1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * RTC driver for the Armada 38x Marvell SoCs
5 * Copyright (C) 2015 Marvell
7 * Gregory Clement <gregory.clement@free-electrons.com>
10 #include <linux/delay.h>
12 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/rtc.h>
18 #define RTC_STATUS 0x0
19 #define RTC_STATUS_ALARM1 BIT(0)
20 #define RTC_STATUS_ALARM2 BIT(1)
21 #define RTC_IRQ1_CONF 0x4
22 #define RTC_IRQ2_CONF 0x8
23 #define RTC_IRQ_AL_EN BIT(0)
24 #define RTC_IRQ_FREQ_EN BIT(1)
25 #define RTC_IRQ_FREQ_1HZ BIT(2)
27 #define RTC_CCR_MODE BIT(15)
28 #define RTC_CONF_TEST 0x1C
29 #define RTC_NOMINAL_TIMING BIT(13)
32 #define RTC_ALARM1 0x10
33 #define RTC_ALARM2 0x14
35 /* Armada38x SoC registers */
36 #define RTC_38X_BRIDGE_TIMING_CTL 0x0
37 #define RTC_38X_PERIOD_OFFS 0
38 #define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS)
39 #define RTC_38X_READ_DELAY_OFFS 26
40 #define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS)
42 /* Armada 7K/8K registers */
43 #define RTC_8K_BRIDGE_TIMING_CTL0 0x0
44 #define RTC_8K_WRCLK_PERIOD_OFFS 0
45 #define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
46 #define RTC_8K_WRCLK_SETUP_OFFS 16
47 #define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
48 #define RTC_8K_BRIDGE_TIMING_CTL1 0x4
49 #define RTC_8K_READ_DELAY_OFFS 0
50 #define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS)
52 #define RTC_8K_ISR 0x10
53 #define RTC_8K_IMR 0x14
54 #define RTC_8K_ALARM2 BIT(0)
56 #define SOC_RTC_INTERRUPT 0x8
57 #define SOC_RTC_ALARM1 BIT(0)
58 #define SOC_RTC_ALARM2 BIT(1)
59 #define SOC_RTC_ALARM1_MASK BIT(2)
60 #define SOC_RTC_ALARM2_MASK BIT(3)
64 struct value_to_freq
{
69 struct armada38x_rtc
{
70 struct rtc_device
*rtc_dev
;
72 void __iomem
*regs_soc
;
76 struct value_to_freq
*val_to_freq
;
77 struct armada38x_rtc_data
*data
;
83 #define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32))
85 struct armada38x_rtc_data
{
86 /* Initialize the RTC-MBUS bridge timing */
87 void (*update_mbus_timing
)(struct armada38x_rtc
*rtc
);
88 u32 (*read_rtc_reg
)(struct armada38x_rtc
*rtc
, u8 rtc_reg
);
89 void (*clear_isr
)(struct armada38x_rtc
*rtc
);
90 void (*unmask_interrupt
)(struct armada38x_rtc
*rtc
);
95 * According to the datasheet, the OS should wait 5us after every
96 * register write to the RTC hard macro so that the required update
97 * can occur without holding off the system bus
98 * According to errata RES-3124064, Write to any RTC register
99 * may fail. As a workaround, before writing to RTC
100 * register, issue a dummy write of 0x0 twice to RTC Status
104 static void rtc_delayed_write(u32 val
, struct armada38x_rtc
*rtc
, int offset
)
106 writel(0, rtc
->regs
+ RTC_STATUS
);
107 writel(0, rtc
->regs
+ RTC_STATUS
);
108 writel(val
, rtc
->regs
+ offset
);
112 /* Update RTC-MBUS bridge timing parameters */
113 static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc
*rtc
)
117 reg
= readl(rtc
->regs_soc
+ RTC_38X_BRIDGE_TIMING_CTL
);
118 reg
&= ~RTC_38X_PERIOD_MASK
;
119 reg
