1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
14 * The following locks and mutexes are used by kmemleak:
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26 * Accesses to the metadata (e.g. count) are protected by this lock. Note
27 * that some members of this structure may be protected by other means
28 * (atomic or kmemleak_lock). This lock is also held when scanning the
29 * corresponding memory block to avoid the kernel freeing it via the
30 * kmemleak_free() callback. This is less heavyweight than holding a global
31 * lock like kmemleak_lock during scanning.
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
43 * Locks and mutexes are acquired/nested in the following order:
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
99 #include <linux/kasan.h>
100 #include <linux/kmemleak.h>
101 #include <linux/memory_hotplug.h>
104 * Kmemleak configuration and common defines.
106 #define MAX_TRACE 16 /* stack trace length */
107 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
108 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
109 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
110 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
112 #define BYTES_PER_POINTER sizeof(void *)
114 /* GFP bitmask for kmemleak internal allocations */
115 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area
{
121 struct hlist_node node
;
126 #define KMEMLEAK_GREY 0
127 #define KMEMLEAK_BLACK -1
130 * Structure holding the metadata for each allocated memory block.
131 * Modifications to such objects should be made while holding the
132 * object->lock. Insertions or deletions from object_list, gray_list or
133 * rb_node are already protected by the corresponding locks or mutex (see
134 * the notes on locking above). These objects are reference-counted
135 * (use_count) and freed using the RCU mechanism.
137 struct kmemleak_object
{
139 unsigned int flags
; /* object status flags */
140 struct list_head object_list
;
141 struct list_head gray_list
;
142 struct rb_node rb_node
;
143 struct rcu_head rcu
; /* object_list lockless traversal */
144 /* object usage count; object freed when use_count == 0 */
146 unsigned long pointer
;
148 /* pass surplus references to this pointer */
149 unsigned long excess_ref
;
150 /* minimum number of a pointers found before it is considered leak */
152 /* the total number of pointers found pointing to this object */
154 /* checksum for detecting modified objects */
156 /* memory ranges to be scanned inside an object (empty for all) */
157 struct hlist_head area_list
;
158 unsigned long trace
[MAX_TRACE
];
159 unsigned int trace_len
;
160 unsigned long jiffies
; /* creation timestamp */
161 pid_t pid
; /* pid of the current task */
162 char comm
[TASK_COMM_LEN
]; /* executable name */
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED (1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED (1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN (1 << 2)
171 /* flag set to fully scan the object when scan_area allocation failed */
172 #define OBJECT_FULL_SCAN (1 << 3)
174 #define HEX_PREFIX " "
175 /* number of bytes to print per line; must be 16 or 32 */
176 #define HEX_ROW_SIZE 16
177 /* number of bytes to print at a time (1, 2, 4, 8) */
178 #define HEX_GROUP_SIZE 1
179 /* include ASCII after the hex output */
181 /* max number of lines to be printed */
182 #define HEX_MAX_LINES 2
184 /* the list of all allocated objects */
185 static LIST_HEAD(object_list
);
186 /* the list of gray-colored objects (see color_gray comment below) */
187 static LIST_HEAD(gray_list
);
188 /* memory pool allocation */
189 static struct kmemleak_object mem_pool
[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE
];
190 static int mem_pool_free_count
= ARRAY_SIZE(mem_pool
);
191 static LIST_HEAD(mem_pool_free_list
);
192 /* search tree for object boundaries */
193 static struct rb_root object_tree_root
= RB_ROOT
;
194 /* protecting the access to object_list and object_tree_root */
195 static DEFINE_RAW_SPINLOCK(kmemleak_lock
);
197 /* allocation caches for kmemleak internal data */
198 static struct kmem_cache
*object_cache
;
199 static struct kmem_cache
*scan_area_cache
;
201 /* set if tracing memory operations is enabled */
202 static int kmemleak_enabled
= 1;
203 /* same as above but only for the kmemleak_free() callback */
204 static int kmemleak_free_enabled
= 1;
205 /* set in the late_initcall if there were no errors */
206 static int kmemleak_initialized
;
207 /* set if a kmemleak warning was issued */
208 static int kmemleak_warning
;
209 /* set if a fatal kmemleak error has occurred */
210 static int kmemleak_error
;
212 /* minimum and maximum address that may be valid pointers */
213 static unsigned long min_addr
= ULONG_MAX
;
214 static unsigned long max_addr
;
216 static struct task_struct
*scan_thread
;
217 /* used to avoid reporting of recently allocated objects */
218 static unsigned long jiffies_min_age
;
219 static unsigned long jiffies_last_scan
;
220 /* delay between automatic memory scannings */
221 static signed long jiffies_scan_wait
;
222 /* enables or disables the task stacks scanning */
223 static int kmemleak_stack_scan
= 1;
224 /* protects the memory scanning, parameters and debug/kmemleak file access */
225 static DEFINE_MUTEX(scan_mutex
);
226 /* setting kmemleak=on, will set this var, skipping the disable */
227 static int kmemleak_skip_disable
;
228 /* If there are leaks that can be reported */
229 static bool kmemleak_found_leaks
;
231 static bool kmemleak_verbose
;
232 module_param_named(verbose
, kmemleak_verbose
, bool, 0600);
234 static void kmemleak_disable(void);
237 * Print a warning and dump the stack trace.
239 #define kmemleak_warn(x...) do { \
242 kmemleak_warning = 1; \
246 * Macro invoked when a serious kmemleak condition occurred and cannot be
247 * recovered from. Kmemleak will be disabled and further allocation/freeing
248 * tracing no longer available.
250 #define kmemleak_stop(x...) do { \
252 kmemleak_disable(); \
255 #define warn_or_seq_printf(seq, fmt, ...) do { \
257 seq_printf(seq, fmt, ##__VA_ARGS__); \
259 pr_warn(fmt, ##__VA_ARGS__); \
262 static void warn_or_seq_hex_dump(struct seq_file
*seq
, int prefix_type
,
263 int rowsize
, int groupsize
, const void *buf
,
264 size_t len
, bool ascii
)
267 seq_hex_dump(seq
, HEX_PREFIX
, prefix_type
, rowsize
, groupsize
,
270 print_hex_dump(KERN_WARNING
, pr_fmt(HEX_PREFIX
), prefix_type
,
271 rowsize
, groupsize
, buf
, len
, ascii
);
275 * Printing of the objects hex dump to the seq file. The number of lines to be
276 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
277 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
278 * with the object->lock held.
