1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
35 static kmem_zone_t
*xfs_buf_zone
;
37 #define xb_to_gfp(flags) \
38 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
45 * b_sema (caller holds)
49 * b_sema (caller holds)
58 * xfs_buftarg_wait_rele
60 * b_lock (trylock due to inversion)
64 * b_lock (trylock due to inversion)
72 * Return true if the buffer is vmapped.
74 * b_addr is null if the buffer is not mapped, but the code is clever
75 * enough to know it doesn't have to map a single page, so the check has
76 * to be both for b_addr and bp->b_page_count > 1.
78 return bp
->b_addr
&& bp
->b_page_count
> 1;
85 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
89 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90 * this buffer. The count is incremented once per buffer (per hold cycle)
91 * because the corresponding decrement is deferred to buffer release. Buffers
92 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93 * tracking adds unnecessary overhead. This is used for sychronization purposes
94 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
97 * Buffers that are never released (e.g., superblock, iclog buffers) must set
98 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99 * never reaches zero and unmount hangs indefinitely.
105 if (bp
->b_flags
& XBF_NO_IOACCT
)
108 ASSERT(bp
->b_flags
& XBF_ASYNC
);
109 spin_lock(&bp
->b_lock
);
110 if (!(bp
->b_state
& XFS_BSTATE_IN_FLIGHT
)) {
111 bp
->b_state
|= XFS_BSTATE_IN_FLIGHT
;
112 percpu_counter_inc(&bp
->b_target
->bt_io_count
);
114 spin_unlock(&bp
->b_lock
);
118 * Clear the in-flight state on a buffer about to be released to the LRU or
119 * freed and unaccount from the buftarg.
122 __xfs_buf_ioacct_dec(
125 lockdep_assert_held(&bp
->b_lock
);
127 if (bp
->b_state
& XFS_BSTATE_IN_FLIGHT
) {
128 bp
->b_state
&= ~XFS_BSTATE_IN_FLIGHT
;
129 percpu_counter_dec(&bp
->b_target
->bt_io_count
);
137 spin_lock(&bp
->b_lock
);
138 __xfs_buf_ioacct_dec(bp
);
139 spin_unlock(&bp
->b_lock
);
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
148 * This prevents build-up of stale buffers on the LRU.
154 ASSERT(xfs_buf_islocked(bp
));
156 bp
->b_flags
|= XBF_STALE
;
159 * Clear the delwri status so that a delwri queue walker will not
160 * flush this buffer to disk now that it is stale. The delwri queue has
161 * a reference to the buffer, so this is safe to do.
163 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
166 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 * could reset b_flags. There is no guarantee that the buffer is
168 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 * status now to preserve accounting consistency.
171 spin_lock(&bp
->b_lock
);
172 __xfs_buf_ioacct_dec(bp
);
174 atomic_set(&bp
->b_lru_ref
, 0);
175 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
176 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
177 atomic_dec(&bp
->b_hold
);
179 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
180 spin_unlock(&bp
->b_lock
);
188 ASSERT(bp
->b_maps
== NULL
);
189 bp
->b_map_count
= map_count
;
191 if (map_count
== 1) {
192 bp
->b_maps
= &bp
->__b_map
;
196 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
204 * Frees b_pages if it was allocated.
210 if (bp
->b_maps
!= &bp
->__b_map
) {
211 kmem_free(bp
->b_maps
);
218 struct xfs_buftarg
*target
,
219 struct xfs_buf_map
*map
,
221 xfs_buf_flags_t flags
)
227 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
232 * We don't want certain flags to appear in b_flags unless they are
233 * specifically set by later operations on the buffer.
235 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
237 atomic_set(&bp
->b_hold
, 1);
238 atomic_set(&bp
->b_lru_ref
, 1);
239 init_completion(&bp
->b_iowait
);
240 INIT_LIST_HEAD(&bp
->b_lru
);
241 INIT_LIST_HEAD(&bp
->b_list
);
242 INIT_LIST_HEAD(&bp
->b_li_list
);
243 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
244 spin_lock_init(&bp
->b_lock
);
245 bp
->b_target
= target
;
249 * Set length and io_length to the same value initially.
250 * I/O routines should use io_length, which will be the same in
251 * most cases but may be reset (e.g. XFS recovery).
253 error
= xfs_buf_get_maps(bp
, nmaps
);
255 kmem_zone_free(xfs_buf_zone
, bp
);
259 bp
->b_bn
= map
[0].bm_bn
;
261 for (i
= 0; i
< nmaps
; i
++) {
262 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
263 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
264 bp
->b_length
+= map
[i
].bm_len
;
266 bp
->b_io_length
= bp
->b_length
;
268 atomic_set(&bp
->b_pin_count
, 0);
269 init_waitqueue_head(&bp
->b_waiters
);
271 XFS_STATS_INC(target
->bt_mount
, xb_create
);
272 trace_xfs_buf_init(bp
, _RET_IP_
);
278 * Allocate a page array capable of holding a specified number
279 * of pages, and point the page buf at it.
286 /* Make sure that we have a page list */
287 if (bp
->b_pages
== NULL
) {
288 bp
->b_page_count
= page_count
;
289 if (page_count
<= XB_PAGES
) {
290 bp
->b_pages
= bp
->b_page_array
;
292 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
293 page_count
, KM_NOFS
);
294 if (bp
->b_pages
== NULL
)
297 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
303 * Frees b_pages if it was allocated.
309 if (bp
->b_pages
!= bp
->b_page_array
) {
310 kmem_free(bp
->b_pages
);
316 * Releases the specified buffer.
318 * The modification state of any associated pages is left unchanged.
319 * The buffer must not be on any hash - use xfs_buf_rele instead for
320 * hashed and refcounted buffers
326 trace_xfs_buf_free(bp
, _RET_IP_
);
328 ASSERT(list_empty(&bp
->b_lru
));
330 if (bp
->b_flags
& _XBF_PAGES
) {
333 if (xfs_buf_is_vmapped(bp
))
334 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
337 for (i
= 0; i
< bp
->b_page_count
; i
++) {
338 struct page
*page
= bp
->b_pages
[i
];
342 } else if (bp
->b_flags
& _XBF_KMEM
)
343 kmem_free(bp
->b_addr
);
344 _xfs_buf_free_pages(bp
);
345 xfs_buf_free_maps(bp
);
346 kmem_zone_free(xfs_buf_zone
, bp
);
350 * Allocates all the pages for buffer in question and builds it's page list.
