2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include "kvm_cache_regs.h"
34 #include <asm/virtext.h>
37 #define __ex(x) __kvm_handle_fault_on_reboot(x)
39 MODULE_AUTHOR("Qumranet");
40 MODULE_LICENSE("GPL");
42 static int __read_mostly bypass_guest_pf
= 1;
43 module_param(bypass_guest_pf
, bool, S_IRUGO
);
45 static int __read_mostly enable_vpid
= 1;
46 module_param_named(vpid
, enable_vpid
, bool, 0444);
48 static int __read_mostly flexpriority_enabled
= 1;
49 module_param_named(flexpriority
, flexpriority_enabled
, bool, S_IRUGO
);
51 static int __read_mostly enable_ept
= 1;
52 module_param_named(ept
, enable_ept
, bool, S_IRUGO
);
54 static int __read_mostly enable_unrestricted_guest
= 1;
55 module_param_named(unrestricted_guest
,
56 enable_unrestricted_guest
, bool, S_IRUGO
);
58 static int __read_mostly emulate_invalid_guest_state
= 0;
59 module_param(emulate_invalid_guest_state
, bool, S_IRUGO
);
69 struct list_head local_vcpus_link
;
70 unsigned long host_rsp
;
73 u32 idt_vectoring_info
;
74 struct kvm_msr_entry
*guest_msrs
;
75 struct kvm_msr_entry
*host_msrs
;
80 int msr_offset_kernel_gs_base
;
85 u16 fs_sel
, gs_sel
, ldt_sel
;
86 int gs_ldt_reload_needed
;
88 int guest_efer_loaded
;
93 struct kvm_save_segment
{
106 bool emulation_required
;
107 enum emulation_result invalid_state_emulation_result
;
109 /* Support for vnmi-less CPUs */
110 int soft_vnmi_blocked
;
112 s64 vnmi_blocked_time
;
116 static inline struct vcpu_vmx
*to_vmx(struct kvm_vcpu
*vcpu
)
118 return container_of(vcpu
, struct vcpu_vmx
, vcpu
);
121 static int init_rmode(struct kvm
*kvm
);
122 static u64
construct_eptp(unsigned long root_hpa
);
124 static DEFINE_PER_CPU(struct vmcs
*, vmxarea
);
125 static DEFINE_PER_CPU(struct vmcs
*, current_vmcs
);
126 static DEFINE_PER_CPU(struct list_head
, vcpus_on_cpu
);
128 static unsigned long *vmx_io_bitmap_a
;
129 static unsigned long *vmx_io_bitmap_b
;
130 static unsigned long *vmx_msr_bitmap_legacy
;
131 static unsigned long *vmx_msr_bitmap_longmode
;
133 static DECLARE_BITMAP(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
134 static DEFINE_SPINLOCK(vmx_vpid_lock
);
136 static struct vmcs_config
{
140 u32 pin_based_exec_ctrl
;
141 u32 cpu_based_exec_ctrl
;
142 u32 cpu_based_2nd_exec_ctrl
;
147 static struct vmx_capability
{
152 #define VMX_SEGMENT_FIELD(seg) \
153 [VCPU_SREG_##seg] = { \
154 .selector = GUEST_##seg##_SELECTOR, \
155 .base = GUEST_##seg##_BASE, \
156 .limit = GUEST_##seg##_LIMIT, \
157 .ar_bytes = GUEST_##seg##_AR_BYTES, \
160 static struct kvm_vmx_segment_field
{
165 } kvm_vmx_segment_fields
[] = {
166 VMX_SEGMENT_FIELD(CS
),
167 VMX_SEGMENT_FIELD(DS
),
168 VMX_SEGMENT_FIELD(ES
),
169 VMX_SEGMENT_FIELD(FS
),
170 VMX_SEGMENT_FIELD(GS
),
171 VMX_SEGMENT_FIELD(SS
),
172 VMX_SEGMENT_FIELD(TR
),
173 VMX_SEGMENT_FIELD(LDTR
),
176 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
);
179 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
180 * away by decrementing the array size.
182 static const u32 vmx_msr_index
[] = {
184 MSR_SYSCALL_MASK
, MSR_LSTAR
, MSR_CSTAR
, MSR_KERNEL_GS_BASE
,
186 MSR_EFER
, MSR_K6_STAR
,
188 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
190 static void load_msrs(struct kvm_msr_entry
*e
, int n
)
194 for (i
= 0; i
< n
; ++i
)
195 wrmsrl(e
[i
].index
, e
[i
].data
);
198 static void save_msrs(struct kvm_msr_entry
*e
, int n
)
202 for (i
= 0; i
< n
; ++i
)
203 rdmsrl(e
[i
].index
, e
[i
].data
);
206 static inline int is_page_fault(u32 intr_info
)
208 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
209 INTR_INFO_VALID_MASK
)) ==
210 (INTR_TYPE_HARD_EXCEPTION
| PF_VECTOR
| INTR_INFO_VALID_MASK
);
213 static inline int is_no_device(u32 intr_info
)
215 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
216 INTR_INFO_VALID_MASK
)) ==
217 (INTR_TYPE_HARD_EXCEPTION
| NM_VECTOR
| INTR_INFO_VALID_MASK
);
220 static inline int is_invalid_opcode(u32 intr_info
)
222 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
223 INTR_INFO_VALID_MASK
)) ==
224 (INTR_TYPE_HARD_EXCEPTION
| UD_VECTOR
| INTR_INFO_VALID_MASK
);
227 static inline int is_external_interrupt(u32 intr_info
)
229 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VALID_MASK
))
230 == (INTR_TYPE_EXT_INTR
| INTR_INFO_VALID_MASK
);
233 static inline int is_machine_check(u32 intr_info
)
235 return (intr_info
& (INTR_INFO_INTR_TYPE_MASK
| INTR_INFO_VECTOR_MASK
|
236 INTR_INFO_VALID_MASK
)) ==
237 (INTR_TYPE_HARD_EXCEPTION
| MC_VECTOR
| INTR_INFO_VALID_MASK
);
240 static inline int cpu_has_vmx_msr_bitmap(void)
242 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_USE_MSR_BITMAPS
;
245 static inline int cpu_has_vmx_tpr_shadow(void)
247 return vmcs_config
.cpu_based_exec_ctrl
& CPU_BASED_TPR_SHADOW
;
250 static inline int vm_need_tpr_shadow(struct kvm
*kvm
)
252 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm
));
255 static inline int cpu_has_secondary_exec_ctrls(void)
257 return vmcs_config
.cpu_based_exec_ctrl
&
258 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
261 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
263 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
264 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
267 static inline bool cpu_has_vmx_flexpriority(void)
269 return cpu_has_vmx_tpr_shadow() &&
270 cpu_has_vmx_virtualize_apic_accesses();
273 static inline bool cpu_has_vmx_ept_execute_only(void)
275 return !!(vmx_capability
.ept
& VMX_EPT_EXECUTE_ONLY_BIT
);
278 static inline bool cpu_has_vmx_eptp_uncacheable(void)
280 return !!(vmx_capability
.ept
& VMX_EPTP_UC_BIT
);
283 static inline bool cpu_has_vmx_eptp_writeback(void)
285 return !!(vmx_capability
.ept
& VMX_EPTP_WB_BIT
);
288 static inline bool cpu_has_vmx_ept_2m_page(void)
290 return !!(vmx_capability
.ept
& VMX_EPT_2MB_PAGE_BIT
);
293 static inline int cpu_has_vmx_invept_individual_addr(void)
295 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_INDIVIDUAL_BIT
);
298 static inline int cpu_has_vmx_invept_context(void)
300 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_CONTEXT_BIT
);
303 static inline int cpu_has_vmx_invept_global(void)
305 return !!(vmx_capability
.ept
& VMX_EPT_EXTENT_GLOBAL_BIT
);
308 static inline int cpu_has_vmx_ept(void)
310 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
311 SECONDARY_EXEC_ENABLE_EPT
;
314 static inline int cpu_has_vmx_unrestricted_guest(void)
316 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
317 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
320 static inline int vm_need_virtualize_apic_accesses(struct kvm
*kvm
)
322 return flexpriority_enabled
&&
323 (cpu_has_vmx_virtualize_apic_accesses()) &&
324 (irqchip_in_kernel(kvm
));
327 static inline int cpu_has_vmx_vpid(void)
329 return vmcs_config
.cpu_based_2nd_exec_ctrl
&
330 SECONDARY_EXEC_ENABLE_VPID
;
333 static inline int cpu_has_virtual_nmis(void)
335 return vmcs_config
.pin_based_exec_ctrl
& PIN_BASED_VIRTUAL_NMIS
;
338 static inline bool report_flexpriority(void)
340 return flexpriority_enabled
;
343 static int __find_msr_index(struct vcpu_vmx
*vmx
, u32 msr
)
347 for (i
= 0; i
< vmx
->nmsrs
; ++i
)
348 if (vmx
->guest_msrs
[i
].index
== msr
)
353 static inline void __invvpid(int ext
, u16 vpid
, gva_t gva
)
359 } operand
= { vpid
, 0, gva
};
361 asm volatile (__ex(ASM_VMX_INVVPID
)
362 /* CF==1 or ZF==1 --> rc = -1 */
364 : : "a"(&operand
), "c"(ext
) : "cc", "memory");
367 static inline void __invept(int ext
, u64 eptp
, gpa_t gpa
)
371 } operand
= {eptp
, gpa
};
373 asm volatile (__ex(ASM_VMX_INVEPT
)
374 /* CF==1 or ZF==1 --> rc = -1 */
375 "; ja 1f ; ud2 ; 1:\n"
376 : : "a" (&operand
), "c" (ext
) : "cc", "memory");
379 static struct kvm_msr_entry
*find_msr_entry(struct vcpu_vmx
*vmx
, u32 msr
)
383 i
= __find_msr_index(vmx
, msr
);
385 return &vmx
->guest_msrs
[i
];
389 static void vmcs_clear(struct vmcs
*vmcs
)
391 u64 phys_addr
= __pa(vmcs
);
394 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX
) "; setna %0"
395 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
398 printk(KERN_ERR
"kvm: vmclear fail: %p/%llx\n",
402 static void __vcpu_clear(void *arg
)
404 struct vcpu_vmx
*vmx
= arg
;
405 int cpu
= raw_smp_processor_id();
407 if (vmx
->vcpu
.cpu
== cpu
)
408 vmcs_clear(vmx
->vmcs
);
409 if (per_cpu(current_vmcs
, cpu
) == vmx
->vmcs
)
410 per_cpu(current_vmcs
, cpu
) = NULL
;
411 rdtscll(vmx
->vcpu
.arch
.host_tsc
);
412 list_del(&vmx
->local_vcpus_link
);
417 static void vcpu_clear(struct vcpu_vmx
*vmx
)
419 if (vmx
->vcpu
.cpu
== -1)
421 smp_call_function_single(vmx
->vcpu
.cpu
, __vcpu_clear
, vmx
, 1);
424 static inline void vpid_sync_vcpu_all(struct vcpu_vmx
*vmx
)
429 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT
, vmx
->vpid
, 0);
432 static inline void ept_sync_global(void)
434 if (cpu_has_vmx_invept_global())
435 __invept(VMX_EPT_EXTENT_GLOBAL
, 0, 0);
438 static inline void ept_sync_context(u64 eptp
)
441 if (cpu_has_vmx_invept_context())
442 __invept(VMX_EPT_EXTENT_CONTEXT
, eptp
, 0);
448 static inline void ept_sync_individual_addr(u64 eptp
, gpa_t gpa
)
451 if (cpu_has_vmx_invept_individual_addr())
452 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR
,
455 ept_sync_context(eptp
);
459 static unsigned long vmcs_readl(unsigned long field
)
463 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX
)
464 : "=a"(value
) : "d"(field
) : "cc");
468 static u16
vmcs_read16(unsigned long field
)
470 return vmcs_readl(field
);
473 static u32
vmcs_read32(unsigned long field
)
475 return vmcs_readl(field
);
478 static u64
vmcs_read64(unsigned long field
)
481 return vmcs_readl(field
);
483 return vmcs_readl(field
) | ((u64
)vmcs_readl(field
+1) << 32);
487 static noinline
void vmwrite_error(unsigned long field
, unsigned long value
)
489 printk(KERN_ERR
"vmwrite error: reg %lx value %lx (err %d)\n",
490 field
, value
, vmcs_read32(VM_INSTRUCTION_ERROR
));
494 static void vmcs_writel(unsigned long field
, unsigned long value
)
498 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX
) "; setna %0"
499 : "=q"(error
) : "a"(value
), "d"(field
) : "cc");
501 vmwrite_error(field
, value
);
504 static void vmcs_write16(unsigned long field
, u16 value
)
506 vmcs_writel(field
, value
);
509 static void vmcs_write32(unsigned long field
, u32 value
)
511 vmcs_writel(field
, value
);
514 static void vmcs_write64(unsigned long field
, u64 value
)
516 vmcs_writel(field
, value
);
517 #ifndef CONFIG_X86_64
519 vmcs_writel(field
+1, value
>> 32);
523 static void vmcs_clear_bits(unsigned long field
, u32 mask
)
525 vmcs_writel(field
, vmcs_readl(field
) & ~mask
);
528 static void vmcs_set_bits(unsigned long field
, u32 mask
)
530 vmcs_writel(field
, vmcs_readl(field
) | mask
);
533 static void update_exception_bitmap(struct kvm_vcpu
*vcpu
)
537 eb
= (1u << PF_VECTOR
) | (1u << UD_VECTOR
) | (1u << MC_VECTOR
);
538 if (!vcpu
->fpu_active
)
539 eb
|= 1u << NM_VECTOR
;
540 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
541 if (vcpu
->guest_debug
&
542 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
543 eb
|= 1u << DB_VECTOR
;
544 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
545 eb
|= 1u << BP_VECTOR
;
547 if (to_vmx(vcpu
)->rmode
.vm86_active
)
550 eb
&= ~(1u << PF_VECTOR
); /* bypass_guest_pf = 0 */
551 vmcs_write32(EXCEPTION_BITMAP
, eb
);
554 static void reload_tss(void)
557 * VT restores TR but not its size. Useless.
559 struct descriptor_table gdt
;
560 struct desc_struct
*descs
;
563 descs
= (void *)gdt
.base
;
564 descs
[GDT_ENTRY_TSS
].type
= 9; /* available TSS */
568 static void load_transition_efer(struct vcpu_vmx
*vmx
)
570 int efer_offset
= vmx
->msr_offset_efer
;
571 u64 host_efer
= vmx
->host_msrs
[efer_offset
].data
;
572 u64 guest_efer
= vmx
->guest_msrs
[efer_offset
].data
;
578 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
581 ignore_bits
= EFER_NX
| EFER_SCE
;
583 ignore_bits
|= EFER_LMA
| EFER_LME
;
584 /* SCE is meaningful only in long mode on Intel */
585 if (guest_efer
& EFER_LMA
)
586 ignore_bits
&= ~(u64
)EFER_SCE
;
588 if ((guest_efer
& ~ignore_bits
) == (host_efer
& ~ignore_bits
))
591 vmx
->host_state
.guest_efer_loaded
= 1;
592 guest_efer
&= ~ignore_bits
;
593 guest_efer
|= host_efer
& ignore_bits
;
594 wrmsrl(MSR_EFER
, guest_efer
);
595 vmx
->vcpu
.stat
.efer_reload
++;
598 static void reload_host_efer(struct vcpu_vmx
*vmx
)
600 if (vmx
->host_state
.guest_efer_loaded
) {
601 vmx
->host_state
.guest_efer_loaded
= 0;
602 load_msrs(vmx
->host_msrs
+ vmx
->msr_offset_efer
, 1);
606 static void vmx_save_host_state(struct kvm_vcpu
*vcpu
)
608 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
610 if (vmx
->host_state
.loaded
)
613 vmx
->host_state
.loaded
= 1;
615 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
616 * allow segment selectors with cpl > 0 or ti == 1.