280 static void hex_dump_object(struct seq_file
*seq
,
281 struct kmemleak_object
*object
)
283 const u8
*ptr
= (const u8
*)object
->pointer
;
286 /* limit the number of lines to HEX_MAX_LINES */
287 len
= min_t(size_t, object
->size
, HEX_MAX_LINES
* HEX_ROW_SIZE
);
289 warn_or_seq_printf(seq
, " hex dump (first %zu bytes):\n", len
);
290 kasan_disable_current();
291 warn_or_seq_hex_dump(seq
, DUMP_PREFIX_NONE
, HEX_ROW_SIZE
,
292 HEX_GROUP_SIZE
, ptr
, len
, HEX_ASCII
);
293 kasan_enable_current();
297 * Object colors, encoded with count and min_count:
298 * - white - orphan object, not enough references to it (count < min_count)
299 * - gray - not orphan, not marked as false positive (min_count == 0) or
300 * sufficient references to it (count >= min_count)
301 * - black - ignore, it doesn't contain references (e.g. text section)
302 * (min_count == -1). No function defined for this color.
303 * Newly created objects don't have any color assigned (object->count == -1)
304 * before the next memory scan when they become white.
306 static bool color_white(const struct kmemleak_object
*object
)
308 return object
->count
!= KMEMLEAK_BLACK
&&
309 object
->count
< object
->min_count
;
312 static bool color_gray(const struct kmemleak_object
*object
)
314 return object
->min_count
!= KMEMLEAK_BLACK
&&
315 object
->count
>= object
->min_count
;
319 * Objects are considered unreferenced only if their color is white, they have
320 * not be deleted and have a minimum age to avoid false positives caused by
321 * pointers temporarily stored in CPU registers.
323 static bool unreferenced_object(struct kmemleak_object
*object
)
325 return (color_white(object
) && object
->flags
& OBJECT_ALLOCATED
) &&
326 time_before_eq(object
->jiffies
+ jiffies_min_age
,
331 * Printing of the unreferenced objects information to the seq file. The
332 * print_unreferenced function must be called with the object->lock held.
334 static void print_unreferenced(struct seq_file
*seq
,
335 struct kmemleak_object
*object
)
338 unsigned int msecs_age
= jiffies_to_msecs(jiffies
- object
->jiffies
);
340 warn_or_seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
341 object
->pointer
, object
->size
);
342 warn_or_seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
343 object
->comm
, object
->pid
, object
->jiffies
,
344 msecs_age
/ 1000, msecs_age
% 1000);
345 hex_dump_object(seq
, object
);
346 warn_or_seq_printf(seq
, " backtrace:\n");
348 for (i
= 0; i
< object
->trace_len
; i
++) {
349 void *ptr
= (void *)object
->trace
[i
];
350 warn_or_seq_printf(seq
, " [<%p>] %pS\n", ptr
, ptr
);
355 * Print the kmemleak_object information. This function is used mainly for
356 * debugging special cases when kmemleak operations. It must be called with
357 * the object->lock held.
359 static void dump_object_info(struct kmemleak_object
*object
)
361 pr_notice("Object 0x%08lx (size %zu):\n",
362 object
->pointer
, object
->size
);
363 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
364 object
->comm
, object
->pid
, object
->jiffies
);
365 pr_notice(" min_count = %d\n", object
->min_count
);
366 pr_notice(" count = %d\n", object
->count
);
367 pr_notice(" flags = 0x%x\n", object
->flags
);
368 pr_notice(" checksum = %u\n", object
->checksum
);
369 pr_notice(" backtrace:\n");
370 stack_trace_print(object
->trace
, object
->trace_len
, 4);
374 * Look-up a memory block metadata (kmemleak_object) in the object search
375 * tree based on a pointer value. If alias is 0, only values pointing to the
376 * beginning of the memory block are allowed. The kmemleak_lock must be held
377 * when calling this function.
379 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
381 struct rb_node
*rb
= object_tree_root
.rb_node
;
384 struct kmemleak_object
*object
=
385 rb_entry(rb
, struct kmemleak_object
, rb_node
);
386 if (ptr
< object
->pointer
)
387 rb
= object
->rb_node
.rb_left
;
388 else if (object
->pointer
+ object
->size
<= ptr
)
389 rb
= object
->rb_node
.rb_right
;
390 else if (object
->pointer
== ptr
|| alias
)
393 kmemleak_warn("Found object by alias at 0x%08lx\n",
395 dump_object_info(object
);
403 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
404 * that once an object's use_count reached 0, the RCU freeing was already
405 * registered and the object should no longer be used. This function must be
406 * called under the protection of rcu_read_lock().
408 static int get_object(struct kmemleak_object
*object
)
410 return atomic_inc_not_zero(&object
->use_count
);
414 * Memory pool allocation and freeing. kmemleak_lock must not be held.
416 static struct kmemleak_object
*mem_pool_alloc(gfp_t gfp
)
419 struct kmemleak_object
*object
;
421 /* try the slab allocator first */
423 object
= kmem_cache_alloc(object_cache
, gfp_kmemleak_mask(gfp
));
428 /* slab allocation failed, try the memory pool */
429 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
430 object
= list_first_entry_or_null(&mem_pool_free_list
,
431 typeof(*object
), object_list
);
433 list_del(&object
->object_list
);
434 else if (mem_pool_free_count
)
435 object
= &mem_pool
[--mem_pool_free_count
];
437 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
438 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
444 * Return the object to either the slab allocator or the memory pool.
446 static void mem_pool_free(struct kmemleak_object
*object
)
450 if (object
< mem_pool
|| object
>= mem_pool
+ ARRAY_SIZE(mem_pool
)) {
451 kmem_cache_free(object_cache
, object
);
455 /* add the object to the memory pool free list */
456 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
457 list_add(&object
->object_list
, &mem_pool_free_list
);
458 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
462 * RCU callback to free a kmemleak_object.
464 static void free_object_rcu(struct rcu_head
*rcu
)
466 struct hlist_node
*tmp
;
467 struct kmemleak_scan_area
*area
;
468 struct kmemleak_object
*object
=
469 container_of(rcu
, struct kmemleak_object
, rcu
);
472 * Once use_count is 0 (guaranteed by put_object), there is no other
473 * code accessing this object, hence no need for locking.
