perf intel-pt: Factor out intel_pt_8b_tsc()
[linux/fpc-iii.git] / fs / xfs / scrub / repair.c
blobeb358f0f5e0ad1151d6d9e4d4cd7d5efb2ed58d8
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_bit.h"
15 #include "xfs_log_format.h"
16 #include "xfs_trans.h"
17 #include "xfs_sb.h"
18 #include "xfs_inode.h"
19 #include "xfs_icache.h"
20 #include "xfs_alloc.h"
21 #include "xfs_alloc_btree.h"
22 #include "xfs_ialloc.h"
23 #include "xfs_ialloc_btree.h"
24 #include "xfs_rmap.h"
25 #include "xfs_rmap_btree.h"
26 #include "xfs_refcount.h"
27 #include "xfs_refcount_btree.h"
28 #include "xfs_extent_busy.h"
29 #include "xfs_ag_resv.h"
30 #include "xfs_trans_space.h"
31 #include "xfs_quota.h"
32 #include "xfs_attr.h"
33 #include "xfs_reflink.h"
34 #include "scrub/xfs_scrub.h"
35 #include "scrub/scrub.h"
36 #include "scrub/common.h"
37 #include "scrub/trace.h"
38 #include "scrub/repair.h"
39 #include "scrub/bitmap.h"
42 * Attempt to repair some metadata, if the metadata is corrupt and userspace
43 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub",
44 * and will set *fixed to true if it thinks it repaired anything.
46 int
47 xrep_attempt(
48 struct xfs_inode *ip,
49 struct xfs_scrub *sc)
51 int error = 0;
53 trace_xrep_attempt(ip, sc->sm, error);
55 xchk_ag_btcur_free(&sc->sa);
57 /* Repair whatever's broken. */
58 ASSERT(sc->ops->repair);
59 error = sc->ops->repair(sc);
60 trace_xrep_done(ip, sc->sm, error);
61 switch (error) {
62 case 0:
64 * Repair succeeded. Commit the fixes and perform a second
65 * scrub so that we can tell userspace if we fixed the problem.
67 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
68 sc->flags |= XREP_ALREADY_FIXED;
69 return -EAGAIN;
70 case -EDEADLOCK:
71 case -EAGAIN:
72 /* Tell the caller to try again having grabbed all the locks. */
73 if (!(sc->flags & XCHK_TRY_HARDER)) {
74 sc->flags |= XCHK_TRY_HARDER;
75 return -EAGAIN;
78 * We tried harder but still couldn't grab all the resources
79 * we needed to fix it. The corruption has not been fixed,
80 * so report back to userspace.
82 return -EFSCORRUPTED;
83 default:
84 return error;
89 * Complain about unfixable problems in the filesystem. We don't log
90 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
91 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
92 * administrator isn't running xfs_scrub in no-repairs mode.
94 * Use this helper function because _ratelimited silently declares a static
95 * structure to track rate limiting information.
97 void
98 xrep_failure(
99 struct xfs_mount *mp)
101 xfs_alert_ratelimited(mp,
102 "Corruption not fixed during online repair. Unmount and run xfs_repair.");
106 * Repair probe -- userspace uses this to probe if we're willing to repair a
107 * given mountpoint.
110 xrep_probe(
111 struct xfs_scrub *sc)
113 int error = 0;
115 if (xchk_should_terminate(sc, &error))
116 return error;
118 return 0;
122 * Roll a transaction, keeping the AG headers locked and reinitializing
123 * the btree cursors.
126 xrep_roll_ag_trans(
127 struct xfs_scrub *sc)
129 int error;
131 /* Keep the AG header buffers locked so we can keep going. */
132 if (sc->sa.agi_bp)
133 xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
134 if (sc->sa.agf_bp)
135 xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
136 if (sc->sa.agfl_bp)
137 xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
140 * Roll the transaction. We still own the buffer and the buffer lock
141 * regardless of whether or not the roll succeeds. If the roll fails,
142 * the buffers will be released during teardown on our way out of the
143 * kernel. If it succeeds, we join them to the new transaction and
144 * move on.
