perf intel-pt: Factor out intel_pt_8b_tsc()
[linux/fpc-iii.git] / fs / xfs / scrub / scrub.c
blobf630389ee176b14a5aeecd7dfec6cfa9ce2d81b2
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2017 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_defer.h"
13 #include "xfs_btree.h"
14 #include "xfs_bit.h"
15 #include "xfs_log_format.h"
16 #include "xfs_trans.h"
17 #include "xfs_sb.h"
18 #include "xfs_inode.h"
19 #include "xfs_icache.h"
20 #include "xfs_itable.h"
21 #include "xfs_alloc.h"
22 #include "xfs_alloc_btree.h"
23 #include "xfs_bmap.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_ialloc.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_refcount.h"
28 #include "xfs_refcount_btree.h"
29 #include "xfs_rmap.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_quota.h"
32 #include "xfs_qm.h"
33 #include "xfs_errortag.h"
34 #include "xfs_error.h"
35 #include "xfs_log.h"
36 #include "xfs_trans_priv.h"
37 #include "scrub/xfs_scrub.h"
38 #include "scrub/scrub.h"
39 #include "scrub/common.h"
40 #include "scrub/trace.h"
41 #include "scrub/btree.h"
42 #include "scrub/repair.h"
43 #include "scrub/health.h"
46 * Online Scrub and Repair
48 * Traditionally, XFS (the kernel driver) did not know how to check or
49 * repair on-disk data structures. That task was left to the xfs_check
50 * and xfs_repair tools, both of which require taking the filesystem
51 * offline for a thorough but time consuming examination. Online
52 * scrub & repair, on the other hand, enables us to check the metadata
53 * for obvious errors while carefully stepping around the filesystem's
54 * ongoing operations, locking rules, etc.
56 * Given that most XFS metadata consist of records stored in a btree,
57 * most of the checking functions iterate the btree blocks themselves
58 * looking for irregularities. When a record block is encountered, each
59 * record can be checked for obviously bad values. Record values can
60 * also be cross-referenced against other btrees to look for potential
61 * misunderstandings between pieces of metadata.
63 * It is expected that the checkers responsible for per-AG metadata
64 * structures will lock the AG headers (AGI, AGF, AGFL), iterate the
65 * metadata structure, and perform any relevant cross-referencing before
66 * unlocking the AG and returning the results to userspace. These
67 * scrubbers must not keep an AG locked for too long to avoid tying up
68 * the block and inode allocators.
70 * Block maps and b-trees rooted in an inode present a special challenge
71 * because they can involve extents from any AG. The general scrubber
72 * structure of lock -> check -> xref -> unlock still holds, but AG
73 * locking order rules /must/ be obeyed to avoid deadlocks. The
74 * ordering rule, of course, is that we must lock in increasing AG
75 * order. Helper functions are provided to track which AG headers we've
76 * already locked. If we detect an imminent locking order violation, we
77 * can signal a potential deadlock, in which case the scrubber can jump
78 * out to the top level, lock all the AGs in order, and retry the scrub.
80 * For file data (directories, extended attributes, symlinks) scrub, we
81 * can simply lock the inode and walk the data. For btree data
82 * (directories and attributes) we follow the same btree-scrubbing
83 * strategy outlined previously to check the records.
85 * We use a bit of trickery with transactions to avoid buffer deadlocks
86 * if there is a cycle in the metadata. The basic problem is that
87 * travelling down a btree involves locking the current buffer at each
88 * tree level. If a pointer should somehow point back to a buffer that
89 * we've already examined, we will deadlock due to the second buffer
90 * locking attempt. Note however that grabbing a buffer in transaction
91 * context links the locked buffer to the transaction. If we try to
92 * re-grab the buffer in the context of the same transaction, we avoid
93 * the second lock attempt and continue. Between the verifier and the
94 * scrubber, something will notice that something is amiss and report
95 * the corruption. Therefore, each scrubber will allocate an empty
96 * transaction, attach buffers to it, and cancel the transaction at the
97 * end of the scrub run. Cancelling a non-dirty transaction simply
98 * unlocks the buffers.
100 * There are four pieces of data that scrub can communicate to
101 * userspace. The first is the error code (errno), which can be used to
102 * communicate operational errors in performing the scrub. There are
103 * also three flags that can be set in the scrub context. If the data
104 * structure itself is corrupt, the CORRUPT flag will be set. If
105 * the metadata is correct but otherwise suboptimal, the PREEN flag
106 * will be set.