475 hlist_for_each_entry_safe(area
, tmp
, &object
->area_list
, node
) {
476 hlist_del(&area
->node
);
477 kmem_cache_free(scan_area_cache
, area
);
479 mem_pool_free(object
);
483 * Decrement the object use_count. Once the count is 0, free the object using
484 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
485 * delete_object() path, the delayed RCU freeing ensures that there is no
486 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
489 static void put_object(struct kmemleak_object
*object
)
491 if (!atomic_dec_and_test(&object
->use_count
))
494 /* should only get here after delete_object was called */
495 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
498 * It may be too early for the RCU callbacks, however, there is no
499 * concurrent object_list traversal when !object_cache and all objects
500 * came from the memory pool. Free the object directly.
503 call_rcu(&object
->rcu
, free_object_rcu
);
505 free_object_rcu(&object
->rcu
);
509 * Look up an object in the object search tree and increase its use_count.
511 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
514 struct kmemleak_object
*object
;
517 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
518 object
= lookup_object(ptr
, alias
);
519 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
521 /* check whether the object is still available */
522 if (object
&& !get_object(object
))
530 * Remove an object from the object_tree_root and object_list. Must be called
531 * with the kmemleak_lock held _if_ kmemleak is still enabled.
533 static void __remove_object(struct kmemleak_object
*object
)
535 rb_erase(&object
->rb_node
, &object_tree_root
);
536 list_del_rcu(&object
->object_list
);
540 * Look up an object in the object search tree and remove it from both
541 * object_tree_root and object_list. The returned object's use_count should be
542 * at least 1, as initially set by create_object().
544 static struct kmemleak_object
*find_and_remove_object(unsigned long ptr
, int alias
)
547 struct kmemleak_object
*object
;
549 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
550 object
= lookup_object(ptr
, alias
);
552 __remove_object(object
);
553 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
559 * Save stack trace to the given array of MAX_TRACE size.
561 static int __save_stack_trace(unsigned long *trace
)
563 return stack_trace_save(trace
, MAX_TRACE
, 2);
567 * Create the metadata (struct kmemleak_object) corresponding to an allocated
568 * memory block and add it to the object_list and object_tree_root.
570 static struct kmemleak_object
*create_object(unsigned long ptr
, size_t size
,
571 int min_count
, gfp_t gfp
)
574 struct kmemleak_object
*object
, *parent
;
575 struct rb_node
**link
, *rb_parent
;
576 unsigned long untagged_ptr
;
578 object
= mem_pool_alloc(gfp
);
580 pr_warn("Cannot allocate a kmemleak_object structure\n");
585 INIT_LIST_HEAD(&object
->object_list
);
586 INIT_LIST_HEAD(&object
->gray_list
);
587 INIT_HLIST_HEAD(&object
->area_list
);
588 raw_spin_lock_init(&object
->lock
);
589 atomic_set(&object
->use_count
, 1);
590 object
->flags
= OBJECT_ALLOCATED
;
591 object
->pointer
= ptr
;
593 object
->excess_ref
= 0;
594 object
->min_count
= min_count
;
595 object
->count
= 0; /* white color initially */
596 object
->jiffies
= jiffies
;
597 object
->checksum
= 0;
599 /* task information */
602 strncpy(object
->comm
, "hardirq", sizeof(object
->comm
));
603 } else if (in_serving_softirq()) {
605 strncpy(object
->comm
, "softirq", sizeof(object
->comm
));
607 object
->pid
= current
->pid
;
609 * There is a small chance of a race with set_task_comm(),
610 * however using get_task_comm() here may cause locking
611 * dependency issues with current->alloc_lock. In the worst
612 * case, the command line is not correct.
614 strncpy(object
->comm
, current
->comm
, sizeof(object
->comm
));
617 /* kernel backtrace */
618 object
->trace_len
= __save_stack_trace(object
->trace
);
620 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
622 untagged_ptr
= (unsigned long)kasan_reset_tag((void *)ptr
);
623 min_addr
= min(min_addr
, untagged_ptr
);
624 max_addr
= max(max_addr
, untagged_ptr
+ size
);
625 link
= &object_tree_root
.rb_node
;
629 parent
= rb_entry(rb_parent
, struct kmemleak_object
, rb_node
);
630 if (ptr
+ size
<= parent
->pointer
)
631 link
= &parent
->rb_node
.rb_left
;
632 else if (parent
->pointer
+ parent
->size
<= ptr
)
633 link
= &parent
->rb_node
.rb_right
;
635 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
638 * No need for parent->lock here since "parent" cannot
639 * be freed while the kmemleak_lock is held.
641 dump_object_info(parent
);
642 kmem_cache_free(object_cache
, object
);
647 rb_link_node(&object
->rb_node
, rb_parent
, link
);
648 rb_insert_color(&object
->rb_node
, &object_tree_root
);
650 list_add_tail_rcu(&object
->object_list
, &object_list
);
652 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
657 * Mark the object as not allocated and schedule RCU freeing via put_object().
659 static void __delete_object(struct kmemleak_object
*object
)
663 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
664 WARN_ON(atomic_read(&object
->use_count
) < 1);
667 * Locking here also ensures that the corresponding memory block
668 * cannot be freed when it is being scanned.
670 raw_spin_lock_irqsave(&object
->lock
, flags
);
671 object
->flags
&= ~OBJECT_ALLOCATED
;
672 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
677 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
680 static void delete_object_full(unsigned long ptr
)
682 struct kmemleak_object
*object
;
684 object
= find_and_remove_object(ptr
, 0);
687 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
692 __delete_object(object
);
696 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
697 * delete it. If the memory block is partially freed, the function may create
698 * additional metadata for the remaining parts of the block.
700 static void delete_object_part(unsigned long ptr
, size_t size
)
702 struct kmemleak_object
*object
;
703 unsigned long start
, end
;
705 object
= find_and_remove_object(ptr
, 1);
708 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
715 * Create one or two objects that may result from the memory block
716 * split. Note that partial freeing is only done by free_bootmem() and
717 * this happens before kmemleak_init() is called.