618 vmx
->host_state
.ldt_sel
= kvm_read_ldt();
619 vmx
->host_state
.gs_ldt_reload_needed
= vmx
->host_state
.ldt_sel
;
620 vmx
->host_state
.fs_sel
= kvm_read_fs();
621 if (!(vmx
->host_state
.fs_sel
& 7)) {
622 vmcs_write16(HOST_FS_SELECTOR
, vmx
->host_state
.fs_sel
);
623 vmx
->host_state
.fs_reload_needed
= 0;
625 vmcs_write16(HOST_FS_SELECTOR
, 0);
626 vmx
->host_state
.fs_reload_needed
= 1;
628 vmx
->host_state
.gs_sel
= kvm_read_gs();
629 if (!(vmx
->host_state
.gs_sel
& 7))
630 vmcs_write16(HOST_GS_SELECTOR
, vmx
->host_state
.gs_sel
);
632 vmcs_write16(HOST_GS_SELECTOR
, 0);
633 vmx
->host_state
.gs_ldt_reload_needed
= 1;
637 vmcs_writel(HOST_FS_BASE
, read_msr(MSR_FS_BASE
));
638 vmcs_writel(HOST_GS_BASE
, read_msr(MSR_GS_BASE
));
640 vmcs_writel(HOST_FS_BASE
, segment_base(vmx
->host_state
.fs_sel
));
641 vmcs_writel(HOST_GS_BASE
, segment_base(vmx
->host_state
.gs_sel
));
645 if (is_long_mode(&vmx
->vcpu
))
646 save_msrs(vmx
->host_msrs
+
647 vmx
->msr_offset_kernel_gs_base
, 1);
650 load_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
651 load_transition_efer(vmx
);
654 static void __vmx_load_host_state(struct vcpu_vmx
*vmx
)
658 if (!vmx
->host_state
.loaded
)
661 ++vmx
->vcpu
.stat
.host_state_reload
;
662 vmx
->host_state
.loaded
= 0;
663 if (vmx
->host_state
.fs_reload_needed
)
664 kvm_load_fs(vmx
->host_state
.fs_sel
);
665 if (vmx
->host_state
.gs_ldt_reload_needed
) {
666 kvm_load_ldt(vmx
->host_state
.ldt_sel
);
668 * If we have to reload gs, we must take care to
669 * preserve our gs base.
671 local_irq_save(flags
);
672 kvm_load_gs(vmx
->host_state
.gs_sel
);
674 wrmsrl(MSR_GS_BASE
, vmcs_readl(HOST_GS_BASE
));
676 local_irq_restore(flags
);
679 save_msrs(vmx
->guest_msrs
, vmx
->save_nmsrs
);
680 load_msrs(vmx
->host_msrs
, vmx
->save_nmsrs
);
681 reload_host_efer(vmx
);
684 static void vmx_load_host_state(struct vcpu_vmx
*vmx
)
687 __vmx_load_host_state(vmx
);
692 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
693 * vcpu mutex is already taken.
695 static void vmx_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
697 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
698 u64 phys_addr
= __pa(vmx
->vmcs
);
699 u64 tsc_this
, delta
, new_offset
;
701 if (vcpu
->cpu
!= cpu
) {
703 kvm_migrate_timers(vcpu
);
704 vpid_sync_vcpu_all(vmx
);
706 list_add(&vmx
->local_vcpus_link
,
707 &per_cpu(vcpus_on_cpu
, cpu
));
711 if (per_cpu(current_vmcs
, cpu
) != vmx
->vmcs
) {
714 per_cpu(current_vmcs
, cpu
) = vmx
->vmcs
;
715 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX
) "; setna %0"
716 : "=g"(error
) : "a"(&phys_addr
), "m"(phys_addr
)
719 printk(KERN_ERR
"kvm: vmptrld %p/%llx fail\n",
720 vmx
->vmcs
, phys_addr
);
723 if (vcpu
->cpu
!= cpu
) {
724 struct descriptor_table dt
;
725 unsigned long sysenter_esp
;
729 * Linux uses per-cpu TSS and GDT, so set these when switching
732 vmcs_writel(HOST_TR_BASE
, kvm_read_tr_base()); /* 22.2.4 */
734 vmcs_writel(HOST_GDTR_BASE
, dt
.base
); /* 22.2.4 */
736 rdmsrl(MSR_IA32_SYSENTER_ESP
, sysenter_esp
);
737 vmcs_writel(HOST_IA32_SYSENTER_ESP
, sysenter_esp
); /* 22.2.3 */
740 * Make sure the time stamp counter is monotonous.
743 if (tsc_this
< vcpu
->arch
.host_tsc
) {
744 delta
= vcpu
->arch
.host_tsc
- tsc_this
;
745 new_offset
= vmcs_read64(TSC_OFFSET
) + delta
;
746 vmcs_write64(TSC_OFFSET
, new_offset
);
751 static void vmx_vcpu_put(struct kvm_vcpu
*vcpu
)
753 __vmx_load_host_state(to_vmx(vcpu
));
756 static void vmx_fpu_activate(struct kvm_vcpu
*vcpu
)
758 if (vcpu
->fpu_active
)
760 vcpu
->fpu_active
= 1;
761 vmcs_clear_bits(GUEST_CR0
, X86_CR0_TS
);
762 if (vcpu
->arch
.cr0
& X86_CR0_TS
)
763 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
764 update_exception_bitmap(vcpu
);
767 static void vmx_fpu_deactivate(struct kvm_vcpu
*vcpu
)
769 if (!vcpu
->fpu_active
)
771 vcpu
->fpu_active
= 0;
772 vmcs_set_bits(GUEST_CR0
, X86_CR0_TS
);
773 update_exception_bitmap(vcpu
);
776 static unsigned long vmx_get_rflags(struct kvm_vcpu
*vcpu
)
778 return vmcs_readl(GUEST_RFLAGS
);
781 static void vmx_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
783 if (to_vmx(vcpu
)->rmode
.vm86_active
)
784 rflags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
785 vmcs_writel(GUEST_RFLAGS
, rflags
);
788 static u32
vmx_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
790 u32 interruptibility
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
793 if (interruptibility
& GUEST_INTR_STATE_STI
)
794 ret
|= X86_SHADOW_INT_STI
;
795 if (interruptibility
& GUEST_INTR_STATE_MOV_SS
)
796 ret
|= X86_SHADOW_INT_MOV_SS
;
801 static void vmx_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
803 u32 interruptibility_old
= vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
);
804 u32 interruptibility
= interruptibility_old
;
806 interruptibility
&= ~(GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
);
808 if (mask
& X86_SHADOW_INT_MOV_SS
)
809 interruptibility
|= GUEST_INTR_STATE_MOV_SS
;
810 if (mask
& X86_SHADOW_INT_STI
)
811 interruptibility
|= GUEST_INTR_STATE_STI
;
813 if ((interruptibility
!= interruptibility_old
))
814 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, interruptibility
);
817 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
821 rip
= kvm_rip_read(vcpu
);
822 rip
+= vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
823 kvm_rip_write(vcpu
, rip
);
825 /* skipping an emulated instruction also counts */
826 vmx_set_interrupt_shadow(vcpu
, 0);
829 static void vmx_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
830 bool has_error_code
, u32 error_code
)
832 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
833 u32 intr_info
= nr
| INTR_INFO_VALID_MASK
;
835 if (has_error_code
) {
836 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE
, error_code
);
837 intr_info
|= INTR_INFO_DELIVER_CODE_MASK
;
840 if (vmx
->rmode
.vm86_active
) {
841 vmx
->rmode
.irq
.pending
= true;
842 vmx
->rmode
.irq
.vector
= nr
;
843 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
844 if (kvm_exception_is_soft(nr
))
845 vmx
->rmode
.irq
.rip
+=
846 vmx
->vcpu
.arch
.event_exit_inst_len
;
847 intr_info
|= INTR_TYPE_SOFT_INTR
;
848 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
849 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
850 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
854 if (kvm_exception_is_soft(nr
)) {
855 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
856 vmx
->vcpu
.arch
.event_exit_inst_len
);
857 intr_info
|= INTR_TYPE_SOFT_EXCEPTION
;
859 intr_info
|= INTR_TYPE_HARD_EXCEPTION
;
861 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr_info
);
865 * Swap MSR entry in host/guest MSR entry array.
868 static void move_msr_up(struct vcpu_vmx
*vmx
, int from
, int to
)
870 struct kvm_msr_entry tmp
;
872 tmp
= vmx
->guest_msrs
[to
];
873 vmx
->guest_msrs
[to
] = vmx
->guest_msrs
[from
];
874 vmx
->guest_msrs
[from
] = tmp
;
875 tmp
= vmx
->host_msrs
[to
];
876 vmx
->host_msrs
[to
] = vmx
->host_msrs
[from
];
877 vmx
->host_msrs
[from
] = tmp
;
882 * Set up the vmcs to automatically save and restore system
883 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
884 * mode, as fiddling with msrs is very expensive.
886 static void setup_msrs(struct vcpu_vmx
*vmx
)
889 unsigned long *msr_bitmap
;
891 vmx_load_host_state(vmx
);
894 if (is_long_mode(&vmx
->vcpu
)) {
897 index
= __find_msr_index(vmx
, MSR_SYSCALL_MASK
);
899 move_msr_up(vmx
, index
, save_nmsrs
++);
900 index
= __find_msr_index(vmx
, MSR_LSTAR
);
902 move_msr_up(vmx
, index
, save_nmsrs
++);
903 index
= __find_msr_index(vmx
, MSR_CSTAR
);
905 move_msr_up(vmx
, index
, save_nmsrs
++);
906 index
= __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
908 move_msr_up(vmx
, index
, save_nmsrs
++);
910 * MSR_K6_STAR is only needed on long mode guests, and only
911 * if efer.sce is enabled.
913 index
= __find_msr_index(vmx
, MSR_K6_STAR
);
914 if ((index
>= 0) && (vmx
->vcpu
.arch
.shadow_efer
& EFER_SCE
))
915 move_msr_up(vmx
, index
, save_nmsrs
++);
918 vmx
->save_nmsrs
= save_nmsrs
;
921 vmx
->msr_offset_kernel_gs_base
=
922 __find_msr_index(vmx
, MSR_KERNEL_GS_BASE
);
924 vmx
->msr_offset_efer
= __find_msr_index(vmx
, MSR_EFER
);
926 if (cpu_has_vmx_msr_bitmap()) {
927 if (is_long_mode(&vmx
->vcpu
))
928 msr_bitmap
= vmx_msr_bitmap_longmode
;
930 msr_bitmap
= vmx_msr_bitmap_legacy
;
932 vmcs_write64(MSR_BITMAP
, __pa(msr_bitmap
));
937 * reads and returns guest's timestamp counter "register"
938 * guest_tsc = host_tsc + tsc_offset -- 21.3
940 static u64
guest_read_tsc(void)
942 u64 host_tsc
, tsc_offset
;
945 tsc_offset
= vmcs_read64(TSC_OFFSET
);
946 return host_tsc
+ tsc_offset
;
950 * writes 'guest_tsc' into guest's timestamp counter "register"
951 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
953 static void guest_write_tsc(u64 guest_tsc
, u64 host_tsc
)
955 vmcs_write64(TSC_OFFSET
, guest_tsc
- host_tsc
);
959 * Reads an msr value (of 'msr_index') into 'pdata'.
960 * Returns 0 on success, non-0 otherwise.
961 * Assumes vcpu_load() was already called.
963 static int vmx_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
966 struct kvm_msr_entry
*msr
;
969 printk(KERN_ERR
"BUG: get_msr called with NULL pdata\n");
976 data
= vmcs_readl(GUEST_FS_BASE
);
979 data
= vmcs_readl(GUEST_GS_BASE
);
982 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
985 data
= guest_read_tsc();
987 case MSR_IA32_SYSENTER_CS
:
988 data
= vmcs_read32(GUEST_SYSENTER_CS
);
990 case MSR_IA32_SYSENTER_EIP
:
991 data
= vmcs_readl(GUEST_SYSENTER_EIP
);
993 case MSR_IA32_SYSENTER_ESP
:
994 data
= vmcs_readl(GUEST_SYSENTER_ESP
);
997 vmx_load_host_state(to_vmx(vcpu
));
998 msr
= find_msr_entry(to_vmx(vcpu
), msr_index
);
1003 return kvm_get_msr_common(vcpu
, msr_index
, pdata
);
1011 * Writes msr value into into the appropriate "register".
1012 * Returns 0 on success, non-0 otherwise.
1013 * Assumes vcpu_load() was already called.