353 xfs_buf_allocate_memory(
358 size_t nbytes
, offset
;
359 gfp_t gfp_mask
= xb_to_gfp(flags
);
360 unsigned short page_count
, i
;
361 xfs_off_t start
, end
;
365 * for buffers that are contained within a single page, just allocate
366 * the memory from the heap - there's no need for the complexity of
367 * page arrays to keep allocation down to order 0.
369 size
= BBTOB(bp
->b_length
);
370 if (size
< PAGE_SIZE
) {
371 bp
->b_addr
= kmem_alloc(size
, KM_NOFS
);
373 /* low memory - use alloc_page loop instead */
377 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
378 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
379 /* b_addr spans two pages - use alloc_page instead */
380 kmem_free(bp
->b_addr
);
384 bp
->b_offset
= offset_in_page(bp
->b_addr
);
385 bp
->b_pages
= bp
->b_page_array
;
386 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
387 bp
->b_page_count
= 1;
388 bp
->b_flags
|= _XBF_KMEM
;
393 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
394 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
396 page_count
= end
- start
;
397 error
= _xfs_buf_get_pages(bp
, page_count
);
401 offset
= bp
->b_offset
;
402 bp
->b_flags
|= _XBF_PAGES
;
404 for (i
= 0; i
< bp
->b_page_count
; i
++) {
408 page
= alloc_page(gfp_mask
);
409 if (unlikely(page
== NULL
)) {
410 if (flags
& XBF_READ_AHEAD
) {
411 bp
->b_page_count
= i
;
417 * This could deadlock.
419 * But until all the XFS lowlevel code is revamped to
420 * handle buffer allocation failures we can't do much.
422 if (!(++retries
% 100))
424 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 current
->comm
, current
->pid
,
428 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_retries
);
429 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
433 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_found
);
435 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
437 bp
->b_pages
[i
] = page
;
443 for (i
= 0; i
< bp
->b_page_count
; i
++)
444 __free_page(bp
->b_pages
[i
]);
445 bp
->b_flags
&= ~_XBF_PAGES
;
450 * Map buffer into kernel address-space if necessary.
457 ASSERT(bp
->b_flags
& _XBF_PAGES
);
458 if (bp
->b_page_count
== 1) {
459 /* A single page buffer is always mappable */
460 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
461 } else if (flags
& XBF_UNMAPPED
) {
468 * vm_map_ram() will allocate auxillary structures (e.g.
469 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 * GFP_NOFS context here. Hence we need to tell memory reclaim
471 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
472 * memory reclaim re-entering the filesystem here and
473 * potentially deadlocking.
475 nofs_flag
= memalloc_nofs_save();
477 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
482 } while (retried
++ <= 1);
483 memalloc_nofs_restore(nofs_flag
);
487 bp
->b_addr
+= bp
->b_offset
;
494 * Finding and Reading Buffers
498 struct rhashtable_compare_arg
*arg
,
501 const struct xfs_buf_map
*map
= arg
->key
;
502 const struct xfs_buf
*bp
= obj
;
505 * The key hashing in the lookup path depends on the key being the
506 * first element of the compare_arg, make sure to assert this.
508 BUILD_BUG_ON(offsetof(struct xfs_buf_map
, bm_bn
) != 0);
510 if (bp
->b_bn
!= map
->bm_bn
)
513 if (unlikely(bp
->b_length
!= map
->bm_len
)) {
515 * found a block number match. If the range doesn't
516 * match, the only way this is allowed is if the buffer
517 * in the cache is stale and the transaction that made
518 * it stale has not yet committed. i.e. we are
519 * reallocating a busy extent. Skip this buffer and
520 * continue searching for an exact match.
522 ASSERT(bp
->b_flags
& XBF_STALE
);
528 static const struct rhashtable_params xfs_buf_hash_params
= {
529 .min_size
= 32, /* empty AGs have minimal footprint */
531 .key_len
= sizeof(xfs_daddr_t
),
532 .key_offset
= offsetof(struct xfs_buf
, b_bn
),
533 .head_offset
= offsetof(struct xfs_buf
, b_rhash_head
),
534 .automatic_shrinking
= true,
535 .obj_cmpfn
= _xfs_buf_obj_cmp
,
540 struct xfs_perag
*pag
)
542 spin_lock_init(&pag
->pag_buf_lock
);
543 return rhashtable_init(&pag
->pag_buf_hash
, &xfs_buf_hash_params
);
547 xfs_buf_hash_destroy(
548 struct xfs_perag
*pag
)
550 rhashtable_destroy(&pag
->pag_buf_hash
);
554 * Look up a buffer in the buffer cache and return it referenced and locked
557 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
560 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561 * -EAGAIN if we fail to lock it.
564 * -EFSCORRUPTED if have been supplied with an invalid address
565 * -EAGAIN on trylock failure
566 * -ENOENT if we fail to find a match and @new_bp was NULL
568 * - @new_bp if we inserted it into the cache
569 * - the buffer we found and locked.
573 struct xfs_buftarg
*btp
,
574 struct xfs_buf_map
*map
,
576 xfs_buf_flags_t flags
,
577 struct xfs_buf
*new_bp
,
578 struct xfs_buf
**found_bp
)
580 struct xfs_perag
*pag
;
582 struct xfs_buf_map cmap
= { .bm_bn
= map
[0].bm_bn
};
588 for (i
= 0; i
< nmaps
; i
++)
589 cmap
.bm_len
+= map
[i
].bm_len
;
591 /* Check for IOs smaller than the sector size / not sector aligned */
592 ASSERT(!(BBTOB(cmap
.bm_len
) < btp
->bt_meta_sectorsize
));
593 ASSERT(!(BBTOB(cmap
.bm_bn
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
596 * Corrupted block numbers can get through to here, unfortunately, so we
597 * have to check that the buffer falls within the filesystem bounds.
