perf intel-pt: Factor out intel_pt_8b_tsc()
[linux/fpc-iii.git] / fs / xfs / xfs_buf.c
blob548344e2512833bbb82f141fe34aefed88a6729e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
35 static kmem_zone_t *xfs_buf_zone;
37 #define xb_to_gfp(flags) \
38 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
41 * Locking orders
43 * xfs_buf_ioacct_inc:
44 * xfs_buf_ioacct_dec:
45 * b_sema (caller holds)
46 * b_lock
48 * xfs_buf_stale:
49 * b_sema (caller holds)
50 * b_lock
51 * lru_lock
53 * xfs_buf_rele:
54 * b_lock
55 * pag_buf_lock
56 * lru_lock
58 * xfs_buftarg_wait_rele
59 * lru_lock
60 * b_lock (trylock due to inversion)
62 * xfs_buftarg_isolate
63 * lru_lock
64 * b_lock (trylock due to inversion)
67 static inline int
68 xfs_buf_is_vmapped(
69 struct xfs_buf *bp)
72 * Return true if the buffer is vmapped.
74 * b_addr is null if the buffer is not mapped, but the code is clever
75 * enough to know it doesn't have to map a single page, so the check has
76 * to be both for b_addr and bp->b_page_count > 1.
78 return bp->b_addr && bp->b_page_count > 1;
81 static inline int
82 xfs_buf_vmap_len(
83 struct xfs_buf *bp)
85 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
89 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90 * this buffer. The count is incremented once per buffer (per hold cycle)
91 * because the corresponding decrement is deferred to buffer release. Buffers
92 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93 * tracking adds unnecessary overhead. This is used for sychronization purposes
94 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
95 * in-flight buffers.
97 * Buffers that are never released (e.g., superblock, iclog buffers) must set
98 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99 * never reaches zero and unmount hangs indefinitely.
101 static inline void
102 xfs_buf_ioacct_inc(
103 struct xfs_buf *bp)
105 if (bp->b_flags & XBF_NO_IOACCT)
106 return;
108 ASSERT(bp->b_flags & XBF_ASYNC);
109 spin_lock(&bp->b_lock);
110 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
111 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
112 percpu_counter_inc(&bp->b_target->bt_io_count);
114 spin_unlock(&bp->b_lock);
118 * Clear the in-flight state on a buffer about to be released to the LRU or
119 * freed and unaccount from the buftarg.
121 static inline void
122 __xfs_buf_ioacct_dec(
123 struct xfs_buf *bp)
125 lockdep_assert_held(&bp->b_lock);
127 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
128 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
129 percpu_counter_dec(&bp->b_target->bt_io_count);
133 static inline void
134 xfs_buf_ioacct_dec(
135 struct xfs_buf *bp)
137 spin_lock(&bp->b_lock);
138 __xfs_buf_ioacct_dec(bp);
139 spin_unlock(&bp->b_lock);
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
148 * This prevents build-up of stale buffers on the LRU.
150 void
151 xfs_buf_stale(
152 struct xfs_buf *bp)
154 ASSERT(xfs_buf_islocked(bp));
156 bp->b_flags |= XBF_STALE;
159 * Clear the delwri status so that a delwri queue walker will not
160 * flush this buffer to disk now that it is stale. The delwri queue has
161 * a reference to the buffer, so this is safe to do.
163 bp->b_flags &= ~_XBF_DELWRI_Q;
166 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 * could reset b_flags. There is no guarantee that the buffer is
168 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 * status now to preserve accounting consistency.
171 spin_lock(&bp->b_lock);
172 __xfs_buf_ioacct_dec(bp);
174 atomic_set(&bp->b_lru_ref, 0);
175 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
176 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
177 atomic_dec(&bp->b_hold);
179 ASSERT(atomic_read(&bp->b_hold) >= 1);
180 spin_unlock(&bp->b_lock);
183 static int
184 xfs_buf_get_maps(
185 struct xfs_buf *bp,
186 int map_count)
188 ASSERT(bp->b_maps == NULL);
189 bp->b_map_count = map_count;
191 if (map_count == 1) {
192 bp->b_maps = &bp->__b_map;
193 return 0;
196 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
197 KM_NOFS);
198 if (!bp->b_maps)
199 return -ENOMEM;
200 return 0;
204 * Frees b_pages if it was allocated.
206 static void
207 xfs_buf_free_maps(
208 struct xfs_buf *bp)
210 if (bp->b_maps != &bp->__b_map) {
211 kmem_free(bp->b_maps);
212 bp->b_maps = NULL;
216 struct xfs_buf *
217 _xfs_buf_alloc(
218 struct xfs_buftarg *target,
219 struct xfs_buf_map *map,
220 int nmaps,
221 xfs_buf_flags_t flags)
223 struct xfs_buf *bp;
224 int error;
225 int i;
227 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
228 if (unlikely(!bp))
229 return NULL;
232 * We don't want certain flags to appear in b_flags unless they are
233 * specifically set by later operations on the buffer.
235 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
237 atomic_set(&bp->b_hold, 1);
238 atomic_set(&bp->b_lru_ref, 1);
239 init_completion(&bp->b_iowait);
240 INIT_LIST_HEAD(&bp->b_lru);
241 INIT_LIST_HEAD(&bp->b_list);
242 INIT_LIST_HEAD(&bp->b_li_list);
243 sema_init(&bp->b_sema, 0); /* held, no waiters */
244 spin_lock_init(&bp->b_lock);
245 bp->b_target = target;
246 bp->b_flags = flags;
249 * Set length and io_length to the same value initially.
250 * I/O routines should use io_length, which will be the same in
251 * most cases but may be reset (e.g. XFS recovery).
253 error = xfs_buf_get_maps(bp, nmaps);
254 if (error) {
255 kmem_zone_free(xfs_buf_zone, bp);
256 return NULL;
259 bp->b_bn = map[0].bm_bn;
260 bp->b_length = 0;
261 for (i = 0; i < nmaps; i++) {
262 bp->b_maps[i].bm_bn = map[i].bm_bn;
263 bp->b_maps[i].bm_len = map[i].bm_len;
264 bp->b_length += map[i].bm_len;
266 bp->b_io_length = bp->b_length;
268 atomic_set(&bp->b_pin_count, 0);
269 init_waitqueue_head(&bp->b_waiters);
271 XFS_STATS_INC(target->bt_mount, xb_create);
272 trace_xfs_buf_init(bp, _RET_IP_);
274 return bp;
278 * Allocate a page array capable of holding a specified number
279 * of pages, and point the page buf at it.
281 STATIC int
282 _xfs_buf_get_pages(
283 xfs_buf_t *bp,
284 int page_count)
286 /* Make sure that we have a page list */
287 if (bp->b_pages == NULL) {
288 bp->b_page_count = page_count;
289 if (page_count <= XB_PAGES) {
290 bp->b_pages = bp->b_page_array;
291 } else {
292 bp->b_pages = kmem_alloc(sizeof(struct page *) *
293 page_count, KM_NOFS);
294 if (bp->b_pages == NULL)
295 return -ENOMEM;
297 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
299 return 0;
303 * Frees b_pages if it was allocated.
305 STATIC void
306 _xfs_buf_free_pages(
307 xfs_buf_t *bp)
309 if (bp->b_pages != bp->b_page_array) {
310 kmem_free(bp->b_pages);
311 bp->b_pages = NULL;
316 * Releases the specified buffer.
318 * The modification state of any associated pages is left unchanged.