1015 static int vmx_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
1017 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1018 struct kvm_msr_entry
*msr
;
1022 switch (msr_index
) {
1024 vmx_load_host_state(vmx
);
1025 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1027 #ifdef CONFIG_X86_64
1029 vmcs_writel(GUEST_FS_BASE
, data
);
1032 vmcs_writel(GUEST_GS_BASE
, data
);
1035 case MSR_IA32_SYSENTER_CS
:
1036 vmcs_write32(GUEST_SYSENTER_CS
, data
);
1038 case MSR_IA32_SYSENTER_EIP
:
1039 vmcs_writel(GUEST_SYSENTER_EIP
, data
);
1041 case MSR_IA32_SYSENTER_ESP
:
1042 vmcs_writel(GUEST_SYSENTER_ESP
, data
);
1046 guest_write_tsc(data
, host_tsc
);
1048 case MSR_IA32_CR_PAT
:
1049 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
1050 vmcs_write64(GUEST_IA32_PAT
, data
);
1051 vcpu
->arch
.pat
= data
;
1054 /* Otherwise falls through to kvm_set_msr_common */
1056 vmx_load_host_state(vmx
);
1057 msr
= find_msr_entry(vmx
, msr_index
);
1062 ret
= kvm_set_msr_common(vcpu
, msr_index
, data
);
1068 static void vmx_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1070 __set_bit(reg
, (unsigned long *)&vcpu
->arch
.regs_avail
);
1073 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = vmcs_readl(GUEST_RSP
);
1076 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = vmcs_readl(GUEST_RIP
);
1078 case VCPU_EXREG_PDPTR
:
1080 ept_save_pdptrs(vcpu
);
1087 static int set_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1089 int old_debug
= vcpu
->guest_debug
;
1090 unsigned long flags
;
1092 vcpu
->guest_debug
= dbg
->control
;
1093 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
1094 vcpu
->guest_debug
= 0;
1096 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1097 vmcs_writel(GUEST_DR7
, dbg
->arch
.debugreg
[7]);
1099 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
1101 flags
= vmcs_readl(GUEST_RFLAGS
);
1102 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
1103 flags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
1104 else if (old_debug
& KVM_GUESTDBG_SINGLESTEP
)
1105 flags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1106 vmcs_writel(GUEST_RFLAGS
, flags
);
1108 update_exception_bitmap(vcpu
);
1113 static __init
int cpu_has_kvm_support(void)
1115 return cpu_has_vmx();
1118 static __init
int vmx_disabled_by_bios(void)
1122 rdmsrl(MSR_IA32_FEATURE_CONTROL
, msr
);
1123 return (msr
& (FEATURE_CONTROL_LOCKED
|
1124 FEATURE_CONTROL_VMXON_ENABLED
))
1125 == FEATURE_CONTROL_LOCKED
;
1126 /* locked but not enabled */
1129 static void hardware_enable(void *garbage
)
1131 int cpu
= raw_smp_processor_id();
1132 u64 phys_addr
= __pa(per_cpu(vmxarea
, cpu
));
1135 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu
, cpu
));
1136 rdmsrl(MSR_IA32_FEATURE_CONTROL
, old
);
1137 if ((old
& (FEATURE_CONTROL_LOCKED
|
1138 FEATURE_CONTROL_VMXON_ENABLED
))
1139 != (FEATURE_CONTROL_LOCKED
|
1140 FEATURE_CONTROL_VMXON_ENABLED
))
1141 /* enable and lock */
1142 wrmsrl(MSR_IA32_FEATURE_CONTROL
, old
|
1143 FEATURE_CONTROL_LOCKED
|
1144 FEATURE_CONTROL_VMXON_ENABLED
);
1145 write_cr4(read_cr4() | X86_CR4_VMXE
); /* FIXME: not cpu hotplug safe */
1146 asm volatile (ASM_VMX_VMXON_RAX
1147 : : "a"(&phys_addr
), "m"(phys_addr
)
1151 static void vmclear_local_vcpus(void)
1153 int cpu
= raw_smp_processor_id();
1154 struct vcpu_vmx
*vmx
, *n
;
1156 list_for_each_entry_safe(vmx
, n
, &per_cpu(vcpus_on_cpu
, cpu
),
1162 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1165 static void kvm_cpu_vmxoff(void)
1167 asm volatile (__ex(ASM_VMX_VMXOFF
) : : : "cc");
1168 write_cr4(read_cr4() & ~X86_CR4_VMXE
);
1171 static void hardware_disable(void *garbage
)
1173 vmclear_local_vcpus();
1177 static __init
int adjust_vmx_controls(u32 ctl_min
, u32 ctl_opt
,
1178 u32 msr
, u32
*result
)
1180 u32 vmx_msr_low
, vmx_msr_high
;
1181 u32 ctl
= ctl_min
| ctl_opt
;
1183 rdmsr(msr
, vmx_msr_low
, vmx_msr_high
);
1185 ctl
&= vmx_msr_high
; /* bit == 0 in high word ==> must be zero */
1186 ctl
|= vmx_msr_low
; /* bit == 1 in low word ==> must be one */
1188 /* Ensure minimum (required) set of control bits are supported. */
1196 static __init
int setup_vmcs_config(struct vmcs_config
*vmcs_conf
)
1198 u32 vmx_msr_low
, vmx_msr_high
;
1199 u32 min
, opt
, min2
, opt2
;
1200 u32 _pin_based_exec_control
= 0;
1201 u32 _cpu_based_exec_control
= 0;
1202 u32 _cpu_based_2nd_exec_control
= 0;
1203 u32 _vmexit_control
= 0;
1204 u32 _vmentry_control
= 0;
1206 min
= PIN_BASED_EXT_INTR_MASK
| PIN_BASED_NMI_EXITING
;
1207 opt
= PIN_BASED_VIRTUAL_NMIS
;
1208 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PINBASED_CTLS
,
1209 &_pin_based_exec_control
) < 0)
1212 min
= CPU_BASED_HLT_EXITING
|
1213 #ifdef CONFIG_X86_64
1214 CPU_BASED_CR8_LOAD_EXITING
|
1215 CPU_BASED_CR8_STORE_EXITING
|
1217 CPU_BASED_CR3_LOAD_EXITING
|
1218 CPU_BASED_CR3_STORE_EXITING
|
1219 CPU_BASED_USE_IO_BITMAPS
|
1220 CPU_BASED_MOV_DR_EXITING
|
1221 CPU_BASED_USE_TSC_OFFSETING
|
1222 CPU_BASED_INVLPG_EXITING
;
1223 opt
= CPU_BASED_TPR_SHADOW
|
1224 CPU_BASED_USE_MSR_BITMAPS
|
1225 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
;
1226 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1227 &_cpu_based_exec_control
) < 0)
1229 #ifdef CONFIG_X86_64
1230 if ((_cpu_based_exec_control
& CPU_BASED_TPR_SHADOW
))
1231 _cpu_based_exec_control
&= ~CPU_BASED_CR8_LOAD_EXITING
&
1232 ~CPU_BASED_CR8_STORE_EXITING
;
1234 if (_cpu_based_exec_control
& CPU_BASED_ACTIVATE_SECONDARY_CONTROLS
) {
1236 opt2
= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
|
1237 SECONDARY_EXEC_WBINVD_EXITING
|
1238 SECONDARY_EXEC_ENABLE_VPID
|
1239 SECONDARY_EXEC_ENABLE_EPT
|
1240 SECONDARY_EXEC_UNRESTRICTED_GUEST
;
1241 if (adjust_vmx_controls(min2
, opt2
,
1242 MSR_IA32_VMX_PROCBASED_CTLS2
,
1243 &_cpu_based_2nd_exec_control
) < 0)
1246 #ifndef CONFIG_X86_64
1247 if (!(_cpu_based_2nd_exec_control
&
1248 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
))
1249 _cpu_based_exec_control
&= ~CPU_BASED_TPR_SHADOW
;
1251 if (_cpu_based_2nd_exec_control
& SECONDARY_EXEC_ENABLE_EPT
) {
1252 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1254 min
&= ~(CPU_BASED_CR3_LOAD_EXITING
|
1255 CPU_BASED_CR3_STORE_EXITING
|
1256 CPU_BASED_INVLPG_EXITING
);
1257 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_PROCBASED_CTLS
,
1258 &_cpu_based_exec_control
) < 0)
1260 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP
,
1261 vmx_capability
.ept
, vmx_capability
.vpid
);
1265 #ifdef CONFIG_X86_64
1266 min
|= VM_EXIT_HOST_ADDR_SPACE_SIZE
;
1268 opt
= VM_EXIT_SAVE_IA32_PAT
| VM_EXIT_LOAD_IA32_PAT
;
1269 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_EXIT_CTLS
,
1270 &_vmexit_control
) < 0)
1274 opt
= VM_ENTRY_LOAD_IA32_PAT
;
1275 if (adjust_vmx_controls(min
, opt
, MSR_IA32_VMX_ENTRY_CTLS
,
1276 &_vmentry_control
) < 0)
1279 rdmsr(MSR_IA32_VMX_BASIC
, vmx_msr_low
, vmx_msr_high
);
1281 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1282 if ((vmx_msr_high
& 0x1fff) > PAGE_SIZE
)
1285 #ifdef CONFIG_X86_64
1286 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1287 if (vmx_msr_high
& (1u<<16))
1291 /* Require Write-Back (WB) memory type for VMCS accesses. */
1292 if (((vmx_msr_high
>> 18) & 15) != 6)
1295 vmcs_conf
->size
= vmx_msr_high
& 0x1fff;
1296 vmcs_conf
->order
= get_order(vmcs_config
.size
);
1297 vmcs_conf
->revision_id
= vmx_msr_low
;
1299 vmcs_conf
->pin_based_exec_ctrl
= _pin_based_exec_control
;
1300 vmcs_conf
->cpu_based_exec_ctrl
= _cpu_based_exec_control
;
1301 vmcs_conf
->cpu_based_2nd_exec_ctrl
= _cpu_based_2nd_exec_control
;
1302 vmcs_conf
->vmexit_ctrl
= _vmexit_control
;
1303 vmcs_conf
->vmentry_ctrl
= _vmentry_control
;
1308 static struct vmcs
*alloc_vmcs_cpu(int cpu
)
1310 int node
= cpu_to_node(cpu
);
1314 pages
= alloc_pages_exact_node(node
, GFP_KERNEL
, vmcs_config
.order
);
1317 vmcs
= page_address(pages
);
1318 memset(vmcs
, 0, vmcs_config
.size
);
1319 vmcs
->revision_id
= vmcs_config
.revision_id
; /* vmcs revision id */
1323 static struct vmcs
*alloc_vmcs(void)
1325 return alloc_vmcs_cpu(raw_smp_processor_id());
1328 static void free_vmcs(struct vmcs
*vmcs
)
1330 free_pages((unsigned long)vmcs
, vmcs_config
.order
);
1333 static void free_kvm_area(void)
1337 for_each_online_cpu(cpu
)
1338 free_vmcs(per_cpu(vmxarea
, cpu
));
1341 static __init
int alloc_kvm_area(void)
1345 for_each_online_cpu(cpu
) {
1348 vmcs
= alloc_vmcs_cpu(cpu
);
1354 per_cpu(vmxarea
, cpu
) = vmcs
;
1359 static __init
int hardware_setup(void)
1361 if (setup_vmcs_config(&vmcs_config
) < 0)
1364 if (boot_cpu_has(X86_FEATURE_NX
))
1365 kvm_enable_efer_bits(EFER_NX
);
1367 if (!cpu_has_vmx_vpid())
1370 if (!cpu_has_vmx_ept()) {
1372 enable_unrestricted_guest
= 0;
1375 if (!cpu_has_vmx_unrestricted_guest())
1376 enable_unrestricted_guest
= 0;
1378 if (!cpu_has_vmx_flexpriority())
1379 flexpriority_enabled
= 0;
1381 if (!cpu_has_vmx_tpr_shadow())
1382 kvm_x86_ops
->update_cr8_intercept
= NULL
;
1384 return alloc_kvm_area();
1387 static __exit
void hardware_unsetup(void)
1392 static void fix_pmode_dataseg(int seg
, struct kvm_save_segment
*save
)
1394 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1396 if (vmcs_readl(sf
->base
) == save
->base
&& (save
->base
& AR_S_MASK
)) {
1397 vmcs_write16(sf
->selector
, save
->selector
);
1398 vmcs_writel(sf
->base
, save
->base
);
1399 vmcs_write32(sf
->limit
, save
->limit
);
1400 vmcs_write32(sf
->ar_bytes
, save
->ar
);
1402 u32 dpl
= (vmcs_read16(sf
->selector
) & SELECTOR_RPL_MASK
)
1404 vmcs_write32(sf
->ar_bytes
, 0x93 | dpl
);
1408 static void enter_pmode(struct kvm_vcpu
*vcpu
)
1410 unsigned long flags
;
1411 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1413 vmx
->emulation_required
= 1;
1414 vmx
->rmode
.vm86_active
= 0;
1416 vmcs_writel(GUEST_TR_BASE
, vmx
->rmode
.tr
.base
);
1417 vmcs_write32(GUEST_TR_LIMIT
, vmx
->rmode
.tr
.limit
);
1418 vmcs_write32(GUEST_TR_AR_BYTES
, vmx
->rmode
.tr
.ar
);
1420 flags
= vmcs_readl(GUEST_RFLAGS
);
1421 flags
&= ~(X86_EFLAGS_IOPL
| X86_EFLAGS_VM
);
1422 flags
|= (vmx
->rmode
.save_iopl
<< IOPL_SHIFT
);
1423 vmcs_writel(GUEST_RFLAGS
, flags
);
1425 vmcs_writel(GUEST_CR4
, (vmcs_readl(GUEST_CR4
) & ~X86_CR4_VME
) |
1426 (vmcs_readl(CR4_READ_SHADOW
) & X86_CR4_VME
));
1428 update_exception_bitmap(vcpu
);
1430 if (emulate_invalid_guest_state
)
1433 fix_pmode_dataseg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
1434 fix_pmode_dataseg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
1435 fix_pmode_dataseg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
1436 fix_pmode_dataseg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
1438 vmcs_write16(GUEST_SS_SELECTOR
, 0);
1439 vmcs_write32(GUEST_SS_AR_BYTES
, 0x93);
1441 vmcs_write16(GUEST_CS_SELECTOR
,
1442 vmcs_read16(GUEST_CS_SELECTOR
) & ~SELECTOR_RPL_MASK
);
1443 vmcs_write32(GUEST_CS_AR_BYTES
, 0x9b);
1446 static gva_t
rmode_tss_base(struct kvm
*kvm
)
1448 if (!kvm
->arch
.tss_addr
) {
1449 gfn_t base_gfn
= kvm
->memslots
[0].base_gfn
+
1450 kvm
->memslots
[0].npages
- 3;
1451 return base_gfn
<< PAGE_SHIFT
;
1453 return kvm
->arch
.tss_addr
;
1456 static void fix_rmode_seg(int seg
, struct kvm_save_segment
*save
)
1458 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1460 save
->selector
= vmcs_read16(sf
->selector
);
1461 save
->base
= vmcs_readl(sf
->base
);
1462 save
->limit
= vmcs_read32(sf
->limit
);
1463 save
->ar
= vmcs_read32(sf
->ar_bytes
);
1464 vmcs_write16(sf
->selector
, save
->base
>> 4);
1465 vmcs_write32(sf
->base
, save
->base
& 0xfffff);
1466 vmcs_write32(sf
->limit
, 0xffff);
1467 vmcs_write32(sf
->ar_bytes
, 0xf3);
1470 static void enter_rmode(struct kvm_vcpu
*vcpu
)
1472 unsigned long flags
;
1473 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1475 if (enable_unrestricted_guest
)
1478 vmx
->emulation_required
= 1;
1479 vmx
->rmode
.vm86_active
= 1;
1481 vmx
->rmode
.tr
.base
= vmcs_readl(GUEST_TR_BASE
);
1482 vmcs_writel(GUEST_TR_BASE
, rmode_tss_base(vcpu
->kvm
));
1484 vmx
->rmode
.tr
.limit
= vmcs_read32(GUEST_TR_LIMIT
);
1485 vmcs_write32(GUEST_TR_LIMIT
, RMODE_TSS_SIZE
- 1);
1487 vmx
->rmode
.tr
.ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1488 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
1490 flags
= vmcs_readl(GUEST_RFLAGS
);
1491 vmx
->rmode
.save_iopl
1492 = (flags
& X86_EFLAGS_IOPL
) >> IOPL_SHIFT
;
1494 flags
|= X86_EFLAGS_IOPL
| X86_EFLAGS_VM
;
1496 vmcs_writel(GUEST_RFLAGS
, flags
);
1497 vmcs_writel(GUEST_CR4
, vmcs_readl(GUEST_CR4
) | X86_CR4_VME
);
1498 update_exception_bitmap(vcpu
);
1500 if (emulate_invalid_guest_state
)
1501 goto continue_rmode
;
1503 vmcs_write16(GUEST_SS_SELECTOR
, vmcs_readl(GUEST_SS_BASE
) >> 4);
1504 vmcs_write32(GUEST_SS_LIMIT
, 0xffff);
1505 vmcs_write32(GUEST_SS_AR_BYTES
, 0xf3);
1507 vmcs_write32(GUEST_CS_AR_BYTES
, 0xf3);
1508 vmcs_write32(GUEST_CS_LIMIT
, 0xffff);
1509 if (vmcs_readl(GUEST_CS_BASE
) == 0xffff0000)
1510 vmcs_writel(GUEST_CS_BASE
, 0xf0000);
1511 vmcs_write16(GUEST_CS_SELECTOR
, vmcs_readl(GUEST_CS_BASE
) >> 4);
1513 fix_rmode_seg(VCPU_SREG_ES
, &vmx
->rmode
.es
);
1514 fix_rmode_seg(VCPU_SREG_DS
, &vmx
->rmode
.ds
);
1515 fix_rmode_seg(VCPU_SREG_GS
, &vmx
->rmode
.gs
);
1516 fix_rmode_seg(VCPU_SREG_FS
, &vmx
->rmode
.fs
);
1519 kvm_mmu_reset_context(vcpu
);
1520 init_rmode(vcpu
->kvm
);
1523 static void vmx_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1525 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1526 struct kvm_msr_entry
*msr
= find_msr_entry(vmx
, MSR_EFER
);
1528 vcpu
->arch
.shadow_efer
= efer
;
1531 if (efer
& EFER_LMA
) {
1532 vmcs_write32(VM_ENTRY_CONTROLS
,
1533 vmcs_read32(VM_ENTRY_CONTROLS
) |
1534 VM_ENTRY_IA32E_MODE
);
1537 vmcs_write32(VM_ENTRY_CONTROLS
,
1538 vmcs_read32(VM_ENTRY_CONTROLS
) &
1539 ~VM_ENTRY_IA32E_MODE
);
1541 msr
->data
= efer
& ~EFER_LME
;
1546 #ifdef CONFIG_X86_64
1548 static void enter_lmode(struct kvm_vcpu
*vcpu
)
1552 guest_tr_ar
= vmcs_read32(GUEST_TR_AR_BYTES
);
1553 if ((guest_tr_ar
& AR_TYPE_MASK
) != AR_TYPE_BUSY_64_TSS
) {
1554 printk(KERN_DEBUG
"%s: tss fixup for long mode. \n",
1556 vmcs_write32(GUEST_TR_AR_BYTES
,
1557 (guest_tr_ar
& ~AR_TYPE_MASK
)
1558 | AR_TYPE_BUSY_64_TSS
);
1560 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
1561 vmx_set_efer(vcpu
, vcpu
->arch
.shadow_efer
);
1564 static void exit_lmode(struct kvm_vcpu
*vcpu
)
1566 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
1568 vmcs_write32(VM_ENTRY_CONTROLS
,
1569 vmcs_read32(VM_ENTRY_CONTROLS
)
1570 & ~VM_ENTRY_IA32E_MODE
);
1575 static void vmx_flush_tlb(struct kvm_vcpu
*vcpu
)
1577 vpid_sync_vcpu_all(to_vmx(vcpu
));
1579 ept_sync_context(construct_eptp(vcpu
->arch
.mmu
.root_hpa
));
1582 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1584 vcpu
->arch
.cr4
&= KVM_GUEST_CR4_MASK
;
1585 vcpu
->arch
.cr4
|= vmcs_readl(GUEST_CR4
) & ~KVM_GUEST_CR4_MASK
;
1588 static void ept_load_pdptrs(struct kvm_vcpu
*vcpu
)
1590 if (!test_bit(VCPU_EXREG_PDPTR