599 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
600 if (cmap
.bm_bn
< 0 || cmap
.bm_bn
>= eofs
) {
601 xfs_alert(btp
->bt_mount
,
602 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
603 __func__
, cmap
.bm_bn
, eofs
);
605 return -EFSCORRUPTED
;
608 pag
= xfs_perag_get(btp
->bt_mount
,
609 xfs_daddr_to_agno(btp
->bt_mount
, cmap
.bm_bn
));
611 spin_lock(&pag
->pag_buf_lock
);
612 bp
= rhashtable_lookup_fast(&pag
->pag_buf_hash
, &cmap
,
613 xfs_buf_hash_params
);
615 atomic_inc(&bp
->b_hold
);
621 XFS_STATS_INC(btp
->bt_mount
, xb_miss_locked
);
622 spin_unlock(&pag
->pag_buf_lock
);
627 /* the buffer keeps the perag reference until it is freed */
629 rhashtable_insert_fast(&pag
->pag_buf_hash
, &new_bp
->b_rhash_head
,
630 xfs_buf_hash_params
);
631 spin_unlock(&pag
->pag_buf_lock
);
636 spin_unlock(&pag
->pag_buf_lock
);
639 if (!xfs_buf_trylock(bp
)) {
640 if (flags
& XBF_TRYLOCK
) {
642 XFS_STATS_INC(btp
->bt_mount
, xb_busy_locked
);
646 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked_waited
);
650 * if the buffer is stale, clear all the external state associated with
651 * it. We need to keep flags such as how we allocated the buffer memory
654 if (bp
->b_flags
& XBF_STALE
) {
655 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
656 ASSERT(bp
->b_iodone
== NULL
);
657 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
661 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
662 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked
);
669 struct xfs_buftarg
*target
,
672 xfs_buf_flags_t flags
)
676 DEFINE_SINGLE_BUF_MAP(map
, blkno
, numblks
);
678 error
= xfs_buf_find(target
, &map
, 1, flags
, NULL
, &bp
);
685 * Assembles a buffer covering the specified range. The code is optimised for
686 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687 * more hits than misses.
691 struct xfs_buftarg
*target
,
692 struct xfs_buf_map
*map
,
694 xfs_buf_flags_t flags
)
697 struct xfs_buf
*new_bp
;
700 error
= xfs_buf_find(target
, map
, nmaps
, flags
, NULL
, &bp
);
707 /* cache hit, trylock failure, caller handles failure */
708 ASSERT(flags
& XBF_TRYLOCK
);
711 /* cache miss, go for insert */
716 * None of the higher layers understand failure types
717 * yet, so return NULL to signal a fatal lookup error.
722 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
723 if (unlikely(!new_bp
))
726 error
= xfs_buf_allocate_memory(new_bp
, flags
);
728 xfs_buf_free(new_bp
);
732 error
= xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
, &bp
);
734 xfs_buf_free(new_bp
);
739 xfs_buf_free(new_bp
);
743 error
= _xfs_buf_map_pages(bp
, flags
);
744 if (unlikely(error
)) {
745 xfs_warn(target
->bt_mount
,
746 "%s: failed to map pagesn", __func__
);
753 * Clear b_error if this is a lookup from a caller that doesn't expect
754 * valid data to be found in the buffer.
756 if (!(flags
& XBF_READ
))
757 xfs_buf_ioerror(bp
, 0);
759 XFS_STATS_INC(target
->bt_mount
, xb_get
);
760 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
767 xfs_buf_flags_t flags
)
769 ASSERT(!(flags
& XBF_WRITE
));
770 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
772 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
773 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
775 return xfs_buf_submit(bp
);
779 * Reverify a buffer found in cache without an attached ->b_ops.
781 * If the caller passed an ops structure and the buffer doesn't have ops
782 * assigned, set the ops and use it to verify the contents. If verification
783 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
784 * already in XBF_DONE state on entry.
786 * Under normal operations, every in-core buffer is verified on read I/O
787 * completion. There are two scenarios that can lead to in-core buffers without
788 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
789 * filesystem, though these buffers are purged at the end of recovery. The
790 * other is online repair, which intentionally reads with a NULL buffer ops to
791 * run several verifiers across an in-core buffer in order to establish buffer
792 * type. If repair can't establish that, the buffer will be left in memory
793 * with NULL buffer ops.
798 const struct xfs_buf_ops
*ops
)
800 ASSERT(bp
->b_flags
& XBF_DONE
);
801 ASSERT(bp
->b_error
== 0);
803 if (!ops
|| bp
->b_ops
)
807 bp
->b_ops
->verify_read(bp
);
809 bp
->b_flags
&= ~XBF_DONE
;
815 struct xfs_buftarg
*target
,
816 struct xfs_buf_map
*map
,
818 xfs_buf_flags_t flags
,
819 const struct xfs_buf_ops
*ops
)
825 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
829 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
831 if (!(bp
->b_flags
& XBF_DONE
)) {
832 XFS_STATS_INC(target
->bt_mount
, xb_get_read
);
834 _xfs_buf_read(bp
, flags
);
838 xfs_buf_reverify(bp
, ops
);
840 if (flags
& XBF_ASYNC
) {
842 * Read ahead call which is already satisfied,
849 /* We do not want read in the flags */
850 bp
->b_flags
&= ~XBF_READ
;
851 ASSERT(bp
->b_ops
!= NULL
|| ops
== NULL
);
856 * If we are not low on memory then do the readahead in a deadlock
860 xfs_buf_readahead_map(
861 struct xfs_buftarg
*target
,
862 struct xfs_buf_map
*map
,
864 const struct xfs_buf_ops
*ops
)
866 if (bdi_read_congested(target
->bt_bdev
->bd_bdi
))
869 xfs_buf_read_map(target
, map
, nmaps
,
870 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
, ops
);
874 * Read an uncached buffer from disk. Allocates and returns a locked
875 * buffer containing the disk contents or nothing.
