1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_trans.h"
17 #include "xfs_buf_item.h"
18 #include "xfs_inode.h"
19 #include "xfs_inode_item.h"
20 #include "xfs_trace.h"
23 * Deferred Operations in XFS
25 * Due to the way locking rules work in XFS, certain transactions (block
26 * mapping and unmapping, typically) have permanent reservations so that
27 * we can roll the transaction to adhere to AG locking order rules and
28 * to unlock buffers between metadata updates. Prior to rmap/reflink,
29 * the mapping code had a mechanism to perform these deferrals for
30 * extents that were going to be freed; this code makes that facility
33 * When adding the reverse mapping and reflink features, it became
34 * necessary to perform complex remapping multi-transactions to comply
35 * with AG locking order rules, and to be able to spread a single
36 * refcount update operation (an operation on an n-block extent can
37 * update as many as n records!) among multiple transactions. XFS can
38 * roll a transaction to facilitate this, but using this facility
39 * requires us to log "intent" items in case log recovery needs to
40 * redo the operation, and to log "done" items to indicate that redo
43 * Deferred work is tracked in xfs_defer_pending items. Each pending
44 * item tracks one type of deferred work. Incoming work items (which
45 * have not yet had an intent logged) are attached to a pending item
46 * on the dop_intake list, where they wait for the caller to finish
47 * the deferred operations.
49 * Finishing a set of deferred operations is an involved process. To
50 * start, we define "rolling a deferred-op transaction" as follows:
52 * > For each xfs_defer_pending item on the dop_intake list,
53 * - Sort the work items in AG order. XFS locking
54 * order rules require us to lock buffers in AG order.
55 * - Create a log intent item for that type.
56 * - Attach it to the pending item.
57 * - Move the pending item from the dop_intake list to the
59 * > Roll the transaction.
61 * NOTE: To avoid exceeding the transaction reservation, we limit the
62 * number of items that we attach to a given xfs_defer_pending.
64 * The actual finishing process looks like this:
66 * > For each xfs_defer_pending in the dop_pending list,
67 * - Roll the deferred-op transaction as above.
68 * - Create a log done item for that type, and attach it to the
70 * - For each work item attached to the log intent item,
71 * * Perform the described action.
72 * * Attach the work item to the log done item.
73 * * If the result of doing the work was -EAGAIN, ->finish work
74 * wants a new transaction. See the "Requesting a Fresh
75 * Transaction while Finishing Deferred Work" section below for
78 * The key here is that we must log an intent item for all pending
79 * work items every time we roll the transaction, and that we must log
80 * a done item as soon as the work is completed. With this mechanism
81 * we can perform complex remapping operations, chaining intent items
84 * Requesting a Fresh Transaction while Finishing Deferred Work
86 * If ->finish_item decides that it needs a fresh transaction to
87 * finish the work, it must ask its caller (xfs_defer_finish) for a
88 * continuation. The most likely cause of this circumstance are the
89 * refcount adjust functions deciding that they've logged enough items
90 * to be at risk of exceeding the transaction reservation.
92 * To get a fresh transaction, we want to log the existing log done
93 * item to prevent the log intent item from replaying, immediately log
94 * a new log intent item with the unfinished work items, roll the
95 * transaction, and re-call ->finish_item wherever it left off. The
96 * log done item and the new log intent item must be in the same
97 * transaction or atomicity cannot be guaranteed; defer_finish ensures
100 * This requires some coordination between ->finish_item and
101 * defer_finish. Upon deciding to request a new transaction,
102 * ->finish_item should update the current work item to reflect the
103 * unfinished work. Next, it should reset the log done item's list
104 * count to the number of items finished, and return -EAGAIN.
105 * defer_finish sees the -EAGAIN, logs the new log intent item
106 * with the remaining work items, and leaves the xfs_defer_pending
107 * item at the head of the dop_work queue. Then it rolls the
108 * transaction and picks up processing where it left off. It is
109 * required that ->finish_item must be careful to leave enough
110 * transaction reservation to fit the new log intent item.