,
1591 (unsigned long *)&vcpu
->arch
.regs_dirty
))
1594 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1595 vmcs_write64(GUEST_PDPTR0
, vcpu
->arch
.pdptrs
[0]);
1596 vmcs_write64(GUEST_PDPTR1
, vcpu
->arch
.pdptrs
[1]);
1597 vmcs_write64(GUEST_PDPTR2
, vcpu
->arch
.pdptrs
[2]);
1598 vmcs_write64(GUEST_PDPTR3
, vcpu
->arch
.pdptrs
[3]);
1602 static void ept_save_pdptrs(struct kvm_vcpu
*vcpu
)
1604 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
1605 vcpu
->arch
.pdptrs
[0] = vmcs_read64(GUEST_PDPTR0
);
1606 vcpu
->arch
.pdptrs
[1] = vmcs_read64(GUEST_PDPTR1
);
1607 vcpu
->arch
.pdptrs
[2] = vmcs_read64(GUEST_PDPTR2
);
1608 vcpu
->arch
.pdptrs
[3] = vmcs_read64(GUEST_PDPTR3
);
1611 __set_bit(VCPU_EXREG_PDPTR
,
1612 (unsigned long *)&vcpu
->arch
.regs_avail
);
1613 __set_bit(VCPU_EXREG_PDPTR
,
1614 (unsigned long *)&vcpu
->arch
.regs_dirty
);
1617 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
);
1619 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0
,
1621 struct kvm_vcpu
*vcpu
)
1623 if (!(cr0
& X86_CR0_PG
)) {
1624 /* From paging/starting to nonpaging */
1625 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1626 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) |
1627 (CPU_BASED_CR3_LOAD_EXITING
|
1628 CPU_BASED_CR3_STORE_EXITING
));
1629 vcpu
->arch
.cr0
= cr0
;
1630 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1631 *hw_cr0
&= ~X86_CR0_WP
;
1632 } else if (!is_paging(vcpu
)) {
1633 /* From nonpaging to paging */
1634 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
,
1635 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
) &
1636 ~(CPU_BASED_CR3_LOAD_EXITING
|
1637 CPU_BASED_CR3_STORE_EXITING
));
1638 vcpu
->arch
.cr0
= cr0
;
1639 vmx_set_cr4(vcpu
, vcpu
->arch
.cr4
);
1640 if (!(vcpu
->arch
.cr0
& X86_CR0_WP
))
1641 *hw_cr0
&= ~X86_CR0_WP
;
1645 static void ept_update_paging_mode_cr4(unsigned long *hw_cr4
,
1646 struct kvm_vcpu
*vcpu
)
1648 if (!is_paging(vcpu
)) {
1649 *hw_cr4
&= ~X86_CR4_PAE
;
1650 *hw_cr4
|= X86_CR4_PSE
;
1651 } else if (!(vcpu
->arch
.cr4
& X86_CR4_PAE
))
1652 *hw_cr4
&= ~X86_CR4_PAE
;
1655 static void vmx_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1657 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1658 unsigned long hw_cr0
;
1660 if (enable_unrestricted_guest
)
1661 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST
)
1662 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST
;
1664 hw_cr0
= (cr0
& ~KVM_GUEST_CR0_MASK
) | KVM_VM_CR0_ALWAYS_ON
;
1666 vmx_fpu_deactivate(vcpu
);
1668 if (vmx
->rmode
.vm86_active
&& (cr0
& X86_CR0_PE
))
1671 if (!vmx
->rmode
.vm86_active
&& !(cr0
& X86_CR0_PE
))
1674 #ifdef CONFIG_X86_64
1675 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
1676 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
))
1678 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
))
1684 ept_update_paging_mode_cr0(&hw_cr0
, cr0
, vcpu
);
1686 vmcs_writel(CR0_READ_SHADOW
, cr0
);
1687 vmcs_writel(GUEST_CR0
, hw_cr0
);
1688 vcpu
->arch
.cr0
= cr0
;
1690 if (!(cr0
& X86_CR0_TS
) || !(cr0
& X86_CR0_PE
))
1691 vmx_fpu_activate(vcpu
);
1694 static u64
construct_eptp(unsigned long root_hpa
)
1698 /* TODO write the value reading from MSR */
1699 eptp
= VMX_EPT_DEFAULT_MT
|
1700 VMX_EPT_DEFAULT_GAW
<< VMX_EPT_GAW_EPTP_SHIFT
;
1701 eptp
|= (root_hpa
& PAGE_MASK
);
1706 static void vmx_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
1708 unsigned long guest_cr3
;
1713 eptp
= construct_eptp(cr3
);
1714 vmcs_write64(EPT_POINTER
, eptp
);
1715 guest_cr3
= is_paging(vcpu
) ? vcpu
->arch
.cr3
:
1716 VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
1719 vmx_flush_tlb(vcpu
);
1720 vmcs_writel(GUEST_CR3
, guest_cr3
);
1721 if (vcpu
->arch
.cr0
& X86_CR0_PE
)
1722 vmx_fpu_deactivate(vcpu
);
1725 static void vmx_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1727 unsigned long hw_cr4
= cr4
| (to_vmx(vcpu
)->rmode
.vm86_active
?
1728 KVM_RMODE_VM_CR4_ALWAYS_ON
: KVM_PMODE_VM_CR4_ALWAYS_ON
);
1730 vcpu
->arch
.cr4
= cr4
;
1732 ept_update_paging_mode_cr4(&hw_cr4
, vcpu
);
1734 vmcs_writel(CR4_READ_SHADOW
, cr4
);
1735 vmcs_writel(GUEST_CR4
, hw_cr4
);
1738 static u64
vmx_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1740 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1742 return vmcs_readl(sf
->base
);
1745 static void vmx_get_segment(struct kvm_vcpu
*vcpu
,
1746 struct kvm_segment
*var
, int seg
)
1748 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1751 var
->base
= vmcs_readl(sf
->base
);
1752 var
->limit
= vmcs_read32(sf
->limit
);
1753 var
->selector
= vmcs_read16(sf
->selector
);
1754 ar
= vmcs_read32(sf
->ar_bytes
);
1755 if ((ar
& AR_UNUSABLE_MASK
) && !emulate_invalid_guest_state
)
1757 var
->type
= ar
& 15;
1758 var
->s
= (ar
>> 4) & 1;
1759 var
->dpl
= (ar
>> 5) & 3;
1760 var
->present
= (ar
>> 7) & 1;
1761 var
->avl
= (ar
>> 12) & 1;
1762 var
->l
= (ar
>> 13) & 1;
1763 var
->db
= (ar
>> 14) & 1;
1764 var
->g
= (ar
>> 15) & 1;
1765 var
->unusable
= (ar
>> 16) & 1;
1768 static int vmx_get_cpl(struct kvm_vcpu
*vcpu
)
1770 struct kvm_segment kvm_seg
;
1772 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) /* if real mode */
1775 if (vmx_get_rflags(vcpu
) & X86_EFLAGS_VM
) /* if virtual 8086 */
1778 vmx_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_CS
);
1779 return kvm_seg
.selector
& 3;
1782 static u32
vmx_segment_access_rights(struct kvm_segment
*var
)
1789 ar
= var
->type
& 15;
1790 ar
|= (var
->s
& 1) << 4;
1791 ar
|= (var
->dpl
& 3) << 5;
1792 ar
|= (var
->present
& 1) << 7;
1793 ar
|= (var
->avl
& 1) << 12;
1794 ar
|= (var
->l
& 1) << 13;
1795 ar
|= (var
->db
& 1) << 14;
1796 ar
|= (var
->g
& 1) << 15;
1798 if (ar
== 0) /* a 0 value means unusable */
1799 ar
= AR_UNUSABLE_MASK
;
1804 static void vmx_set_segment(struct kvm_vcpu
*vcpu
,
1805 struct kvm_segment
*var
, int seg
)
1807 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
1808 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
1811 if (vmx
->rmode
.vm86_active
&& seg
== VCPU_SREG_TR
) {
1812 vmx
->rmode
.tr
.selector
= var
->selector
;
1813 vmx
->rmode
.tr
.base
= var
->base
;
1814 vmx
->rmode
.tr
.limit
= var
->limit
;
1815 vmx
->rmode
.tr
.ar
= vmx_segment_access_rights(var
);
1818 vmcs_writel(sf
->base
, var
->base
);
1819 vmcs_write32(sf
->limit
, var
->limit
);
1820 vmcs_write16(sf
->selector
, var
->selector
);
1821 if (vmx
->rmode
.vm86_active
&& var
->s
) {
1823 * Hack real-mode segments into vm86 compatibility.
1825 if (var
->base
== 0xffff0000 && var
->selector
== 0xf000)
1826 vmcs_writel(sf
->base
, 0xf0000);
1829 ar
= vmx_segment_access_rights(var
);
1832 * Fix the "Accessed" bit in AR field of segment registers for older
1834 * IA32 arch specifies that at the time of processor reset the
1835 * "Accessed" bit in the AR field of segment registers is 1. And qemu
1836 * is setting it to 0 in the usedland code. This causes invalid guest
1837 * state vmexit when "unrestricted guest" mode is turned on.
1838 * Fix for this setup issue in cpu_reset is being pushed in the qemu
1839 * tree. Newer qemu binaries with that qemu fix would not need this
1842 if (enable_unrestricted_guest
&& (seg
!= VCPU_SREG_LDTR
))
1843 ar
|= 0x1; /* Accessed */
1845 vmcs_write32(sf
->ar_bytes
, ar
);
1848 static void vmx_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
1850 u32 ar
= vmcs_read32(GUEST_CS_AR_BYTES
);
1852 *db
= (ar
>> 14) & 1;
1853 *l
= (ar
>> 13) & 1;
1856 static void vmx_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1858 dt
->limit
= vmcs_read32(GUEST_IDTR_LIMIT
);
1859 dt
->base
= vmcs_readl(GUEST_IDTR_BASE
);
1862 static void vmx_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1864 vmcs_write32(GUEST_IDTR_LIMIT
, dt
->limit
);
1865 vmcs_writel(GUEST_IDTR_BASE
, dt
->base
);
1868 static void vmx_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1870 dt
->limit
= vmcs_read32(GUEST_GDTR_LIMIT
);
1871 dt
->base
= vmcs_readl(GUEST_GDTR_BASE
);
1874 static void vmx_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
1876 vmcs_write32(GUEST_GDTR_LIMIT
, dt
->limit
);
1877 vmcs_writel(GUEST_GDTR_BASE
, dt
->base
);
1880 static bool rmode_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
1882 struct kvm_segment var
;
1885 vmx_get_segment(vcpu
, &var
, seg
);
1886 ar
= vmx_segment_access_rights(&var
);
1888 if (var
.base
!= (var
.selector
<< 4))
1890 if (var
.limit
!= 0xffff)
1898 static bool code_segment_valid(struct kvm_vcpu
*vcpu
)
1900 struct kvm_segment cs
;
1901 unsigned int cs_rpl
;
1903 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
1904 cs_rpl
= cs
.selector
& SELECTOR_RPL_MASK
;
1908 if (~cs
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_ACCESSES_MASK
))
1912 if (cs
.type
& AR_TYPE_WRITEABLE_MASK
) {
1913 if (cs
.dpl
> cs_rpl
)
1916 if (cs
.dpl
!= cs_rpl
)
1922 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
1926 static bool stack_segment_valid(struct kvm_vcpu
*vcpu
)
1928 struct kvm_segment ss
;
1929 unsigned int ss_rpl
;
1931 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
1932 ss_rpl
= ss
.selector
& SELECTOR_RPL_MASK
;
1936 if (ss
.type
!= 3 && ss
.type
!= 7)
1940 if (ss
.dpl
!= ss_rpl
) /* DPL != RPL */
1948 static bool data_segment_valid(struct kvm_vcpu
*vcpu
, int seg
)
1950 struct kvm_segment var
;
1953 vmx_get_segment(vcpu
, &var
, seg
);
1954 rpl
= var
.selector
& SELECTOR_RPL_MASK
;
1962 if (~var
.type
& (AR_TYPE_CODE_MASK
|AR_TYPE_WRITEABLE_MASK
)) {
1963 if (var
.dpl
< rpl
) /* DPL < RPL */
1967 /* TODO: Add other members to kvm_segment_field to allow checking for other access
1973 static bool tr_valid(struct kvm_vcpu
*vcpu
)
1975 struct kvm_segment tr
;
1977 vmx_get_segment(vcpu
, &tr
, VCPU_SREG_TR
);
1981 if (tr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
1983 if (tr
.type
!= 3 && tr
.type
!= 11) /* TODO: Check if guest is in IA32e mode */
1991 static bool ldtr_valid(struct kvm_vcpu
*vcpu
)
1993 struct kvm_segment ldtr
;
1995 vmx_get_segment(vcpu
, &ldtr
, VCPU_SREG_LDTR
);
1999 if (ldtr
.selector
& SELECTOR_TI_MASK
) /* TI = 1 */
2009 static bool cs_ss_rpl_check(struct kvm_vcpu
*vcpu
)
2011 struct kvm_segment cs
, ss
;
2013 vmx_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2014 vmx_get_segment(vcpu
, &ss
, VCPU_SREG_SS
);
2016 return ((cs
.selector
& SELECTOR_RPL_MASK
) ==
2017 (ss
.selector
& SELECTOR_RPL_MASK
));
2021 * Check if guest state is valid. Returns true if valid, false if
2023 * We assume that registers are always usable
2025 static bool guest_state_valid(struct kvm_vcpu
*vcpu
)
2027 /* real mode guest state checks */
2028 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
)) {
2029 if (!rmode_segment_valid(vcpu
, VCPU_SREG_CS
))
2031 if (!rmode_segment_valid(vcpu
, VCPU_SREG_SS
))
2033 if (!rmode_segment_valid(vcpu
, VCPU_SREG_DS
))
2035 if (!rmode_segment_valid(vcpu
, VCPU_SREG_ES
))
2037 if (!rmode_segment_valid(vcpu
, VCPU_SREG_FS
))
2039 if (!rmode_segment_valid(vcpu
, VCPU_SREG_GS
))
2042 /* protected mode guest state checks */
2043 if (!cs_ss_rpl_check(vcpu
))
2045 if (!code_segment_valid(vcpu
))
2047 if (!stack_segment_valid(vcpu
))
2049 if (!data_segment_valid(vcpu
, VCPU_SREG_DS
))
2051 if (!data_segment_valid(vcpu
, VCPU_SREG_ES
))
2053 if (!data_segment_valid(vcpu
, VCPU_SREG_FS
))
2055 if (!data_segment_valid(vcpu
, VCPU_SREG_GS
))
2057 if (!tr_valid(vcpu
))
2059 if (!ldtr_valid(vcpu
))
2063 * - Add checks on RIP
2064 * - Add checks on RFLAGS
2070 static int init_rmode_tss(struct kvm
*kvm
)
2072 gfn_t fn
= rmode_tss_base(kvm
) >> PAGE_SHIFT
;
2077 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2080 data
= TSS_BASE_SIZE
+ TSS_REDIRECTION_SIZE
;
2081 r
= kvm_write_guest_page(kvm
, fn
++, &data
,
2082 TSS_IOPB_BASE_OFFSET
, sizeof(u16
));
2085 r
= kvm_clear_guest_page(kvm
, fn
++, 0, PAGE_SIZE
);
2088 r
= kvm_clear_guest_page(kvm
, fn
, 0, PAGE_SIZE
);
2092 r
= kvm_write_guest_page(kvm
, fn
, &data
,
2093 RMODE_TSS_SIZE
- 2 * PAGE_SIZE
- 1,
2103 static int init_rmode_identity_map(struct kvm
*kvm
)
2106 pfn_t identity_map_pfn
;
2111 if (unlikely(!kvm
->arch
.ept_identity_pagetable
)) {
2112 printk(KERN_ERR
"EPT: identity-mapping pagetable "
2113 "haven't been allocated!\n");
2116 if (likely(kvm
->arch
.ept_identity_pagetable_done
))
2119 identity_map_pfn
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
>> PAGE_SHIFT
;
2120 r
= kvm_clear_guest_page(kvm
, identity_map_pfn
, 0, PAGE_SIZE
);
2123 /* Set up identity-mapping pagetable for EPT in real mode */
2124 for (i
= 0; i
< PT32_ENT_PER_PAGE
; i
++) {
2125 tmp
= (i
<< 22) + (_PAGE_PRESENT
| _PAGE_RW
| _PAGE_USER
|
2126 _PAGE_ACCESSED
| _PAGE_DIRTY
| _PAGE_PSE
);
2127 r
= kvm_write_guest_page(kvm
, identity_map_pfn
,
2128 &tmp
, i
* sizeof(tmp
), sizeof(tmp
));
2132 kvm
->arch
.ept_identity_pagetable_done
= true;
2138 static void seg_setup(int seg
)
2140 struct kvm_vmx_segment_field
*sf
= &kvm_vmx_segment_fields
[seg
];
2143 vmcs_write16(sf
->selector
, 0);
2144 vmcs_writel(sf
->base
, 0);
2145 vmcs_write32(sf
->limit
, 0xffff);
2146 if (enable_unrestricted_guest
) {
2148 if (seg
== VCPU_SREG_CS
)
2149 ar
|= 0x08; /* code segment */
2153 vmcs_write32(sf
->ar_bytes
, ar
);
2156 static int alloc_apic_access_page(struct kvm
*kvm
)
2158 struct kvm_userspace_memory_region kvm_userspace_mem
;
2161 down_write(&kvm
->slots_lock
);
2162 if (kvm
->arch
.apic_access_page
)
2164 kvm_userspace_mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
2165 kvm_userspace_mem
.flags
= 0;
2166 kvm_userspace_mem
.guest_phys_addr
= 0xfee00000ULL
;
2167 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2168 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2172 kvm
->arch
.apic_access_page
= gfn_to_page(kvm
, 0xfee00);
2174 up_write(&kvm
->slots_lock
);
2178 static int alloc_identity_pagetable(struct kvm
*kvm
)
2180 struct kvm_userspace_memory_region kvm_userspace_mem
;
2183 down_write(&kvm
->slots_lock
);
2184 if (kvm
->arch
.ept_identity_pagetable
)
2186 kvm_userspace_mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
2187 kvm_userspace_mem
.flags
= 0;
2188 kvm_userspace_mem
.guest_phys_addr
= VMX_EPT_IDENTITY_PAGETABLE_ADDR
;
2189 kvm_userspace_mem
.memory_size
= PAGE_SIZE
;
2190 r
= __kvm_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
2194 kvm
->arch
.ept_identity_pagetable
= gfn_to_page(kvm
,
2195 VMX_EPT_IDENTITY_PAGETABLE_ADDR
>> PAGE_SHIFT
);
2197 up_write(&kvm
->slots_lock
);
2201 static void allocate_vpid(struct vcpu_vmx
*vmx
)
2208 spin_lock(&vmx_vpid_lock
);
2209 vpid
= find_first_zero_bit(vmx_vpid_bitmap
, VMX_NR_VPIDS
);
2210 if (vpid
< VMX_NR_VPIDS
) {
2212 __set_bit(vpid
, vmx_vpid_bitmap
);
2214 spin_unlock(&vmx_vpid_lock
);
2217 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap
, u32 msr
)
2219 int f
= sizeof(unsigned long);
2221 if (!cpu_has_vmx_msr_bitmap())
2225 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2226 * have the write-low and read-high bitmap offsets the wrong way round.