878 xfs_buf_read_uncached(
879 struct xfs_buftarg
*target
,
883 struct xfs_buf
**bpp
,
884 const struct xfs_buf_ops
*ops
)
890 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
894 /* set up the buffer for a read IO */
895 ASSERT(bp
->b_map_count
== 1);
896 bp
->b_bn
= XFS_BUF_DADDR_NULL
; /* always null for uncached buffers */
897 bp
->b_maps
[0].bm_bn
= daddr
;
898 bp
->b_flags
|= XBF_READ
;
903 int error
= bp
->b_error
;
913 * Return a buffer allocated as an empty buffer and associated to external
914 * memory via xfs_buf_associate_memory() back to it's empty state.
922 _xfs_buf_free_pages(bp
);
925 bp
->b_page_count
= 0;
927 bp
->b_length
= numblks
;
928 bp
->b_io_length
= numblks
;
930 ASSERT(bp
->b_map_count
== 1);
931 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
932 bp
->b_maps
[0].bm_bn
= XFS_BUF_DADDR_NULL
;
933 bp
->b_maps
[0].bm_len
= bp
->b_length
;
936 static inline struct page
*
940 if ((!is_vmalloc_addr(addr
))) {
941 return virt_to_page(addr
);
943 return vmalloc_to_page(addr
);
948 xfs_buf_associate_memory(
955 unsigned long pageaddr
;
956 unsigned long offset
;
960 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
961 offset
= (unsigned long)mem
- pageaddr
;
962 buflen
= PAGE_ALIGN(len
+ offset
);
963 page_count
= buflen
>> PAGE_SHIFT
;
965 /* Free any previous set of page pointers */
967 _xfs_buf_free_pages(bp
);
972 rval
= _xfs_buf_get_pages(bp
, page_count
);
976 bp
->b_offset
= offset
;
978 for (i
= 0; i
< bp
->b_page_count
; i
++) {
979 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
980 pageaddr
+= PAGE_SIZE
;
983 bp
->b_io_length
= BTOBB(len
);
984 bp
->b_length
= BTOBB(buflen
);
990 xfs_buf_get_uncached(
991 struct xfs_buftarg
*target
,
995 unsigned long page_count
;
998 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
1000 /* flags might contain irrelevant bits, pass only what we care about */
1001 bp
= _xfs_buf_alloc(target
, &map
, 1, flags
& XBF_NO_IOACCT
);
1002 if (unlikely(bp
== NULL
))
1005 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
1006 error
= _xfs_buf_get_pages(bp
, page_count
);
1010 for (i
= 0; i
< page_count
; i
++) {
1011 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
1012 if (!bp
->b_pages
[i
])
1015 bp
->b_flags
|= _XBF_PAGES
;
1017 error
= _xfs_buf_map_pages(bp
, 0);
1018 if (unlikely(error
)) {
1019 xfs_warn(target
->bt_mount
,
1020 "%s: failed to map pages", __func__
);
1024 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
1029 __free_page(bp
->b_pages
[i
]);
1030 _xfs_buf_free_pages(bp
);
1032 xfs_buf_free_maps(bp
);
1033 kmem_zone_free(xfs_buf_zone
, bp
);
1039 * Increment reference count on buffer, to hold the buffer concurrently
1040 * with another thread which may release (free) the buffer asynchronously.
1041 * Must hold the buffer already to call this function.
1047 trace_xfs_buf_hold(bp
, _RET_IP_
);
1048 atomic_inc(&bp
->b_hold
);
1052 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1053 * placed on LRU or freed (depending on b_lru_ref).
1059 struct xfs_perag
*pag
= bp
->b_pag
;
1061 bool freebuf
= false;
1063 trace_xfs_buf_rele(bp
, _RET_IP_
);
1066 ASSERT(list_empty(&bp
->b_lru
));
1067 if (atomic_dec_and_test(&bp
->b_hold
)) {
1068 xfs_buf_ioacct_dec(bp
);
1074 ASSERT(atomic_read(&bp
->b_hold
) > 0);
1077 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1078 * calls. The pag_buf_lock being taken on the last reference only
1079 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1080 * to last reference we drop here is not serialised against the last
1081 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1082 * first, the last "release" reference can win the race to the lock and
1083 * free the buffer before the second-to-last reference is processed,
1084 * leading to a use-after-free scenario.
1086 spin_lock(&bp
->b_lock
);
1087 release
= atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
);
1090 * Drop the in-flight state if the buffer is already on the LRU
1091 * and it holds the only reference. This is racy because we
1092 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1093 * ensures the decrement occurs only once per-buf.
1095 if ((atomic_read(&bp
->b_hold
) == 1) && !list_empty(&bp
->b_lru
))
1096 __xfs_buf_ioacct_dec(bp
);
1100 /* the last reference has been dropped ... */
1101 __xfs_buf_ioacct_dec(bp
);
1102 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
1104 * If the buffer is added to the LRU take a new reference to the
1105 * buffer for the LRU and clear the (now stale) dispose list
1108 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
1109 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
1110 atomic_inc(&bp
->b_hold
);
1112 spin_unlock(&pag
->pag_buf_lock
);
1115 * most of the time buffers will already be removed from the
1116 * LRU, so optimise that case by checking for the
1117 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1118 * was on was the disposal list
1120 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
1121 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
1123 ASSERT(list_empty(&bp
->b_lru
));
1126 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1127 rhashtable_remove_fast(&pag
->pag_buf_hash
, &bp
->b_rhash_head
,
1128 xfs_buf_hash_params
);
1129 spin_unlock(&pag
->pag_buf_lock
);
1135 spin_unlock(&bp
->b_lock
);
1143 * Lock a buffer object, if it is not already locked.
1145 * If we come across a stale, pinned, locked buffer, we know that we are
1146 * being asked to lock a buffer that has been reallocated. Because it is
1147 * pinned, we know that the log has not been pushed to disk and hence it
1148 * will still be locked. Rather than continuing to have trylock attempts
1149 * fail until someone else pushes the log, push it ourselves before
1150 * returning. This means that the xfsaild will not get stuck trying
1151 * to push on stale inode buffers.