112 * This is an example of remapping the extent (E, E+B) into file X at
113 * offset A and dealing with the extent (C, C+B) already being mapped
115 * +-------------------------------------------------+
116 * | Unmap file X startblock C offset A length B | t0
117 * | Intent to reduce refcount for extent (C, B) |
118 * | Intent to remove rmap (X, C, A, B) |
119 * | Intent to free extent (D, 1) (bmbt block) |
120 * | Intent to map (X, A, B) at startblock E |
121 * +-------------------------------------------------+
122 * | Map file X startblock E offset A length B | t1
123 * | Done mapping (X, E, A, B) |
124 * | Intent to increase refcount for extent (E, B) |
125 * | Intent to add rmap (X, E, A, B) |
126 * +-------------------------------------------------+
127 * | Reduce refcount for extent (C, B) | t2
128 * | Done reducing refcount for extent (C, 9) |
129 * | Intent to reduce refcount for extent (C+9, B-9) |
130 * | (ran out of space after 9 refcount updates) |
131 * +-------------------------------------------------+
132 * | Reduce refcount for extent (C+9, B+9) | t3
133 * | Done reducing refcount for extent (C+9, B-9) |
134 * | Increase refcount for extent (E, B) |
135 * | Done increasing refcount for extent (E, B) |
136 * | Intent to free extent (C, B) |
137 * | Intent to free extent (F, 1) (refcountbt block) |
138 * | Intent to remove rmap (F, 1, REFC) |
139 * +-------------------------------------------------+
140 * | Remove rmap (X, C, A, B) | t4
141 * | Done removing rmap (X, C, A, B) |
142 * | Add rmap (X, E, A, B) |
143 * | Done adding rmap (X, E, A, B) |
144 * | Remove rmap (F, 1, REFC) |
145 * | Done removing rmap (F, 1, REFC) |
146 * +-------------------------------------------------+
147 * | Free extent (C, B) | t5
148 * | Done freeing extent (C, B) |
149 * | Free extent (D, 1) |
150 * | Done freeing extent (D, 1) |
151 * | Free extent (F, 1) |
152 * | Done freeing extent (F, 1) |
153 * +-------------------------------------------------+
155 * If we should crash before t2 commits, log recovery replays
156 * the following intent items:
158 * - Intent to reduce refcount for extent (C, B)
159 * - Intent to remove rmap (X, C, A, B)
160 * - Intent to free extent (D, 1) (bmbt block)
161 * - Intent to increase refcount for extent (E, B)
162 * - Intent to add rmap (X, E, A, B)
164 * In the process of recovering, it should also generate and take care
165 * of these intent items:
167 * - Intent to free extent (C, B)
168 * - Intent to free extent (F, 1) (refcountbt block)
169 * - Intent to remove rmap (F, 1, REFC)
171 * Note that the continuation requested between t2 and t3 is likely to
175 static const struct xfs_defer_op_type
*defer_op_types
[] = {
176 [XFS_DEFER_OPS_TYPE_BMAP
] = &xfs_bmap_update_defer_type
,
177 [XFS_DEFER_OPS_TYPE_REFCOUNT
] = &xfs_refcount_update_defer_type
,
178 [XFS_DEFER_OPS_TYPE_RMAP
] = &xfs_rmap_update_defer_type
,
179 [XFS_DEFER_OPS_TYPE_FREE
] = &xfs_extent_free_defer_type
,
180 [XFS_DEFER_OPS_TYPE_AGFL_FREE
] = &xfs_agfl_free_defer_type
,
184 * For each pending item in the intake list, log its intent item and the
185 * associated extents, then add the entire intake list to the end of
189 xfs_defer_create_intents(
190 struct xfs_trans
*tp
)
192 struct list_head
*li
;
193 struct xfs_defer_pending
*dfp
;
194 const struct xfs_defer_op_type
*ops
;
196 list_for_each_entry(dfp
, &tp
->t_dfops
, dfp_list
) {
197 ops
= defer_op_types
[dfp
->dfp_type
];
198 dfp
->dfp_intent
= ops
->create_intent(tp
, dfp
->dfp_count
);
199 trace_xfs_defer_create_intent(tp
->t_mountp
, dfp
);
200 list_sort(tp
->t_mountp
, &dfp
->dfp_work
, ops
->diff_items
);
201 list_for_each(li
, &dfp
->dfp_work
)
202 ops
->log_item(tp
, dfp
->dfp_intent
, li
);
206 /* Abort all the intents that were committed. */
208 xfs_defer_trans_abort(
209 struct xfs_trans
*tp
,
210 struct list_head
*dop_pending
)
212 struct xfs_defer_pending
*dfp
;
213 const struct xfs_defer_op_type
*ops
;
215 trace_xfs_defer_trans_abort(tp
, _RET_IP_