2227 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2229 if (msr
<= 0x1fff) {
2230 __clear_bit(msr
, msr_bitmap
+ 0x000 / f
); /* read-low */
2231 __clear_bit(msr
, msr_bitmap
+ 0x800 / f
); /* write-low */
2232 } else if ((msr
>= 0xc0000000) && (msr
<= 0xc0001fff)) {
2234 __clear_bit(msr
, msr_bitmap
+ 0x400 / f
); /* read-high */
2235 __clear_bit(msr
, msr_bitmap
+ 0xc00 / f
); /* write-high */
2239 static void vmx_disable_intercept_for_msr(u32 msr
, bool longmode_only
)
2242 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy
, msr
);
2243 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode
, msr
);
2247 * Sets up the vmcs for emulated real mode.
2249 static int vmx_vcpu_setup(struct vcpu_vmx
*vmx
)
2251 u32 host_sysenter_cs
, msr_low
, msr_high
;
2253 u64 host_pat
, tsc_this
, tsc_base
;
2255 struct descriptor_table dt
;
2257 unsigned long kvm_vmx_return
;
2261 vmcs_write64(IO_BITMAP_A
, __pa(vmx_io_bitmap_a
));
2262 vmcs_write64(IO_BITMAP_B
, __pa(vmx_io_bitmap_b
));
2264 if (cpu_has_vmx_msr_bitmap())
2265 vmcs_write64(MSR_BITMAP
, __pa(vmx_msr_bitmap_legacy
));
2267 vmcs_write64(VMCS_LINK_POINTER
, -1ull); /* 22.3.1.5 */
2270 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL
,
2271 vmcs_config
.pin_based_exec_ctrl
);
2273 exec_control
= vmcs_config
.cpu_based_exec_ctrl
;
2274 if (!vm_need_tpr_shadow(vmx
->vcpu
.kvm
)) {
2275 exec_control
&= ~CPU_BASED_TPR_SHADOW
;
2276 #ifdef CONFIG_X86_64
2277 exec_control
|= CPU_BASED_CR8_STORE_EXITING
|
2278 CPU_BASED_CR8_LOAD_EXITING
;
2282 exec_control
|= CPU_BASED_CR3_STORE_EXITING
|
2283 CPU_BASED_CR3_LOAD_EXITING
|
2284 CPU_BASED_INVLPG_EXITING
;
2285 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, exec_control
);
2287 if (cpu_has_secondary_exec_ctrls()) {
2288 exec_control
= vmcs_config
.cpu_based_2nd_exec_ctrl
;
2289 if (!vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2291 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES
;
2293 exec_control
&= ~SECONDARY_EXEC_ENABLE_VPID
;
2295 exec_control
&= ~SECONDARY_EXEC_ENABLE_EPT
;
2296 if (!enable_unrestricted_guest
)
2297 exec_control
&= ~SECONDARY_EXEC_UNRESTRICTED_GUEST
;
2298 vmcs_write32(SECONDARY_VM_EXEC_CONTROL
, exec_control
);
2301 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK
, !!bypass_guest_pf
);
2302 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH
, !!bypass_guest_pf
);
2303 vmcs_write32(CR3_TARGET_COUNT
, 0); /* 22.2.1 */
2305 vmcs_writel(HOST_CR0
, read_cr0()); /* 22.2.3 */
2306 vmcs_writel(HOST_CR4
, read_cr4()); /* 22.2.3, 22.2.5 */
2307 vmcs_writel(HOST_CR3
, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2309 vmcs_write16(HOST_CS_SELECTOR
, __KERNEL_CS
); /* 22.2.4 */
2310 vmcs_write16(HOST_DS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2311 vmcs_write16(HOST_ES_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2312 vmcs_write16(HOST_FS_SELECTOR
, kvm_read_fs()); /* 22.2.4 */
2313 vmcs_write16(HOST_GS_SELECTOR
, kvm_read_gs()); /* 22.2.4 */
2314 vmcs_write16(HOST_SS_SELECTOR
, __KERNEL_DS
); /* 22.2.4 */
2315 #ifdef CONFIG_X86_64
2316 rdmsrl(MSR_FS_BASE
, a
);
2317 vmcs_writel(HOST_FS_BASE
, a
); /* 22.2.4 */
2318 rdmsrl(MSR_GS_BASE
, a
);
2319 vmcs_writel(HOST_GS_BASE
, a
); /* 22.2.4 */
2321 vmcs_writel(HOST_FS_BASE
, 0); /* 22.2.4 */
2322 vmcs_writel(HOST_GS_BASE
, 0); /* 22.2.4 */
2325 vmcs_write16(HOST_TR_SELECTOR
, GDT_ENTRY_TSS
*8); /* 22.2.4 */
2328 vmcs_writel(HOST_IDTR_BASE
, dt
.base
); /* 22.2.4 */
2330 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return
));
2331 vmcs_writel(HOST_RIP
, kvm_vmx_return
); /* 22.2.5 */
2332 vmcs_write32(VM_EXIT_MSR_STORE_COUNT
, 0);
2333 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT
, 0);
2334 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT
, 0);
2336 rdmsr(MSR_IA32_SYSENTER_CS
, host_sysenter_cs
, junk
);
2337 vmcs_write32(HOST_IA32_SYSENTER_CS
, host_sysenter_cs
);
2338 rdmsrl(MSR_IA32_SYSENTER_ESP
, a
);
2339 vmcs_writel(HOST_IA32_SYSENTER_ESP
, a
); /* 22.2.3 */
2340 rdmsrl(MSR_IA32_SYSENTER_EIP
, a
);
2341 vmcs_writel(HOST_IA32_SYSENTER_EIP
, a
); /* 22.2.3 */
2343 if (vmcs_config
.vmexit_ctrl
& VM_EXIT_LOAD_IA32_PAT
) {
2344 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2345 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2346 vmcs_write64(HOST_IA32_PAT
, host_pat
);
2348 if (vmcs_config
.vmentry_ctrl
& VM_ENTRY_LOAD_IA32_PAT
) {
2349 rdmsr(MSR_IA32_CR_PAT
, msr_low
, msr_high
);
2350 host_pat
= msr_low
| ((u64
) msr_high
<< 32);
2351 /* Write the default value follow host pat */
2352 vmcs_write64(GUEST_IA32_PAT
, host_pat
);
2353 /* Keep arch.pat sync with GUEST_IA32_PAT */
2354 vmx
->vcpu
.arch
.pat
= host_pat
;
2357 for (i
= 0; i
< NR_VMX_MSR
; ++i
) {
2358 u32 index
= vmx_msr_index
[i
];
2359 u32 data_low
, data_high
;
2363 if (rdmsr_safe(index
, &data_low
, &data_high
) < 0)
2365 if (wrmsr_safe(index
, data_low
, data_high
) < 0)
2367 data
= data_low
| ((u64
)data_high
<< 32);
2368 vmx
->host_msrs
[j
].index
= index
;
2369 vmx
->host_msrs
[j
].reserved
= 0;
2370 vmx
->host_msrs
[j
].data
= data
;
2371 vmx
->guest_msrs
[j
] = vmx
->host_msrs
[j
];
2375 vmcs_write32(VM_EXIT_CONTROLS
, vmcs_config
.vmexit_ctrl
);
2377 /* 22.2.1, 20.8.1 */
2378 vmcs_write32(VM_ENTRY_CONTROLS
, vmcs_config
.vmentry_ctrl
);
2380 vmcs_writel(CR0_GUEST_HOST_MASK
, ~0UL);
2381 vmcs_writel(CR4_GUEST_HOST_MASK
, KVM_GUEST_CR4_MASK
);
2383 tsc_base
= vmx
->vcpu
.kvm
->arch
.vm_init_tsc
;
2385 if (tsc_this
< vmx
->vcpu
.kvm
->arch
.vm_init_tsc
)
2386 tsc_base
= tsc_this
;
2388 guest_write_tsc(0, tsc_base
);
2393 static int init_rmode(struct kvm
*kvm
)
2395 if (!init_rmode_tss(kvm
))
2397 if (!init_rmode_identity_map(kvm
))
2402 static int vmx_vcpu_reset(struct kvm_vcpu
*vcpu
)
2404 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2408 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
));
2409 down_read(&vcpu
->kvm
->slots_lock
);
2410 if (!init_rmode(vmx
->vcpu
.kvm
)) {
2415 vmx
->rmode
.vm86_active
= 0;
2417 vmx
->soft_vnmi_blocked
= 0;
2419 vmx
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = get_rdx_init_val();
2420 kvm_set_cr8(&vmx
->vcpu
, 0);
2421 msr
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
2422 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
2423 msr
|= MSR_IA32_APICBASE_BSP
;
2424 kvm_set_apic_base(&vmx
->vcpu
, msr
);
2426 fx_init(&vmx
->vcpu
);
2428 seg_setup(VCPU_SREG_CS
);
2430 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2431 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2433 if (kvm_vcpu_is_bsp(&vmx
->vcpu
)) {
2434 vmcs_write16(GUEST_CS_SELECTOR
, 0xf000);
2435 vmcs_writel(GUEST_CS_BASE
, 0x000f0000);
2437 vmcs_write16(GUEST_CS_SELECTOR
, vmx
->vcpu
.arch
.sipi_vector
<< 8);
2438 vmcs_writel(GUEST_CS_BASE
, vmx
->vcpu
.arch
.sipi_vector
<< 12);
2441 seg_setup(VCPU_SREG_DS
);
2442 seg_setup(VCPU_SREG_ES
);
2443 seg_setup(VCPU_SREG_FS
);
2444 seg_setup(VCPU_SREG_GS
);
2445 seg_setup(VCPU_SREG_SS
);
2447 vmcs_write16(GUEST_TR_SELECTOR
, 0);
2448 vmcs_writel(GUEST_TR_BASE
, 0);
2449 vmcs_write32(GUEST_TR_LIMIT
, 0xffff);
2450 vmcs_write32(GUEST_TR_AR_BYTES
, 0x008b);
2452 vmcs_write16(GUEST_LDTR_SELECTOR
, 0);
2453 vmcs_writel(GUEST_LDTR_BASE
, 0);
2454 vmcs_write32(GUEST_LDTR_LIMIT
, 0xffff);
2455 vmcs_write32(GUEST_LDTR_AR_BYTES
, 0x00082);
2457 vmcs_write32(GUEST_SYSENTER_CS
, 0);
2458 vmcs_writel(GUEST_SYSENTER_ESP
, 0);
2459 vmcs_writel(GUEST_SYSENTER_EIP
, 0);
2461 vmcs_writel(GUEST_RFLAGS
, 0x02);
2462 if (kvm_vcpu_is_bsp(&vmx
->vcpu
))
2463 kvm_rip_write(vcpu
, 0xfff0);
2465 kvm_rip_write(vcpu
, 0);
2466 kvm_register_write(vcpu
, VCPU_REGS_RSP
, 0);
2468 vmcs_writel(GUEST_DR7
, 0x400);
2470 vmcs_writel(GUEST_GDTR_BASE
, 0);
2471 vmcs_write32(GUEST_GDTR_LIMIT
, 0xffff);
2473 vmcs_writel(GUEST_IDTR_BASE
, 0);
2474 vmcs_write32(GUEST_IDTR_LIMIT
, 0xffff);
2476 vmcs_write32(GUEST_ACTIVITY_STATE
, 0);
2477 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO
, 0);
2478 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS
, 0);
2480 /* Special registers */
2481 vmcs_write64(GUEST_IA32_DEBUGCTL
, 0);
2485 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, 0); /* 22.2.1 */
2487 if (cpu_has_vmx_tpr_shadow()) {
2488 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
, 0);
2489 if (vm_need_tpr_shadow(vmx
->vcpu
.kvm
))
2490 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR
,
2491 page_to_phys(vmx
->vcpu
.arch
.apic
->regs_page
));
2492 vmcs_write32(TPR_THRESHOLD
, 0);
2495 if (vm_need_virtualize_apic_accesses(vmx
->vcpu
.kvm
))
2496 vmcs_write64(APIC_ACCESS_ADDR
,
2497 page_to_phys(vmx
->vcpu
.kvm
->arch
.apic_access_page
));
2500 vmcs_write16(VIRTUAL_PROCESSOR_ID
, vmx
->vpid
);
2502 vmx
->vcpu
.arch
.cr0
= 0x60000010;
2503 vmx_set_cr0(&vmx
->vcpu
, vmx
->vcpu
.arch
.cr0
); /* enter rmode */
2504 vmx_set_cr4(&vmx
->vcpu
, 0);
2505 vmx_set_efer(&vmx
->vcpu
, 0);
2506 vmx_fpu_activate(&vmx
->vcpu
);
2507 update_exception_bitmap(&vmx
->vcpu
);
2509 vpid_sync_vcpu_all(vmx
);
2513 /* HACK: Don't enable emulation on guest boot/reset */
2514 vmx
->emulation_required
= 0;
2517 up_read(&vcpu
->kvm
->slots_lock
);
2521 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2523 u32 cpu_based_vm_exec_control
;
2525 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2526 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_INTR_PENDING
;
2527 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2530 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2532 u32 cpu_based_vm_exec_control
;
2534 if (!cpu_has_virtual_nmis()) {
2535 enable_irq_window(vcpu
);
2539 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
2540 cpu_based_vm_exec_control
|= CPU_BASED_VIRTUAL_NMI_PENDING
;
2541 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
2544 static void vmx_inject_irq(struct kvm_vcpu
*vcpu
)
2546 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2548 int irq
= vcpu
->arch
.interrupt
.nr
;
2550 KVMTRACE_1D(INJ_VIRQ
, vcpu
, (u32
)irq
, handler
);
2552 ++vcpu
->stat
.irq_injections
;
2553 if (vmx
->rmode
.vm86_active
) {
2554 vmx
->rmode
.irq
.pending
= true;
2555 vmx
->rmode
.irq
.vector
= irq
;
2556 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
2557 if (vcpu
->arch
.interrupt
.soft
)
2558 vmx
->rmode
.irq
.rip
+=
2559 vmx
->vcpu
.arch
.event_exit_inst_len
;
2560 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2561 irq
| INTR_TYPE_SOFT_INTR
| INTR_INFO_VALID_MASK
);
2562 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2563 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
2566 intr
= irq
| INTR_INFO_VALID_MASK
;
2567 if (vcpu
->arch
.interrupt
.soft
) {
2568 intr
|= INTR_TYPE_SOFT_INTR
;
2569 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
,
2570 vmx
->vcpu
.arch
.event_exit_inst_len
);
2572 intr
|= INTR_TYPE_EXT_INTR
;
2573 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
, intr
);
2576 static void vmx_inject_nmi(struct kvm_vcpu
*vcpu
)
2578 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2580 if (!cpu_has_virtual_nmis()) {
2582 * Tracking the NMI-blocked state in software is built upon
2583 * finding the next open IRQ window. This, in turn, depends on
2584 * well-behaving guests: They have to keep IRQs disabled at
2585 * least as long as the NMI handler runs. Otherwise we may
2586 * cause NMI nesting, maybe breaking the guest. But as this is
2587 * highly unlikely, we can live with the residual risk.