146 error = xfs_trans_roll(&sc->tp);
147 if (error)
148 return error;
150 /* Join AG headers to the new transaction. */
151 if (sc->sa.agi_bp)
152 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
153 if (sc->sa.agf_bp)
154 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
155 if (sc->sa.agfl_bp)
156 xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
158 return 0;
162 * Does the given AG have enough space to rebuild a btree? Neither AG
163 * reservation can be critical, and we must have enough space (factoring
164 * in AG reservations) to construct a whole btree.
166 bool
167 xrep_ag_has_space(
168 struct xfs_perag *pag,
169 xfs_extlen_t nr_blocks,
170 enum xfs_ag_resv_type type)
172 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
173 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
174 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
178 * Figure out how many blocks to reserve for an AG repair. We calculate the
179 * worst case estimate for the number of blocks we'd need to rebuild one of
180 * any type of per-AG btree.
182 xfs_extlen_t
183 xrep_calc_ag_resblks(
184 struct xfs_scrub *sc)
186 struct xfs_mount *mp = sc->mp;
187 struct xfs_scrub_metadata *sm = sc->sm;
188 struct xfs_perag *pag;
189 struct xfs_buf *bp;
190 xfs_agino_t icount = NULLAGINO;
191 xfs_extlen_t aglen = NULLAGBLOCK;
192 xfs_extlen_t usedlen;
193 xfs_extlen_t freelen;
194 xfs_extlen_t bnobt_sz;
195 xfs_extlen_t inobt_sz;
196 xfs_extlen_t rmapbt_sz;
197 xfs_extlen_t refcbt_sz;
198 int error;
200 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
201 return 0;
203 pag = xfs_perag_get(mp, sm->sm_agno);
204 if (pag->pagi_init) {
205 /* Use in-core icount if possible. */
206 icount = pag->pagi_count;
207 } else {
208 /* Try to get the actual counters from disk. */
209 error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
210 if (!error) {
211 icount = pag->pagi_count;
212 xfs_buf_relse(bp);
216 /* Now grab the block counters from the AGF. */
217 error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
218 if (!error) {
219 aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length);
220 freelen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_freeblks);
221 usedlen = aglen - freelen;
222 xfs_buf_relse(bp);
224 xfs_perag_put(pag);
226 /* If the icount is impossible, make some worst-case assumptions. */
227 if (icount == NULLAGINO ||
228 !xfs_verify_agino(mp, sm->sm_agno, icount)) {
229 xfs_agino_t first, last;
231 xfs_agino_range(mp, sm->sm_agno, &first, &last);
232 icount = last - first + 1;
235 /* If the block counts are impossible, make worst-case assumptions. */
236 if (aglen == NULLAGBLOCK ||
237 aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
238 freelen >= aglen) {
239 aglen = xfs_ag_block_count(mp, sm->sm_agno);
240 freelen = aglen;
241 usedlen = aglen;
244 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
245 freelen, usedlen);
248 * Figure out how many blocks we'd need worst case to rebuild
249 * each type of btree. Note that we can only rebuild the
250 * bnobt/cntbt or inobt/finobt as pairs.
252 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
253 if (xfs_sb_version_hassparseinodes(&mp->m_sb))
254 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
255 XFS_INODES_PER_HOLEMASK_BIT);
256 else
257 inobt_sz = xfs_iallocbt_calc_size(mp, icount /
258 XFS_INODES_PER_CHUNK);
259 if (xfs_sb_version_hasfinobt(&mp->m_sb))
260 inobt_sz *= 2;
261 if (xfs_sb_version_hasreflink(&mp->m_sb))
262 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
263 else
264 refcbt_sz = 0;
265 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
267 * Guess how many blocks we need to rebuild the rmapbt.
268 * For non-reflink filesystems we can't have more records than
269 * used blocks. However, with reflink it's possible to have
270 * more than one rmap record per AG block. We don't know how
271 * many rmaps there could be in the AG, so we start off with
272 * what we hope is an generous over-estimation.