);
217 /* Abort intent items that don't have a done item. */
218 list_for_each_entry(dfp
, dop_pending
, dfp_list
) {
219 ops
= defer_op_types
[dfp
->dfp_type
];
220 trace_xfs_defer_pending_abort(tp
->t_mountp
, dfp
);
221 if (dfp
->dfp_intent
&& !dfp
->dfp_done
) {
222 ops
->abort_intent(dfp
->dfp_intent
);
223 dfp
->dfp_intent
= NULL
;
228 /* Roll a transaction so we can do some deferred op processing. */
230 xfs_defer_trans_roll(
231 struct xfs_trans
**tpp
)
233 struct xfs_trans
*tp
= *tpp
;
234 struct xfs_buf_log_item
*bli
;
235 struct xfs_inode_log_item
*ili
;
236 struct xfs_log_item
*lip
;
237 struct xfs_buf
*bplist
[XFS_DEFER_OPS_NR_BUFS
];
238 struct xfs_inode
*iplist
[XFS_DEFER_OPS_NR_INODES
];
239 int bpcount
= 0, ipcount
= 0;
243 list_for_each_entry(lip
, &tp
->t_items
, li_trans
) {
244 switch (lip
->li_type
) {
246 bli
= container_of(lip
, struct xfs_buf_log_item
,
248 if (bli
->bli_flags
& XFS_BLI_HOLD
) {
249 if (bpcount
>= XFS_DEFER_OPS_NR_BUFS
) {
251 return -EFSCORRUPTED
;
253 xfs_trans_dirty_buf(tp
, bli
->bli_buf
);
254 bplist
[bpcount
++] = bli
->bli_buf
;
258 ili
= container_of(lip
, struct xfs_inode_log_item
,
260 if (ili
->ili_lock_flags
== 0) {
261 if (ipcount
>= XFS_DEFER_OPS_NR_INODES
) {
263 return -EFSCORRUPTED
;
265 xfs_trans_log_inode(tp
, ili
->ili_inode
,
267 iplist
[ipcount
++] = ili
->ili_inode
;
275 trace_xfs_defer_trans_roll(tp
, _RET_IP_
);
278 * Roll the transaction. Rolling always given a new transaction (even
279 * if committing the old one fails!) to hand back to the caller, so we
280 * join the held resources to the new transaction so that we always
281 * return with the held resources joined to @tpp, no matter what
284 error
= xfs_trans_roll(tpp
);
287 /* Rejoin the joined inodes. */
288 for (i
= 0; i
< ipcount
; i
++)
289 xfs_trans_ijoin(tp
, iplist
[i
], 0);
291 /* Rejoin the buffers and dirty them so the log moves forward. */
292 for (i
= 0; i
< bpcount
; i
++) {
293 xfs_trans_bjoin(tp
, bplist
[i
]);
294 xfs_trans_bhold(tp
, bplist
[i
]);
298 trace_xfs_defer_trans_roll_error(tp
, error
);
303 * Reset an already used dfops after finish.
307 struct xfs_trans
*tp
)
309 ASSERT(list_empty(&tp
->t_dfops
));
312 * Low mode state transfers across transaction rolls to mirror dfops
313 * lifetime. Clear it now that dfops is reset.
315 tp
->t_flags
&= ~XFS_TRANS_LOWMODE
;
319 * Free up any items left in the list.
322 xfs_defer_cancel_list(
323 struct xfs_mount
*mp
,
324 struct list_head
*dop_list
)
326 struct xfs_defer_pending
*dfp
;
327 struct xfs_defer_pending
*pli
;
328 struct list_head
*pwi
;
330 const struct xfs_defer_op_type
*ops
;
333 * Free the pending items. Caller should already have arranged
334 * for the intent items to be released.
336 list_for_each_entry_safe(dfp
, pli
, dop_list
, dfp_list
) {
337 ops
= defer_op_types
[dfp
->dfp_type
];
338 trace_xfs_defer_cancel_list(mp
, dfp
);
339 list_del(&dfp
->dfp_list
);
340 list_for_each_safe(pwi
, n
, &dfp
->dfp_work
) {
343 ops
->cancel_item(pwi
);
345 ASSERT(dfp
->dfp_count
== 0);
351 * Finish all the pending work. This involves logging intent items for
352 * any work items that wandered in since the last transaction roll (if
353 * one has even happened), rolling the transaction, and finishing the
354 * work items in the first item on the logged-and-pending list.
356 * If an inode is provided, relog it to the new transaction.
359 xfs_defer_finish_noroll(
360 struct xfs_trans
**tp
)
362 struct xfs_defer_pending
*dfp
;
363 struct list_head
*li
;
367 const struct xfs_defer_op_type
*ops
;
368 LIST_HEAD(dop_pending
);
370 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
372 trace_xfs_defer_finish(*tp
, _RET_IP_
);
374 /* Until we run out of pending work to finish... */
375 while (!list_empty(&dop_pending
) || !list_empty(&(*tp
)->t_dfops
)) {
376 /* log intents and pull in intake items */
377 xfs_defer_create_intents(*tp
);
378 list_splice_tail_init(&(*tp
)->t_dfops
, &dop_pending
);
381 * Roll the transaction.