719 start
= object
->pointer
;
720 end
= object
->pointer
+ object
->size
;
722 create_object(start
, ptr
- start
, object
->min_count
,
724 if (ptr
+ size
< end
)
725 create_object(ptr
+ size
, end
- ptr
- size
, object
->min_count
,
728 __delete_object(object
);
731 static void __paint_it(struct kmemleak_object
*object
, int color
)
733 object
->min_count
= color
;
734 if (color
== KMEMLEAK_BLACK
)
735 object
->flags
|= OBJECT_NO_SCAN
;
738 static void paint_it(struct kmemleak_object
*object
, int color
)
742 raw_spin_lock_irqsave(&object
->lock
, flags
);
743 __paint_it(object
, color
);
744 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
747 static void paint_ptr(unsigned long ptr
, int color
)
749 struct kmemleak_object
*object
;
751 object
= find_and_get_object(ptr
, 0);
753 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
755 (color
== KMEMLEAK_GREY
) ? "Grey" :
756 (color
== KMEMLEAK_BLACK
) ? "Black" : "Unknown");
759 paint_it(object
, color
);
764 * Mark an object permanently as gray-colored so that it can no longer be
765 * reported as a leak. This is used in general to mark a false positive.
767 static void make_gray_object(unsigned long ptr
)
769 paint_ptr(ptr
, KMEMLEAK_GREY
);
773 * Mark the object as black-colored so that it is ignored from scans and
776 static void make_black_object(unsigned long ptr
)
778 paint_ptr(ptr
, KMEMLEAK_BLACK
);
782 * Add a scanning area to the object. If at least one such area is added,
783 * kmemleak will only scan these ranges rather than the whole memory block.
785 static void add_scan_area(unsigned long ptr
, size_t size
, gfp_t gfp
)
788 struct kmemleak_object
*object
;
789 struct kmemleak_scan_area
*area
= NULL
;
791 object
= find_and_get_object(ptr
, 1);
793 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
799 area
= kmem_cache_alloc(scan_area_cache
, gfp_kmemleak_mask(gfp
));
801 raw_spin_lock_irqsave(&object
->lock
, flags
);
803 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
804 /* mark the object for full scan to avoid false positives */
805 object
->flags
|= OBJECT_FULL_SCAN
;
808 if (size
== SIZE_MAX
) {
809 size
= object
->pointer
+ object
->size
- ptr
;
810 } else if (ptr
+ size
> object
->pointer
+ object
->size
) {
811 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
812 dump_object_info(object
);
813 kmem_cache_free(scan_area_cache
, area
);
817 INIT_HLIST_NODE(&area
->node
);
821 hlist_add_head(&area
->node
, &object
->area_list
);
823 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
828 * Any surplus references (object already gray) to 'ptr' are passed to
829 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
830 * vm_struct may be used as an alternative reference to the vmalloc'ed object
831 * (see free_thread_stack()).
833 static void object_set_excess_ref(unsigned long ptr
, unsigned long excess_ref
)
836 struct kmemleak_object
*object
;
838 object
= find_and_get_object(ptr
, 0);
840 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
845 raw_spin_lock_irqsave(&object
->lock
, flags
);
846 object
->excess_ref
= excess_ref
;
847 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
852 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
853 * pointer. Such object will not be scanned by kmemleak but references to it
856 static void object_no_scan(unsigned long ptr
)
859 struct kmemleak_object
*object
;
861 object
= find_and_get_object(ptr
, 0);
863 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
867 raw_spin_lock_irqsave(&object
->lock
, flags
);
868 object
->flags
|= OBJECT_NO_SCAN
;
869 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
874 * kmemleak_alloc - register a newly allocated object
875 * @ptr: pointer to beginning of the object
876 * @size: size of the object
877 * @min_count: minimum number of references to this object. If during memory
878 * scanning a number of references less than @min_count is found,
879 * the object is reported as a memory leak. If @min_count is 0,
880 * the object is never reported as a leak. If @min_count is -1,
881 * the object is ignored (not scanned and not reported as a leak)
882 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
884 * This function is called from the kernel allocators when a new object
885 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
887 void __ref
kmemleak_alloc(const void *ptr
, size_t size
, int min_count
,
890 pr_debug("%s(0x%p, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
892 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
893 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
895 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
898 * kmemleak_alloc_percpu - register a newly allocated __percpu object
899 * @ptr: __percpu pointer to beginning of the object
900 * @size: size of the object
901 * @gfp: flags used for kmemleak internal memory allocations
903 * This function is called from the kernel percpu allocator when a new object
904 * (memory block) is allocated (alloc_percpu).
906 void __ref
kmemleak_alloc_percpu(const void __percpu
*ptr
, size_t size
,
911 pr_debug("%s(0x%p, %zu)\n", __func__
, ptr
, size
);
914 * Percpu allocations are only scanned and not reported as leaks
915 * (min_count is set to 0).
917 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
918 for_each_possible_cpu(cpu
)
919 create_object((unsigned long)per_cpu_ptr(ptr
, cpu
),
922 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu
);
925 * kmemleak_vmalloc - register a newly vmalloc'ed object
926 * @area: pointer to vm_struct
927 * @size: size of the object
928 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
930 * This function is called from the vmalloc() kernel allocator when a new
931 * object (memory block) is allocated.
933 void __ref
kmemleak_vmalloc(const struct vm_struct
*area
, size_t size
, gfp_t gfp
)
935 pr_debug("%s(0x%p, %zu)\n", __func__
, area
, size
);
938 * A min_count = 2 is needed because vm_struct contains a reference to
939 * the virtual address of the vmalloc'ed block.
941 if (kmemleak_enabled
) {
942 create_object((unsigned long)area
->addr
, size
, 2, gfp
);
943 object_set_excess_ref((unsigned long)area
,
944 (unsigned long)area
->addr
);
947 EXPORT_SYMBOL_GPL(kmemleak_vmalloc
);
950 * kmemleak_free - unregister a previously registered object
951 * @ptr: pointer to beginning of the object
953 * This function is called from the kernel allocators when an object (memory
954 * block) is freed (kmem_cache_free, kfree, vfree etc.).