319 * The buffer must not be on any hash - use xfs_buf_rele instead for
320 * hashed and refcounted buffers
322 void
323 xfs_buf_free(
324 xfs_buf_t *bp)
326 trace_xfs_buf_free(bp, _RET_IP_);
328 ASSERT(list_empty(&bp->b_lru));
330 if (bp->b_flags & _XBF_PAGES) {
331 uint i;
333 if (xfs_buf_is_vmapped(bp))
334 vm_unmap_ram(bp->b_addr - bp->b_offset,
335 bp->b_page_count);
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page = bp->b_pages[i];
340 __free_page(page);
342 } else if (bp->b_flags & _XBF_KMEM)
343 kmem_free(bp->b_addr);
344 _xfs_buf_free_pages(bp);
345 xfs_buf_free_maps(bp);
346 kmem_zone_free(xfs_buf_zone, bp);
350 * Allocates all the pages for buffer in question and builds it's page list.
352 STATIC int
353 xfs_buf_allocate_memory(
354 xfs_buf_t *bp,
355 uint flags)
357 size_t size;
358 size_t nbytes, offset;
359 gfp_t gfp_mask = xb_to_gfp(flags);
360 unsigned short page_count, i;
361 xfs_off_t start, end;
362 int error;
365 * for buffers that are contained within a single page, just allocate
366 * the memory from the heap - there's no need for the complexity of
367 * page arrays to keep allocation down to order 0.
369 size = BBTOB(bp->b_length);
370 if (size < PAGE_SIZE) {
371 bp->b_addr = kmem_alloc(size, KM_NOFS);
372 if (!bp->b_addr) {
373 /* low memory - use alloc_page loop instead */
374 goto use_alloc_page;
377 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
378 ((unsigned long)bp->b_addr & PAGE_MASK)) {
379 /* b_addr spans two pages - use alloc_page instead */
380 kmem_free(bp->b_addr);
381 bp->b_addr = NULL;
382 goto use_alloc_page;
384 bp->b_offset = offset_in_page(bp->b_addr);
385 bp->b_pages = bp->b_page_array;
386 bp->b_pages[0] = virt_to_page(bp->b_addr);
387 bp->b_page_count = 1;
388 bp->b_flags |= _XBF_KMEM;
389 return 0;
392 use_alloc_page:
393 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
394 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
395 >> PAGE_SHIFT;
396 page_count = end - start;
397 error = _xfs_buf_get_pages(bp, page_count);
398 if (unlikely(error))
399 return error;
401 offset = bp->b_offset;
402 bp->b_flags |= _XBF_PAGES;
404 for (i = 0; i < bp->b_page_count; i++) {
405 struct page *page;
406 uint retries = 0;
407 retry:
408 page = alloc_page(gfp_mask);
409 if (unlikely(page == NULL)) {
410 if (flags & XBF_READ_AHEAD) {
411 bp->b_page_count = i;
412 error = -ENOMEM;
413 goto out_free_pages;
417 * This could deadlock.
419 * But until all the XFS lowlevel code is revamped to
420 * handle buffer allocation failures we can't do much.
422 if (!(++retries % 100))
423 xfs_err(NULL,
424 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 current->comm, current->pid,
426 __func__, gfp_mask);
428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
429 congestion_wait(BLK_RW_ASYNC, HZ/50);
430 goto retry;
433 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
435 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
436 size -= nbytes;
437 bp->b_pages[i] = page;
438 offset = 0;
440 return 0;
442 out_free_pages:
443 for (i = 0; i < bp->b_page_count; i++)
444 __free_page(bp->b_pages[i]);
445 bp->b_flags &= ~_XBF_PAGES;
446 return error;
450 * Map buffer into kernel address-space if necessary.
452 STATIC int
453 _xfs_buf_map_pages(
454 xfs_buf_t *bp,
455 uint flags)
457 ASSERT(bp->b_flags & _XBF_PAGES);
458 if (bp->b_page_count == 1) {
459 /* A single page buffer is always mappable */
460 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
461 } else if (flags & XBF_UNMAPPED) {
462 bp->b_addr = NULL;
463 } else {
464 int retried = 0;
465 unsigned nofs_flag;
468 * vm_map_ram() will allocate auxillary structures (e.g.
469 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 * GFP_NOFS context here. Hence we need to tell memory reclaim
471 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
472 * memory reclaim re-entering the filesystem here and
473 * potentially deadlocking.
475 nofs_flag = memalloc_nofs_save();
476 do {
477 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
478 -1, PAGE_KERNEL);
479 if (bp->b_addr)
480 break;
481 vm_unmap_aliases();
482 } while (retried++ <= 1);
483 memalloc_nofs_restore(nofs_flag);
485 if (!bp->b_addr)
486 return -ENOMEM;
487 bp->b_addr += bp->b_offset;
490 return 0;
494 * Finding and Reading Buffers
496 static int
497 _xfs_buf_obj_cmp(
498 struct rhashtable_compare_arg *arg,
499 const void *obj)
501 const struct xfs_buf_map *map = arg->key;
502 const struct xfs_buf *bp = obj;
505 * The key hashing in the lookup path depends on the key being the
506 * first element of the compare_arg, make sure to assert this.
508 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
510 if (bp->b_bn != map->bm_bn)
511 return 1;
513 if (unlikely(bp->b_length != map->bm_len)) {
515 * found a block number match. If the range doesn't
516 * match, the only way this is allowed is if the buffer
517 * in the cache is stale and the transaction that made
518 * it stale has not yet committed. i.e. we are
519 * reallocating a busy extent. Skip this buffer and
520 * continue searching for an exact match.
522 ASSERT(bp->b_flags & XBF_STALE);
523 return 1;
525 return 0;
528 static const struct rhashtable_params xfs_buf_hash_params = {
529 .min_size = 32, /* empty AGs have minimal footprint */
530 .nelem_hint = 16,
531 .key_len = sizeof(xfs_daddr_t),
532 .key_offset = offsetof(struct xfs_buf, b_bn),
533 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
534 .automatic_shrinking = true,
535 .obj_cmpfn = _xfs_buf_obj_cmp,
539 xfs_buf_hash_init(
540 struct xfs_perag *pag)
542 spin_lock_init(&pag->pag_buf_lock);
543 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
546 void
547 xfs_buf_hash_destroy(
548 struct xfs_perag *pag)
550 rhashtable_destroy(&pag->pag_buf_hash);
554 * Look up a buffer in the buffer cache and return it referenced and locked
555 * in @found_bp.
557 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
558 * cache.
560 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561 * -EAGAIN if we fail to lock it.
563 * Return values are:
564 * -EFSCORRUPTED if have been supplied with an invalid address
565 * -EAGAIN on trylock failure
566 * -ENOENT if we fail to find a match and @new_bp was NULL
567 * 0, with @found_bp:
568 * - @new_bp if we inserted it into the cache
569 * - the buffer we found and locked.
571 static int
572 xfs_buf_find(
573 struct xfs_buftarg *btp,
574 struct xfs_buf_map *map,
575 int nmaps,
576 xfs_buf_flags_t flags,
577 struct xfs_buf *new_bp,
578 struct xfs_buf **found_bp)
580 struct xfs_perag *pag;
581 xfs_buf_t *bp;
582 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
583 xfs_daddr_t eofs;
584 int i;
586 *found_bp = NULL;
588 for (i = 0; i < nmaps; i++)
589 cmap.bm_len += map[i].bm_len;
591 /* Check for IOs smaller than the sector size / not sector aligned */
592 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
593 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
596 * Corrupted block numbers can get through to here, unfortunately, so we
597 * have to check that the buffer falls within the filesystem bounds.