1159 locked
= down_trylock(&bp
->b_sema
) == 0;
1161 trace_xfs_buf_trylock(bp
, _RET_IP_
);
1163 trace_xfs_buf_trylock_fail(bp
, _RET_IP_
);
1168 * Lock a buffer object.
1170 * If we come across a stale, pinned, locked buffer, we know that we
1171 * are being asked to lock a buffer that has been reallocated. Because
1172 * it is pinned, we know that the log has not been pushed to disk and
1173 * hence it will still be locked. Rather than sleeping until someone
1174 * else pushes the log, push it ourselves before trying to get the lock.
1180 trace_xfs_buf_lock(bp
, _RET_IP_
);
1182 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
1183 xfs_log_force(bp
->b_target
->bt_mount
, 0);
1186 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1193 ASSERT(xfs_buf_islocked(bp
));
1196 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1203 DECLARE_WAITQUEUE (wait
, current
);
1205 if (atomic_read(&bp
->b_pin_count
) == 0)
1208 add_wait_queue(&bp
->b_waiters
, &wait
);
1210 set_current_state(TASK_UNINTERRUPTIBLE
);
1211 if (atomic_read(&bp
->b_pin_count
) == 0)
1215 remove_wait_queue(&bp
->b_waiters
, &wait
);
1216 set_current_state(TASK_RUNNING
);
1220 * Buffer Utility Routines
1227 bool read
= bp
->b_flags
& XBF_READ
;
1229 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1231 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1234 * Pull in IO completion errors now. We are guaranteed to be running
1235 * single threaded, so we don't need the lock to read b_io_error.
1237 if (!bp
->b_error
&& bp
->b_io_error
)
1238 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1240 /* Only validate buffers that were read without errors */
1241 if (read
&& !bp
->b_error
&& bp
->b_ops
) {
1242 ASSERT(!bp
->b_iodone
);
1243 bp
->b_ops
->verify_read(bp
);
1247 bp
->b_flags
|= XBF_DONE
;
1250 (*(bp
->b_iodone
))(bp
);
1251 else if (bp
->b_flags
& XBF_ASYNC
)
1254 complete(&bp
->b_iowait
);
1259 struct work_struct
*work
)
1261 struct xfs_buf
*bp
=
1262 container_of(work
, xfs_buf_t
, b_ioend_work
);
1268 xfs_buf_ioend_async(
1271 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1272 queue_work(bp
->b_ioend_wq
, &bp
->b_ioend_work
);
1279 xfs_failaddr_t failaddr
)
1281 ASSERT(error
<= 0 && error
>= -1000);
1282 bp
->b_error
= error
;
1283 trace_xfs_buf_ioerror(bp
, error
, failaddr
);
1287 xfs_buf_ioerror_alert(
1291 xfs_alert(bp
->b_target
->bt_mount
,
1292 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1293 func
, (uint64_t)XFS_BUF_ADDR(bp
), bp
->b_length
,
1303 ASSERT(xfs_buf_islocked(bp
));
1305 bp
->b_flags
|= XBF_WRITE
;
1306 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1307 XBF_WRITE_FAIL
| XBF_DONE
);
1309 error
= xfs_buf_submit(bp
);
1311 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1312 SHUTDOWN_META_IO_ERROR
);
1321 struct xfs_buf
*bp
= (struct xfs_buf
*)bio
->bi_private
;
1324 * don't overwrite existing errors - otherwise we can lose errors on
1325 * buffers that require multiple bios to complete.
1327 if (bio
->bi_status
) {
1328 int error
= blk_status_to_errno(bio
->bi_status
);
1330 cmpxchg(&bp
->b_io_error
, 0, error
);
1333 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1334 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1336 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1337 xfs_buf_ioend_async(bp
);
1342 xfs_buf_ioapply_map(
1351 int total_nr_pages
= bp
->b_page_count
;
1354 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1358 /* skip the pages in the buffer before the start offset */
1360 offset
= *buf_offset
;
1361 while (offset
>= PAGE_SIZE
) {
1363 offset
-= PAGE_SIZE
;
1367 * Limit the IO size to the length of the current vector, and update the
1368 * remaining IO count for the next time around.
1370 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1372 *buf_offset
+= size
;
1375 atomic_inc(&bp
->b_io_remaining
);
1376 nr_pages
= min(total_nr_pages
, BIO_MAX_PAGES
);
1378 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1379 bio_set_dev(bio
, bp
->b_target
->bt_bdev
);
1380 bio
->bi_iter
.bi_sector
= sector
;
1381 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1382 bio
->bi_private
= bp
;
1383 bio_set_op_attrs(bio
, op
, op_flags
);
1385 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1386 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1391 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1393 if (rbytes
< nbytes
)
1397 sector
+= BTOBB(nbytes
);
1402 if (likely(bio
->bi_iter
.bi_size
)) {
1403 if (xfs_buf_is_vmapped(bp
)) {
1404 flush_kernel_vmap_range(bp
->b_addr
,
1405 xfs_buf_vmap_len(bp
));
1412 * This is guaranteed not to be the last io reference count
1413 * because the caller (xfs_buf_submit) holds a count itself.
1415 atomic_dec(&bp
->b_io_remaining
);
1416 xfs_buf_ioerror(bp
, -EIO
);
1426 struct blk_plug plug
;
1434 * Make sure we capture only current IO errors rather than stale errors
1435 * left over from previous use of the buffer (e.g. failed readahead).
1440 * Initialize the I/O completion workqueue if we haven't yet or the
1441 * submitter has not opted to specify a custom one.
1443 if (!bp
->b_ioend_wq
)
1444 bp
->b_ioend_wq
= bp
->b_target
->bt_mount
->m_buf_workqueue
;
1446 if (bp
->b_flags
& XBF_WRITE
) {
1448 if (bp
->b_flags
& XBF_SYNCIO
)
1449 op_flags
= REQ_SYNC
;
1450 if (bp
->b_flags
& XBF_FUA
)
1451 op_flags
|= REQ_FUA
;
1452 if (bp
->b_flags
& XBF_FLUSH
)
1453 op_flags
|= REQ_PREFLUSH
;
1456 * Run the write verifier callback function if it exists. If
1457 * this function fails it will mark the buffer with an error and
1458 * the IO should not be dispatched.
