4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
27 * The following locks and mutexes are used by kmemleak:
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
56 * Locks and mutexes are acquired/nested in the following order:
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched.h>
77 #include <linux/jiffies.h>
78 #include <linux/delay.h>
79 #include <linux/export.h>
80 #include <linux/kthread.h>
81 #include <linux/rbtree.h>
83 #include <linux/debugfs.h>
84 #include <linux/seq_file.h>
85 #include <linux/cpumask.h>
86 #include <linux/spinlock.h>
87 #include <linux/mutex.h>
88 #include <linux/rcupdate.h>
89 #include <linux/stacktrace.h>
90 #include <linux/cache.h>
91 #include <linux/percpu.h>
92 #include <linux/hardirq.h>
93 #include <linux/mmzone.h>
94 #include <linux/slab.h>
95 #include <linux/thread_info.h>
96 #include <linux/err.h>
97 #include <linux/uaccess.h>
98 #include <linux/string.h>
99 #include <linux/nodemask.h>
100 #include <linux/mm.h>
101 #include <linux/workqueue.h>
102 #include <linux/crc32.h>
104 #include <asm/sections.h>
105 #include <asm/processor.h>
106 #include <linux/atomic.h>
108 #include <linux/kasan.h>
109 #include <linux/kmemcheck.h>
110 #include <linux/kmemleak.h>
111 #include <linux/memory_hotplug.h>
114 * Kmemleak configuration and common defines.
116 #define MAX_TRACE 16 /* stack trace length */
117 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
118 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
119 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
120 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
122 #define BYTES_PER_POINTER sizeof(void *)
124 /* GFP bitmask for kmemleak internal allocations */
125 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
126 __GFP_NOACCOUNT)) | \
127 __GFP_NORETRY | __GFP_NOMEMALLOC | \
130 /* scanning area inside a memory block */
131 struct kmemleak_scan_area
{
132 struct hlist_node node
;
137 #define KMEMLEAK_GREY 0
138 #define KMEMLEAK_BLACK -1
141 * Structure holding the metadata for each allocated memory block.
142 * Modifications to such objects should be made while holding the
143 * object->lock. Insertions or deletions from object_list, gray_list or
144 * rb_node are already protected by the corresponding locks or mutex (see
145 * the notes on locking above). These objects are reference-counted
146 * (use_count) and freed using the RCU mechanism.
148 struct kmemleak_object
{
150 unsigned long flags
; /* object status flags */
151 struct list_head object_list
;
152 struct list_head gray_list
;
153 struct rb_node rb_node
;
154 struct rcu_head rcu
; /* object_list lockless traversal */
155 /* object usage count; object freed when use_count == 0 */
157 unsigned long pointer
;
159 /* minimum number of a pointers found before it is considered leak */
161 /* the total number of pointers found pointing to this object */
163 /* checksum for detecting modified objects */
165 /* memory ranges to be scanned inside an object (empty for all) */
166 struct hlist_head area_list
;
167 unsigned long trace
[MAX_TRACE
];
168 unsigned int trace_len
;
169 unsigned long jiffies
; /* creation timestamp */
170 pid_t pid
; /* pid of the current task */
171 char comm
[TASK_COMM_LEN
]; /* executable name */
174 /* flag representing the memory block allocation status */
175 #define OBJECT_ALLOCATED (1 << 0)
176 /* flag set after the first reporting of an unreference object */
177 #define OBJECT_REPORTED (1 << 1)
178 /* flag set to not scan the object */
179 #define OBJECT_NO_SCAN (1 << 2)
181 /* number of bytes to print per line; must be 16 or 32 */
182 #define HEX_ROW_SIZE 16
183 /* number of bytes to print at a time (1, 2, 4, 8) */
184 #define HEX_GROUP_SIZE 1
185 /* include ASCII after the hex output */
187 /* max number of lines to be printed */
188 #define HEX_MAX_LINES 2
190 /* the list of all allocated objects */
191 static LIST_HEAD(object_list
);
192 /* the list of gray-colored objects (see color_gray comment below) */
193 static LIST_HEAD(gray_list
);
194 /* search tree for object boundaries */
195 static struct rb_root object_tree_root
= RB_ROOT
;
196 /* rw_lock protecting the access to object_list and object_tree_root */
197 static DEFINE_RWLOCK(kmemleak_lock
);
199 /* allocation caches for kmemleak internal data */
200 static struct kmem_cache
*object_cache
;
201 static struct kmem_cache
*scan_area_cache
;
203 /* set if tracing memory operations is enabled */
204 static int kmemleak_enabled
;
205 /* same as above but only for the kmemleak_free() callback */
206 static int kmemleak_free_enabled
;
207 /* set in the late_initcall if there were no errors */
208 static int kmemleak_initialized
;
209 /* enables or disables early logging of the memory operations */
210 static int kmemleak_early_log
= 1;
211 /* set if a kmemleak warning was issued */
212 static int kmemleak_warning
;
213 /* set if a fatal kmemleak error has occurred */
214 static int kmemleak_error
;
216 /* minimum and maximum address that may be valid pointers */
217 static unsigned long min_addr
= ULONG_MAX
;
218 static unsigned long max_addr
;
220 static struct task_struct
*scan_thread
;
221 /* used to avoid reporting of recently allocated objects */
222 static unsigned long jiffies_min_age
;
223 static unsigned long jiffies_last_scan
;
224 /* delay between automatic memory scannings */
225 static signed long jiffies_scan_wait
;
226 /* enables or disables the task stacks scanning */
227 static int kmemleak_stack_scan
= 1;
228 /* protects the memory scanning, parameters and debug/kmemleak file access */
229 static DEFINE_MUTEX(scan_mutex
);
230 /* setting kmemleak=on, will set this var, skipping the disable */
231 static int kmemleak_skip_disable
;
232 /* If there are leaks that can be reported */
233 static bool kmemleak_found_leaks
;
236 * Early object allocation/freeing logging. Kmemleak is initialized after the
237 * kernel allocator. However, both the kernel allocator and kmemleak may
238 * allocate memory blocks which need to be tracked. Kmemleak defines an
239 * arbitrary buffer to hold the allocation/freeing information before it is
243 /* kmemleak operation type for early logging */
246 KMEMLEAK_ALLOC_PERCPU
,
249 KMEMLEAK_FREE_PERCPU
,
257 * Structure holding the information passed to kmemleak callbacks during the
261 int op_type
; /* kmemleak operation type */
262 const void *ptr
; /* allocated/freed memory block */
263 size_t size
; /* memory block size */
264 int min_count
; /* minimum reference count */
265 unsigned long trace
[MAX_TRACE
]; /* stack trace */
266 unsigned int trace_len
; /* stack trace length */
269 /* early logging buffer and current position */
270 static struct early_log
271 early_log
[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE
] __initdata
;
272 static int crt_early_log __initdata
;
274 static void kmemleak_disable(void);
277 * Print a warning and dump the stack trace.