2589 vmx
->soft_vnmi_blocked
= 1;
2590 vmx
->vnmi_blocked_time
= 0;
2593 ++vcpu
->stat
.nmi_injections
;
2594 if (vmx
->rmode
.vm86_active
) {
2595 vmx
->rmode
.irq
.pending
= true;
2596 vmx
->rmode
.irq
.vector
= NMI_VECTOR
;
2597 vmx
->rmode
.irq
.rip
= kvm_rip_read(vcpu
);
2598 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2599 NMI_VECTOR
| INTR_TYPE_SOFT_INTR
|
2600 INTR_INFO_VALID_MASK
);
2601 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN
, 1);
2602 kvm_rip_write(vcpu
, vmx
->rmode
.irq
.rip
- 1);
2605 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD
,
2606 INTR_TYPE_NMI_INTR
| INTR_INFO_VALID_MASK
| NMI_VECTOR
);
2609 static int vmx_nmi_allowed(struct kvm_vcpu
*vcpu
)
2611 if (!cpu_has_virtual_nmis() && to_vmx(vcpu
)->soft_vnmi_blocked
)
2614 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2615 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
|
2616 GUEST_INTR_STATE_NMI
));
2619 static int vmx_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2621 return (vmcs_readl(GUEST_RFLAGS
) & X86_EFLAGS_IF
) &&
2622 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO
) &
2623 (GUEST_INTR_STATE_STI
| GUEST_INTR_STATE_MOV_SS
));
2626 static int vmx_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2629 struct kvm_userspace_memory_region tss_mem
= {
2630 .slot
= TSS_PRIVATE_MEMSLOT
,
2631 .guest_phys_addr
= addr
,
2632 .memory_size
= PAGE_SIZE
* 3,
2636 ret
= kvm_set_memory_region(kvm
, &tss_mem
, 0);
2639 kvm
->arch
.tss_addr
= addr
;
2643 static int handle_rmode_exception(struct kvm_vcpu
*vcpu
,
2644 int vec
, u32 err_code
)
2647 * Instruction with address size override prefix opcode 0x67
2648 * Cause the #SS fault with 0 error code in VM86 mode.
2650 if (((vec
== GP_VECTOR
) || (vec
== SS_VECTOR
)) && err_code
== 0)
2651 if (emulate_instruction(vcpu
, NULL
, 0, 0, 0) == EMULATE_DONE
)
2654 * Forward all other exceptions that are valid in real mode.
2655 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2656 * the required debugging infrastructure rework.
2660 if (vcpu
->guest_debug
&
2661 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
2663 kvm_queue_exception(vcpu
, vec
);
2666 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
2677 kvm_queue_exception(vcpu
, vec
);
2684 * Trigger machine check on the host. We assume all the MSRs are already set up
2685 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2686 * We pass a fake environment to the machine check handler because we want
2687 * the guest to be always treated like user space, no matter what context
2688 * it used internally.
2690 static void kvm_machine_check(void)
2692 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2693 struct pt_regs regs
= {
2694 .cs
= 3, /* Fake ring 3 no matter what the guest ran on */
2695 .flags
= X86_EFLAGS_IF
,
2698 do_machine_check(®s
, 0);
2702 static int handle_machine_check(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2704 /* already handled by vcpu_run */
2708 static int handle_exception(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2710 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
2711 u32 intr_info
, ex_no
, error_code
;
2712 unsigned long cr2
, rip
, dr6
;
2714 enum emulation_result er
;
2716 vect_info
= vmx
->idt_vectoring_info
;
2717 intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
2719 if (is_machine_check(intr_info
))
2720 return handle_machine_check(vcpu
, kvm_run
);
2722 if ((vect_info
& VECTORING_INFO_VALID_MASK
) &&
2723 !is_page_fault(intr_info
))
2724 printk(KERN_ERR
"%s: unexpected, vectoring info 0x%x "
2725 "intr info 0x%x\n", __func__
, vect_info
, intr_info
);
2727 if ((intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
)
2728 return 1; /* already handled by vmx_vcpu_run() */
2730 if (is_no_device(intr_info
)) {
2731 vmx_fpu_activate(vcpu
);
2735 if (is_invalid_opcode(intr_info
)) {
2736 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, EMULTYPE_TRAP_UD
);
2737 if (er
!= EMULATE_DONE
)
2738 kvm_queue_exception(vcpu
, UD_VECTOR
);
2743 rip
= kvm_rip_read(vcpu
);
2744 if (intr_info
& INTR_INFO_DELIVER_CODE_MASK
)
2745 error_code
= vmcs_read32(VM_EXIT_INTR_ERROR_CODE
);
2746 if (is_page_fault(intr_info
)) {
2747 /* EPT won't cause page fault directly */
2750 cr2
= vmcs_readl(EXIT_QUALIFICATION
);
2751 KVMTRACE_3D(PAGE_FAULT
, vcpu
, error_code
, (u32
)cr2
,
2752 (u32
)((u64
)cr2
>> 32), handler
);
2753 if (kvm_event_needs_reinjection(vcpu
))
2754 kvm_mmu_unprotect_page_virt(vcpu
, cr2
);
2755 return kvm_mmu_page_fault(vcpu
, cr2
, error_code
);
2758 if (vmx
->rmode
.vm86_active
&&
2759 handle_rmode_exception(vcpu
, intr_info
& INTR_INFO_VECTOR_MASK
,
2761 if (vcpu
->arch
.halt_request
) {
2762 vcpu
->arch
.halt_request
= 0;
2763 return kvm_emulate_halt(vcpu
);
2768 ex_no
= intr_info
& INTR_INFO_VECTOR_MASK
;
2771 dr6
= vmcs_readl(EXIT_QUALIFICATION
);
2772 if (!(vcpu
->guest_debug
&
2773 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))) {
2774 vcpu
->arch
.dr6
= dr6
| DR6_FIXED_1
;
2775 kvm_queue_exception(vcpu
, DB_VECTOR
);
2778 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
2779 kvm_run
->debug
.arch
.dr7
= vmcs_readl(GUEST_DR7
);
2782 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2783 kvm_run
->debug
.arch
.pc
= vmcs_readl(GUEST_CS_BASE
) + rip
;
2784 kvm_run
->debug
.arch
.exception
= ex_no
;
2787 kvm_run
->exit_reason
= KVM_EXIT_EXCEPTION
;
2788 kvm_run
->ex
.exception
= ex_no
;
2789 kvm_run
->ex
.error_code
= error_code
;
2795 static int handle_external_interrupt(struct kvm_vcpu
*vcpu
,
2796 struct kvm_run
*kvm_run
)
2798 ++vcpu
->stat
.irq_exits
;
2799 KVMTRACE_1D(INTR
, vcpu
, vmcs_read32(VM_EXIT_INTR_INFO
), handler
);
2803 static int handle_triple_fault(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2805 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
2809 static int handle_io(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2811 unsigned long exit_qualification
;
2812 int size
, in
, string
;
2815 ++vcpu
->stat
.io_exits
;
2816 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2817 string
= (exit_qualification
& 16) != 0;
2820 if (emulate_instruction(vcpu
,
2821 kvm_run
, 0, 0, 0) == EMULATE_DO_MMIO
)
2826 size
= (exit_qualification
& 7) + 1;
2827 in
= (exit_qualification
& 8) != 0;
2828 port
= exit_qualification
>> 16;
2830 skip_emulated_instruction(vcpu
);
2831 return kvm_emulate_pio(vcpu
, kvm_run
, in
, size
, port
);
2835 vmx_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2838 * Patch in the VMCALL instruction:
2840 hypercall
[0] = 0x0f;
2841 hypercall
[1] = 0x01;
2842 hypercall
[2] = 0xc1;
2845 static int handle_cr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2847 unsigned long exit_qualification
;
2851 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2852 cr
= exit_qualification
& 15;
2853 reg
= (exit_qualification
>> 8) & 15;
2854 switch ((exit_qualification
>> 4) & 3) {
2855 case 0: /* mov to cr */
2856 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
,
2857 (u32
)kvm_register_read(vcpu
, reg
),
2858 (u32
)((u64
)kvm_register_read(vcpu
, reg
) >> 32),
2862 kvm_set_cr0(vcpu
, kvm_register_read(vcpu
, reg
));
2863 skip_emulated_instruction(vcpu
);
2866 kvm_set_cr3(vcpu
, kvm_register_read(vcpu
, reg
));
2867 skip_emulated_instruction(vcpu
);
2870 kvm_set_cr4(vcpu
, kvm_register_read(vcpu
, reg
));
2871 skip_emulated_instruction(vcpu
);
2874 u8 cr8_prev
= kvm_get_cr8(vcpu
);
2875 u8 cr8
= kvm_register_read(vcpu
, reg
);
2876 kvm_set_cr8(vcpu
, cr8
);
2877 skip_emulated_instruction(vcpu
);
2878 if (irqchip_in_kernel(vcpu
->kvm
))
2880 if (cr8_prev
<= cr8
)
2882 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2888 vmx_fpu_deactivate(vcpu
);
2889 vcpu
->arch
.cr0
&= ~X86_CR0_TS
;
2890 vmcs_writel(CR0_READ_SHADOW
, vcpu
->arch
.cr0
);
2891 vmx_fpu_activate(vcpu
);
2892 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2893 skip_emulated_instruction(vcpu
);
2895 case 1: /*mov from cr*/
2898 kvm_register_write(vcpu
, reg
, vcpu
->arch
.cr3
);
2899 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
,
2900 (u32
)kvm_register_read(vcpu
, reg
),
2901 (u32
)((u64
)kvm_register_read(vcpu
, reg
) >> 32),
2903 skip_emulated_instruction(vcpu
);
2906 kvm_register_write(vcpu
, reg
, kvm_get_cr8(vcpu
));
2907 KVMTRACE_2D(CR_READ
, vcpu
, (u32
)cr
,
2908 (u32
)kvm_register_read(vcpu
, reg
), handler
);
2909 skip_emulated_instruction(vcpu
);
2914 kvm_lmsw(vcpu
, (exit_qualification
>> LMSW_SOURCE_DATA_SHIFT
) & 0x0f);
2916 skip_emulated_instruction(vcpu
);
2921 kvm_run
->exit_reason
= 0;
2922 pr_unimpl(vcpu
, "unhandled control register: op %d cr %d\n",
2923 (int)(exit_qualification
>> 4) & 3, cr
);
2927 static int handle_dr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2929 unsigned long exit_qualification
;
2933 dr
= vmcs_readl(GUEST_DR7
);
2936 * As the vm-exit takes precedence over the debug trap, we
2937 * need to emulate the latter, either for the host or the
2938 * guest debugging itself.
2940 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
2941 kvm_run
->debug
.arch
.dr6
= vcpu
->arch
.dr6
;
2942 kvm_run
->debug
.arch
.dr7
= dr
;
2943 kvm_run
->debug
.arch
.pc
=
2944 vmcs_readl(GUEST_CS_BASE
) +
2945 vmcs_readl(GUEST_RIP
);
2946 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
2947 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
2950 vcpu
->arch
.dr7
&= ~DR7_GD
;
2951 vcpu
->arch
.dr6
|= DR6_BD
;
2952 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
2953 kvm_queue_exception(vcpu
, DB_VECTOR
);
2958 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
2959 dr
= exit_qualification
& DEBUG_REG_ACCESS_NUM
;
2960 reg
= DEBUG_REG_ACCESS_REG(exit_qualification
);
2961 if (exit_qualification
& TYPE_MOV_FROM_DR
) {
2964 val
= vcpu
->arch
.db
[dr
];
2967 val
= vcpu
->arch
.dr6
;
2970 val
= vcpu
->arch
.dr7
;
2975 kvm_register_write(vcpu
, reg
, val
);
2976 KVMTRACE_2D(DR_READ
, vcpu
, (u32
)dr
, (u32
)val
, handler
);
2978 val
= vcpu
->arch
.regs
[reg
];
2981 vcpu
->arch
.db
[dr
] = val
;
2982 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
2983 vcpu
->arch
.eff_db
[dr
] = val
;
2986 if (vcpu
->arch
.cr4
& X86_CR4_DE
)
2987 kvm_queue_exception(vcpu
, UD_VECTOR
);
2990 if (val
& 0xffffffff00000000ULL
) {
2991 kvm_queue_exception(vcpu
, GP_VECTOR
);
2994 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
2997 if (val
& 0xffffffff00000000ULL
) {
2998 kvm_queue_exception(vcpu
, GP_VECTOR
);
3001 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
3002 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
3003 vmcs_writel(GUEST_DR7
, vcpu
->arch
.dr7
);
3004 vcpu
->arch
.switch_db_regs
=
3005 (val
& DR7_BP_EN_MASK
);
3009 KVMTRACE_2D(DR_WRITE
, vcpu
, (u32
)dr
, (u32
)val
, handler
);
3011 skip_emulated_instruction(vcpu
);
3015 static int handle_cpuid(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3017 kvm_emulate_cpuid(vcpu
);
3021 static int handle_rdmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3023 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3026 if (vmx_get_msr(vcpu
, ecx
, &data
)) {
3027 kvm_inject_gp(vcpu
, 0);
3031 KVMTRACE_3D(MSR_READ
, vcpu
, ecx
, (u32
)data
, (u32
)(data
>> 32),
3034 /* FIXME: handling of bits 32:63 of rax, rdx */
3035 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = data
& -1u;
3036 vcpu
->arch
.regs
[VCPU_REGS_RDX
] = (data
>> 32) & -1u;
3037 skip_emulated_instruction(vcpu
);
3041 static int handle_wrmsr(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3043 u32 ecx
= vcpu
->arch
.regs
[VCPU_REGS_RCX
];
3044 u64 data
= (vcpu
->arch
.regs
[VCPU_REGS_RAX
] & -1u)
3045 | ((u64
)(vcpu
->arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
3047 KVMTRACE_3D(MSR_WRITE
, vcpu
, ecx
, (u32
)data
, (u32
)(data
>> 32),
3050 if (vmx_set_msr(vcpu
, ecx
, data
) != 0) {
3051 kvm_inject_gp(vcpu
, 0);
3055 skip_emulated_instruction(vcpu
);
3059 static int handle_tpr_below_threshold(struct kvm_vcpu
*vcpu
,
3060 struct kvm_run
*kvm_run
)
3065 static int handle_interrupt_window(struct kvm_vcpu
*vcpu
,
3066 struct kvm_run
*kvm_run
)
3068 u32 cpu_based_vm_exec_control
;
3070 /* clear pending irq */
3071 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3072 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_INTR_PENDING
;
3073 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3075 KVMTRACE_0D(PEND_INTR
, vcpu
, handler
);
3076 ++vcpu
->stat
.irq_window_exits
;
3079 * If the user space waits to inject interrupts, exit as soon as
3082 if (!irqchip_in_kernel(vcpu
->kvm
) &&
3083 kvm_run
->request_interrupt_window
&&
3084 !kvm_cpu_has_interrupt(vcpu
)) {
3085 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3091 static int handle_halt(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3093 skip_emulated_instruction(vcpu
);
3094 return kvm_emulate_halt(vcpu
);
3097 static int handle_vmcall(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3099 skip_emulated_instruction(vcpu
);
3100 kvm_emulate_hypercall(vcpu
);
3104 static int handle_vmx_insn(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3106 kvm_queue_exception(vcpu
, UD_VECTOR
);
3110 static int handle_invlpg(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3112 unsigned long exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3114 kvm_mmu_invlpg(vcpu
, exit_qualification
);
3115 skip_emulated_instruction(vcpu
);
3119 static int handle_wbinvd(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3121 skip_emulated_instruction(vcpu
);
3122 /* TODO: Add support for VT-d/pass-through device */
3126 static int handle_apic_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3128 unsigned long exit_qualification
;
3129 enum emulation_result er
;
3130 unsigned long offset
;
3132 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3133 offset
= exit_qualification
& 0xffful
;
3135 er
= emulate_instruction(vcpu
, kvm_run
, 0, 0, 0);
3137 if (er
!= EMULATE_DONE
) {
3139 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3146 static int handle_task_switch(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3148 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3149 unsigned long exit_qualification
;
3151 int reason
, type
, idt_v
;
3153 idt_v
= (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
);
3154 type
= (vmx
->idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
);
3156 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3158 reason
= (u32
)exit_qualification
>> 30;
3159 if (reason
== TASK_SWITCH_GATE
&& idt_v
) {
3161 case INTR_TYPE_NMI_INTR
:
3162 vcpu
->arch
.nmi_injected
= false;
3163 if (cpu_has_virtual_nmis())
3164 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3165 GUEST_INTR_STATE_NMI
);
3167 case INTR_TYPE_EXT_INTR
:
3168 case INTR_TYPE_SOFT_INTR
:
3169 kvm_clear_interrupt_queue(vcpu
);
3171 case INTR_TYPE_HARD_EXCEPTION
:
3172 case INTR_TYPE_SOFT_EXCEPTION
:
3173 kvm_clear_exception_queue(vcpu
);
3179 tss_selector
= exit_qualification
;
3181 if (!idt_v
|| (type
!= INTR_TYPE_HARD_EXCEPTION
&&
3182 type
!= INTR_TYPE_EXT_INTR
&&
3183 type
!= INTR_TYPE_NMI_INTR
))
3184 skip_emulated_instruction(vcpu
);
3186 if (!kvm_task_switch(vcpu
, tss_selector
, reason
))
3189 /* clear all local breakpoint enable flags */
3190 vmcs_writel(GUEST_DR7
, vmcs_readl(GUEST_DR7
) & ~55);
3193 * TODO: What about debug traps on tss switch?