1461 bp
->b_ops
->verify_write(bp
);
1463 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1464 SHUTDOWN_CORRUPT_INCORE
);
1467 } else if (bp
->b_bn
!= XFS_BUF_DADDR_NULL
) {
1468 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
1471 * non-crc filesystems don't attach verifiers during
1472 * log recovery, so don't warn for such filesystems.
1474 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
1476 "%s: no buf ops on daddr 0x%llx len %d",
1477 __func__
, bp
->b_bn
, bp
->b_length
);
1478 xfs_hex_dump(bp
->b_addr
,
1479 XFS_CORRUPTION_DUMP_LEN
);
1483 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1485 op_flags
= REQ_RAHEAD
;
1490 /* we only use the buffer cache for meta-data */
1491 op_flags
|= REQ_META
;
1494 * Walk all the vectors issuing IO on them. Set up the initial offset
1495 * into the buffer and the desired IO size before we start -
1496 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1499 offset
= bp
->b_offset
;
1500 size
= BBTOB(bp
->b_io_length
);
1501 blk_start_plug(&plug
);
1502 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1503 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, op
, op_flags
);
1507 break; /* all done */
1509 blk_finish_plug(&plug
);
1513 * Wait for I/O completion of a sync buffer and return the I/O error code.
1519 ASSERT(!(bp
->b_flags
& XBF_ASYNC
));
1521 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1522 wait_for_completion(&bp
->b_iowait
);
1523 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1529 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1530 * the buffer lock ownership and the current reference to the IO. It is not
1531 * safe to reference the buffer after a call to this function unless the caller
1532 * holds an additional reference itself.
1541 trace_xfs_buf_submit(bp
, _RET_IP_
);
1543 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1545 /* on shutdown we stale and complete the buffer immediately */
1546 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1547 xfs_buf_ioerror(bp
, -EIO
);
1548 bp
->b_flags
&= ~XBF_DONE
;
1555 * Grab a reference so the buffer does not go away underneath us. For
1556 * async buffers, I/O completion drops the callers reference, which
1557 * could occur before submission returns.
1561 if (bp
->b_flags
& XBF_WRITE
)
1562 xfs_buf_wait_unpin(bp
);
1564 /* clear the internal error state to avoid spurious errors */
1568 * Set the count to 1 initially, this will stop an I/O completion
1569 * callout which happens before we have started all the I/O from calling
1570 * xfs_buf_ioend too early.
1572 atomic_set(&bp
->b_io_remaining
, 1);
1573 if (bp
->b_flags
& XBF_ASYNC
)
1574 xfs_buf_ioacct_inc(bp
);
1575 _xfs_buf_ioapply(bp
);
1578 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1579 * reference we took above. If we drop it to zero, run completion so
1580 * that we don't return to the caller with completion still pending.
1582 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1583 if (bp
->b_error
|| !(bp
->b_flags
& XBF_ASYNC
))
1586 xfs_buf_ioend_async(bp
);
1590 error
= xfs_buf_iowait(bp
);
1593 * Release the hold that keeps the buffer referenced for the entire
1594 * I/O. Note that if the buffer is async, it is not safe to reference
1595 * after this release.
1609 return bp
->b_addr
+ offset
;
1611 offset
+= bp
->b_offset
;
1612 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1613 return page_address(page
) + (offset
& (PAGE_SIZE
-1));
1617 * Move data into or out of a buffer.
1621 xfs_buf_t
*bp
, /* buffer to process */
1622 size_t boff
, /* starting buffer offset */
1623 size_t bsize
, /* length to copy */
1624 void *data
, /* data address */
1625 xfs_buf_rw_t mode
) /* read/write/zero flag */
1629 bend
= boff
+ bsize
;
1630 while (boff
< bend
) {
1632 int page_index
, page_offset
, csize
;
1634 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1635 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1636 page
= bp
->b_pages
[page_index
];
1637 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1638 BBTOB(bp
->b_io_length
) - boff
);
1640 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1644 memset(page_address(page
) + page_offset
, 0, csize
);
1647 memcpy(data
, page_address(page
) + page_offset
, csize
);
1650 memcpy(page_address(page
) + page_offset
, data
, csize
);
1659 * Handling of buffer targets (buftargs).
1663 * Wait for any bufs with callbacks that have been submitted but have not yet
1664 * returned. These buffers will have an elevated hold count, so wait on those
1665 * while freeing all the buffers only held by the LRU.
1667 static enum lru_status
1668 xfs_buftarg_wait_rele(
1669 struct list_head
*item
,
1670 struct list_lru_one
*lru
,
1671 spinlock_t
*lru_lock
,
1675 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1676 struct list_head
*dispose
= arg
;
1678 if (atomic_read(&bp
->b_hold
) > 1) {
1679 /* need to wait, so skip it this pass */
1680 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1683 if (!spin_trylock(&bp
->b_lock
))
1687 * clear the LRU reference count so the buffer doesn't get
1688 * ignored in xfs_buf_rele().
1690 atomic_set(&bp
->b_lru_ref
, 0);
1691 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1692 list_lru_isolate_move(lru
, item
, dispose
);
1693 spin_unlock(&bp
->b_lock
);
1699 struct xfs_buftarg
*btp
)
1705 * First wait on the buftarg I/O count for all in-flight buffers to be
1706 * released. This is critical as new buffers do not make the LRU until
1707 * they are released.
1709 * Next, flush the buffer workqueue to ensure all completion processing
1710 * has finished. Just waiting on buffer locks is not sufficient for
1711 * async IO as the reference count held over IO is not released until
1712 * after the buffer lock is dropped. Hence we need to ensure here that
1713 * all reference counts have been dropped before we start walking the
1716 while (percpu_counter_sum(&btp
->bt_io_count
))
1718 flush_workqueue(btp
->bt_mount
->m_buf_workqueue
);
1720 /* loop until there is nothing left on the lru list. */
1721 while (list_lru_count(&btp
->bt_lru
)) {
1722 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1723 &dispose
, LONG_MAX
);
1725 while (!list_empty(&dispose
)) {
1727 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1728 list_del_init(&bp
->b_lru
);
1729 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1730 xfs_alert(btp
->bt_mount
,
1731 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1732 (long long)bp
->b_bn
);
1733 xfs_alert(btp
->bt_mount
,
1734 "Please run xfs_repair to determine the extent of the problem.");
1743 static enum lru_status
1744 xfs_buftarg_isolate(
1745 struct list_head
*item
,
1746 struct list_lru_one
*lru
,
1747 spinlock_t
*lru_lock
,
1750 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1751 struct list_head
*dispose
= arg
;
1754 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1755 * If we fail to get the lock, just skip it.