|= 0x3FF << RTC_38X_PERIOD_OFFS
; /* Maximum value */
120 reg
&= ~RTC_38X_READ_DELAY_MASK
;
121 reg
|= 0x1F << RTC_38X_READ_DELAY_OFFS
; /* Maximum value */
122 writel(reg
, rtc
->regs_soc
+ RTC_38X_BRIDGE_TIMING_CTL
);
125 static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc
*rtc
)
129 reg
= readl(rtc
->regs_soc
+ RTC_8K_BRIDGE_TIMING_CTL0
);
130 reg
&= ~RTC_8K_WRCLK_PERIOD_MASK
;
131 reg
|= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS
;
132 reg
&= ~RTC_8K_WRCLK_SETUP_MASK
;
133 reg
|= 0x29 << RTC_8K_WRCLK_SETUP_OFFS
;
134 writel(reg
, rtc
->regs_soc
+ RTC_8K_BRIDGE_TIMING_CTL0
);
136 reg
= readl(rtc
->regs_soc
+ RTC_8K_BRIDGE_TIMING_CTL1
);
137 reg
&= ~RTC_8K_READ_DELAY_MASK
;
138 reg
|= 0x3F << RTC_8K_READ_DELAY_OFFS
;
139 writel(reg
, rtc
->regs_soc
+ RTC_8K_BRIDGE_TIMING_CTL1
);
142 static u32
read_rtc_register(struct armada38x_rtc
*rtc
, u8 rtc_reg
)
144 return readl(rtc
->regs
+ rtc_reg
);
147 static u32
read_rtc_register_38x_wa(struct armada38x_rtc
*rtc
, u8 rtc_reg
)
149 int i
, index_max
= 0, max
= 0;
151 for (i
= 0; i
< SAMPLE_NR
; i
++) {
152 rtc
->val_to_freq
[i
].value
= readl(rtc
->regs
+ rtc_reg
);
153 rtc
->val_to_freq
[i
].freq
= 0;
156 for (i
= 0; i
< SAMPLE_NR
; i
++) {
158 u32 value
= rtc
->val_to_freq
[i
].value
;
160 while (rtc
->val_to_freq
[j
].freq
) {
161 if (rtc
->val_to_freq
[j
].value
== value
) {
162 rtc
->val_to_freq
[j
].freq
++;
168 if (!rtc
->val_to_freq
[j
].freq
) {
169 rtc
->val_to_freq
[j
].value
= value
;
170 rtc
->val_to_freq
[j
].freq
= 1;
173 if (rtc
->val_to_freq
[j
].freq
> max
) {
175 max
= rtc
->val_to_freq
[j
].freq
;
179 * If a value already has half of the sample this is the most
180 * frequent one and we can stop the research right now
182 if (max
> SAMPLE_NR
/ 2)
186 return rtc
->val_to_freq
[index_max
].value
;
189 static void armada38x_clear_isr(struct armada38x_rtc
*rtc
)
191 u32 val
= readl(rtc
->regs_soc
+ SOC_RTC_INTERRUPT
);
193 writel(val
& ~SOC_RTC_ALARM1
, rtc
->regs_soc
+ SOC_RTC_INTERRUPT
);
196 static void armada38x_unmask_interrupt(struct armada38x_rtc
*rtc
)
198 u32 val
= readl(rtc
->regs_soc
+ SOC_RTC_INTERRUPT
);
200 writel(val
| SOC_RTC_ALARM1_MASK
, rtc
->regs_soc
+ SOC_RTC_INTERRUPT
);
203 static void armada8k_clear_isr(struct armada38x_rtc
*rtc
)
205 writel(RTC_8K_ALARM2
, rtc
->regs_soc
+ RTC_8K_ISR
);
208 static void armada8k_unmask_interrupt(struct armada38x_rtc
*rtc
)
210 writel(RTC_8K_ALARM2
, rtc
->regs_soc
+ RTC_8K_IMR
);
213 static int armada38x_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
215 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
216 unsigned long time
, flags
;
218 spin_lock_irqsave(&rtc
->lock
, flags
);
219 time
= rtc
->data
->read_rtc_reg(rtc
, RTC_TIME
);
220 spin_unlock_irqrestore(&rtc
->lock
, flags
);
222 rtc_time64_to_tm(time
, tm
);
227 static void armada38x_rtc_reset(struct armada38x_rtc
*rtc
)
231 reg
= rtc
->data
->read_rtc_reg(rtc
, RTC_CONF_TEST
);
232 /* If bits [7:0] are non-zero, assume RTC was uninitialized */
234 rtc_delayed_write(0, rtc