108 * We perform secondary validation of filesystem metadata by
109 * cross-referencing every record with all other available metadata.
110 * For example, for block mapping extents, we verify that there are no
111 * records in the free space and inode btrees corresponding to that
112 * space extent and that there is a corresponding entry in the reverse
113 * mapping btree. Inconsistent metadata is noted by setting the
114 * XCORRUPT flag; btree query function errors are noted by setting the
115 * XFAIL flag and deleting the cursor to prevent further attempts to
116 * cross-reference with a defective btree.
118 * If a piece of metadata proves corrupt or suboptimal, the userspace
119 * program can ask the kernel to apply some tender loving care (TLC) to
120 * the metadata object by setting the REPAIR flag and re-calling the
121 * scrub ioctl. "Corruption" is defined by metadata violating the
122 * on-disk specification; operations cannot continue if the violation is
123 * left untreated. It is possible for XFS to continue if an object is
124 * "suboptimal", however performance may be degraded. Repairs are
125 * usually performed by rebuilding the metadata entirely out of
126 * redundant metadata. Optimizing, on the other hand, can sometimes be
127 * done without rebuilding entire structures.
129 * Generally speaking, the repair code has the following code structure:
130 * Lock -> scrub -> repair -> commit -> re-lock -> re-scrub -> unlock.
131 * The first check helps us figure out if we need to rebuild or simply
132 * optimize the structure so that the rebuild knows what to do. The
133 * second check evaluates the completeness of the repair; that is what
134 * is reported to userspace.
136 * A quick note on symbol prefixes:
137 * - "xfs_" are general XFS symbols.
138 * - "xchk_" are symbols related to metadata checking.
139 * - "xrep_" are symbols related to metadata repair.
140 * - "xfs_scrub_" are symbols that tie online fsck to the rest of XFS.
144 * Scrub probe -- userspace uses this to probe if we're willing to scrub
145 * or repair a given mountpoint. This will be used by xfs_scrub to
146 * probe the kernel's abilities to scrub (and repair) the metadata. We
147 * do this by validating the ioctl inputs from userspace, preparing the
148 * filesystem for a scrub (or a repair) operation, and immediately
149 * returning to userspace. Userspace can use the returned errno and
150 * structure state to decide (in broad terms) if scrub/repair are
151 * supported by the running kernel.
153 static int
154 xchk_probe(
155 struct xfs_scrub *sc)
157 int error = 0;
159 if (xchk_should_terminate(sc, &error))
160 return error;
162 return 0;
165 /* Scrub setup and teardown */
167 /* Free all the resources and finish the transactions. */
168 STATIC int
169 xchk_teardown(
170 struct xfs_scrub *sc,
171 struct xfs_inode *ip_in,
172 int error)
174 xchk_ag_free(sc, &sc->sa);
175 if (sc->tp) {
176 if (error == 0 && (sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
177 error = xfs_trans_commit(sc->tp);
178 else
179 xfs_trans_cancel(sc->tp);
180 sc->tp = NULL;
182 if (sc->ip) {
183 if (sc->ilock_flags)
184 xfs_iunlock(sc->ip, sc->ilock_flags);
185 if (sc->ip != ip_in &&
186 !xfs_internal_inum(sc->mp, sc->ip->i_ino))
187 xfs_irele(sc->ip);
188 sc->ip = NULL;
190 if (sc->flags & XCHK_REAPING_DISABLED)
191 xchk_start_reaping(sc);
192 if (sc->flags & XCHK_HAS_QUOTAOFFLOCK) {
193 mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
