBOL_GPL(rtc_update_irq);
666 static int __rtc_match(struct device *dev, const void *data)
668 const char *name = data;
670 if (strcmp(dev_name(dev), name) == 0)
671 return 1;
672 return 0;
675 struct rtc_device *rtc_class_open(const char *name)
677 struct device *dev;
678 struct rtc_device *rtc = NULL;
680 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
681 if (dev)
682 rtc = to_rtc_device(dev);
684 if (rtc) {
685 if (!try_module_get(rtc->owner)) {
686 put_device(dev);
687 rtc = NULL;
691 return rtc;
693 EXPORT_SYMBOL_GPL(rtc_class_open);
695 void rtc_class_close(struct rtc_device *rtc)
697 module_put(rtc->owner);
698 put_device(&rtc->dev);
700 EXPORT_SYMBOL_GPL(rtc_class_close);
702 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
705 * We always cancel the timer here first, because otherwise
706 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
707 * when we manage to start the timer before the callback
708 * returns HRTIMER_RESTART.
710 * We cannot use hrtimer_cancel() here as a running callback
711 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
712 * would spin forever.
714 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
715 return -1;
717 if (enabled) {
718 ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
720 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
722 return 0;
726 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
727 * @rtc: the rtc device
728 * @enabled: true to enable periodic IRQs
729 * Context: any
731 * Note that rtc_irq_set_freq() should previously have been used to
732 * specify the desired frequency of periodic IRQ.
734 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
736 int err = 0;
738 while (rtc_update_hrtimer(rtc, enabled) < 0)
739 cpu_relax();
741 rtc->pie_enabled = enabled;
743 trace_rtc_irq_set_state(enabled, err);
744 return err;
748 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
749 * @rtc: the rtc device
750 * @freq: positive frequency
751 * Context: any
753 * Note that rtc_irq_set_state() is used to enable or disable the
754 * periodic IRQs.
756 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
758 int err = 0;
760 if (freq <= 0 || freq > RTC_MAX_FREQ)
761 return -EINVAL;
763 rtc->irq_freq = freq;
764 while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
765 cpu_relax();
767 trace_rtc_irq_set_freq(freq, err);
768 return err;
772 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
773 * @rtc rtc device
774 * @timer timer being added.
776 * Enqueues a timer onto the rtc devices timerqueue and sets
777 * the next alarm event appropriately.
779 * Sets the enabled bit on the added timer.
781 * Must hold ops_lock for proper serialization of timerqueue
783 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
785 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
786 struct rtc_time tm;
787 ktime_t now;
789 timer->enabled = 1;
790 __rtc_read_time(rtc, &tm);
791 now = rtc_tm_to_ktime(tm);
793 /* Skip over expired timers */
794 while (next) {
795 if (next->expires >= now)
796 break;
797 next = timerqueue_iterate_next(next);
800 timerqueue_add(&rtc->timerqueue, &timer->node);
801 trace_rtc_timer_enqueue(timer);
802 if (!next || ktime_before(timer->node.expires, next->expires)) {
803 struct rtc_wkalrm alarm;
804 int err;
806 alarm.time = rtc_ktime_to_tm(timer->node.expires);
807 alarm.enabled = 1;
808 err = __rtc_set_alarm(rtc, &alarm);
809 if (err == -ETIME) {
810 pm_stay_awake(rtc->dev.parent);
811 schedule_work(&rtc->irqwork);
812 } else if (err) {
813 timerqueue_del(&rtc->timerqueue, &timer->node);
814 trace_rtc_timer_dequeue(timer);
815 timer->enabled = 0;
816 return err;
819 return 0;
822 static void rtc_alarm_disable(struct rtc_device *rtc)
824 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
825 return;
827 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
828 trace_rtc_alarm_irq_enable(0, 0);
832 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
833 * @rtc rtc device
834 * @timer timer being removed.
836 * Removes a timer onto the rtc devices timerqueue and sets
837 * the next alarm event appropriately.
839 * Clears the enabled bit on the removed timer.
841 * Must hold ops_lock for proper serialization of timerqueue
843 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
845 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
847 timerqueue_del(&rtc->timerqueue, &timer->node);
848 trace_rtc_timer_dequeue(timer);
849 timer->enabled = 0;
850 if (next == &timer->node) {
851 struct rtc_wkalrm alarm;
852 int err;
854 next = timerqueue_getnext(&rtc->timerqueue);
855 if (!next) {
856 rtc_alarm_disable(rtc);
857 return;
859 alarm.time = rtc_ktime_to_tm(next->expires);
860 alarm.enabled = 1;
861 err = __rtc_set_alarm(rtc, &alarm);
862 if (err == -ETIME) {
863 pm_stay_awake(rtc->dev.parent);
864 schedule_work(&rtc->irqwork);
870 * rtc_timer_do_work - Expires rtc timers
871 * @rtc rtc device
872 * @timer timer being removed.
874 * Expires rtc timers. Reprograms next alarm event if needed.
875 * Called via worktask.