, RTC_CONF_TEST
);
235 msleep(500); /* Oscillator startup time */
236 rtc_delayed_write(0, rtc
, RTC_TIME
);
237 rtc_delayed_write(SOC_RTC_ALARM1
| SOC_RTC_ALARM2
, rtc
,
239 rtc_delayed_write(RTC_NOMINAL_TIMING
, rtc
, RTC_CCR
);
241 rtc
->initialized
= true;
244 static int armada38x_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
246 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
247 unsigned long time
, flags
;
249 time
= rtc_tm_to_time64(tm
);
251 if (!rtc
->initialized
)
252 armada38x_rtc_reset(rtc
);
254 spin_lock_irqsave(&rtc
->lock
, flags
);
255 rtc_delayed_write(time
, rtc
, RTC_TIME
);
256 spin_unlock_irqrestore(&rtc
->lock
, flags
);
261 static int armada38x_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
263 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
264 unsigned long time
, flags
;
265 u32 reg
= ALARM_REG(RTC_ALARM1
, rtc
->data
->alarm
);
266 u32 reg_irq
= ALARM_REG(RTC_IRQ1_CONF
, rtc
->data
->alarm
);
269 spin_lock_irqsave(&rtc
->lock
, flags
);
271 time
= rtc
->data
->read_rtc_reg(rtc
, reg
);
272 val
= rtc
->data
->read_rtc_reg(rtc
, reg_irq
) & RTC_IRQ_AL_EN
;
274 spin_unlock_irqrestore(&rtc
->lock
, flags
);
276 alrm
->enabled
= val
? 1 : 0;
277 rtc_time64_to_tm(time
, &alrm
->time
);
282 static int armada38x_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
284 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
285 u32 reg
= ALARM_REG(RTC_ALARM1
, rtc
->data
->alarm
);
286 u32 reg_irq
= ALARM_REG(RTC_IRQ1_CONF
, rtc
->data
->alarm
);
287 unsigned long time
, flags
;
289 time
= rtc_tm_to_time64(&alrm
->time
);
291 spin_lock_irqsave(&rtc
->lock
, flags
);
293 rtc_delayed_write(time
, rtc
, reg
);
296 rtc_delayed_write(RTC_IRQ_AL_EN
, rtc
, reg_irq
);
297 rtc
->data
->unmask_interrupt(rtc
);
300 spin_unlock_irqrestore(&rtc
->lock
, flags
);
305 static int armada38x_rtc_alarm_irq_enable(struct device
*dev
,
306 unsigned int enabled
)
308 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
309 u32 reg_irq
= ALARM_REG(RTC_IRQ1_CONF
, rtc
->data
->alarm
);
312 spin_lock_irqsave(&rtc
->lock
, flags
);
315 rtc_delayed_write(RTC_IRQ_AL_EN
, rtc
, reg_irq
);
317 rtc_delayed_write(0, rtc
, reg_irq
);
319 spin_unlock_irqrestore(&rtc
->lock
, flags
);
324 static irqreturn_t
armada38x_rtc_alarm_irq(int irq
, void *data
)
326 struct armada38x_rtc
*rtc
= data
;
328 int event
= RTC_IRQF
| RTC_AF
;
329 u32 reg_irq
= ALARM_REG(RTC_IRQ1_CONF
, rtc
->data
->alarm
);
331 dev_dbg(&rtc
->rtc_dev
->dev
, "%s:irq(%d)\n", __func__
, irq
);
333 spin_lock(&rtc
->lock
);
335 rtc
->data
->clear_isr(rtc
);
336 val
= rtc
->data
->read_rtc_reg(rtc
, reg_irq
);
337 /* disable all the interrupts for alarm*/
338 rtc_delayed_write(0, rtc
, reg_irq
);
340 rtc_delayed_write(1 << rtc
->data
->alarm
, rtc
, RTC_STATUS
);
342 spin_unlock(&rtc
->lock
);
344 if (val
& RTC_IRQ_FREQ_EN
) {
345 if (val
& RTC_IRQ_FREQ_1HZ
)
351 rtc_update_irq(rtc
->rtc_dev
, 1, event
);
357 * The information given in the Armada 388 functional spec is complex.