194 sc->flags &= ~XCHK_HAS_QUOTAOFFLOCK;
196 if (sc->buf) {
197 kmem_free(sc->buf);
198 sc->buf = NULL;
200 return error;
203 /* Scrubbing dispatch. */
205 static const struct xchk_meta_ops meta_scrub_ops[] = {
206 [XFS_SCRUB_TYPE_PROBE] = { /* ioctl presence test */
207 .type = ST_NONE,
208 .setup = xchk_setup_fs,
209 .scrub = xchk_probe,
210 .repair = xrep_probe,
212 [XFS_SCRUB_TYPE_SB] = { /* superblock */
213 .type = ST_PERAG,
214 .setup = xchk_setup_fs,
215 .scrub = xchk_superblock,
216 .repair = xrep_superblock,
218 [XFS_SCRUB_TYPE_AGF] = { /* agf */
219 .type = ST_PERAG,
220 .setup = xchk_setup_fs,
221 .scrub = xchk_agf,
222 .repair = xrep_agf,
224 [XFS_SCRUB_TYPE_AGFL]= { /* agfl */
225 .type = ST_PERAG,
226 .setup = xchk_setup_fs,
227 .scrub = xchk_agfl,
228 .repair = xrep_agfl,
230 [XFS_SCRUB_TYPE_AGI] = { /* agi */
231 .type = ST_PERAG,
232 .setup = xchk_setup_fs,
233 .scrub = xchk_agi,
234 .repair = xrep_agi,
236 [XFS_SCRUB_TYPE_BNOBT] = { /* bnobt */
237 .type = ST_PERAG,
238 .setup = xchk_setup_ag_allocbt,
239 .scrub = xchk_bnobt,
240 .repair = xrep_notsupported,
242 [XFS_SCRUB_TYPE_CNTBT] = { /* cntbt */
243 .type = ST_PERAG,
244 .setup = xchk_setup_ag_allocbt,
245 .scrub = xchk_cntbt,
246 .repair = xrep_notsupported,
248 [XFS_SCRUB_TYPE_INOBT] = { /* inobt */
249 .type = ST_PERAG,
250 .setup = xchk_setup_ag_iallocbt,
251 .scrub = xchk_inobt,
252 .repair = xrep_notsupported,
254 [XFS_SCRUB_TYPE_FINOBT] = { /* finobt */
255 .type = ST_PERAG,
256 .setup = xchk_setup_ag_iallocbt,
257 .scrub = xchk_finobt,
258 .has = xfs_sb_version_hasfinobt,
259 .repair = xrep_notsupported,
261 [XFS_SCRUB_TYPE_RMAPBT] = { /* rmapbt */
262 .type = ST_PERAG,
263 .setup = xchk_setup_ag_rmapbt,
264 .scrub = xchk_rmapbt,
265 .has = xfs_sb_version_hasrmapbt,
266 .repair = xrep_notsupported,
268 [XFS_SCRUB_TYPE_REFCNTBT] = { /* refcountbt */
269 .type = ST_PERAG,
270 .setup = xchk_setup_ag_refcountbt,
271 .scrub = xchk_refcountbt,
272 .has = xfs_sb_version_hasreflink,
273 .repair = xrep_notsupported,
275 [XFS_SCRUB_TYPE_INODE] = { /* inode record */
276 .type = ST_INODE,
277 .setup = xchk_setup_inode,
278 .scrub = xchk_inode,
279 .repair = xrep_notsupported,
281 [XFS_SCRUB_TYPE_BMBTD] = { /* inode data fork */
282 .type = ST_INODE,
283 .setup = xchk_setup_inode_bmap,
284 .scrub = xchk_bmap_data,
285 .repair = xrep_notsupported,
287 [XFS_SCRUB_TYPE_BMBTA] = { /* inode attr fork */
288 .type = ST_INODE,
289 .setup = xchk_setup_inode_bmap,
290 .scrub = xchk_bmap_attr,
291 .repair = xrep_notsupported,
293 [XFS_SCRUB_TYPE_BMBTC] = { /* inode CoW fork */
294 .type = ST_INODE,
295 .setup = xchk_setup_inode_bmap,
296 .scrub = xchk_bmap_cow,
297 .repair = xrep_notsupported,
299 [XFS_SCRUB_TYPE_DIR] = { /* directory */
300 .type = ST_INODE,
301 .setup = xchk_setup_directory,
302 .scrub = xchk_directory,
303 .repair = xrep_notsupported,
305 [XFS_SCRUB_TYPE_XATTR] = { /* extended attributes */
306 .type = ST_INODE,
307 .setup = xchk_setup_xattr,
308 .scrub = xchk_xattr,
309 .repair = xrep_notsupported,
311 [XFS_SCRUB_TYPE_SYMLINK] = { /* symbolic link */
312 .type = ST_INODE,
313 .setup = xchk_setup_symlink,
314 .scrub = xchk_symlink,
315 .repair = xrep_notsupported,
317 [XFS_SCRUB_TYPE_PARENT] = { /* parent pointers */
318 .type = ST_INODE,
319 .setup = xchk_setup_parent,
320 .scrub = xchk_parent,
321 .repair = xrep_notsupported,
323 [XFS_SCRUB_TYPE_RTBITMAP] = { /* realtime bitmap */
324 .type = ST_FS,