274 if (xfs_sb_version_hasreflink(&mp->m_sb))
275 rmapbt_sz = xfs_rmapbt_calc_size(mp,
276 (unsigned long long)aglen * 2);
277 else
278 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
279 } else {
280 rmapbt_sz = 0;
283 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
284 inobt_sz, rmapbt_sz, refcbt_sz);
286 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
289 /* Allocate a block in an AG. */
291 xrep_alloc_ag_block(
292 struct xfs_scrub *sc,
293 const struct xfs_owner_info *oinfo,
294 xfs_fsblock_t *fsbno,
295 enum xfs_ag_resv_type resv)
297 struct xfs_alloc_arg args = {0};
298 xfs_agblock_t bno;
299 int error;
301 switch (resv) {
302 case XFS_AG_RESV_AGFL:
303 case XFS_AG_RESV_RMAPBT:
304 error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
305 if (error)
306 return error;
307 if (bno == NULLAGBLOCK)
308 return -ENOSPC;
309 xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
310 1, false);
311 *fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
312 if (resv == XFS_AG_RESV_RMAPBT)
313 xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
314 return 0;
315 default:
316 break;
319 args.tp = sc->tp;
320 args.mp = sc->mp;
321 args.oinfo = *oinfo;
322 args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
323 args.minlen = 1;
324 args.maxlen = 1;
325 args.prod = 1;
326 args.type = XFS_ALLOCTYPE_THIS_AG;
327 args.resv = resv;
329 error = xfs_alloc_vextent(&args);
330 if (error)
331 return error;
332 if (args.fsbno == NULLFSBLOCK)
333 return -ENOSPC;
334 ASSERT(args.len == 1);
335 *fsbno = args.fsbno;
337 return 0;
340 /* Initialize a new AG btree root block with zero entries. */
342 xrep_init_btblock(
343 struct xfs_scrub *sc,
344 xfs_fsblock_t fsb,
345 struct xfs_buf **bpp,
346 xfs_btnum_t btnum,
347 const struct xfs_buf_ops *ops)
349 struct xfs_trans *tp = sc->tp;
350 struct xfs_mount *mp = sc->mp;
351 struct xfs_buf *bp;
353 trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
354 XFS_FSB_TO_AGBNO(mp, fsb), btnum);
356 ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
357 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, fsb),
358 XFS_FSB_TO_BB(mp, 1), 0);
359 xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
360 xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno, 0);
361 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
362 xfs_trans_log_buf(tp, bp, 0, bp->b_length);
363 bp->b_ops = ops;
364 *bpp = bp;
366 return 0;
370 * Reconstructing per-AG Btrees
372 * When a space btree is corrupt, we don't bother trying to fix it. Instead,
373 * we scan secondary space metadata to derive the records that should be in
374 * the damaged btree, initialize a fresh btree root, and insert the records.
375 * Note that for rebuilding the rmapbt we scan all the primary data to
376 * generate the new records.
378 * However, that leaves the matter of removing all the metadata describing the
379 * old broken structure. For primary metadata we use the rmap data to collect
380 * every extent with a matching rmap owner (bitmap); we then iterate all other
381 * metadata structures with the same rmap owner to collect the extents that
382 * cannot be removed (sublist). We then subtract sublist from bitmap to
383 * derive the blocks that were used by the old btree. These blocks can be
384 * reaped.
386 * For rmapbt reconstructions we must use different tactics for extent
387 * collection. First we iterate all primary metadata (this excludes the old
388 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap
389 * records are collected as bitmap. The bnobt records are collected as
390 * sublist. As with the other btrees we subtract sublist from bitmap, and the
391 * result (since the rmapbt lives in the free space) are the blocks from the
392 * old rmapbt.
394 * Disposal of Blocks from Old per-AG Btrees
396 * Now that we've constructed a new btree to replace the damaged one, we want
397 * to dispose of the blocks that (we think) the old btree was using.
398 * Previously, we used the rmapbt to collect the extents (bitmap) with the
399 * rmap owner corresponding to the tree we rebuilt, collected extents for any
400 * blocks with the same rmap owner that are owned by another data structure
401 * (sublist), and subtracted sublist from bitmap. In theory the extents
402 * remaining in bitmap are the old btree's blocks.
404 * Unfortunately, it's possible that the btree was crosslinked with other
405 * blocks on disk. The rmap data can tell us if there are multiple owners, so
406 * if the rmapbt says there is an owner of this block other than @oinfo, then
407 * the block is crosslinked. Remove the reverse mapping and continue.
409 * If there is one rmap record, we can free the block, which removes the
410 * reverse mapping but doesn't add the block to the free space. Our repair
411 * strategy is to hope the other metadata objects crosslinked on this block
412 * will be rebuilt (atop different blocks), thereby removing all the cross
413 * links.