956 void __ref
kmemleak_free(const void *ptr
)
958 pr_debug("%s(0x%p)\n", __func__
, ptr
);
960 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
961 delete_object_full((unsigned long)ptr
);
963 EXPORT_SYMBOL_GPL(kmemleak_free
);
966 * kmemleak_free_part - partially unregister a previously registered object
967 * @ptr: pointer to the beginning or inside the object. This also
968 * represents the start of the range to be freed
969 * @size: size to be unregistered
971 * This function is called when only a part of a memory block is freed
972 * (usually from the bootmem allocator).
974 void __ref
kmemleak_free_part(const void *ptr
, size_t size
)
976 pr_debug("%s(0x%p)\n", __func__
, ptr
);
978 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
979 delete_object_part((unsigned long)ptr
, size
);
981 EXPORT_SYMBOL_GPL(kmemleak_free_part
);
984 * kmemleak_free_percpu - unregister a previously registered __percpu object
985 * @ptr: __percpu pointer to beginning of the object
987 * This function is called from the kernel percpu allocator when an object
988 * (memory block) is freed (free_percpu).
990 void __ref
kmemleak_free_percpu(const void __percpu
*ptr
)
994 pr_debug("%s(0x%p)\n", __func__
, ptr
);
996 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
997 for_each_possible_cpu(cpu
)
998 delete_object_full((unsigned long)per_cpu_ptr(ptr
,
1001 EXPORT_SYMBOL_GPL(kmemleak_free_percpu
);
1004 * kmemleak_update_trace - update object allocation stack trace
1005 * @ptr: pointer to beginning of the object
1007 * Override the object allocation stack trace for cases where the actual
1008 * allocation place is not always useful.
1010 void __ref
kmemleak_update_trace(const void *ptr
)
1012 struct kmemleak_object
*object
;
1013 unsigned long flags
;
1015 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1017 if (!kmemleak_enabled
|| IS_ERR_OR_NULL(ptr
))
1020 object
= find_and_get_object((unsigned long)ptr
, 1);
1023 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1029 raw_spin_lock_irqsave(&object
->lock
, flags
);
1030 object
->trace_len
= __save_stack_trace(object
->trace
);
1031 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1035 EXPORT_SYMBOL(kmemleak_update_trace
);
1038 * kmemleak_not_leak - mark an allocated object as false positive
1039 * @ptr: pointer to beginning of the object
1041 * Calling this function on an object will cause the memory block to no longer
1042 * be reported as leak and always be scanned.
1044 void __ref
kmemleak_not_leak(const void *ptr
)
1046 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1048 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1049 make_gray_object((unsigned long)ptr
);
1051 EXPORT_SYMBOL(kmemleak_not_leak
);
1054 * kmemleak_ignore - ignore an allocated object
1055 * @ptr: pointer to beginning of the object
1057 * Calling this function on an object will cause the memory block to be
1058 * ignored (not scanned and not reported as a leak). This is usually done when
1059 * it is known that the corresponding block is not a leak and does not contain
1060 * any references to other allocated memory blocks.
1062 void __ref
kmemleak_ignore(const void *ptr
)
1064 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1066 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1067 make_black_object((unsigned long)ptr
);
1069 EXPORT_SYMBOL(kmemleak_ignore
);
1072 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1073 * @ptr: pointer to beginning or inside the object. This also
1074 * represents the start of the scan area
1075 * @size: size of the scan area
1076 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1078 * This function is used when it is known that only certain parts of an object
1079 * contain references to other objects. Kmemleak will only scan these areas
1080 * reducing the number false negatives.
1082 void __ref
kmemleak_scan_area(const void *ptr
, size_t size
, gfp_t gfp
)
1084 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1086 if (kmemleak_enabled
&& ptr
&& size
&& !IS_ERR(ptr
))
1087 add_scan_area((unsigned long)ptr
, size
, gfp
);
1089 EXPORT_SYMBOL(kmemleak_scan_area
);
1092 * kmemleak_no_scan - do not scan an allocated object
1093 * @ptr: pointer to beginning of the object
1095 * This function notifies kmemleak not to scan the given memory block. Useful
1096 * in situations where it is known that the given object does not contain any
1097 * references to other objects. Kmemleak will not scan such objects reducing
1098 * the number of false negatives.
1100 void __ref
kmemleak_no_scan(const void *ptr
)
1102 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1104 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1105 object_no_scan((unsigned long)ptr
);
1107 EXPORT_SYMBOL(kmemleak_no_scan
);
1110 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1112 * @phys: physical address of the object
1113 * @size: size of the object
1114 * @min_count: minimum number of references to this object.
1115 * See kmemleak_alloc()
1116 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1118 void __ref
kmemleak_alloc_phys(phys_addr_t phys
, size_t size
, int min_count
,
1121 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1122 kmemleak_alloc(__va(phys
), size
, min_count
, gfp
);
1124 EXPORT_SYMBOL(kmemleak_alloc_phys
);
1127 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1128 * physical address argument
1129 * @phys: physical address if the beginning or inside an object. This
1130 * also represents the start of the range to be freed
1131 * @size: size to be unregistered
1133 void __ref
kmemleak_free_part_phys(phys_addr_t phys
, size_t size
)
1135 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1136 kmemleak_free_part(__va(phys
), size
);
1138 EXPORT_SYMBOL(kmemleak_free_part_phys
);
1141 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1143 * @phys: physical address of the object
1145 void __ref
kmemleak_not_leak_phys(phys_addr_t phys
)
1147 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1148 kmemleak_not_leak(__va(phys
));
1150 EXPORT_SYMBOL(kmemleak_not_leak_phys
);
1153 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1155 * @phys: physical address of the object
1157 void __ref
kmemleak_ignore_phys(phys_addr_t phys
)
1159 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1160 kmemleak_ignore(__va(phys
));
1162 EXPORT_SYMBOL(kmemleak_ignore_phys
);
1165 * Update an object's checksum and return true if it was modified.
1167 static bool update_checksum(struct kmemleak_object
*object
)
1169 u32 old_csum
= object
->checksum
;
1171 kasan_disable_current();
1172 object
->checksum
= crc32(0, (void *)object
->pointer
, object
->size
);
1173 kasan_enable_current();
1175 return object
->checksum
!= old_csum
;
1179 * Update an object's references. object->lock must be held by the caller.