1757 if (!spin_trylock(&bp
->b_lock
))
1760 * Decrement the b_lru_ref count unless the value is already
1761 * zero. If the value is already zero, we need to reclaim the
1762 * buffer, otherwise it gets another trip through the LRU.
1764 if (atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1765 spin_unlock(&bp
->b_lock
);
1769 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1770 list_lru_isolate_move(lru
, item
, dispose
);
1771 spin_unlock(&bp
->b_lock
);
1775 static unsigned long
1776 xfs_buftarg_shrink_scan(
1777 struct shrinker
*shrink
,
1778 struct shrink_control
*sc
)
1780 struct xfs_buftarg
*btp
= container_of(shrink
,
1781 struct xfs_buftarg
, bt_shrinker
);
1783 unsigned long freed
;
1785 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1786 xfs_buftarg_isolate
, &dispose
);
1788 while (!list_empty(&dispose
)) {
1790 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1791 list_del_init(&bp
->b_lru
);
1798 static unsigned long
1799 xfs_buftarg_shrink_count(
1800 struct shrinker
*shrink
,
1801 struct shrink_control
*sc
)
1803 struct xfs_buftarg
*btp
= container_of(shrink
,
1804 struct xfs_buftarg
, bt_shrinker
);
1805 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
1810 struct xfs_buftarg
*btp
)
1812 unregister_shrinker(&btp
->bt_shrinker
);
1813 ASSERT(percpu_counter_sum(&btp
->bt_io_count
) == 0);
1814 percpu_counter_destroy(&btp
->bt_io_count
);
1815 list_lru_destroy(&btp
->bt_lru
);
1817 xfs_blkdev_issue_flush(btp
);
1823 xfs_setsize_buftarg(
1825 unsigned int sectorsize
)
1827 /* Set up metadata sector size info */
1828 btp
->bt_meta_sectorsize
= sectorsize
;
1829 btp
->bt_meta_sectormask
= sectorsize
- 1;
1831 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1832 xfs_warn(btp
->bt_mount
,
1833 "Cannot set_blocksize to %u on device %pg",
1834 sectorsize
, btp
->bt_bdev
);
1838 /* Set up device logical sector size mask */
1839 btp
->bt_logical_sectorsize
= bdev_logical_block_size(btp
->bt_bdev
);
1840 btp
->bt_logical_sectormask
= bdev_logical_block_size(btp
->bt_bdev
) - 1;
1846 * When allocating the initial buffer target we have not yet
1847 * read in the superblock, so don't know what sized sectors
1848 * are being used at this early stage. Play safe.
1851 xfs_setsize_buftarg_early(
1853 struct block_device
*bdev
)
1855 return xfs_setsize_buftarg(btp
, bdev_logical_block_size(bdev
));
1860 struct xfs_mount
*mp
,
1861 struct block_device
*bdev
,
1862 struct dax_device
*dax_dev
)
1866 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
| KM_NOFS
);
1869 btp
->bt_dev
= bdev
->bd_dev
;
1870 btp
->bt_bdev
= bdev
;
1871 btp
->bt_daxdev
= dax_dev
;
1873 if (xfs_setsize_buftarg_early(btp
, bdev
))
1876 if (list_lru_init(&btp
->bt_lru
))
1879 if (percpu_counter_init(&btp
->bt_io_count
, 0, GFP_KERNEL
))
1882 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1883 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1884 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1885 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1886 if (register_shrinker(&btp
->bt_shrinker
))
1891 percpu_counter_destroy(&btp
->bt_io_count
);
1893 list_lru_destroy(&btp
->bt_lru
);
1900 * Cancel a delayed write list.
1902 * Remove each buffer from the list, clear the delwri queue flag and drop the
1903 * associated buffer reference.
1906 xfs_buf_delwri_cancel(
1907 struct list_head
*list
)
1911 while (!list_empty(list
)) {
1912 bp
= list_first_entry(list
, struct xfs_buf
, b_list
);
1915 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
1916 list_del_init(&bp
->b_list
);
1922 * Add a buffer to the delayed write list.
1924 * This queues a buffer for writeout if it hasn't already been. Note that
1925 * neither this routine nor the buffer list submission functions perform
1926 * any internal synchronization. It is expected that the lists are thread-local
1929 * Returns true if we queued up the buffer, or false if it already had
1930 * been on the buffer list.
1933 xfs_buf_delwri_queue(
1935 struct list_head
*list
)
1937 ASSERT(xfs_buf_islocked(bp
));
1938 ASSERT(!(bp
->b_flags
& XBF_READ
));
1941 * If the buffer is already marked delwri it already is queued up
1942 * by someone else for imediate writeout. Just ignore it in that
1945 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1946 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1950 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1953 * If a buffer gets written out synchronously or marked stale while it
1954 * is on a delwri list we lazily remove it. To do this, the other party
1955 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1956 * It remains referenced and on the list. In a rare corner case it
1957 * might get readded to a delwri list after the synchronous writeout, in
1958 * which case we need just need to re-add the flag here.
1960 bp
->b_flags
|= _XBF_DELWRI_Q
;
1961 if (list_empty(&bp
->b_list
)) {
1962 atomic_inc(&bp
->b_hold
);
1963 list_add_tail(&bp
->b_list
, list
);
1970 * Compare function is more complex than it needs to be because
1971 * the return value is only 32 bits and we are doing comparisons
1977 struct list_head
*a
,
1978 struct list_head
*b
)
1980 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1981 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1984 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1993 * Submit buffers for write. If wait_list is specified, the buffers are
1994 * submitted using sync I/O and placed on the wait list such that the caller can
1995 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1996 * at I/O completion time. In either case, buffers remain locked until I/O
1997 * completes and the buffer is released from the queue.