599 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
600 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
601 xfs_alert(btp->bt_mount,
602 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
603 __func__, cmap.bm_bn, eofs);
604 WARN_ON(1);
605 return -EFSCORRUPTED;
608 pag = xfs_perag_get(btp->bt_mount,
609 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
611 spin_lock(&pag->pag_buf_lock);
612 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
613 xfs_buf_hash_params);
614 if (bp) {
615 atomic_inc(&bp->b_hold);
616 goto found;
619 /* No match found */
620 if (!new_bp) {
621 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
624 return -ENOENT;
627 /* the buffer keeps the perag reference until it is freed */
628 new_bp->b_pag = pag;
629 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
630 xfs_buf_hash_params);
631 spin_unlock(&pag->pag_buf_lock);
632 *found_bp = new_bp;
633 return 0;
635 found:
636 spin_unlock(&pag->pag_buf_lock);
637 xfs_perag_put(pag);
639 if (!xfs_buf_trylock(bp)) {
640 if (flags & XBF_TRYLOCK) {
641 xfs_buf_rele(bp);
642 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
643 return -EAGAIN;
645 xfs_buf_lock(bp);
646 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
650 * if the buffer is stale, clear all the external state associated with
651 * it. We need to keep flags such as how we allocated the buffer memory
652 * intact here.
654 if (bp->b_flags & XBF_STALE) {
655 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
656 ASSERT(bp->b_iodone == NULL);
657 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
658 bp->b_ops = NULL;
661 trace_xfs_buf_find(bp, flags, _RET_IP_);
662 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
663 *found_bp = bp;
664 return 0;
667 struct xfs_buf *
668 xfs_buf_incore(
669 struct xfs_buftarg *target,
670 xfs_daddr_t blkno,
671 size_t numblks,
672 xfs_buf_flags_t flags)
674 struct xfs_buf *bp;
675 int error;
676 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
678 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
679 if (error)
680 return NULL;
681 return bp;
685 * Assembles a buffer covering the specified range. The code is optimised for
686 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687 * more hits than misses.
689 struct xfs_buf *
690 xfs_buf_get_map(
691 struct xfs_buftarg *target,
692 struct xfs_buf_map *map,
693 int nmaps,
694 xfs_buf_flags_t flags)
696 struct xfs_buf *bp;
697 struct xfs_buf *new_bp;
698 int error = 0;
700 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
702 switch (error) {
703 case 0:
704 /* cache hit */
705 goto found;
706 case -EAGAIN:
707 /* cache hit, trylock failure, caller handles failure */
708 ASSERT(flags & XBF_TRYLOCK);
709 return NULL;
710 case -ENOENT:
711 /* cache miss, go for insert */
712 break;
713 case -EFSCORRUPTED:
714 default:
716 * None of the higher layers understand failure types
717 * yet, so return NULL to signal a fatal lookup error.
719 return NULL;
722 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
723 if (unlikely(!new_bp))
724 return NULL;
726 error = xfs_buf_allocate_memory(new_bp, flags);
727 if (error) {
728 xfs_buf_free(new_bp);
729 return NULL;
732 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
733 if (error) {
734 xfs_buf_free(new_bp);
735 return NULL;
738 if (bp != new_bp)
739 xfs_buf_free(new_bp);
741 found:
742 if (!bp->b_addr) {
743 error = _xfs_buf_map_pages(bp, flags);
744 if (unlikely(error)) {
745 xfs_warn(target->bt_mount,
746 "%s: failed to map pagesn", __func__);
747 xfs_buf_relse(bp);
748 return NULL;
753 * Clear b_error if this is a lookup from a caller that doesn't expect
754 * valid data to be found in the buffer.
756 if (!(flags & XBF_READ))
757 xfs_buf_ioerror(bp, 0);
759 XFS_STATS_INC(target->bt_mount, xb_get);
760 trace_xfs_buf_get(bp, flags, _RET_IP_);
761 return bp;
764 STATIC int
765 _xfs_buf_read(
766 xfs_buf_t *bp,
767 xfs_buf_flags_t flags)
769 ASSERT(!(flags & XBF_WRITE));
770 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
772 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
773 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
775 return xfs_buf_submit(bp);
779 * Reverify a buffer found in cache without an attached ->b_ops.
781 * If the caller passed an ops structure and the buffer doesn't have ops
782 * assigned, set the ops and use it to verify the contents. If verification
783 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
784 * already in XBF_DONE state on entry.
786 * Under normal operations, every in-core buffer is verified on read I/O
787 * completion. There are two scenarios that can lead to in-core buffers without
788 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
789 * filesystem, though these buffers are purged at the end of recovery. The
790 * other is online repair, which intentionally reads with a NULL buffer ops to
791 * run several verifiers across an in-core buffer in order to establish buffer
792 * type. If repair can't establish that, the buffer will be left in memory
793 * with NULL buffer ops.
796 xfs_buf_reverify(
797 struct xfs_buf *bp,
798 const struct xfs_buf_ops *ops)
800 ASSERT(bp->b_flags & XBF_DONE);
801 ASSERT(bp->b_error == 0);
803 if (!ops || bp->b_ops)
804 return 0;
806 bp->b_ops = ops;
807 bp->b_ops->verify_read(bp);
808 if (bp->b_error)
809 bp->b_flags &= ~XBF_DONE;
810 return bp->b_error;
813 xfs_buf_t *
814 xfs_buf_read_map(
815 struct xfs_buftarg *target,
816 struct xfs_buf_map *map,
817 int nmaps,
818 xfs_buf_flags_t flags,
819 const struct xfs_buf_ops *ops)
821 struct xfs_buf *bp;
823 flags |= XBF_READ;
825 bp = xfs_buf_get_map(target, map, nmaps, flags);
826 if (!bp)
827 return NULL;
829 trace_xfs_buf_read(bp, flags, _RET_IP_);
831 if (!(bp->b_flags & XBF_DONE)) {
832 XFS_STATS_INC(target->bt_mount, xb_get_read);
833 bp->b_ops = ops;
834 _xfs_buf_read(bp, flags);
835 return bp;
838 xfs_buf_reverify(bp, ops);
840 if (flags & XBF_ASYNC) {
842 * Read ahead call which is already satisfied,
843 * drop the buffer
845 xfs_buf_relse(bp);
846 return NULL;
849 /* We do not want read in the flags */
850 bp->b_flags &= ~XBF_READ;
851 ASSERT(bp->b_ops != NULL || ops == NULL);
852 return bp;
856 * If we are not low on memory then do the readahead in a deadlock
857 * safe manner.
859 void
860 xfs_buf_readahead_map(
861 struct xfs_buftarg *target,
862 struct xfs_buf_map *map,
863 int nmaps,
864 const struct xfs_buf_ops *ops)
866 if (bdi_read_congested(target->bt_bdev->bd_bdi))
867 return;
869 xfs_buf_read_map(target, map, nmaps,
870 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
874 * Read an uncached buffer from disk. Allocates and returns a locked
875 * buffer containing the disk contents or nothing.