358 * They give two different formulas for calculating the offset value,
359 * but when considering "Offset" as an 8-bit signed integer, they both
360 * reduce down to (we shall rename "Offset" as "val" here):
362 * val = (f_ideal / f_measured - 1) / resolution where f_ideal = 32768
364 * Converting to time, f = 1/t:
365 * val = (t_measured / t_ideal - 1) / resolution where t_ideal = 1/32768
367 * => t_measured / t_ideal = val * resolution + 1
369 * "offset" in the RTC interface is defined as:
370 * t = t0 * (1 + offset * 1e-9)
371 * where t is the desired period, t0 is the measured period with a zero
372 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
373 * offset = (t_ideal / t_measured - 1) / 1e-9
375 * => t_ideal / t_measured = offset * 1e-9 + 1
379 * offset * 1e-9 + 1 = 1 / (val * resolution + 1)
381 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
382 * offset = 1e18 / (val * R + 1e9) - 1e9
383 * val = (1e18 / (offset + 1e9) - 1e9) / R
384 * with a common transformation:
385 * f(x) = 1e18 / (x + 1e9) - 1e9
386 * offset = f(val * R)
387 * val = f(offset) / R
389 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
391 static long armada38x_ppb_convert(long ppb
)
393 long div
= ppb
+ 1000000000L;
395 return div_s64(1000000000000000000LL + div
/ 2, div
) - 1000000000L;
398 static int armada38x_rtc_read_offset(struct device
*dev
, long *offset
)
400 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
401 unsigned long ccr
, flags
;
404 spin_lock_irqsave(&rtc
->lock
, flags
);
405 ccr
= rtc
->data
->read_rtc_reg(rtc
, RTC_CCR
);
406 spin_unlock_irqrestore(&rtc
->lock
, flags
);
408 ppb_cor
= (ccr
& RTC_CCR_MODE
? 3815 : 954) * (s8
)ccr
;
409 /* ppb_cor + 1000000000L can never be zero */
410 *offset
= armada38x_ppb_convert(ppb_cor
);
415 static int armada38x_rtc_set_offset(struct device
*dev
, long offset
)
417 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
418 unsigned long ccr
= 0;
422 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
423 * need to clamp the input. This equates to -484270 .. 488558.
424 * Not only is this to stop out of range "off" but also to
425 * avoid the division by zero in armada38x_ppb_convert().
427 offset
= clamp(offset
, -484270L, 488558L);
429 ppb_cor
= armada38x_ppb_convert(offset
);
432 * Use low update mode where possible, which gives a better
433 * resolution of correction.
435 off
= DIV_ROUND_CLOSEST(ppb_cor
, 954);
436 if (off
> 127 || off
< -128) {
438 off
= DIV_ROUND_CLOSEST(ppb_cor
, 3815);
442 * Armada 388 requires a bit pattern in bits 14..8 depending on
443 * the sign bit: { 0, ~S, S, S, S, S, S }
445 ccr
|= (off
& 0x3fff) ^ 0x2000;
446 rtc_delayed_write(ccr
, rtc
, RTC_CCR
);
451 static const struct rtc_class_ops armada38x_rtc_ops
= {
452 .read_time
= armada38x_rtc_read_time
,
453 .set_time
= armada38x_rtc_set_time
,
454 .read_alarm
= armada38x_rtc_read_alarm
,
455 .set_alarm
= armada38x_rtc_set_alarm
,
456 .alarm_irq_enable
= armada38x_rtc_alarm_irq_enable
,
457 .read_offset
= armada38x_rtc_read_offset
,
458 .set_offset
= armada38x_rtc_set_offset
,
461 static const struct rtc_class_ops armada38x_rtc_ops_noirq
= {
462 .read_time
= armada38x_rtc_read_time
,
463 .set_time
= armada38x_rtc_set_time
,
464 .read_alarm
= armada38x_rtc_read_alarm
,
465 .read_offset
= armada38x_rtc_read_offset
,
466 .set_offset
= armada38x_rtc_set_offset
,
469 static const struct armada38x_rtc_data armada38x_data
= {
470 .update_mbus_timing
= rtc_update_38x_mbus_timing_params
,
471 .read_rtc_reg