1181 static void update_refs(struct kmemleak_object
*object
)
1183 if (!color_white(object
)) {
1184 /* non-orphan, ignored or new */
1189 * Increase the object's reference count (number of pointers to the
1190 * memory block). If this count reaches the required minimum, the
1191 * object's color will become gray and it will be added to the
1195 if (color_gray(object
)) {
1196 /* put_object() called when removing from gray_list */
1197 WARN_ON(!get_object(object
));
1198 list_add_tail(&object
->gray_list
, &gray_list
);
1203 * Memory scanning is a long process and it needs to be interruptable. This
1204 * function checks whether such interrupt condition occurred.
1206 static int scan_should_stop(void)
1208 if (!kmemleak_enabled
)
1212 * This function may be called from either process or kthread context,
1213 * hence the need to check for both stop conditions.
1216 return signal_pending(current
);
1218 return kthread_should_stop();
1224 * Scan a memory block (exclusive range) for valid pointers and add those
1225 * found to the gray list.
1227 static void scan_block(void *_start
, void *_end
,
1228 struct kmemleak_object
*scanned
)
1231 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
1232 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
1233 unsigned long flags
;
1234 unsigned long untagged_ptr
;
1236 raw_spin_lock_irqsave(&kmemleak_lock
, flags
);
1237 for (ptr
= start
; ptr
< end
; ptr
++) {
1238 struct kmemleak_object
*object
;
1239 unsigned long pointer
;
1240 unsigned long excess_ref
;
1242 if (scan_should_stop())
1245 kasan_disable_current();
1247 kasan_enable_current();
1249 untagged_ptr
= (unsigned long)kasan_reset_tag((void *)pointer
);
1250 if (untagged_ptr
< min_addr
|| untagged_ptr
>= max_addr
)
1254 * No need for get_object() here since we hold kmemleak_lock.
1255 * object->use_count cannot be dropped to 0 while the object
1256 * is still present in object_tree_root and object_list
1257 * (with updates protected by kmemleak_lock).
1259 object
= lookup_object(pointer
, 1);
1262 if (object
== scanned
)
1263 /* self referenced, ignore */
1267 * Avoid the lockdep recursive warning on object->lock being
1268 * previously acquired in scan_object(). These locks are
1269 * enclosed by scan_mutex.
1271 raw_spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1272 /* only pass surplus references (object already gray) */
1273 if (color_gray(object
)) {
1274 excess_ref
= object
->excess_ref
;
1275 /* no need for update_refs() if object already gray */
1278 update_refs(object
);
1280 raw_spin_unlock(&object
->lock
);
1283 object
= lookup_object(excess_ref
, 0);
1286 if (object
== scanned
)
1287 /* circular reference, ignore */
1289 raw_spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1290 update_refs(object
);
1291 raw_spin_unlock(&object
->lock
);
1294 raw_spin_unlock_irqrestore(&kmemleak_lock
, flags
);
1298 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1301 static void scan_large_block(void *start
, void *end
)
1305 while (start
< end
) {
1306 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1307 scan_block(start
, next
, NULL
);
1315 * Scan a memory block corresponding to a kmemleak_object. A condition is
1316 * that object->use_count >= 1.
1318 static void scan_object(struct kmemleak_object
*object
)
1320 struct kmemleak_scan_area
*area
;
1321 unsigned long flags
;
1324 * Once the object->lock is acquired, the corresponding memory block
1325 * cannot be freed (the same lock is acquired in delete_object).
1327 raw_spin_lock_irqsave(&object
->lock
, flags
);
1328 if (object
->flags
& OBJECT_NO_SCAN
)
1330 if (!(object
->flags
& OBJECT_ALLOCATED
))
1331 /* already freed object */
1333 if (hlist_empty(&object
->area_list
) ||
1334 object
->flags
& OBJECT_FULL_SCAN
) {
1335 void *start
= (void *)object
->pointer
;
1336 void *end
= (void *)(object
->pointer
+ object
->size
);
1340 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1341 scan_block(start
, next
, object
);
1347 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1349 raw_spin_lock_irqsave(&object
->lock
, flags
);
1350 } while (object
->flags
& OBJECT_ALLOCATED
);
1352 hlist_for_each_entry(area
, &object
->area_list
, node
)
1353 scan_block((void *)area
->start
,
1354 (void *)(area
->start
+ area
->size
),
1357 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1361 * Scan the objects already referenced (gray objects). More objects will be
1362 * referenced and, if there are no memory leaks, all the objects are scanned.
1364 static void scan_gray_list(void)
1366 struct kmemleak_object
*object
, *tmp
;
1369 * The list traversal is safe for both tail additions and removals
1370 * from inside the loop. The kmemleak objects cannot be freed from
1371 * outside the loop because their use_count was incremented.
1373 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
1374 while (&object
->gray_list
!= &gray_list
) {
1377 /* may add new objects to the list */
1378 if (!scan_should_stop())
1379 scan_object(object
);
1381 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
1384 /* remove the object from the list and release it */
1385 list_del(&object
->gray_list
);
1390 WARN_ON(!list_empty(&gray_list
));
1394 * Scan data sections and all the referenced memory blocks allocated via the
1395 * kernel's standard allocators. This function must be called with the
1398 static void kmemleak_scan(void)
1400 unsigned long flags
;
1401 struct kmemleak_object
*object
;
1405 jiffies_last_scan
= jiffies
;
1407 /* prepare the kmemleak_object's */
1409 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1410 raw_spin_lock_irqsave(&object
->lock
, flags
);
1413 * With a few exceptions there should be a maximum of
1414 * 1 reference to any object at this point.
1416 if (atomic_read(&object
->use_count
) > 1) {
1417 pr_debug("object->use_count = %d\n",
1418 atomic_read(&object
->use_count
));
1419 dump_object_info(object
);
1422 /* reset the reference count (whiten the object) */
1424 if (color_gray(object
) && get_object(object
))
1425 list_add_tail(&object
->gray_list
, &gray_list
);
1427 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1432 /* per-cpu sections scanning */
1433 for_each_possible_cpu(i
)
1434 scan_large_block(__per_cpu_start
+ per_cpu_offset(i
),
1435 __per_cpu_end
+ per_cpu_offset(i
));
1439 * Struct page scanning for each node.