325 .setup = xchk_setup_rt,
326 .scrub = xchk_rtbitmap,
327 .has = xfs_sb_version_hasrealtime,
328 .repair = xrep_notsupported,
330 [XFS_SCRUB_TYPE_RTSUM] = { /* realtime summary */
331 .type = ST_FS,
332 .setup = xchk_setup_rt,
333 .scrub = xchk_rtsummary,
334 .has = xfs_sb_version_hasrealtime,
335 .repair = xrep_notsupported,
337 [XFS_SCRUB_TYPE_UQUOTA] = { /* user quota */
338 .type = ST_FS,
339 .setup = xchk_setup_quota,
340 .scrub = xchk_quota,
341 .repair = xrep_notsupported,
343 [XFS_SCRUB_TYPE_GQUOTA] = { /* group quota */
344 .type = ST_FS,
345 .setup = xchk_setup_quota,
346 .scrub = xchk_quota,
347 .repair = xrep_notsupported,
349 [XFS_SCRUB_TYPE_PQUOTA] = { /* project quota */
350 .type = ST_FS,
351 .setup = xchk_setup_quota,
352 .scrub = xchk_quota,
353 .repair = xrep_notsupported,
355 [XFS_SCRUB_TYPE_FSCOUNTERS] = { /* fs summary counters */
356 .type = ST_FS,
357 .setup = xchk_setup_fscounters,
358 .scrub = xchk_fscounters,
359 .repair = xrep_notsupported,
363 /* This isn't a stable feature, warn once per day. */
364 static inline void
365 xchk_experimental_warning(
366 struct xfs_mount *mp)
368 static struct ratelimit_state scrub_warning = RATELIMIT_STATE_INIT(
369 "xchk_warning", 86400 * HZ, 1);
370 ratelimit_set_flags(&scrub_warning, RATELIMIT_MSG_ON_RELEASE);
372 if (__ratelimit(&scrub_warning))
373 xfs_alert(mp,
374 "EXPERIMENTAL online scrub feature in use. Use at your own risk!");
377 static int
378 xchk_validate_inputs(
379 struct xfs_mount *mp,
380 struct xfs_scrub_metadata *sm)
382 int error;
383 const struct xchk_meta_ops *ops;
385 error = -EINVAL;
386 /* Check our inputs. */
387 sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
388 if (sm->sm_flags & ~XFS_SCRUB_FLAGS_IN)
389 goto out;
390 /* sm_reserved[] must be zero */
391 if (memchr_inv(sm->sm_reserved, 0, sizeof(sm->sm_reserved)))
392 goto out;
394 error = -ENOENT;
395 /* Do we know about this type of metadata? */
396 if (sm->sm_type >= XFS_SCRUB_TYPE_NR)
397 goto out;
398 ops = &meta_scrub_ops[sm->sm_type];
399 if (ops->setup == NULL || ops->scrub == NULL)
400 goto out;
401 /* Does this fs even support this type of metadata? */
402 if (ops->has && !ops->has(&mp->m_sb))
403 goto out;
405 error = -EINVAL;
406 /* restricting fields must be appropriate for type */
407 switch (ops->type) {
408 case ST_NONE:
409 case ST_FS:
410 if (sm->sm_ino || sm->sm_gen || sm->sm_agno)
411 goto out;
412 break;
413 case ST_PERAG:
414 if (sm->sm_ino || sm->sm_gen ||
415 sm->sm_agno >= mp->m_sb.sb_agcount)
416 goto out;
417 break;
418 case ST_INODE:
419 if (sm->sm_agno || (sm->sm_gen && !sm->sm_ino))
420 goto out;
421 break;
422 default:
423 goto out;
427 * We only want to repair read-write v5+ filesystems. Defer the check
428 * for ops->repair until after our scrub confirms that we need to
429 * perform repairs so that we avoid failing due to not supporting
430 * repairing an object that doesn't need repairs.
432 if (sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) {
433 error = -EOPNOTSUPP;
434 if (!xfs_sb_version_hascrc(&mp->m_sb))
435 goto out;
437 error = -EROFS;
438 if (mp->m_flags & XFS_MOUNT_RDONLY)
439 goto out;
442 error = 0;
443 out:
444 return error;
447 #ifdef CONFIG_XFS_ONLINE_REPAIR
448 static inline void xchk_postmortem(struct xfs_scrub *sc)
451 * Userspace asked us to repair something, we repaired it, rescanned
452 * it, and the rescan says it's still broken. Scream about this in
453 * the system logs.