415 * If there are no rmap records at all, we also free the block. If the btree
416 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
417 * supposed to be a rmap record and everything is ok. For other btrees there
418 * had to have been an rmap entry for the block to have ended up on @bitmap,
419 * so if it's gone now there's something wrong and the fs will shut down.
421 * Note: If there are multiple rmap records with only the same rmap owner as
422 * the btree we're trying to rebuild and the block is indeed owned by another
423 * data structure with the same rmap owner, then the block will be in sublist
424 * and therefore doesn't need disposal. If there are multiple rmap records
425 * with only the same rmap owner but the block is not owned by something with
426 * the same rmap owner, the block will be freed.
428 * The caller is responsible for locking the AG headers for the entire rebuild
429 * operation so that nothing else can sneak in and change the AG state while
430 * we're not looking. We also assume that the caller already invalidated any
431 * buffers associated with @bitmap.
435 * Invalidate buffers for per-AG btree blocks we're dumping. This function
436 * is not intended for use with file data repairs; we have bunmapi for that.
439 xrep_invalidate_blocks(
440 struct xfs_scrub *sc,
441 struct xfs_bitmap *bitmap)
443 struct xfs_bitmap_range *bmr;
444 struct xfs_bitmap_range *n;
445 struct xfs_buf *bp;
446 xfs_fsblock_t fsbno;
449 * For each block in each extent, see if there's an incore buffer for
450 * exactly that block; if so, invalidate it. The buffer cache only
451 * lets us look for one buffer at a time, so we have to look one block
452 * at a time. Avoid invalidating AG headers and post-EOFS blocks
453 * because we never own those; and if we can't TRYLOCK the buffer we
454 * assume it's owned by someone else.
456 for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
457 /* Skip AG headers and post-EOFS blocks */
458 if (!xfs_verify_fsbno(sc->mp, fsbno))
459 continue;
460 bp = xfs_buf_incore(sc->mp->m_ddev_targp,
461 XFS_FSB_TO_DADDR(sc->mp, fsbno),
462 XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
463 if (bp) {
464 xfs_trans_bjoin(sc->tp, bp);
465 xfs_trans_binval(sc->tp, bp);
469 return 0;
472 /* Ensure the freelist is the correct size. */
474 xrep_fix_freelist(
475 struct xfs_scrub *sc,
476 bool can_shrink)
478 struct xfs_alloc_arg args = {0};
480 args.mp = sc->mp;
481 args.tp = sc->tp;
482 args.agno = sc->sa.agno;
483 args.alignment = 1;
484 args.pag = sc->sa.pag;
486 return xfs_alloc_fix_freelist(&args,
487 can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
491 * Put a block back on the AGFL.
493 STATIC int
494 xrep_put_freelist(
495 struct xfs_scrub *sc,
496 xfs_agblock_t agbno)
498 int error;
500 /* Make sure there's space on the freelist. */
501 error = xrep_fix_freelist(sc, true);
502 if (error)
503 return error;
506 * Since we're "freeing" a lost block onto the AGFL, we have to
507 * create an rmap for the block prior to merging it or else other
508 * parts will break.
510 error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
511 &XFS_RMAP_OINFO_AG);
512 if (error)
513 return error;
515 /* Put the block on the AGFL. */
516 error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
517 agbno, 0);
518 if (error)
519 return error;
520 xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
521 XFS_EXTENT_BUSY_SKIP_DISCARD);
523 return 0;
526 /* Dispose of a single block. */
527 STATIC int
528 xrep_reap_block(
529 struct xfs_scrub *sc,
530 xfs_fsblock_t fsbno,
531 const struct xfs_owner_info *oinfo,
532 enum xfs_ag_resv_type resv)
534 struct xfs_btree_cur *cur;
535 struct xfs_buf *agf_bp = NULL;
536 xfs_agnumber_t agno;
537 xfs_agblock_t agbno;
538 bool has_other_rmap;
539 int error;
541 agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
542 agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
545 * If we are repairing per-inode metadata, we need to read in the AGF
546 * buffer. Otherwise, we're repairing a per-AG structure, so reuse
547 * the AGF buffer that the setup functions already grabbed.