3194 * Are we supposed to inject them and update dr6?
3200 static int handle_ept_violation(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3202 unsigned long exit_qualification
;
3206 exit_qualification
= vmcs_readl(EXIT_QUALIFICATION
);
3208 if (exit_qualification
& (1 << 6)) {
3209 printk(KERN_ERR
"EPT: GPA exceeds GAW!\n");
3213 gla_validity
= (exit_qualification
>> 7) & 0x3;
3214 if (gla_validity
!= 0x3 && gla_validity
!= 0x1 && gla_validity
!= 0) {
3215 printk(KERN_ERR
"EPT: Handling EPT violation failed!\n");
3216 printk(KERN_ERR
"EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3217 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS
),
3218 vmcs_readl(GUEST_LINEAR_ADDRESS
));
3219 printk(KERN_ERR
"EPT: Exit qualification is 0x%lx\n",
3220 (long unsigned int)exit_qualification
);
3221 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3222 kvm_run
->hw
.hardware_exit_reason
= EXIT_REASON_EPT_VIOLATION
;
3226 gpa
= vmcs_read64(GUEST_PHYSICAL_ADDRESS
);
3227 return kvm_mmu_page_fault(vcpu
, gpa
& PAGE_MASK
, 0);
3230 static int handle_nmi_window(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3232 u32 cpu_based_vm_exec_control
;
3234 /* clear pending NMI */
3235 cpu_based_vm_exec_control
= vmcs_read32(CPU_BASED_VM_EXEC_CONTROL
);
3236 cpu_based_vm_exec_control
&= ~CPU_BASED_VIRTUAL_NMI_PENDING
;
3237 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL
, cpu_based_vm_exec_control
);
3238 ++vcpu
->stat
.nmi_window_exits
;
3243 static void handle_invalid_guest_state(struct kvm_vcpu
*vcpu
,
3244 struct kvm_run
*kvm_run
)
3246 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3247 enum emulation_result err
= EMULATE_DONE
;
3252 while (!guest_state_valid(vcpu
)) {
3253 err
= emulate_instruction(vcpu
, kvm_run
, 0, 0, 0);
3255 if (err
== EMULATE_DO_MMIO
)
3258 if (err
!= EMULATE_DONE
) {
3259 kvm_report_emulation_failure(vcpu
, "emulation failure");
3263 if (signal_pending(current
))
3270 local_irq_disable();
3272 vmx
->invalid_state_emulation_result
= err
;
3276 * The exit handlers return 1 if the exit was handled fully and guest execution
3277 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3278 * to be done to userspace and return 0.
3280 static int (*kvm_vmx_exit_handlers
[])(struct kvm_vcpu
*vcpu
,
3281 struct kvm_run
*kvm_run
) = {
3282 [EXIT_REASON_EXCEPTION_NMI
] = handle_exception
,
3283 [EXIT_REASON_EXTERNAL_INTERRUPT
] = handle_external_interrupt
,
3284 [EXIT_REASON_TRIPLE_FAULT
] = handle_triple_fault
,
3285 [EXIT_REASON_NMI_WINDOW
] = handle_nmi_window
,
3286 [EXIT_REASON_IO_INSTRUCTION
] = handle_io
,
3287 [EXIT_REASON_CR_ACCESS
] = handle_cr
,
3288 [EXIT_REASON_DR_ACCESS
] = handle_dr
,
3289 [EXIT_REASON_CPUID
] = handle_cpuid
,
3290 [EXIT_REASON_MSR_READ
] = handle_rdmsr
,
3291 [EXIT_REASON_MSR_WRITE
] = handle_wrmsr
,
3292 [EXIT_REASON_PENDING_INTERRUPT
] = handle_interrupt_window
,
3293 [EXIT_REASON_HLT
] = handle_halt
,
3294 [EXIT_REASON_INVLPG
] = handle_invlpg
,
3295 [EXIT_REASON_VMCALL
] = handle_vmcall
,
3296 [EXIT_REASON_VMCLEAR
] = handle_vmx_insn
,
3297 [EXIT_REASON_VMLAUNCH
] = handle_vmx_insn
,
3298 [EXIT_REASON_VMPTRLD
] = handle_vmx_insn
,
3299 [EXIT_REASON_VMPTRST
] = handle_vmx_insn
,
3300 [EXIT_REASON_VMREAD
] = handle_vmx_insn
,
3301 [EXIT_REASON_VMRESUME
] = handle_vmx_insn
,
3302 [EXIT_REASON_VMWRITE
] = handle_vmx_insn
,
3303 [EXIT_REASON_VMOFF
] = handle_vmx_insn
,
3304 [EXIT_REASON_VMON
] = handle_vmx_insn
,
3305 [EXIT_REASON_TPR_BELOW_THRESHOLD
] = handle_tpr_below_threshold
,
3306 [EXIT_REASON_APIC_ACCESS
] = handle_apic_access
,
3307 [EXIT_REASON_WBINVD
] = handle_wbinvd
,
3308 [EXIT_REASON_TASK_SWITCH
] = handle_task_switch
,
3309 [EXIT_REASON_EPT_VIOLATION
] = handle_ept_violation
,
3310 [EXIT_REASON_MCE_DURING_VMENTRY
] = handle_machine_check
,
3313 static const int kvm_vmx_max_exit_handlers
=
3314 ARRAY_SIZE(kvm_vmx_exit_handlers
);
3317 * The guest has exited. See if we can fix it or if we need userspace
3320 static int vmx_handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
3322 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3323 u32 exit_reason
= vmx
->exit_reason
;
3324 u32 vectoring_info
= vmx
->idt_vectoring_info
;
3326 KVMTRACE_3D(VMEXIT
, vcpu
, exit_reason
, (u32
)kvm_rip_read(vcpu
),
3327 (u32
)((u64
)kvm_rip_read(vcpu
) >> 32), entryexit
);
3329 /* If we need to emulate an MMIO from handle_invalid_guest_state
3330 * we just return 0 */
3331 if (vmx
->emulation_required
&& emulate_invalid_guest_state
) {
3332 if (guest_state_valid(vcpu
))
3333 vmx
->emulation_required
= 0;
3334 return vmx
->invalid_state_emulation_result
!= EMULATE_DO_MMIO
;
3337 /* Access CR3 don't cause VMExit in paging mode, so we need
3338 * to sync with guest real CR3. */
3339 if (enable_ept
&& is_paging(vcpu
))
3340 vcpu
->arch
.cr3
= vmcs_readl(GUEST_CR3
);
3342 if (unlikely(vmx
->fail
)) {
3343 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3344 kvm_run
->fail_entry
.hardware_entry_failure_reason
3345 = vmcs_read32(VM_INSTRUCTION_ERROR
);
3349 if ((vectoring_info
& VECTORING_INFO_VALID_MASK
) &&
3350 (exit_reason
!= EXIT_REASON_EXCEPTION_NMI
&&
3351 exit_reason
!= EXIT_REASON_EPT_VIOLATION
&&
3352 exit_reason
!= EXIT_REASON_TASK_SWITCH
))
3353 printk(KERN_WARNING
"%s: unexpected, valid vectoring info "
3354 "(0x%x) and exit reason is 0x%x\n",
3355 __func__
, vectoring_info
, exit_reason
);
3357 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
)) {
3358 if (vmx_interrupt_allowed(vcpu
)) {
3359 vmx
->soft_vnmi_blocked
= 0;
3360 } else if (vmx
->vnmi_blocked_time
> 1000000000LL &&
3361 vcpu
->arch
.nmi_pending
) {
3363 * This CPU don't support us in finding the end of an
3364 * NMI-blocked window if the guest runs with IRQs
3365 * disabled. So we pull the trigger after 1 s of
3366 * futile waiting, but inform the user about this.
3368 printk(KERN_WARNING
"%s: Breaking out of NMI-blocked "
3369 "state on VCPU %d after 1 s timeout\n",
3370 __func__
, vcpu
->vcpu_id
);
3371 vmx
->soft_vnmi_blocked
= 0;
3375 if (exit_reason
< kvm_vmx_max_exit_handlers
3376 && kvm_vmx_exit_handlers
[exit_reason
])
3377 return kvm_vmx_exit_handlers
[exit_reason
](vcpu
, kvm_run
);
3379 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3380 kvm_run
->hw
.hardware_exit_reason
= exit_reason
;
3385 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3387 if (irr
== -1 || tpr
< irr
) {
3388 vmcs_write32(TPR_THRESHOLD
, 0);
3392 vmcs_write32(TPR_THRESHOLD
, irr
);
3395 static void vmx_complete_interrupts(struct vcpu_vmx
*vmx
)
3398 u32 idt_vectoring_info
= vmx
->idt_vectoring_info
;
3402 bool idtv_info_valid
;
3404 exit_intr_info
= vmcs_read32(VM_EXIT_INTR_INFO
);
3406 vmx
->exit_reason
= vmcs_read32(VM_EXIT_REASON
);
3408 /* Handle machine checks before interrupts are enabled */
3409 if ((vmx
->exit_reason
== EXIT_REASON_MCE_DURING_VMENTRY
)
3410 || (vmx
->exit_reason
== EXIT_REASON_EXCEPTION_NMI
3411 && is_machine_check(exit_intr_info
)))
3412 kvm_machine_check();
3414 /* We need to handle NMIs before interrupts are enabled */
3415 if ((exit_intr_info
& INTR_INFO_INTR_TYPE_MASK
) == INTR_TYPE_NMI_INTR
&&
3416 (exit_intr_info
& INTR_INFO_VALID_MASK
)) {
3417 KVMTRACE_0D(NMI
, &vmx
->vcpu
, handler
);
3421 idtv_info_valid
= idt_vectoring_info
& VECTORING_INFO_VALID_MASK
;
3423 if (cpu_has_virtual_nmis()) {
3424 unblock_nmi
= (exit_intr_info
& INTR_INFO_UNBLOCK_NMI
) != 0;
3425 vector
= exit_intr_info
& INTR_INFO_VECTOR_MASK
;
3427 * SDM 3: 27.7.1.2 (September 2008)
3428 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3429 * a guest IRET fault.
3430 * SDM 3: 23.2.2 (September 2008)
3431 * Bit 12 is undefined in any of the following cases:
3432 * If the VM exit sets the valid bit in the IDT-vectoring
3433 * information field.
3434 * If the VM exit is due to a double fault.
3436 if ((exit_intr_info
& INTR_INFO_VALID_MASK
) && unblock_nmi
&&
3437 vector
!= DF_VECTOR
&& !idtv_info_valid
)
3438 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO
,
3439 GUEST_INTR_STATE_NMI
);
3440 } else if (unlikely(vmx
->soft_vnmi_blocked
))
3441 vmx
->vnmi_blocked_time
+=
3442 ktime_to_ns(ktime_sub(ktime_get(), vmx
->entry_time
));
3444 vmx
->vcpu
.arch
.nmi_injected
= false;
3445 kvm_clear_exception_queue(&vmx
->vcpu
);
3446 kvm_clear_interrupt_queue(&vmx
->vcpu
);
3448 if (!idtv_info_valid
)
3451 vector
= idt_vectoring_info
& VECTORING_INFO_VECTOR_MASK
;
3452 type
= idt_vectoring_info
& VECTORING_INFO_TYPE_MASK
;
3455 case INTR_TYPE_NMI_INTR
:
3456 vmx
->vcpu
.arch
.nmi_injected
= true;
3458 * SDM 3: 27.7.1.2 (September 2008)
3459 * Clear bit "block by NMI" before VM entry if a NMI
3462 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO
,
3463 GUEST_INTR_STATE_NMI
);
3465 case INTR_TYPE_SOFT_EXCEPTION
:
3466 vmx
->vcpu
.arch
.event_exit_inst_len
=
3467 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3469 case INTR_TYPE_HARD_EXCEPTION
:
3470 if (idt_vectoring_info
& VECTORING_INFO_DELIVER_CODE_MASK
) {
3471 u32 err
= vmcs_read32(IDT_VECTORING_ERROR_CODE
);
3472 kvm_queue_exception_e(&vmx
->vcpu
, vector
, err
);
3474 kvm_queue_exception(&vmx
->vcpu
, vector
);
3476 case INTR_TYPE_SOFT_INTR
:
3477 vmx
->vcpu
.arch
.event_exit_inst_len
=
3478 vmcs_read32(VM_EXIT_INSTRUCTION_LEN
);
3480 case INTR_TYPE_EXT_INTR
:
3481 kvm_queue_interrupt(&vmx
->vcpu
, vector
,
3482 type
== INTR_TYPE_SOFT_INTR
);
3490 * Failure to inject an interrupt should give us the information
3491 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3492 * when fetching the interrupt redirection bitmap in the real-mode
3493 * tss, this doesn't happen. So we do it ourselves.