878 xfs_buf_read_uncached(
879 struct xfs_buftarg *target,
880 xfs_daddr_t daddr,
881 size_t numblks,
882 int flags,
883 struct xfs_buf **bpp,
884 const struct xfs_buf_ops *ops)
886 struct xfs_buf *bp;
888 *bpp = NULL;
890 bp = xfs_buf_get_uncached(target, numblks, flags);
891 if (!bp)
892 return -ENOMEM;
894 /* set up the buffer for a read IO */
895 ASSERT(bp->b_map_count == 1);
896 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
897 bp->b_maps[0].bm_bn = daddr;
898 bp->b_flags |= XBF_READ;
899 bp->b_ops = ops;
901 xfs_buf_submit(bp);
902 if (bp->b_error) {
903 int error = bp->b_error;
904 xfs_buf_relse(bp);
905 return error;
908 *bpp = bp;
909 return 0;
913 * Return a buffer allocated as an empty buffer and associated to external
914 * memory via xfs_buf_associate_memory() back to it's empty state.
916 void
917 xfs_buf_set_empty(
918 struct xfs_buf *bp,
919 size_t numblks)
921 if (bp->b_pages)
922 _xfs_buf_free_pages(bp);
924 bp->b_pages = NULL;
925 bp->b_page_count = 0;
926 bp->b_addr = NULL;
927 bp->b_length = numblks;
928 bp->b_io_length = numblks;
930 ASSERT(bp->b_map_count == 1);
931 bp->b_bn = XFS_BUF_DADDR_NULL;
932 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
933 bp->b_maps[0].bm_len = bp->b_length;
936 static inline struct page *
937 mem_to_page(
938 void *addr)
940 if ((!is_vmalloc_addr(addr))) {
941 return virt_to_page(addr);
942 } else {
943 return vmalloc_to_page(addr);
948 xfs_buf_associate_memory(
949 xfs_buf_t *bp,
950 void *mem,
951 size_t len)
953 int rval;
954 int i = 0;
955 unsigned long pageaddr;
956 unsigned long offset;
957 size_t buflen;
958 int page_count;
960 pageaddr = (unsigned long)mem & PAGE_MASK;
961 offset = (unsigned long)mem - pageaddr;
962 buflen = PAGE_ALIGN(len + offset);
963 page_count = buflen >> PAGE_SHIFT;
965 /* Free any previous set of page pointers */
966 if (bp->b_pages)
967 _xfs_buf_free_pages(bp);
969 bp->b_pages = NULL;
970 bp->b_addr = mem;
972 rval = _xfs_buf_get_pages(bp, page_count);
973 if (rval)
974 return rval;
976 bp->b_offset = offset;
978 for (i = 0; i < bp->b_page_count; i++) {
979 bp->b_pages[i] = mem_to_page((void *)pageaddr);
980 pageaddr += PAGE_SIZE;
983 bp->b_io_length = BTOBB(len);
984 bp->b_length = BTOBB(buflen);
986 return 0;
989 xfs_buf_t *
990 xfs_buf_get_uncached(
991 struct xfs_buftarg *target,
992 size_t numblks,
993 int flags)
995 unsigned long page_count;
996 int error, i;
997 struct xfs_buf *bp;
998 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1000 /* flags might contain irrelevant bits, pass only what we care about */
1001 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1002 if (unlikely(bp == NULL))
1003 goto fail;
1005 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1006 error = _xfs_buf_get_pages(bp, page_count);
1007 if (error)
1008 goto fail_free_buf;
1010 for (i = 0; i < page_count; i++) {
1011 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1012 if (!bp->b_pages[i])
1013 goto fail_free_mem;
1015 bp->b_flags |= _XBF_PAGES;
1017 error = _xfs_buf_map_pages(bp, 0);
1018 if (unlikely(error)) {
1019 xfs_warn(target->bt_mount,
1020 "%s: failed to map pages", __func__);
1021 goto fail_free_mem;
1024 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1025 return bp;
1027 fail_free_mem:
1028 while (--i >= 0)
1029 __free_page(bp->b_pages[i]);
1030 _xfs_buf_free_pages(bp);
1031 fail_free_buf:
1032 xfs_buf_free_maps(bp);
1033 kmem_zone_free(xfs_buf_zone, bp);
1034 fail:
1035 return NULL;
1039 * Increment reference count on buffer, to hold the buffer concurrently
1040 * with another thread which may release (free) the buffer asynchronously.
1041 * Must hold the buffer already to call this function.
1043 void
1044 xfs_buf_hold(
1045 xfs_buf_t *bp)
1047 trace_xfs_buf_hold(bp, _RET_IP_);
1048 atomic_inc(&bp->b_hold);
1052 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1053 * placed on LRU or freed (depending on b_lru_ref).
1055 void
1056 xfs_buf_rele(
1057 xfs_buf_t *bp)
1059 struct xfs_perag *pag = bp->b_pag;
1060 bool release;
1061 bool freebuf = false;
1063 trace_xfs_buf_rele(bp, _RET_IP_);
1065 if (!pag) {
1066 ASSERT(list_empty(&bp->b_lru));
1067 if (atomic_dec_and_test(&bp->b_hold)) {
1068 xfs_buf_ioacct_dec(bp);
1069 xfs_buf_free(bp);
1071 return;
1074 ASSERT(atomic_read(&bp->b_hold) > 0);
1077 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1078 * calls. The pag_buf_lock being taken on the last reference only
1079 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1080 * to last reference we drop here is not serialised against the last
1081 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1082 * first, the last "release" reference can win the race to the lock and
1083 * free the buffer before the second-to-last reference is processed,
1084 * leading to a use-after-free scenario.
1086 spin_lock(&bp->b_lock);
1087 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1088 if (!release) {
1090 * Drop the in-flight state if the buffer is already on the LRU
1091 * and it holds the only reference. This is racy because we
1092 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1093 * ensures the decrement occurs only once per-buf.
1095 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1096 __xfs_buf_ioacct_dec(bp);
1097 goto out_unlock;
1100 /* the last reference has been dropped ... */
1101 __xfs_buf_ioacct_dec(bp);
1102 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1104 * If the buffer is added to the LRU take a new reference to the
1105 * buffer for the LRU and clear the (now stale) dispose list
1106 * state flag
1108 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1109 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1110 atomic_inc(&bp->b_hold);
1112 spin_unlock(&pag->pag_buf_lock);
1113 } else {
1115 * most of the time buffers will already be removed from the
1116 * LRU, so optimise that case by checking for the
1117 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1118 * was on was the disposal list
1120 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1121 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1122 } else {
1123 ASSERT(list_empty(&bp->b_lru));
1126 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1127 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1128 xfs_buf_hash_params);
1129 spin_unlock(&pag->pag_buf_lock);
1130 xfs_perag_put(pag);
1131 freebuf = true;
1134 out_unlock:
1135 spin_unlock(&bp->b_lock);
1137 if (freebuf)
1138 xfs_buf_free(bp);
1143 * Lock a buffer object, if it is not already locked.
1145 * If we come across a stale, pinned, locked buffer, we know that we are
1146 * being asked to lock a buffer that has been reallocated. Because it is
1147 * pinned, we know that the log has not been pushed to disk and hence it
1148 * will still be locked. Rather than continuing to have trylock attempts
1149 * fail until someone else pushes the log, push it ourselves before
1150 * returning. This means that the xfsaild will not get stuck trying
1151 * to push on stale inode buffers.
1154 xfs_buf_trylock(
1155 struct xfs_buf *bp)
1157 int locked;
1159 locked = down_trylock(&bp->b_sema) == 0;
1160 if (locked)
1161 trace_xfs_buf_trylock(bp, _RET_IP_);
1162 else
1163 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1164 return locked;
1168 * Lock a buffer object.