549 if (sc->ip) {
550 error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
551 if (error)
552 return error;
553 if (!agf_bp)
554 return -ENOMEM;
555 } else {
556 agf_bp = sc->sa.agf_bp;
558 cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
560 /* Can we find any other rmappings? */
561 error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
562 xfs_btree_del_cursor(cur, error);
563 if (error)
564 goto out_free;
567 * If there are other rmappings, this block is cross linked and must
568 * not be freed. Remove the reverse mapping and move on. Otherwise,
569 * we were the only owner of the block, so free the extent, which will
570 * also remove the rmap.
572 * XXX: XFS doesn't support detecting the case where a single block
573 * metadata structure is crosslinked with a multi-block structure
574 * because the buffer cache doesn't detect aliasing problems, so we
575 * can't fix 100% of crosslinking problems (yet). The verifiers will
576 * blow on writeout, the filesystem will shut down, and the admin gets
577 * to run xfs_repair.
579 if (has_other_rmap)
580 error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
581 else if (resv == XFS_AG_RESV_AGFL)
582 error = xrep_put_freelist(sc, agbno);
583 else
584 error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
585 if (agf_bp != sc->sa.agf_bp)
586 xfs_trans_brelse(sc->tp, agf_bp);
587 if (error)
588 return error;
590 if (sc->ip)
591 return xfs_trans_roll_inode(&sc->tp, sc->ip);
592 return xrep_roll_ag_trans(sc);
594 out_free:
595 if (agf_bp != sc->sa.agf_bp)
596 xfs_trans_brelse(sc->tp, agf_bp);
597 return error;
600 /* Dispose of every block of every extent in the bitmap. */
602 xrep_reap_extents(
603 struct xfs_scrub *sc,
604 struct xfs_bitmap *bitmap,
605 const struct xfs_owner_info *oinfo,
606 enum xfs_ag_resv_type type)
608 struct xfs_bitmap_range *bmr;
609 struct xfs_bitmap_range *n;
610 xfs_fsblock_t fsbno;
611 int error = 0;
613 ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
615 for_each_xfs_bitmap_block(fsbno, bmr, n, bitmap) {
616 ASSERT(sc->ip != NULL ||
617 XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
618 trace_xrep_dispose_btree_extent(sc->mp,
619 XFS_FSB_TO_AGNO(sc->mp, fsbno),
620 XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
622 error = xrep_reap_block(sc, fsbno, oinfo, type);
623 if (error)
624 goto out;
627 out:
628 xfs_bitmap_destroy(bitmap);
629 return error;
633 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
635 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
636 * the AG headers by using the rmap data to rummage through the AG looking for
637 * btree roots. This is not guaranteed to work if the AG is heavily damaged
638 * or the rmap data are corrupt.
640 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
641 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
642 * AGI is being rebuilt. It must maintain these locks until it's safe for
643 * other threads to change the btrees' shapes. The caller provides
644 * information about the btrees to look for by passing in an array of
645 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
646 * The (root, height) fields will be set on return if anything is found. The
647 * last element of the array should have a NULL buf_ops to mark the end of the
648 * array.
650 * For every rmapbt record matching any of the rmap owners in btree_info,
651 * read each block referenced by the rmap record. If the block is a btree
652 * block from this filesystem matching any of the magic numbers and has a
653 * level higher than what we've already seen, remember the block and the
654 * height of the tree required to have such a block. When the call completes,
655 * we return the highest block we've found for each btree description; those
656 * should be the roots.
659 struct xrep_findroot {
660 struct xfs_scrub *sc;
661 struct xfs_buf *agfl_bp;
662 struct xfs_agf *agf;
663 struct xrep_find_ag_btree *btree_info;
666 /* See if our block is in the AGFL. */
667 STATIC int
668 xrep_findroot_agfl_walk(
669 struct xfs_mount *mp,
670 xfs_agblock_t bno,
671 void *priv)
673 xfs_agblock_t *agbno = priv;
675 return (*agbno == bno) ? XFS_BTREE_QUERY_RANGE_ABORT : 0;
678 /* Does this block match the btree information passed in? */
679 STATIC int
680 xrep_findroot_block(
681 struct xrep_findroot *ri,
682 struct xrep_find_ag_btree *fab,
683 uint64_t owner,
684 xfs_agblock_t agbno,
685 bool *done_with_block)
687 struct xfs_mount *mp = ri->sc->mp;
688 struct xfs_buf *bp;
689 struct xfs_btree_block *btblock;
690 xfs_daddr_t daddr;
691 int block_level;
692 int error = 0;
694 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
697 * Blocks in the AGFL have stale contents that might just happen to
698 * have a matching magic and uuid. We don't want to pull these blocks
699 * in as part of a tree root, so we have to filter out the AGFL stuff
700 * here. If the AGFL looks insane we'll just refuse to repair.