877 * Serializes access to timerqueue via ops_lock mutex
879 void rtc_timer_do_work(struct work_struct *work)
881 struct rtc_timer *timer;
882 struct timerqueue_node *next;
883 ktime_t now;
884 struct rtc_time tm;
886 struct rtc_device *rtc =
887 container_of(work, struct rtc_device, irqwork);
889 mutex_lock(&rtc->ops_lock);
890 again:
891 __rtc_read_time(rtc, &tm);
892 now = rtc_tm_to_ktime(tm);
893 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
894 if (next->expires > now)
895 break;
897 /* expire timer */
898 timer = container_of(next, struct rtc_timer, node);
899 timerqueue_del(&rtc->timerqueue, &timer->node);
900 trace_rtc_timer_dequeue(timer);
901 timer->enabled = 0;
902 if (timer->func)
903 timer->func(timer->rtc);
905 trace_rtc_timer_fired(timer);
906 /* Re-add/fwd periodic timers */
907 if (ktime_to_ns(timer->period)) {
908 timer->node.expires = ktime_add(timer->node.expires,
909 timer->period);
910 timer->enabled = 1;
911 timerqueue_add(&rtc->timerqueue, &timer->node);
912 trace_rtc_timer_enqueue(timer);
916 /* Set next alarm */
917 if (next) {
918 struct rtc_wkalrm alarm;
919 int err;
920 int retry = 3;
922 alarm.time = rtc_ktime_to_tm(next->expires);
923 alarm.enabled = 1;
924 reprogram:
925 err = __rtc_set_alarm(rtc, &alarm);
926 if (err == -ETIME) {
927 goto again;
928 } else if (err) {
929 if (retry-- > 0)
930 goto reprogram;
932 timer = container_of(next, struct rtc_timer, node);
933 timerqueue_del(&rtc->timerqueue, &timer->node);
934 trace_rtc_timer_dequeue(timer);
935 timer->enabled = 0;
936 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
937 goto again;
939 } else {
940 rtc_alarm_disable(rtc);
943 pm_relax(rtc->dev.parent);
944 mutex_unlock(&rtc->ops_lock);
947 /* rtc_timer_init - Initializes an rtc_timer
948 * @timer: timer to be intiialized
949 * @f: function pointer to be called when timer fires
950 * @rtc: pointer to the rtc_device
952 * Kernel interface to initializing an rtc_timer.
954 void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
955 struct rtc_device *rtc)
957 timerqueue_init(&timer->node);
958 timer->enabled = 0;
959 timer->func = f;
960 timer->rtc = rtc;
963 /* rtc_timer_start - Sets an rtc_timer to fire in the future
964 * @ rtc: rtc device to be used
965 * @ timer: timer being set
966 * @ expires: time at which to expire the timer
967 * @ period: period that the timer will recur
969 * Kernel interface to set an rtc_timer
971 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
972 ktime_t expires, ktime_t period)
974 int ret = 0;
976 mutex_lock(&rtc->ops_lock);
977 if (timer->enabled)
978 rtc_timer_remove(rtc, timer);
980 timer->node.expires = expires;
981 timer->period = period;
983 ret = rtc_timer_enqueue(rtc, timer);
985 mutex_unlock(&rtc->ops_lock);
986 return ret;
989 /* rtc_timer_cancel - Stops an rtc_timer
990 * @ rtc: rtc device to be used
991 * @ timer: timer being set
993 * Kernel interface to cancel an rtc_timer
995 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
997 mutex_lock(&rtc->ops_lock);
998 if (timer->enabled)
999 rtc_timer_remove(rtc, timer);
1000 mutex_unlock(&rtc->ops_lock);
1004 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1005 * @ rtc: rtc device to be used
1006 * @ offset: the offset in parts per billion
1008 * see below for details.
1010 * Kernel interface to read rtc clock offset
1011 * Returns 0 on success, or a negative number on error.
1012 * If read_offset() is not implemented for the rtc, return -EINVAL
1014 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1016 int ret;
1018 if (!rtc->ops)
1019 return -ENODEV;
1021 if (!rtc->ops->read_offset)
1022 return -EINVAL;
1024 mutex_lock(&rtc->ops_lock);
1025 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1026 mutex_unlock(&rtc->ops_lock);
1028 trace_rtc_read_offset(*offset, ret);
1029 return ret;
1033 * rtc_set_offset - Adjusts the duration of the average second
1034 * @ rtc: rtc device to be used
1035 * @ offset: the offset in parts per billion
1037 * Some rtc's allow an adjustment to the average duration of a second
1038 * to compensate for differences in the actual clock rate due to temperature,
1039 * the crystal, capacitor, etc.
1041 * The adjustment applied is as follows:
1042 * t = t0 * (1 + offset * 1e-9)
1043 * where t0 is the measured length of 1 RTC second with offset = 0
1045 * Kernel interface to adjust an rtc clock offset.
1046 * Return 0 on success, or a negative number on error.
1047 * If the rtc offset is not setable (or not implemented), return -EINVAL
1049 int rtc_set_offset(struct rtc_device *rtc, long offset)
1051 int ret;
1053 if (!rtc->ops)
1054 return -ENODEV;
1056 if (!rtc->ops->set_offset)
1057 return -EINVAL;
1059 mutex_lock(&rtc->ops_lock);
1060 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1061 mutex_unlock(&rtc->ops_lock);
1063 trace_rtc_set_offset(offset, ret);
1064 return ret;