1170 * If we come across a stale, pinned, locked buffer, we know that we
1171 * are being asked to lock a buffer that has been reallocated. Because
1172 * it is pinned, we know that the log has not been pushed to disk and
1173 * hence it will still be locked. Rather than sleeping until someone
1174 * else pushes the log, push it ourselves before trying to get the lock.
1176 void
1177 xfs_buf_lock(
1178 struct xfs_buf *bp)
1180 trace_xfs_buf_lock(bp, _RET_IP_);
1182 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1183 xfs_log_force(bp->b_target->bt_mount, 0);
1184 down(&bp->b_sema);
1186 trace_xfs_buf_lock_done(bp, _RET_IP_);
1189 void
1190 xfs_buf_unlock(
1191 struct xfs_buf *bp)
1193 ASSERT(xfs_buf_islocked(bp));
1195 up(&bp->b_sema);
1196 trace_xfs_buf_unlock(bp, _RET_IP_);
1199 STATIC void
1200 xfs_buf_wait_unpin(
1201 xfs_buf_t *bp)
1203 DECLARE_WAITQUEUE (wait, current);
1205 if (atomic_read(&bp->b_pin_count) == 0)
1206 return;
1208 add_wait_queue(&bp->b_waiters, &wait);
1209 for (;;) {
1210 set_current_state(TASK_UNINTERRUPTIBLE);
1211 if (atomic_read(&bp->b_pin_count) == 0)
1212 break;
1213 io_schedule();
1215 remove_wait_queue(&bp->b_waiters, &wait);
1216 set_current_state(TASK_RUNNING);
1220 * Buffer Utility Routines
1223 void
1224 xfs_buf_ioend(
1225 struct xfs_buf *bp)
1227 bool read = bp->b_flags & XBF_READ;
1229 trace_xfs_buf_iodone(bp, _RET_IP_);
1231 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1234 * Pull in IO completion errors now. We are guaranteed to be running
1235 * single threaded, so we don't need the lock to read b_io_error.
1237 if (!bp->b_error && bp->b_io_error)
1238 xfs_buf_ioerror(bp, bp->b_io_error);
1240 /* Only validate buffers that were read without errors */
1241 if (read && !bp->b_error && bp->b_ops) {
1242 ASSERT(!bp->b_iodone);
1243 bp->b_ops->verify_read(bp);
1246 if (!bp->b_error)
1247 bp->b_flags |= XBF_DONE;
1249 if (bp->b_iodone)
1250 (*(bp->b_iodone))(bp);
1251 else if (bp->b_flags & XBF_ASYNC)
1252 xfs_buf_relse(bp);
1253 else
1254 complete(&bp->b_iowait);
1257 static void
1258 xfs_buf_ioend_work(
1259 struct work_struct *work)
1261 struct xfs_buf *bp =
1262 container_of(work, xfs_buf_t, b_ioend_work);
1264 xfs_buf_ioend(bp);
1267 static void
1268 xfs_buf_ioend_async(
1269 struct xfs_buf *bp)
1271 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1272 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1275 void
1276 __xfs_buf_ioerror(
1277 xfs_buf_t *bp,
1278 int error,
1279 xfs_failaddr_t failaddr)
1281 ASSERT(error <= 0 && error >= -1000);
1282 bp->b_error = error;
1283 trace_xfs_buf_ioerror(bp, error, failaddr);
1286 void
1287 xfs_buf_ioerror_alert(
1288 struct xfs_buf *bp,
1289 const char *func)
1291 xfs_alert(bp->b_target->bt_mount,
1292 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1293 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1294 -bp->b_error);
1298 xfs_bwrite(
1299 struct xfs_buf *bp)
1301 int error;
1303 ASSERT(xfs_buf_islocked(bp));
1305 bp->b_flags |= XBF_WRITE;
1306 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1307 XBF_WRITE_FAIL | XBF_DONE);
1309 error = xfs_buf_submit(bp);
1310 if (error) {
1311 xfs_force_shutdown(bp->b_target->bt_mount,
1312 SHUTDOWN_META_IO_ERROR);
1314 return error;
1317 static void
1318 xfs_buf_bio_end_io(
1319 struct bio *bio)
1321 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1324 * don't overwrite existing errors - otherwise we can lose errors on
1325 * buffers that require multiple bios to complete.
1327 if (bio->bi_status) {
1328 int error = blk_status_to_errno(bio->bi_status);
1330 cmpxchg(&bp->b_io_error, 0, error);
1333 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1334 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1336 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1337 xfs_buf_ioend_async(bp);
1338 bio_put(bio);
1341 static void
1342 xfs_buf_ioapply_map(
1343 struct xfs_buf *bp,
1344 int map,
1345 int *buf_offset,
1346 int *count,
1347 int op,
1348 int op_flags)
1350 int page_index;
1351 int total_nr_pages = bp->b_page_count;
1352 int nr_pages;
1353 struct bio *bio;
1354 sector_t sector = bp->b_maps[map].bm_bn;
1355 int size;
1356 int offset;
1358 /* skip the pages in the buffer before the start offset */
1359 page_index = 0;
1360 offset = *buf_offset;
1361 while (offset >= PAGE_SIZE) {
1362 page_index++;
1363 offset -= PAGE_SIZE;
1367 * Limit the IO size to the length of the current vector, and update the
1368 * remaining IO count for the next time around.
1370 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1371 *count -= size;
1372 *buf_offset += size;
1374 next_chunk:
1375 atomic_inc(&bp->b_io_remaining);
1376 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1378 bio = bio_alloc(GFP_NOIO, nr_pages);
1379 bio_set_dev(bio, bp->b_target->bt_bdev);
1380 bio->bi_iter.bi_sector = sector;
1381 bio->bi_end_io = xfs_buf_bio_end_io;
1382 bio->bi_private = bp;
1383 bio_set_op_attrs(bio, op, op_flags);
1385 for (; size && nr_pages; nr_pages--, page_index++) {
1386 int rbytes, nbytes = PAGE_SIZE - offset;
1388 if (nbytes > size)
1389 nbytes = size;
1391 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1392 offset);
1393 if (rbytes < nbytes)
1394 break;
1396 offset = 0;
1397 sector += BTOBB(nbytes);
1398 size -= nbytes;
1399 total_nr_pages--;
1402 if (likely(bio->bi_iter.bi_size)) {
1403 if (xfs_buf_is_vmapped(bp)) {
1404 flush_kernel_vmap_range(bp->b_addr,
1405 xfs_buf_vmap_len(bp));
1407 submit_bio(bio);
1408 if (size)
1409 goto next_chunk;
1410 } else {
1412 * This is guaranteed not to be the last io reference count
1413 * because the caller (xfs_buf_submit) holds a count itself.
1415 atomic_dec(&bp->b_io_remaining);
1416 xfs_buf_ioerror(bp, -EIO);
1417 bio_put(bio);
1422 STATIC void
1423 _xfs_buf_ioapply(
1424 struct xfs_buf *bp)
1426 struct blk_plug plug;
1427 int op;
1428 int op_flags = 0;
1429 int offset;
1430 int size;
1431 int i;
1434 * Make sure we capture only current IO errors rather than stale errors
1435 * left over from previous use of the buffer (e.g. failed readahead).
1437 bp->b_error = 0;
1440 * Initialize the I/O completion workqueue if we haven't yet or the
1441 * submitter has not opted to specify a custom one.