702 if (owner == XFS_RMAP_OWN_AG) {
703 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
704 xrep_findroot_agfl_walk, &agbno);
705 if (error == XFS_BTREE_QUERY_RANGE_ABORT)
706 return 0;
707 if (error)
708 return error;
712 * Read the buffer into memory so that we can see if it's a match for
713 * our btree type. We have no clue if it is beforehand, and we want to
714 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
715 * will cause needless disk reads in subsequent calls to this function)
716 * and logging metadata verifier failures.
718 * Therefore, pass in NULL buffer ops. If the buffer was already in
719 * memory from some other caller it will already have b_ops assigned.
720 * If it was in memory from a previous unsuccessful findroot_block
721 * call, the buffer won't have b_ops but it should be clean and ready
722 * for us to try to verify if the read call succeeds. The same applies
723 * if the buffer wasn't in memory at all.
725 * Note: If we never match a btree type with this buffer, it will be
726 * left in memory with NULL b_ops. This shouldn't be a problem unless
727 * the buffer gets written.
729 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
730 mp->m_bsize, 0, &bp, NULL);
731 if (error)
732 return error;
734 /* Ensure the block magic matches the btree type we're looking for. */
735 btblock = XFS_BUF_TO_BLOCK(bp);
736 ASSERT(fab->buf_ops->magic[1] != 0);
737 if (btblock->bb_magic != fab->buf_ops->magic[1])
738 goto out;
741 * If the buffer already has ops applied and they're not the ones for
742 * this btree type, we know this block doesn't match the btree and we
743 * can bail out.
745 * If the buffer ops match ours, someone else has already validated
746 * the block for us, so we can move on to checking if this is a root
747 * block candidate.
749 * If the buffer does not have ops, nobody has successfully validated
750 * the contents and the buffer cannot be dirty. If the magic, uuid,
751 * and structure match this btree type then we'll move on to checking
752 * if it's a root block candidate. If there is no match, bail out.
754 if (bp->b_ops) {
755 if (bp->b_ops != fab->buf_ops)
756 goto out;
757 } else {
758 ASSERT(!xfs_trans_buf_is_dirty(bp));
759 if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
760 &mp->m_sb.sb_meta_uuid))
761 goto out;
763 * Read verifiers can reference b_ops, so we set the pointer
764 * here. If the verifier fails we'll reset the buffer state
765 * to what it was before we touched the buffer.
767 bp->b_ops = fab->buf_ops;
768 fab->buf_ops->verify_read(bp);
769 if (bp->b_error) {
770 bp->b_ops = NULL;
771 bp->b_error = 0;
772 goto out;
776 * Some read verifiers will (re)set b_ops, so we must be
777 * careful not to change b_ops after running the verifier.
782 * This block passes the magic/uuid and verifier tests for this btree
783 * type. We don't need the caller to try the other tree types.
785 *done_with_block = true;
788 * Compare this btree block's level to the height of the current
789 * candidate root block.
791 * If the level matches the root we found previously, throw away both
792 * blocks because there can't be two candidate roots.
794 * If level is lower in the tree than the root we found previously,
795 * ignore this block.
797 block_level = xfs_btree_get_level(btblock);
798 if (block_level + 1 == fab->height) {
799 fab->root = NULLAGBLOCK;
800 goto out;
801 } else if (block_level < fab->height) {
802 goto out;
806 * This is the highest block in the tree that we've found so far.
807 * Update the btree height to reflect what we've learned from this
808 * block.
810 fab->height = block_level + 1;
813 * If this block doesn't have sibling pointers, then it's the new root
814 * block candidate. Otherwise, the root will be found farther up the
815 * tree.