455 if ((sc->sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
456 (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
457 XFS_SCRUB_OFLAG_XCORRUPT)))
458 xrep_failure(sc->mp);
460 #else
461 static inline void xchk_postmortem(struct xfs_scrub *sc)
464 * Userspace asked us to scrub something, it's broken, and we have no
465 * way of fixing it. Scream in the logs.
467 if (sc->sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
468 XFS_SCRUB_OFLAG_XCORRUPT))
469 xfs_alert_ratelimited(sc->mp,
470 "Corruption detected during scrub.");
472 #endif /* CONFIG_XFS_ONLINE_REPAIR */
474 /* Dispatch metadata scrubbing. */
476 xfs_scrub_metadata(
477 struct xfs_inode *ip,
478 struct xfs_scrub_metadata *sm)
480 struct xfs_scrub sc = {
481 .mp = ip->i_mount,
482 .sm = sm,
483 .sa = {
484 .agno = NULLAGNUMBER,
487 struct xfs_mount *mp = ip->i_mount;
488 int error = 0;
490 BUILD_BUG_ON(sizeof(meta_scrub_ops) !=
491 (sizeof(struct xchk_meta_ops) * XFS_SCRUB_TYPE_NR));
493 trace_xchk_start(ip, sm, error);
495 /* Forbidden if we are shut down or mounted norecovery. */
496 error = -ESHUTDOWN;
497 if (XFS_FORCED_SHUTDOWN(mp))
498 goto out;
499 error = -ENOTRECOVERABLE;
500 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
501 goto out;
503 error = xchk_validate_inputs(mp, sm);
504 if (error)
505 goto out;
507 xchk_experimental_warning(mp);
509 sc.ops = &meta_scrub_ops[sm->sm_type];
510 sc.sick_mask = xchk_health_mask_for_scrub_type(sm->sm_type);
511 retry_op:
512 /* Set up for the operation. */
513 error = sc.ops->setup(&sc, ip);
514 if (error)
515 goto out_teardown;
517 /* Scrub for errors. */
518 error = sc.ops->scrub(&sc);
519 if (!(sc.flags & XCHK_TRY_HARDER) && error == -EDEADLOCK) {
521 * Scrubbers return -EDEADLOCK to mean 'try harder'.
522 * Tear down everything we hold, then set up again with
523 * preparation for worst-case scenarios.
525 error = xchk_teardown(&sc, ip, 0);
526 if (error)
527 goto out;
528 sc.flags |= XCHK_TRY_HARDER;
529 goto retry_op;
530 } else if (error)
531 goto out_teardown;
533 xchk_update_health(&sc);
535 if ((sc.sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR) &&
536 !(sc.flags & XREP_ALREADY_FIXED)) {
537 bool needs_fix;
539 /* Let debug users force us into the repair routines. */
540 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
541 sc.sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
543 needs_fix = (sc.sm->sm_flags & (XFS_SCRUB_OFLAG_CORRUPT |
544 XFS_SCRUB_OFLAG_XCORRUPT |
545 XFS_SCRUB_OFLAG_PREEN));
547 * If userspace asked for a repair but it wasn't necessary,
548 * report that back to userspace.
550 if (!needs_fix) {
551 sc.sm->sm_flags |= XFS_SCRUB_OFLAG_NO_REPAIR_NEEDED;
552 goto out_nofix;
556 * If it's broken, userspace wants us to fix it, and we haven't
557 * already tried to fix it, then attempt a repair.
559 error = xrep_attempt(ip, &sc);
560 if (error == -EAGAIN) {
562 * Either the repair function succeeded or it couldn't
563 * get all the resources it needs; either way, we go
564 * back to the beginning and call the scrub function.
566 error = xchk_teardown(&sc, ip, 0);
567 if (error) {
568 xrep_failure(mp);
569 goto out;
571 goto retry_op;
575 out_nofix:
576 xchk_postmortem(&sc);
577 out_teardown:
578 error = xchk_teardown(&sc, ip, error);
579 out:
580 trace_xchk_done(ip, sm, error);
581 if (error == -EFSCORRUPTED || error == -EFSBADCRC) {
582 sm->sm_flags |= XFS_SCRUB_OFLAG_CORRUPT;
583 error = 0;
585 return error;