2000 xfs_buf_delwri_submit_buffers(
2001 struct list_head
*buffer_list
,
2002 struct list_head
*wait_list
)
2004 struct xfs_buf
*bp
, *n
;
2006 struct blk_plug plug
;
2008 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
2010 blk_start_plug(&plug
);
2011 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
2013 if (xfs_buf_ispinned(bp
)) {
2017 if (!xfs_buf_trylock(bp
))
2024 * Someone else might have written the buffer synchronously or
2025 * marked it stale in the meantime. In that case only the
2026 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2027 * reference and remove it from the list here.
2029 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
2030 list_del_init(&bp
->b_list
);
2035 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
2038 * If we have a wait list, each buffer (and associated delwri
2039 * queue reference) transfers to it and is submitted
2040 * synchronously. Otherwise, drop the buffer from the delwri
2041 * queue and submit async.
2043 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_WRITE_FAIL
);
2044 bp
->b_flags
|= XBF_WRITE
;
2046 bp
->b_flags
&= ~XBF_ASYNC
;
2047 list_move_tail(&bp
->b_list
, wait_list
);
2049 bp
->b_flags
|= XBF_ASYNC
;
2050 list_del_init(&bp
->b_list
);
2052 __xfs_buf_submit(bp
, false);
2054 blk_finish_plug(&plug
);
2060 * Write out a buffer list asynchronously.
2062 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2063 * out and not wait for I/O completion on any of the buffers. This interface
2064 * is only safely useable for callers that can track I/O completion by higher
2065 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2068 * Note: this function will skip buffers it would block on, and in doing so
2069 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2070 * it is up to the caller to ensure that the buffer list is fully submitted or
2071 * cancelled appropriately when they are finished with the list. Failure to
2072 * cancel or resubmit the list until it is empty will result in leaked buffers
2076 xfs_buf_delwri_submit_nowait(
2077 struct list_head
*buffer_list
)
2079 return xfs_buf_delwri_submit_buffers(buffer_list
, NULL
);
2083 * Write out a buffer list synchronously.
2085 * This will take the @buffer_list, write all buffers out and wait for I/O
2086 * completion on all of the buffers. @buffer_list is consumed by the function,
2087 * so callers must have some other way of tracking buffers if they require such
2091 xfs_buf_delwri_submit(
2092 struct list_head
*buffer_list
)
2094 LIST_HEAD (wait_list
);
2095 int error
= 0, error2
;
2098 xfs_buf_delwri_submit_buffers(buffer_list
, &wait_list
);
2100 /* Wait for IO to complete. */
2101 while (!list_empty(&wait_list
)) {
2102 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
2104 list_del_init(&bp
->b_list
);
2107 * Wait on the locked buffer, check for errors and unlock and
2108 * release the delwri queue reference.
2110 error2
= xfs_buf_iowait(bp
);
2120 * Push a single buffer on a delwri queue.
2122 * The purpose of this function is to submit a single buffer of a delwri queue
2123 * and return with the buffer still on the original queue. The waiting delwri
2124 * buffer submission infrastructure guarantees transfer of the delwri queue
2125 * buffer reference to a temporary wait list. We reuse this infrastructure to
2126 * transfer the buffer back to the original queue.
2128 * Note the buffer transitions from the queued state, to the submitted and wait
2129 * listed state and back to the queued state during this call. The buffer
2130 * locking and queue management logic between _delwri_pushbuf() and
2131 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2135 xfs_buf_delwri_pushbuf(
2137 struct list_head
*buffer_list
)
2139 LIST_HEAD (submit_list
);
2142 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
2144 trace_xfs_buf_delwri_pushbuf(bp
, _RET_IP_
);
2147 * Isolate the buffer to a new local list so we can submit it for I/O
2148 * independently from the rest of the original list.
2151 list_move(&bp
->b_list
, &submit_list
);
2155 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2156 * the buffer on the wait list with the original reference. Rather than
2157 * bounce the buffer from a local wait list back to the original list
2158 * after I/O completion, reuse the original list as the wait list.
2160 xfs_buf_delwri_submit_buffers(&submit_list
, buffer_list
);
2163 * The buffer is now locked, under I/O and wait listed on the original
2164 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2165 * return with the buffer unlocked and on the original queue.
2167 error
= xfs_buf_iowait(bp
);
2168 bp
->b_flags
|= _XBF_DELWRI_Q
;
2177 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
2178 KM_ZONE_HWALIGN
, NULL
);
2189 xfs_buf_terminate(void)
2191 kmem_zone_destroy(xfs_buf_zone
);
2194 void xfs_buf_set_ref(struct xfs_buf
*bp
, int lru_ref
)
2197 * Set the lru reference count to 0 based on the error injection tag.
2198 * This allows userspace to disrupt buffer caching for debug/testing
2201 if (XFS_TEST_ERROR(false, bp
->b_target
->bt_mount
,
2202 XFS_ERRTAG_BUF_LRU_REF
))
2205 atomic_set(&bp
->b_lru_ref
, lru_ref
);
2209 * Verify an on-disk magic value against the magic value specified in the
2210 * verifier structure. The verifier magic is in disk byte order so the caller is
2211 * expected to pass the value directly from disk.
2218 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2221 idx
= xfs_sb_version_hascrc(&mp
->m_sb
);
2222 if (unlikely(WARN_ON(!bp
->b_ops
|| !bp
->b_ops
->magic
[idx
])))
2224 return dmagic
== bp
->b_ops
->magic
[idx
];
2227 * Verify an on-disk magic value against the magic value specified in the
2228 * verifier structure. The verifier magic is in disk byte order so the caller is
2229 * expected to pass the value directly from disk.
2236 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2239 idx
= xfs_sb_version_hascrc(&mp
->m_sb
);
2240 if (unlikely(WARN_ON(!bp
->b_ops
|| !bp
->b_ops
->magic16
[idx
])))
2242 return dmagic
== bp
->b_ops
->magic16
[idx
];