3495 static void fixup_rmode_irq(struct vcpu_vmx
*vmx
)
3497 vmx
->rmode
.irq
.pending
= 0;
3498 if (kvm_rip_read(&vmx
->vcpu
) + 1 != vmx
->rmode
.irq
.rip
)
3500 kvm_rip_write(&vmx
->vcpu
, vmx
->rmode
.irq
.rip
);
3501 if (vmx
->idt_vectoring_info
& VECTORING_INFO_VALID_MASK
) {
3502 vmx
->idt_vectoring_info
&= ~VECTORING_INFO_TYPE_MASK
;
3503 vmx
->idt_vectoring_info
|= INTR_TYPE_EXT_INTR
;
3506 vmx
->idt_vectoring_info
=
3507 VECTORING_INFO_VALID_MASK
3508 | INTR_TYPE_EXT_INTR
3509 | vmx
->rmode
.irq
.vector
;
3512 #ifdef CONFIG_X86_64
3520 static void vmx_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3522 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3524 if (enable_ept
&& is_paging(vcpu
)) {
3525 vmcs_writel(GUEST_CR3
, vcpu
->arch
.cr3
);
3526 ept_load_pdptrs(vcpu
);
3528 /* Record the guest's net vcpu time for enforced NMI injections. */
3529 if (unlikely(!cpu_has_virtual_nmis() && vmx
->soft_vnmi_blocked
))
3530 vmx
->entry_time
= ktime_get();
3532 /* Handle invalid guest state instead of entering VMX */
3533 if (vmx
->emulation_required
&& emulate_invalid_guest_state
) {
3534 handle_invalid_guest_state(vcpu
, kvm_run
);
3538 if (test_bit(VCPU_REGS_RSP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
3539 vmcs_writel(GUEST_RSP
, vcpu
->arch
.regs
[VCPU_REGS_RSP
]);
3540 if (test_bit(VCPU_REGS_RIP
, (unsigned long *)&vcpu
->arch
.regs_dirty
))
3541 vmcs_writel(GUEST_RIP
, vcpu
->arch
.regs
[VCPU_REGS_RIP
]);
3543 /* When single-stepping over STI and MOV SS, we must clear the
3544 * corresponding interruptibility bits in the guest state. Otherwise
3545 * vmentry fails as it then expects bit 14 (BS) in pending debug
3546 * exceptions being set, but that's not correct for the guest debugging
3548 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3549 vmx_set_interrupt_shadow(vcpu
, 0);
3552 * Loading guest fpu may have cleared host cr0.ts
3554 vmcs_writel(HOST_CR0
, read_cr0());
3556 set_debugreg(vcpu
->arch
.dr6
, 6);
3559 /* Store host registers */
3560 "push %%"R
"dx; push %%"R
"bp;"
3562 "cmp %%"R
"sp, %c[host_rsp](%0) \n\t"
3564 "mov %%"R
"sp, %c[host_rsp](%0) \n\t"
3565 __ex(ASM_VMX_VMWRITE_RSP_RDX
) "\n\t"
3567 /* Check if vmlaunch of vmresume is needed */
3568 "cmpl $0, %c[launched](%0) \n\t"
3569 /* Load guest registers. Don't clobber flags. */
3570 "mov %c[cr2](%0), %%"R
"ax \n\t"
3571 "mov %%"R
"ax, %%cr2 \n\t"
3572 "mov %c[rax](%0), %%"R
"ax \n\t"
3573 "mov %c[rbx](%0), %%"R
"bx \n\t"
3574 "mov %c[rdx](%0), %%"R
"dx \n\t"
3575 "mov %c[rsi](%0), %%"R
"si \n\t"
3576 "mov %c[rdi](%0), %%"R
"di \n\t"
3577 "mov %c[rbp](%0), %%"R
"bp \n\t"
3578 #ifdef CONFIG_X86_64
3579 "mov %c[r8](%0), %%r8 \n\t"
3580 "mov %c[r9](%0), %%r9 \n\t"
3581 "mov %c[r10](%0), %%r10 \n\t"
3582 "mov %c[r11](%0), %%r11 \n\t"
3583 "mov %c[r12](%0), %%r12 \n\t"
3584 "mov %c[r13](%0), %%r13 \n\t"
3585 "mov %c[r14](%0), %%r14 \n\t"
3586 "mov %c[r15](%0), %%r15 \n\t"
3588 "mov %c[rcx](%0), %%"R
"cx \n\t" /* kills %0 (ecx) */
3590 /* Enter guest mode */
3591 "jne .Llaunched \n\t"
3592 __ex(ASM_VMX_VMLAUNCH
) "\n\t"
3593 "jmp .Lkvm_vmx_return \n\t"
3594 ".Llaunched: " __ex(ASM_VMX_VMRESUME
) "\n\t"
3595 ".Lkvm_vmx_return: "
3596 /* Save guest registers, load host registers, keep flags */
3597 "xchg %0, (%%"R
"sp) \n\t"
3598 "mov %%"R
"ax, %c[rax](%0) \n\t"
3599 "mov %%"R
"bx, %c[rbx](%0) \n\t"
3600 "push"Q
" (%%"R
"sp); pop"Q
" %c[rcx](%0) \n\t"
3601 "mov %%"R
"dx, %c[rdx](%0) \n\t"
3602 "mov %%"R
"si, %c[rsi](%0) \n\t"
3603 "mov %%"R
"di, %c[rdi](%0) \n\t"
3604 "mov %%"R
"bp, %c[rbp](%0) \n\t"
3605 #ifdef CONFIG_X86_64
3606 "mov %%r8, %c[r8](%0) \n\t"
3607 "mov %%r9, %c[r9](%0) \n\t"
3608 "mov %%r10, %c[r10](%0) \n\t"
3609 "mov %%r11, %c[r11](%0) \n\t"
3610 "mov %%r12, %c[r12](%0) \n\t"
3611 "mov %%r13, %c[r13](%0) \n\t"
3612 "mov %%r14, %c[r14](%0) \n\t"
3613 "mov %%r15, %c[r15](%0) \n\t"
3615 "mov %%cr2, %%"R
"ax \n\t"
3616 "mov %%"R
"ax, %c[cr2](%0) \n\t"
3618 "pop %%"R
"bp; pop %%"R
"bp; pop %%"R
"dx \n\t"
3619 "setbe %c[fail](%0) \n\t"
3620 : : "c"(vmx
), "d"((unsigned long)HOST_RSP
),
3621 [launched
]"i"(offsetof(struct vcpu_vmx
, launched
)),
3622 [fail
]"i"(offsetof(struct vcpu_vmx
, fail
)),
3623 [host_rsp
]"i"(offsetof(struct vcpu_vmx
, host_rsp
)),
3624 [rax
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RAX
])),
3625 [rbx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3626 [rcx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3627 [rdx
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3628 [rsi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3629 [rdi
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3630 [rbp
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_RBP
])),
3631 #ifdef CONFIG_X86_64
3632 [r8
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3633 [r9
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3634 [r10
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3635 [r11
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3636 [r12
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3637 [r13
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3638 [r14
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3639 [r15
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.regs
[VCPU_REGS_R15
])),
3641 [cr2
]"i"(offsetof(struct vcpu_vmx
, vcpu
.arch
.cr2
))
3643 , R
"bx", R
"di", R
"si"
3644 #ifdef CONFIG_X86_64
3645 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3649 vcpu
->arch
.regs_avail
= ~((1 << VCPU_REGS_RIP
) | (1 << VCPU_REGS_RSP
)
3650 | (1 << VCPU_EXREG_PDPTR
));
3651 vcpu
->arch
.regs_dirty
= 0;
3653 get_debugreg(vcpu
->arch
.dr6
, 6);
3655 vmx
->idt_vectoring_info
= vmcs_read32(IDT_VECTORING_INFO_FIELD
);
3656 if (vmx
->rmode
.irq
.pending
)
3657 fixup_rmode_irq(vmx
);
3659 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS
));
3662 vmx_complete_interrupts(vmx
);
3668 static void vmx_free_vmcs(struct kvm_vcpu
*vcpu
)
3670 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3674 free_vmcs(vmx
->vmcs
);
3679 static void vmx_free_vcpu(struct kvm_vcpu
*vcpu
)
3681 struct vcpu_vmx
*vmx
= to_vmx(vcpu
);
3683 spin_lock(&vmx_vpid_lock
);
3685 __clear_bit(vmx
->vpid
, vmx_vpid_bitmap
);
3686 spin_unlock(&vmx_vpid_lock
);
3687 vmx_free_vmcs(vcpu
);
3688 kfree(vmx
->host_msrs
);
3689 kfree(vmx
->guest_msrs
);
3690 kvm_vcpu_uninit(vcpu
);
3691 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3694 static struct kvm_vcpu
*vmx_create_vcpu(struct kvm
*kvm
, unsigned int id
)
3697 struct vcpu_vmx
*vmx
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
3701 return ERR_PTR(-ENOMEM
);
3705 err
= kvm_vcpu_init(&vmx
->vcpu
, kvm
, id
);
3709 vmx
->guest_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3710 if (!vmx
->guest_msrs
) {
3715 vmx
->host_msrs
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3716 if (!vmx
->host_msrs
)
3717 goto free_guest_msrs
;
3719 vmx
->vmcs
= alloc_vmcs();
3723 vmcs_clear(vmx
->vmcs
);
3726 vmx_vcpu_load(&vmx
->vcpu
, cpu
);
3727 err
= vmx_vcpu_setup(vmx
);
3728 vmx_vcpu_put(&vmx
->vcpu
);
3732 if (vm_need_virtualize_apic_accesses(kvm
))
3733 if (alloc_apic_access_page(kvm
) != 0)
3737 if (alloc_identity_pagetable(kvm
) != 0)
3743 free_vmcs(vmx
->vmcs
);
3745 kfree(vmx
->host_msrs
);
3747 kfree(vmx
->guest_msrs
);
3749 kvm_vcpu_uninit(&vmx
->vcpu
);
3751 kmem_cache_free(kvm_vcpu_cache
, vmx
);
3752 return ERR_PTR(err
);
3755 static void __init
vmx_check_processor_compat(void *rtn
)
3757 struct vmcs_config vmcs_conf
;
3760 if (setup_vmcs_config(&vmcs_conf
) < 0)
3762 if (memcmp(&vmcs_config
, &vmcs_conf
, sizeof(struct vmcs_config
)) != 0) {
3763 printk(KERN_ERR
"kvm: CPU %d feature inconsistency!\n",
3764 smp_processor_id());
3769 static int get_ept_level(void)
3771 return VMX_EPT_DEFAULT_GAW
+ 1;
3774 static u64
vmx_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
3778 /* For VT-d and EPT combination
3779 * 1. MMIO: always map as UC
3781 * a. VT-d without snooping control feature: can't guarantee the
3782 * result, try to trust guest.
3783 * b. VT-d with snooping control feature: snooping control feature of
3784 * VT-d engine can guarantee the cache correctness. Just set it
3785 * to WB to keep consistent with host. So the same as item 3.
3786 * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
3787 * consistent with host MTRR
3790 ret
= MTRR_TYPE_UNCACHABLE
<< VMX_EPT_MT_EPTE_SHIFT
;
3791 else if (vcpu
->kvm
->arch
.iommu_domain
&&
3792 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
))
3793 ret
= kvm_get_guest_memory_type(vcpu
, gfn
) <<
3794 VMX_EPT_MT_EPTE_SHIFT
;
3796 ret
= (MTRR_TYPE_WRBACK
<< VMX_EPT_MT_EPTE_SHIFT
)
3802 static struct kvm_x86_ops vmx_x86_ops
= {
3803 .cpu_has_kvm_support
= cpu_has_kvm_support
,
3804 .disabled_by_bios
= vmx_disabled_by_bios
,
3805 .hardware_setup
= hardware_setup
,
3806 .hardware_unsetup
= hardware_unsetup
,
3807 .check_processor_compatibility
= vmx_check_processor_compat
,
3808 .hardware_enable
= hardware_enable
,
3809 .hardware_disable
= hardware_disable
,
3810 .cpu_has_accelerated_tpr
= report_flexpriority
,
3812 .vcpu_create
= vmx_create_vcpu
,
3813 .vcpu_free
= vmx_free_vcpu
,
3814 .vcpu_reset
= vmx_vcpu_reset
,
3816 .prepare_guest_switch
= vmx_save_host_state
,
3817 .vcpu_load
= vmx_vcpu_load
,
3818 .vcpu_put
= vmx_vcpu_put
,
3820 .set_guest_debug
= set_guest_debug
,
3821 .get_msr
= vmx_get_msr
,
3822 .set_msr
= vmx_set_msr
,
3823 .get_segment_base
= vmx_get_segment_base
,
3824 .get_segment
= vmx_get_segment
,
3825 .set_segment
= vmx_set_segment
,
3826 .get_cpl
= vmx_get_cpl
,
3827 .get_cs_db_l_bits
= vmx_get_cs_db_l_bits
,
3828 .decache_cr4_guest_bits
= vmx_decache_cr4_guest_bits
,
3829 .set_cr0
= vmx_set_cr0
,
3830 .set_cr3
= vmx_set_cr3
,
3831 .set_cr4
= vmx_set_cr4
,
3832 .set_efer
= vmx_set_efer
,
3833 .get_idt
= vmx_get_idt
,
3834 .set_idt
= vmx_set_idt
,
3835 .get_gdt
= vmx_get_gdt
,
3836 .set_gdt
= vmx_set_gdt
,
3837 .cache_reg
= vmx_cache_reg
,
3838 .get_rflags
= vmx_get_rflags
,
3839 .set_rflags
= vmx_set_rflags
,
3841 .tlb_flush
= vmx_flush_tlb
,
3843 .run
= vmx_vcpu_run
,
3844 .handle_exit
= vmx_handle_exit
,
3845 .skip_emulated_instruction
= skip_emulated_instruction
,
3846 .set_interrupt_shadow
= vmx_set_interrupt_shadow
,
3847 .get_interrupt_shadow
= vmx_get_interrupt_shadow
,
3848 .patch_hypercall
= vmx_patch_hypercall
,
3849 .set_irq
= vmx_inject_irq
,
3850 .set_nmi
= vmx_inject_nmi
,
3851 .queue_exception
= vmx_queue_exception
,
3852 .interrupt_allowed
= vmx_interrupt_allowed
,
3853 .nmi_allowed
= vmx_nmi_allowed
,
3854 .enable_nmi_window
= enable_nmi_window
,
3855 .enable_irq_window
= enable_irq_window
,
3856 .update_cr8_intercept
= update_cr8_intercept
,
3858 .set_tss_addr
= vmx_set_tss_addr
,
3859 .get_tdp_level
= get_ept_level
,
3860 .get_mt_mask
= vmx_get_mt_mask
,
3863 static int __init
vmx_init(void)
3867 vmx_io_bitmap_a
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3868 if (!vmx_io_bitmap_a
)
3871 vmx_io_bitmap_b
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3872 if (!vmx_io_bitmap_b
) {
3877 vmx_msr_bitmap_legacy
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3878 if (!vmx_msr_bitmap_legacy
) {
3883 vmx_msr_bitmap_longmode
= (unsigned long *)__get_free_page(GFP_KERNEL
);
3884 if (!vmx_msr_bitmap_longmode
) {
3890 * Allow direct access to the PC debug port (it is often used for I/O
3891 * delays, but the vmexits simply slow things down).
3893 memset(vmx_io_bitmap_a
, 0xff, PAGE_SIZE
);
3894 clear_bit(0x80, vmx_io_bitmap_a
);
3896 memset(vmx_io_bitmap_b
, 0xff, PAGE_SIZE
);
3898 memset(vmx_msr_bitmap_legacy
, 0xff, PAGE_SIZE
);
3899 memset(vmx_msr_bitmap_longmode
, 0xff, PAGE_SIZE
);
3901 set_bit(0, vmx_vpid_bitmap
); /* 0 is reserved for host */
3903 r
= kvm_init(&vmx_x86_ops
, sizeof(struct vcpu_vmx
), THIS_MODULE
);
3907 vmx_disable_intercept_for_msr(MSR_FS_BASE
, false);
3908 vmx_disable_intercept_for_msr(MSR_GS_BASE
, false);
3909 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE
, true);
3910 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS
, false);
3911 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP
, false);
3912 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP
, false);
3915 bypass_guest_pf
= 0;
3916 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK
|
3917 VMX_EPT_WRITABLE_MASK
);
3918 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
3919 VMX_EPT_EXECUTABLE_MASK
);
3924 if (bypass_guest_pf
)
3925 kvm_mmu_set_nonpresent_ptes(~0xffeull
, 0ull);
3932 free_page((unsigned long)vmx_msr_bitmap_longmode
);
3934 free_page((unsigned long)vmx_msr_bitmap_legacy
);
3936 free_page((unsigned long)vmx_io_bitmap_b
);
3938 free_page((unsigned long)vmx_io_bitmap_a
);
3942 static void __exit
vmx_exit(void)
3944 free_page((unsigned long)vmx_msr_bitmap_legacy
);
3945 free_page((unsigned long)vmx_msr_bitmap_longmode
);
3946 free_page((unsigned long)vmx_io_bitmap_b
);
3947 free_page((unsigned long)vmx_io_bitmap_a
);
3952 module_init(vmx_init
)
3953 module_exit(vmx_exit
)