1442 for_each_online_node(i
) {
1443 unsigned long start_pfn
= node_start_pfn(i
);
1444 unsigned long end_pfn
= node_end_pfn(i
);
1447 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1448 struct page
*page
= pfn_to_online_page(pfn
);
1453 /* only scan pages belonging to this node */
1454 if (page_to_nid(page
) != i
)
1456 /* only scan if page is in use */
1457 if (page_count(page
) == 0)
1459 scan_block(page
, page
+ 1, NULL
);
1467 * Scanning the task stacks (may introduce false negatives).
1469 if (kmemleak_stack_scan
) {
1470 struct task_struct
*p
, *g
;
1472 read_lock(&tasklist_lock
);
1473 do_each_thread(g
, p
) {
1474 void *stack
= try_get_task_stack(p
);
1476 scan_block(stack
, stack
+ THREAD_SIZE
, NULL
);
1479 } while_each_thread(g
, p
);
1480 read_unlock(&tasklist_lock
);
1484 * Scan the objects already referenced from the sections scanned
1490 * Check for new or unreferenced objects modified since the previous
1491 * scan and color them gray until the next scan.
1494 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1495 raw_spin_lock_irqsave(&object
->lock
, flags
);
1496 if (color_white(object
) && (object
->flags
& OBJECT_ALLOCATED
)
1497 && update_checksum(object
) && get_object(object
)) {
1498 /* color it gray temporarily */
1499 object
->count
= object
->min_count
;
1500 list_add_tail(&object
->gray_list
, &gray_list
);
1502 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1507 * Re-scan the gray list for modified unreferenced objects.
1512 * If scanning was stopped do not report any new unreferenced objects.
1514 if (scan_should_stop())
1518 * Scanning result reporting.
1521 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1522 raw_spin_lock_irqsave(&object
->lock
, flags
);
1523 if (unreferenced_object(object
) &&
1524 !(object
->flags
& OBJECT_REPORTED
)) {
1525 object
->flags
|= OBJECT_REPORTED
;
1527 if (kmemleak_verbose
)
1528 print_unreferenced(NULL
, object
);
1532 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1537 kmemleak_found_leaks
= true;
1539 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1546 * Thread function performing automatic memory scanning. Unreferenced objects
1547 * at the end of a memory scan are reported but only the first time.
1549 static int kmemleak_scan_thread(void *arg
)
1551 static int first_run
= IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN
);
1553 pr_info("Automatic memory scanning thread started\n");
1554 set_user_nice(current
, 10);
1557 * Wait before the first scan to allow the system to fully initialize.
1560 signed long timeout
= msecs_to_jiffies(SECS_FIRST_SCAN
* 1000);
1562 while (timeout
&& !kthread_should_stop())
1563 timeout
= schedule_timeout_interruptible(timeout
);
1566 while (!kthread_should_stop()) {
1567 signed long timeout
= jiffies_scan_wait
;
1569 mutex_lock(&scan_mutex
);
1571 mutex_unlock(&scan_mutex
);
1573 /* wait before the next scan */
1574 while (timeout
&& !kthread_should_stop())
1575 timeout
= schedule_timeout_interruptible(timeout
);
1578 pr_info("Automatic memory scanning thread ended\n");
1584 * Start the automatic memory scanning thread. This function must be called
1585 * with the scan_mutex held.
1587 static void start_scan_thread(void)
1591 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1592 if (IS_ERR(scan_thread
)) {
1593 pr_warn("Failed to create the scan thread\n");
1599 * Stop the automatic memory scanning thread.
1601 static void stop_scan_thread(void)
1604 kthread_stop(scan_thread
);
1610 * Iterate over the object_list and return the first valid object at or after
1611 * the required position with its use_count incremented. The function triggers
1612 * a memory scanning when the pos argument points to the first position.
1614 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1616 struct kmemleak_object
*object
;
1620 err
= mutex_lock_interruptible(&scan_mutex
);
1622 return ERR_PTR(err
);
1625 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1628 if (get_object(object
))
1637 * Return the next object in the object_list. The function decrements the
1638 * use_count of the previous object and increases that of the next one.
1640 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1642 struct kmemleak_object
*prev_obj
= v
;
1643 struct kmemleak_object
*next_obj
= NULL
;
1644 struct kmemleak_object
*obj
= prev_obj
;
1648 list_for_each_entry_continue_rcu(obj
, &object_list
, object_list
) {
1649 if (get_object(obj
)) {
1655 put_object(prev_obj
);
1660 * Decrement the use_count of the last object required, if any.
1662 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1666 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1667 * waiting was interrupted, so only release it if !IS_ERR.
1670 mutex_unlock(&scan_mutex
);
1677 * Print the information for an unreferenced object to the seq file.
1679 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1681 struct kmemleak_object
*object
= v
;
1682 unsigned long flags
;
1684 raw_spin_lock_irqsave(&object
->lock
, flags
);
1685 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
))
1686 print_unreferenced(seq
, object
);
1687 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1691 static const struct seq_operations kmemleak_seq_ops
= {
1692 .start
= kmemleak_seq_start
,
1693 .next
= kmemleak_seq_next
,
1694 .stop
= kmemleak_seq_stop
,
1695 .show
= kmemleak_seq_show
,
1698 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1700 return seq_open(file
, &kmemleak_seq_ops
);
1703 static int dump_str_object_info(const char *str
)
1705 unsigned long flags
;
1706 struct kmemleak_object
*object
;
1709 if (kstrtoul(str
, 0, &addr
))
1711 object
= find_and_get_object(addr
, 0);
1713 pr_info("Unknown object at 0x%08lx\n", addr
);
1717 raw_spin_lock_irqsave(&object
->lock
, flags
);
1718 dump_object_info(object
);
1719 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1726 * We use grey instead of black to ensure we can do future scans on the same
1727 * objects. If we did not do future scans these black objects could
1728 * potentially contain references to newly allocated objects in the future and
1729 * we'd end up with false positives.