1443 if (!bp->b_ioend_wq)
1444 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1446 if (bp->b_flags & XBF_WRITE) {
1447 op = REQ_OP_WRITE;
1448 if (bp->b_flags & XBF_SYNCIO)
1449 op_flags = REQ_SYNC;
1450 if (bp->b_flags & XBF_FUA)
1451 op_flags |= REQ_FUA;
1452 if (bp->b_flags & XBF_FLUSH)
1453 op_flags |= REQ_PREFLUSH;
1456 * Run the write verifier callback function if it exists. If
1457 * this function fails it will mark the buffer with an error and
1458 * the IO should not be dispatched.
1460 if (bp->b_ops) {
1461 bp->b_ops->verify_write(bp);
1462 if (bp->b_error) {
1463 xfs_force_shutdown(bp->b_target->bt_mount,
1464 SHUTDOWN_CORRUPT_INCORE);
1465 return;
1467 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1468 struct xfs_mount *mp = bp->b_target->bt_mount;
1471 * non-crc filesystems don't attach verifiers during
1472 * log recovery, so don't warn for such filesystems.
1474 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1475 xfs_warn(mp,
1476 "%s: no buf ops on daddr 0x%llx len %d",
1477 __func__, bp->b_bn, bp->b_length);
1478 xfs_hex_dump(bp->b_addr,
1479 XFS_CORRUPTION_DUMP_LEN);
1480 dump_stack();
1483 } else if (bp->b_flags & XBF_READ_AHEAD) {
1484 op = REQ_OP_READ;
1485 op_flags = REQ_RAHEAD;
1486 } else {
1487 op = REQ_OP_READ;
1490 /* we only use the buffer cache for meta-data */
1491 op_flags |= REQ_META;
1494 * Walk all the vectors issuing IO on them. Set up the initial offset
1495 * into the buffer and the desired IO size before we start -
1496 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1497 * subsequent call.
1499 offset = bp->b_offset;
1500 size = BBTOB(bp->b_io_length);
1501 blk_start_plug(&plug);
1502 for (i = 0; i < bp->b_map_count; i++) {
1503 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1504 if (bp->b_error)
1505 break;
1506 if (size <= 0)
1507 break; /* all done */
1509 blk_finish_plug(&plug);
1513 * Wait for I/O completion of a sync buffer and return the I/O error code.
1515 static int
1516 xfs_buf_iowait(
1517 struct xfs_buf *bp)
1519 ASSERT(!(bp->b_flags & XBF_ASYNC));
1521 trace_xfs_buf_iowait(bp, _RET_IP_);
1522 wait_for_completion(&bp->b_iowait);
1523 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1525 return bp->b_error;
1529 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1530 * the buffer lock ownership and the current reference to the IO. It is not
1531 * safe to reference the buffer after a call to this function unless the caller
1532 * holds an additional reference itself.
1535 __xfs_buf_submit(
1536 struct xfs_buf *bp,
1537 bool wait)
1539 int error = 0;
1541 trace_xfs_buf_submit(bp, _RET_IP_);
1543 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1545 /* on shutdown we stale and complete the buffer immediately */
1546 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1547 xfs_buf_ioerror(bp, -EIO);
1548 bp->b_flags &= ~XBF_DONE;
1549 xfs_buf_stale(bp);
1550 xfs_buf_ioend(bp);
1551 return -EIO;
1555 * Grab a reference so the buffer does not go away underneath us. For
1556 * async buffers, I/O completion drops the callers reference, which
1557 * could occur before submission returns.
1559 xfs_buf_hold(bp);
1561 if (bp->b_flags & XBF_WRITE)
1562 xfs_buf_wait_unpin(bp);
1564 /* clear the internal error state to avoid spurious errors */
1565 bp->b_io_error = 0;
1568 * Set the count to 1 initially, this will stop an I/O completion
1569 * callout which happens before we have started all the I/O from calling
1570 * xfs_buf_ioend too early.
1572 atomic_set(&bp->b_io_remaining, 1);
1573 if (bp->b_flags & XBF_ASYNC)
1574 xfs_buf_ioacct_inc(bp);
1575 _xfs_buf_ioapply(bp);
1578 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1579 * reference we took above. If we drop it to zero, run completion so
1580 * that we don't return to the caller with completion still pending.
1582 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1583 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1584 xfs_buf_ioend(bp);
1585 else
1586 xfs_buf_ioend_async(bp);
1589 if (wait)
1590 error = xfs_buf_iowait(bp);
1593 * Release the hold that keeps the buffer referenced for the entire
1594 * I/O. Note that if the buffer is async, it is not safe to reference
1595 * after this release.
1597 xfs_buf_rele(bp);
1598 return error;
1601 void *
1602 xfs_buf_offset(
1603 struct xfs_buf *bp,
1604 size_t offset)
1606 struct page *page;
1608 if (bp->b_addr)
1609 return bp->b_addr + offset;
1611 offset += bp->b_offset;
1612 page = bp->b_pages[offset >> PAGE_SHIFT];
1613 return page_address(page) + (offset & (PAGE_SIZE-1));
1617 * Move data into or out of a buffer.
1619 void
1620 xfs_buf_iomove(
1621 xfs_buf_t *bp, /* buffer to process */
1622 size_t boff, /* starting buffer offset */
1623 size_t bsize, /* length to copy */
1624 void *data, /* data address */
1625 xfs_buf_rw_t mode) /* read/write/zero flag */
1627 size_t bend;
1629 bend = boff + bsize;
1630 while (boff < bend) {
1631 struct page *page;
1632 int page_index, page_offset, csize;
1634 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1635 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1636 page = bp->b_pages[page_index];
1637 csize = min_t(size_t, PAGE_SIZE - page_offset,
1638 BBTOB(bp->b_io_length) - boff);
1640 ASSERT((csize + page_offset) <= PAGE_SIZE);
1642 switch (mode) {
1643 case XBRW_ZERO:
1644 memset(page_address(page) + page_offset, 0, csize);
1645 break;
1646 case XBRW_READ:
1647 memcpy(data, page_address(page) + page_offset, csize);
1648 break;
1649 case XBRW_WRITE:
1650 memcpy(page_address(page) + page_offset, data, csize);
1653 boff += csize;
1654 data += csize;
1659 * Handling of buffer targets (buftargs).
1663 * Wait for any bufs with callbacks that have been submitted but have not yet
1664 * returned. These buffers will have an elevated hold count, so wait on those
1665 * while freeing all the buffers only held by the LRU.
1667 static enum lru_status
1668 xfs_buftarg_wait_rele(
1669 struct list_head *item,
1670 struct list_lru_one *lru,
1671 spinlock_t *lru_lock,
1672 void *arg)
1675 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1676 struct list_head *dispose = arg;
1678 if (atomic_read(&bp->b_hold) > 1) {
1679 /* need to wait, so skip it this pass */
1680 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1681 return LRU_SKIP;
1683 if (!spin_trylock(&bp->b_lock))
1684 return LRU_SKIP;
1687 * clear the LRU reference count so the buffer doesn't get
1688 * ignored in xfs_buf_rele().