= read_rtc_register_38x_wa
,
472 .clear_isr
= armada38x_clear_isr
,
473 .unmask_interrupt
= armada38x_unmask_interrupt
,
477 static const struct armada38x_rtc_data armada8k_data
= {
478 .update_mbus_timing
= rtc_update_8k_mbus_timing_params
,
479 .read_rtc_reg
= read_rtc_register
,
480 .clear_isr
= armada8k_clear_isr
,
481 .unmask_interrupt
= armada8k_unmask_interrupt
,
486 static const struct of_device_id armada38x_rtc_of_match_table
[] = {
488 .compatible
= "marvell,armada-380-rtc",
489 .data
= &armada38x_data
,
492 .compatible
= "marvell,armada-8k-rtc",
493 .data
= &armada8k_data
,
497 MODULE_DEVICE_TABLE(of
, armada38x_rtc_of_match_table
);
500 static __init
int armada38x_rtc_probe(struct platform_device
*pdev
)
502 struct resource
*res
;
503 struct armada38x_rtc
*rtc
;
504 const struct of_device_id
*match
;
507 match
= of_match_device(armada38x_rtc_of_match_table
, &pdev
->dev
);
511 rtc
= devm_kzalloc(&pdev
->dev
, sizeof(struct armada38x_rtc
),
516 rtc
->val_to_freq
= devm_kcalloc(&pdev
->dev
, SAMPLE_NR
,
517 sizeof(struct value_to_freq
), GFP_KERNEL
);
518 if (!rtc
->val_to_freq
)
521 spin_lock_init(&rtc
->lock
);
523 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "rtc");
524 rtc
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
525 if (IS_ERR(rtc
->regs
))
526 return PTR_ERR(rtc
->regs
);
527 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "rtc-soc");
528 rtc
->regs_soc
= devm_ioremap_resource(&pdev
->dev
, res
);
529 if (IS_ERR(rtc
->regs_soc
))
530 return PTR_ERR(rtc
->regs_soc
);
532 rtc
->irq
= platform_get_irq(pdev
, 0);
535 dev_err(&pdev
->dev
, "no irq\n");
539 rtc
->rtc_dev
= devm_rtc_allocate_device(&pdev
->dev
);
540 if (IS_ERR(rtc
->rtc_dev
))
541 return PTR_ERR(rtc
->rtc_dev
);
543 if (devm_request_irq(&pdev
->dev
, rtc
->irq
, armada38x_rtc_alarm_irq
,
544 0, pdev
->name
, rtc
) < 0) {
545 dev_warn(&pdev
->dev
, "Interrupt not available.\n");
548 platform_set_drvdata(pdev
, rtc
);
550 if (rtc
->irq
!= -1) {
551 device_init_wakeup(&pdev
->dev
, 1);
552 rtc
->rtc_dev
->ops
= &armada38x_rtc_ops
;
555 * If there is no interrupt available then we can't
558 rtc
->rtc_dev
->ops
= &armada38x_rtc_ops_noirq
;
560 rtc
->data
= (struct armada38x_rtc_data
*)match
->data
;
562 /* Update RTC-MBUS bridge timing parameters */
563 rtc
->data
->update_mbus_timing(rtc
);
565 rtc
->rtc_dev
->range_max
= U32_MAX
;
567 ret
= rtc_register_device(rtc
->rtc_dev
);
569 dev_err(&pdev
->dev
, "Failed to register RTC device: %d\n", ret
);
574 #ifdef CONFIG_PM_SLEEP
575 static int armada38x_rtc_suspend(struct device
*dev
)
577 if (device_may_wakeup(dev
)) {
578 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
580 return enable_irq_wake(rtc
->irq
);
586 static int armada38x_rtc_resume(struct device
*dev
)
588 if (device_may_wakeup(dev
)) {
589 struct armada38x_rtc
*rtc
= dev_get_drvdata(dev
);
591 /* Update RTC-MBUS bridge timing parameters */
592 rtc
->data
->update_mbus_timing(rtc
);
594 return disable_irq_wake(rtc
->irq
);
601 static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops
,
602 armada38x_rtc_suspend
, armada38x_rtc_resume
);
604 static struct platform_driver armada38x_rtc_driver
= {
606 .name
= "armada38x-rtc",
607 .pm
= &armada38x_rtc_pm_ops
,
608 .of_match_table
= of_match_ptr(armada38x_rtc_of_match_table
),
612 module_platform_driver_probe(armada38x_rtc_driver
, armada38x_rtc_probe
);
614 MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
615 MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
616 MODULE_LICENSE("GPL");