383 error
= xfs_defer_trans_roll(tp
);
387 /* Log an intent-done item for the first pending item. */
388 dfp
= list_first_entry(&dop_pending
, struct xfs_defer_pending
,
390 ops
= defer_op_types
[dfp
->dfp_type
];
391 trace_xfs_defer_pending_finish((*tp
)->t_mountp
, dfp
);
392 dfp
->dfp_done
= ops
->create_done(*tp
, dfp
->dfp_intent
,
395 /* Finish the work items. */
397 list_for_each_safe(li
, n
, &dfp
->dfp_work
) {
400 error
= ops
->finish_item(*tp
, li
, dfp
->dfp_done
,
402 if (error
== -EAGAIN
) {
404 * Caller wants a fresh transaction;
405 * put the work item back on the list
408 list_add(li
, &dfp
->dfp_work
);
413 * Clean up after ourselves and jump out.
414 * xfs_defer_cancel will take care of freeing
415 * all these lists and stuff.
417 if (ops
->finish_cleanup
)
418 ops
->finish_cleanup(*tp
, state
, error
);
422 if (error
== -EAGAIN
) {
424 * Caller wants a fresh transaction, so log a
425 * new log intent item to replace the old one
426 * and roll the transaction. See "Requesting
427 * a Fresh Transaction while Finishing
428 * Deferred Work" above.
430 dfp
->dfp_intent
= ops
->create_intent(*tp
,
432 dfp
->dfp_done
= NULL
;
433 list_for_each(li
, &dfp
->dfp_work
)
434 ops
->log_item(*tp
, dfp
->dfp_intent
, li
);
436 /* Done with the dfp, free it. */
437 list_del(&dfp
->dfp_list
);
441 if (ops
->finish_cleanup
)
442 ops
->finish_cleanup(*tp
, state
, error
);
447 xfs_defer_trans_abort(*tp
, &dop_pending
);
448 xfs_force_shutdown((*tp
)->t_mountp
, SHUTDOWN_CORRUPT_INCORE
);
449 trace_xfs_defer_finish_error(*tp
, error
);
450 xfs_defer_cancel_list((*tp
)->t_mountp
, &dop_pending
);
451 xfs_defer_cancel(*tp
);
455 trace_xfs_defer_finish_done(*tp
, _RET_IP_
);
461 struct xfs_trans
**tp
)
466 * Finish and roll the transaction once more to avoid returning to the
467 * caller with a dirty transaction.
469 error
= xfs_defer_finish_noroll(tp
);
472 if ((*tp
)->t_flags
& XFS_TRANS_DIRTY
) {
473 error
= xfs_defer_trans_roll(tp
);
475 xfs_force_shutdown((*tp
)->t_mountp
,
476 SHUTDOWN_CORRUPT_INCORE
);
480 xfs_defer_reset(*tp
);
486 struct xfs_trans
*tp
)
488 struct xfs_mount
*mp
= tp
->t_mountp
;
490 trace_xfs_defer_cancel(tp
, _RET_IP_
);
491 xfs_defer_cancel_list(mp
, &tp
->t_dfops
);
494 /* Add an item for later deferred processing. */
497 struct xfs_trans
*tp
,
498 enum xfs_defer_ops_type type
,
499 struct list_head
*li
)
501 struct xfs_defer_pending
*dfp
= NULL
;
502 const struct xfs_defer_op_type
*ops
;
504 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
505 BUILD_BUG_ON(ARRAY_SIZE(defer_op_types
) != XFS_DEFER_OPS_TYPE_MAX
);
508 * Add the item to a pending item at the end of the intake list.
509 * If the last pending item has the same type, reuse it. Else,
510 * create a new pending item at the end of the intake list.
512 if (!list_empty(&tp
->t_dfops
)) {
513 dfp
= list_last_entry(&tp
->t_dfops
,
514 struct xfs_defer_pending
, dfp_list
);
515 ops
= defer_op_types
[dfp
->dfp_type
];
516 if (dfp
->dfp_type
!= type
||
517 (ops
->max_items
&& dfp
->dfp_count
>= ops
->max_items
))
521 dfp
= kmem_alloc(sizeof(struct xfs_defer_pending
),
523 dfp
->dfp_type
= type
;
524 dfp
->dfp_intent
= NULL
;
525 dfp
->dfp_done
= NULL
;
527 INIT_LIST_HEAD(&dfp
->dfp_work
);
528 list_add_tail(&dfp
->dfp_list
, &tp
->t_dfops
);
531 list_add_tail(li
, &dfp
->dfp_work
);
536 * Move deferred ops from one transaction to another and reset the source to
537 * initial state. This is primarily used to carry state forward across
538 * transaction rolls with pending dfops.
542 struct xfs_trans
*dtp
,
543 struct xfs_trans
*stp
)
545 list_splice_init(&stp
->t_dfops
, &dtp
->t_dfops
);
548 * Low free space mode was historically controlled by a dfops field.
549 * This meant that low mode state potentially carried across multiple
550 * transaction rolls. Transfer low mode on a dfops move to preserve
553 dtp
->t_flags
|= (stp
->t_flags
& XFS_TRANS_LOWMODE
);
555 xfs_defer_reset(stp
);