1690 atomic_set(&bp->b_lru_ref, 0);
1691 bp->b_state |= XFS_BSTATE_DISPOSE;
1692 list_lru_isolate_move(lru, item, dispose);
1693 spin_unlock(&bp->b_lock);
1694 return LRU_REMOVED;
1697 void
1698 xfs_wait_buftarg(
1699 struct xfs_buftarg *btp)
1701 LIST_HEAD(dispose);
1702 int loop = 0;
1705 * First wait on the buftarg I/O count for all in-flight buffers to be
1706 * released. This is critical as new buffers do not make the LRU until
1707 * they are released.
1709 * Next, flush the buffer workqueue to ensure all completion processing
1710 * has finished. Just waiting on buffer locks is not sufficient for
1711 * async IO as the reference count held over IO is not released until
1712 * after the buffer lock is dropped. Hence we need to ensure here that
1713 * all reference counts have been dropped before we start walking the
1714 * LRU list.
1716 while (percpu_counter_sum(&btp->bt_io_count))
1717 delay(100);
1718 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1720 /* loop until there is nothing left on the lru list. */
1721 while (list_lru_count(&btp->bt_lru)) {
1722 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1723 &dispose, LONG_MAX);
1725 while (!list_empty(&dispose)) {
1726 struct xfs_buf *bp;
1727 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1728 list_del_init(&bp->b_lru);
1729 if (bp->b_flags & XBF_WRITE_FAIL) {
1730 xfs_alert(btp->bt_mount,
1731 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1732 (long long)bp->b_bn);
1733 xfs_alert(btp->bt_mount,
1734 "Please run xfs_repair to determine the extent of the problem.");
1736 xfs_buf_rele(bp);
1738 if (loop++ != 0)
1739 delay(100);
1743 static enum lru_status
1744 xfs_buftarg_isolate(
1745 struct list_head *item,
1746 struct list_lru_one *lru,
1747 spinlock_t *lru_lock,
1748 void *arg)
1750 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1751 struct list_head *dispose = arg;
1754 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1755 * If we fail to get the lock, just skip it.
1757 if (!spin_trylock(&bp->b_lock))
1758 return LRU_SKIP;
1760 * Decrement the b_lru_ref count unless the value is already
1761 * zero. If the value is already zero, we need to reclaim the
1762 * buffer, otherwise it gets another trip through the LRU.
1764 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1765 spin_unlock(&bp->b_lock);
1766 return LRU_ROTATE;
1769 bp->b_state |= XFS_BSTATE_DISPOSE;
1770 list_lru_isolate_move(lru, item, dispose);
1771 spin_unlock(&bp->b_lock);
1772 return LRU_REMOVED;
1775 static unsigned long
1776 xfs_buftarg_shrink_scan(
1777 struct shrinker *shrink,
1778 struct shrink_control *sc)
1780 struct xfs_buftarg *btp = container_of(shrink,
1781 struct xfs_buftarg, bt_shrinker);
1782 LIST_HEAD(dispose);
1783 unsigned long freed;
1785 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1786 xfs_buftarg_isolate, &dispose);
1788 while (!list_empty(&dispose)) {
1789 struct xfs_buf *bp;
1790 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1791 list_del_init(&bp->b_lru);
1792 xfs_buf_rele(bp);
1795 return freed;
1798 static unsigned long
1799 xfs_buftarg_shrink_count(
1800 struct shrinker *shrink,
1801 struct shrink_control *sc)
1803 struct xfs_buftarg *btp = container_of(shrink,
1804 struct xfs_buftarg, bt_shrinker);
1805 return list_lru_shrink_count(&btp->bt_lru, sc);
1808 void
1809 xfs_free_buftarg(
1810 struct xfs_buftarg *btp)
1812 unregister_shrinker(&btp->bt_shrinker);
1813 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1814 percpu_counter_destroy(&btp->bt_io_count);
1815 list_lru_destroy(&btp->bt_lru);
1817 xfs_blkdev_issue_flush(btp);
1819 kmem_free(btp);
1823 xfs_setsize_buftarg(
1824 xfs_buftarg_t *btp,
1825 unsigned int sectorsize)
1827 /* Set up metadata sector size info */
1828 btp->bt_meta_sectorsize = sectorsize;
1829 btp->bt_meta_sectormask = sectorsize - 1;
1831 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1832 xfs_warn(btp->bt_mount,
1833 "Cannot set_blocksize to %u on device %pg",
1834 sectorsize, btp->bt_bdev);
1835 return -EINVAL;
1838 /* Set up device logical sector size mask */
1839 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1840 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1842 return 0;
1846 * When allocating the initial buffer target we have not yet
1847 * read in the superblock, so don't know what sized sectors
1848 * are being used at this early stage. Play safe.
1850 STATIC int
1851 xfs_setsize_buftarg_early(
1852 xfs_buftarg_t *btp,
1853 struct block_device *bdev)
1855 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1858 xfs_buftarg_t *
1859 xfs_alloc_buftarg(
1860 struct xfs_mount *mp,
1861 struct block_device *bdev,
1862 struct dax_device *dax_dev)
1864 xfs_buftarg_t *btp;
1866 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1868 btp->bt_mount = mp;
1869 btp->bt_dev = bdev->bd_dev;
1870 btp->bt_bdev = bdev;
1871 btp->bt_daxdev = dax_dev;
1873 if (xfs_setsize_buftarg_early(btp, bdev))
1874 goto error_free;
1876 if (list_lru_init(&btp->bt_lru))
1877 goto error_free;
1879 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1880 goto error_lru;
1882 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1883 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1884 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1885 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1886 if (register_shrinker(&btp->bt_shrinker))
1887 goto error_pcpu;
1888 return btp;
1890 error_pcpu:
1891 percpu_counter_destroy(&btp->bt_io_count);
1892 error_lru:
1893 list_lru_destroy(&btp->bt_lru);
1894 error_free:
1895 kmem_free(btp);
1896 return NULL;
1900 * Cancel a delayed write list.
1902 * Remove each buffer from the list, clear the delwri queue flag and drop the
1903 * associated buffer reference.
1905 void
1906 xfs_buf_delwri_cancel(
1907 struct list_head *list)
1909 struct xfs_buf *bp;
1911 while (!list_empty(list)) {
1912 bp = list_first_entry(list, struct xfs_buf, b_list);
1914 xfs_buf_lock(bp);
1915 bp->b_flags &= ~_XBF_DELWRI_Q;
1916 list_del_init(&bp->b_list);
1917 xfs_buf_relse(bp);
1922 * Add a buffer to the delayed write list.
1924 * This queues a buffer for writeout if it hasn't already been. Note that
1925 * neither this routine nor the buffer list submission functions perform
1926 * any internal synchronization. It is expected that the lists are thread-local
1927 * to the callers.
1929 * Returns true if we queued up the buffer, or false if it already had
1930 * been on the buffer list.
1932 bool
1933 xfs_buf_delwri_queue(
1934 struct xfs_buf *bp,
1935 struct list_head *list)
1937 ASSERT(xfs_buf_islocked(bp));
1938 ASSERT(!(bp->b_flags & XBF_READ));
1941 * If the buffer is already marked delwri it already is queued up
1942 * by someone else for imediate writeout. Just ignore it in that
1943 * case.
1945 if (bp->b_flags & _XBF_DELWRI_Q) {
1946 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1947 return false;
1950 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1953 * If a buffer gets written out synchronously or marked stale while it
1954 * is on a delwri list we lazily remove it. To do this, the other party
1955 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1956 * It remains referenced and on the list. In a rare corner case it
1957 * might get readded to a delwri list after the synchronous writeout, in
1958 * which case we need just need to re-add the flag here.