1731 static void kmemleak_clear(void)
1733 struct kmemleak_object
*object
;
1734 unsigned long flags
;
1737 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1738 raw_spin_lock_irqsave(&object
->lock
, flags
);
1739 if ((object
->flags
& OBJECT_REPORTED
) &&
1740 unreferenced_object(object
))
1741 __paint_it(object
, KMEMLEAK_GREY
);
1742 raw_spin_unlock_irqrestore(&object
->lock
, flags
);
1746 kmemleak_found_leaks
= false;
1749 static void __kmemleak_do_cleanup(void);
1752 * File write operation to configure kmemleak at run-time. The following
1753 * commands can be written to the /sys/kernel/debug/kmemleak file:
1754 * off - disable kmemleak (irreversible)
1755 * stack=on - enable the task stacks scanning
1756 * stack=off - disable the tasks stacks scanning
1757 * scan=on - start the automatic memory scanning thread
1758 * scan=off - stop the automatic memory scanning thread
1759 * scan=... - set the automatic memory scanning period in seconds (0 to
1761 * scan - trigger a memory scan
1762 * clear - mark all current reported unreferenced kmemleak objects as
1763 * grey to ignore printing them, or free all kmemleak objects
1764 * if kmemleak has been disabled.
1765 * dump=... - dump information about the object found at the given address
1767 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
1768 size_t size
, loff_t
*ppos
)
1774 buf_size
= min(size
, (sizeof(buf
) - 1));
1775 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
1779 ret
= mutex_lock_interruptible(&scan_mutex
);
1783 if (strncmp(buf
, "clear", 5) == 0) {
1784 if (kmemleak_enabled
)
1787 __kmemleak_do_cleanup();
1791 if (!kmemleak_enabled
) {
1796 if (strncmp(buf
, "off", 3) == 0)
1798 else if (strncmp(buf
, "stack=on", 8) == 0)
1799 kmemleak_stack_scan
= 1;
1800 else if (strncmp(buf
, "stack=off", 9) == 0)
1801 kmemleak_stack_scan
= 0;
1802 else if (strncmp(buf
, "scan=on", 7) == 0)
1803 start_scan_thread();
1804 else if (strncmp(buf
, "scan=off", 8) == 0)
1806 else if (strncmp(buf
, "scan=", 5) == 0) {
1809 ret
= kstrtoul(buf
+ 5, 0, &secs
);
1814 jiffies_scan_wait
= msecs_to_jiffies(secs
* 1000);
1815 start_scan_thread();
1817 } else if (strncmp(buf
, "scan", 4) == 0)
1819 else if (strncmp(buf
, "dump=", 5) == 0)
1820 ret
= dump_str_object_info(buf
+ 5);
1825 mutex_unlock(&scan_mutex
);
1829 /* ignore the rest of the buffer, only one command at a time */
1834 static const struct file_operations kmemleak_fops
= {
1835 .owner
= THIS_MODULE
,
1836 .open
= kmemleak_open
,
1838 .write
= kmemleak_write
,
1839 .llseek
= seq_lseek
,
1840 .release
= seq_release
,
1843 static void __kmemleak_do_cleanup(void)
1845 struct kmemleak_object
*object
, *tmp
;
1848 * Kmemleak has already been disabled, no need for RCU list traversal
1849 * or kmemleak_lock held.
1851 list_for_each_entry_safe(object
, tmp
, &object_list
, object_list
) {
1852 __remove_object(object
);
1853 __delete_object(object
);
1858 * Stop the memory scanning thread and free the kmemleak internal objects if
1859 * no previous scan thread (otherwise, kmemleak may still have some useful
1860 * information on memory leaks).
1862 static void kmemleak_do_cleanup(struct work_struct
*work
)
1866 mutex_lock(&scan_mutex
);
1868 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1869 * longer track object freeing. Ordering of the scan thread stopping and
1870 * the memory accesses below is guaranteed by the kthread_stop()
1873 kmemleak_free_enabled
= 0;
1874 mutex_unlock(&scan_mutex
);
1876 if (!kmemleak_found_leaks
)
1877 __kmemleak_do_cleanup();
1879 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1882 static DECLARE_WORK(cleanup_work
, kmemleak_do_cleanup
);
1885 * Disable kmemleak. No memory allocation/freeing will be traced once this
1886 * function is called. Disabling kmemleak is an irreversible operation.
1888 static void kmemleak_disable(void)
1890 /* atomically check whether it was already invoked */
1891 if (cmpxchg(&kmemleak_error
, 0, 1))
1894 /* stop any memory operation tracing */
1895 kmemleak_enabled
= 0;
1897 /* check whether it is too early for a kernel thread */
1898 if (kmemleak_initialized
)
1899 schedule_work(&cleanup_work
);
1901 kmemleak_free_enabled
= 0;
1903 pr_info("Kernel memory leak detector disabled\n");
1907 * Allow boot-time kmemleak disabling (enabled by default).
1909 static int __init
kmemleak_boot_config(char *str
)
1913 if (strcmp(str
, "off") == 0)
1915 else if (strcmp(str
, "on") == 0)
1916 kmemleak_skip_disable
= 1;
1921 early_param("kmemleak", kmemleak_boot_config
);
1924 * Kmemleak initialization.
1926 void __init
kmemleak_init(void)
1928 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1929 if (!kmemleak_skip_disable
) {
1938 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
1939 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
1941 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
1942 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
1944 /* register the data/bss sections */
1945 create_object((unsigned long)_sdata
, _edata
- _sdata
,
1946 KMEMLEAK_GREY
, GFP_ATOMIC
);
1947 create_object((unsigned long)__bss_start
, __bss_stop
- __bss_start
,
1948 KMEMLEAK_GREY
, GFP_ATOMIC
);
1949 /* only register .data..ro_after_init if not within .data */
1950 if (__start_ro_after_init
< _sdata
|| __end_ro_after_init
> _edata
)
1951 create_object((unsigned long)__start_ro_after_init
,
1952 __end_ro_after_init
- __start_ro_after_init
,
1953 KMEMLEAK_GREY
, GFP_ATOMIC
);
1957 * Late initialization function.
1959 static int __init
kmemleak_late_init(void)
1961 kmemleak_initialized
= 1;
1963 debugfs_create_file("kmemleak", 0644, NULL
, NULL
, &kmemleak_fops
);
1965 if (kmemleak_error
) {
1967 * Some error occurred and kmemleak was disabled. There is a
1968 * small chance that kmemleak_disable() was called immediately
1969 * after setting kmemleak_initialized and we may end up with
1970 * two clean-up threads but serialized by scan_mutex.
1972 schedule_work(&cleanup_work
);
1976 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN
)) {
1977 mutex_lock(&scan_mutex
);
1978 start_scan_thread();
1979 mutex_unlock(&scan_mutex
);
1982 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1983 mem_pool_free_count
);
1987 late_initcall(kmemleak_late_init
);