817 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
818 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
819 fab->root = agbno;
820 else
821 fab->root = NULLAGBLOCK;
823 trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
824 be32_to_cpu(btblock->bb_magic), fab->height - 1);
825 out:
826 xfs_trans_brelse(ri->sc->tp, bp);
827 return error;
831 * Do any of the blocks in this rmap record match one of the btrees we're
832 * looking for?
834 STATIC int
835 xrep_findroot_rmap(
836 struct xfs_btree_cur *cur,
837 struct xfs_rmap_irec *rec,
838 void *priv)
840 struct xrep_findroot *ri = priv;
841 struct xrep_find_ag_btree *fab;
842 xfs_agblock_t b;
843 bool done;
844 int error = 0;
846 /* Ignore anything that isn't AG metadata. */
847 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
848 return 0;
850 /* Otherwise scan each block + btree type. */
851 for (b = 0; b < rec->rm_blockcount; b++) {
852 done = false;
853 for (fab = ri->btree_info; fab->buf_ops; fab++) {
854 if (rec->rm_owner != fab->rmap_owner)
855 continue;
856 error = xrep_findroot_block(ri, fab,
857 rec->rm_owner, rec->rm_startblock + b,
858 &done);
859 if (error)
860 return error;
861 if (done)
862 break;
866 return 0;
869 /* Find the roots of the per-AG btrees described in btree_info. */
871 xrep_find_ag_btree_roots(
872 struct xfs_scrub *sc,
873 struct xfs_buf *agf_bp,
874 struct xrep_find_ag_btree *btree_info,
875 struct xfs_buf *agfl_bp)
877 struct xfs_mount *mp = sc->mp;
878 struct xrep_findroot ri;
879 struct xrep_find_ag_btree *fab;
880 struct xfs_btree_cur *cur;
881 int error;
883 ASSERT(xfs_buf_islocked(agf_bp));
884 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
886 ri.sc = sc;
887 ri.btree_info = btree_info;
888 ri.agf = XFS_BUF_TO_AGF(agf_bp);
889 ri.agfl_bp = agfl_bp;
890 for (fab = btree_info; fab->buf_ops; fab++) {
891 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
892 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
893 fab->root = NULLAGBLOCK;
894 fab->height = 0;
897 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
898 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
899 xfs_btree_del_cursor(cur, error);
901 return error;
904 /* Force a quotacheck the next time we mount. */
905 void
906 xrep_force_quotacheck(
907 struct xfs_scrub *sc,
908 uint dqtype)
910 uint flag;
912 flag = xfs_quota_chkd_flag(dqtype);
913 if (!(flag & sc->mp->m_qflags))
914 return;
916 sc->mp->m_qflags &= ~flag;
917 spin_lock(&sc->mp->m_sb_lock);
918 sc->mp->m_sb.sb_qflags &= ~flag;
919 spin_unlock(&sc->mp->m_sb_lock);
920 xfs_log_sb(sc->tp);
924 * Attach dquots to this inode, or schedule quotacheck to fix them.
926 * This function ensures that the appropriate dquots are attached to an inode.
927 * We cannot allow the dquot code to allocate an on-disk dquot block here
928 * because we're already in transaction context with the inode locked. The
929 * on-disk dquot should already exist anyway. If the quota code signals
930 * corruption or missing quota information, schedule quotacheck, which will
931 * repair corruptions in the quota metadata.
934 xrep_ino_dqattach(
935 struct xfs_scrub *sc)
937 int error;
939 error = xfs_qm_dqattach_locked(sc->ip, false);
940 switch (error) {
941 case -EFSBADCRC:
942 case -EFSCORRUPTED:
943 case -ENOENT:
944 xfs_err_ratelimited(sc->mp,
945 "inode %llu repair encountered quota error %d, quotacheck forced.",
946 (unsigned long long)sc->ip->i_ino, error);
947 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
948 xrep_force_quotacheck(sc, XFS_DQ_USER);
949 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
950 xrep_force_quotacheck(sc, XFS_DQ_GROUP);
951 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
952 xrep_force_quotacheck(sc, XFS_DQ_PROJ);
953 /* fall through */
954 case -ESRCH:
955 error = 0;
956 break;
957 default:
958 break;
961 return error;