1960 bp->b_flags |= _XBF_DELWRI_Q;
1961 if (list_empty(&bp->b_list)) {
1962 atomic_inc(&bp->b_hold);
1963 list_add_tail(&bp->b_list, list);
1966 return true;
1970 * Compare function is more complex than it needs to be because
1971 * the return value is only 32 bits and we are doing comparisons
1972 * on 64 bit values
1974 static int
1975 xfs_buf_cmp(
1976 void *priv,
1977 struct list_head *a,
1978 struct list_head *b)
1980 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1981 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1982 xfs_daddr_t diff;
1984 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1985 if (diff < 0)
1986 return -1;
1987 if (diff > 0)
1988 return 1;
1989 return 0;
1993 * Submit buffers for write. If wait_list is specified, the buffers are
1994 * submitted using sync I/O and placed on the wait list such that the caller can
1995 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1996 * at I/O completion time. In either case, buffers remain locked until I/O
1997 * completes and the buffer is released from the queue.
1999 static int
2000 xfs_buf_delwri_submit_buffers(
2001 struct list_head *buffer_list,
2002 struct list_head *wait_list)
2004 struct xfs_buf *bp, *n;
2005 int pinned = 0;
2006 struct blk_plug plug;
2008 list_sort(NULL, buffer_list, xfs_buf_cmp);
2010 blk_start_plug(&plug);
2011 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2012 if (!wait_list) {
2013 if (xfs_buf_ispinned(bp)) {
2014 pinned++;
2015 continue;
2017 if (!xfs_buf_trylock(bp))
2018 continue;
2019 } else {
2020 xfs_buf_lock(bp);
2024 * Someone else might have written the buffer synchronously or
2025 * marked it stale in the meantime. In that case only the
2026 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2027 * reference and remove it from the list here.
2029 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2030 list_del_init(&bp->b_list);
2031 xfs_buf_relse(bp);
2032 continue;
2035 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2038 * If we have a wait list, each buffer (and associated delwri
2039 * queue reference) transfers to it and is submitted
2040 * synchronously. Otherwise, drop the buffer from the delwri
2041 * queue and submit async.
2043 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2044 bp->b_flags |= XBF_WRITE;
2045 if (wait_list) {
2046 bp->b_flags &= ~XBF_ASYNC;
2047 list_move_tail(&bp->b_list, wait_list);
2048 } else {
2049 bp->b_flags |= XBF_ASYNC;
2050 list_del_init(&bp->b_list);
2052 __xfs_buf_submit(bp, false);
2054 blk_finish_plug(&plug);
2056 return pinned;
2060 * Write out a buffer list asynchronously.
2062 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2063 * out and not wait for I/O completion on any of the buffers. This interface
2064 * is only safely useable for callers that can track I/O completion by higher
2065 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2066 * function.
2068 * Note: this function will skip buffers it would block on, and in doing so
2069 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2070 * it is up to the caller to ensure that the buffer list is fully submitted or
2071 * cancelled appropriately when they are finished with the list. Failure to
2072 * cancel or resubmit the list until it is empty will result in leaked buffers
2073 * at unmount time.
2076 xfs_buf_delwri_submit_nowait(
2077 struct list_head *buffer_list)
2079 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2083 * Write out a buffer list synchronously.
2085 * This will take the @buffer_list, write all buffers out and wait for I/O
2086 * completion on all of the buffers. @buffer_list is consumed by the function,
2087 * so callers must have some other way of tracking buffers if they require such
2088 * functionality.
2091 xfs_buf_delwri_submit(
2092 struct list_head *buffer_list)
2094 LIST_HEAD (wait_list);
2095 int error = 0, error2;
2096 struct xfs_buf *bp;
2098 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2100 /* Wait for IO to complete. */
2101 while (!list_empty(&wait_list)) {
2102 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2104 list_del_init(&bp->b_list);
2107 * Wait on the locked buffer, check for errors and unlock and
2108 * release the delwri queue reference.
2110 error2 = xfs_buf_iowait(bp);
2111 xfs_buf_relse(bp);
2112 if (!error)
2113 error = error2;
2116 return error;
2120 * Push a single buffer on a delwri queue.
2122 * The purpose of this function is to submit a single buffer of a delwri queue
2123 * and return with the buffer still on the original queue. The waiting delwri
2124 * buffer submission infrastructure guarantees transfer of the delwri queue
2125 * buffer reference to a temporary wait list. We reuse this infrastructure to
2126 * transfer the buffer back to the original queue.
2128 * Note the buffer transitions from the queued state, to the submitted and wait
2129 * listed state and back to the queued state during this call. The buffer
2130 * locking and queue management logic between _delwri_pushbuf() and
2131 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2132 * before returning.
2135 xfs_buf_delwri_pushbuf(
2136 struct xfs_buf *bp,
2137 struct list_head *buffer_list)
2139 LIST_HEAD (submit_list);
2140 int error;
2142 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2144 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2147 * Isolate the buffer to a new local list so we can submit it for I/O
2148 * independently from the rest of the original list.
2150 xfs_buf_lock(bp);
2151 list_move(&bp->b_list, &submit_list);
2152 xfs_buf_unlock(bp);
2155 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2156 * the buffer on the wait list with the original reference. Rather than
2157 * bounce the buffer from a local wait list back to the original list
2158 * after I/O completion, reuse the original list as the wait list.
2160 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2163 * The buffer is now locked, under I/O and wait listed on the original
2164 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2165 * return with the buffer unlocked and on the original queue.
2167 error = xfs_buf_iowait(bp);
2168 bp->b_flags |= _XBF_DELWRI_Q;
2169 xfs_buf_unlock(bp);
2171 return error;
2174 int __init
2175 xfs_buf_init(void)
2177 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2178 KM_ZONE_HWALIGN, NULL);
2179 if (!xfs_buf_zone)
2180 goto out;
2182 return 0;
2184 out:
2185 return -ENOMEM;
2188 void
2189 xfs_buf_terminate(void)
2191 kmem_zone_destroy(xfs_buf_zone);
2194 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2197 * Set the lru reference count to 0 based on the error injection tag.
2198 * This allows userspace to disrupt buffer caching for debug/testing
2199 * purposes.
2201 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2202 XFS_ERRTAG_BUF_LRU_REF))
2203 lru_ref = 0;
2205 atomic_set(&bp->b_lru_ref, lru_ref);
2209 * Verify an on-disk magic value against the magic value specified in the
2210 * verifier structure. The verifier magic is in disk byte order so the caller is
2211 * expected to pass the value directly from disk.
2213 bool
2214 xfs_verify_magic(
2215 struct xfs_buf *bp,
2216 __be32 dmagic)
2218 struct xfs_mount *mp = bp->b_target->bt_mount;
2219 int idx;
2221 idx = xfs_sb_version_hascrc(&mp->m_sb);
2222 if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])))
2223 return false;
2224 return dmagic == bp->b_ops->magic[idx];
2227 * Verify an on-disk magic value against the magic value specified in the
2228 * verifier structure. The verifier magic is in disk byte order so the caller is
2229 * expected to pass the value directly from disk.
2231 bool
2232 xfs_verify_magic16(
2233 struct xfs_buf *bp,
2234 __be16 dmagic)
2236 struct xfs_mount *mp = bp->b_target->bt_mount;
2237 int idx;
2239 idx = xfs_sb_version_hascrc(&mp->m_sb);
2240 if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])))
2241 return false;
2242 return dmagic == bp->b_ops->magic16[idx];