279 #define kmemleak_warn(x...) do { \
282 kmemleak_warning = 1; \
286 * Macro invoked when a serious kmemleak condition occurred and cannot be
287 * recovered from. Kmemleak will be disabled and further allocation/freeing
288 * tracing no longer available.
290 #define kmemleak_stop(x...) do { \
292 kmemleak_disable(); \
296 * Printing of the objects hex dump to the seq file. The number of lines to be
297 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
298 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
299 * with the object->lock held.
301 static void hex_dump_object(struct seq_file
*seq
,
302 struct kmemleak_object
*object
)
304 const u8
*ptr
= (const u8
*)object
->pointer
;
307 /* limit the number of lines to HEX_MAX_LINES */
308 len
= min_t(size_t, object
->size
, HEX_MAX_LINES
* HEX_ROW_SIZE
);
310 seq_printf(seq
, " hex dump (first %zu bytes):\n", len
);
311 seq_hex_dump(seq
, " ", DUMP_PREFIX_NONE
, HEX_ROW_SIZE
,
312 HEX_GROUP_SIZE
, ptr
, len
, HEX_ASCII
);
316 * Object colors, encoded with count and min_count:
317 * - white - orphan object, not enough references to it (count < min_count)
318 * - gray - not orphan, not marked as false positive (min_count == 0) or
319 * sufficient references to it (count >= min_count)
320 * - black - ignore, it doesn't contain references (e.g. text section)
321 * (min_count == -1). No function defined for this color.
322 * Newly created objects don't have any color assigned (object->count == -1)
323 * before the next memory scan when they become white.
325 static bool color_white(const struct kmemleak_object
*object
)
327 return object
->count
!= KMEMLEAK_BLACK
&&
328 object
->count
< object
->min_count
;
331 static bool color_gray(const struct kmemleak_object
*object
)
333 return object
->min_count
!= KMEMLEAK_BLACK
&&
334 object
->count
>= object
->min_count
;
338 * Objects are considered unreferenced only if their color is white, they have
339 * not be deleted and have a minimum age to avoid false positives caused by
340 * pointers temporarily stored in CPU registers.
342 static bool unreferenced_object(struct kmemleak_object
*object
)
344 return (color_white(object
) && object
->flags
& OBJECT_ALLOCATED
) &&
345 time_before_eq(object
->jiffies
+ jiffies_min_age
,
350 * Printing of the unreferenced objects information to the seq file. The
351 * print_unreferenced function must be called with the object->lock held.
353 static void print_unreferenced(struct seq_file
*seq
,
354 struct kmemleak_object
*object
)
357 unsigned int msecs_age
= jiffies_to_msecs(jiffies
- object
->jiffies
);
359 seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
360 object
->pointer
, object
->size
);
361 seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
362 object
->comm
, object
->pid
, object
->jiffies
,
363 msecs_age
/ 1000, msecs_age
% 1000);
364 hex_dump_object(seq
, object
);
365 seq_printf(seq
, " backtrace:\n");
367 for (i
= 0; i
< object
->trace_len
; i
++) {
368 void *ptr
= (void *)object
->trace
[i
];
369 seq_printf(seq
, " [<%p>] %pS\n", ptr
, ptr
);
374 * Print the kmemleak_object information. This function is used mainly for
375 * debugging special cases when kmemleak operations. It must be called with
376 * the object->lock held.
378 static void dump_object_info(struct kmemleak_object
*object
)
380 struct stack_trace trace
;
382 trace
.nr_entries
= object
->trace_len
;
383 trace
.entries
= object
->trace
;
385 pr_notice("Object 0x%08lx (size %zu):\n",
386 object
->pointer
, object
->size
);
387 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
388 object
->comm
, object
->pid
, object
->jiffies
);
389 pr_notice(" min_count = %d\n", object
->min_count
);
390 pr_notice(" count = %d\n", object
->count
);
391 pr_notice(" flags = 0x%lx\n", object
->flags
);
392 pr_notice(" checksum = %u\n", object
->checksum
);
393 pr_notice(" backtrace:\n");
394 print_stack_trace(&trace
, 4);
398 * Look-up a memory block metadata (kmemleak_object) in the object search
399 * tree based on a pointer value. If alias is 0, only values pointing to the
400 * beginning of the memory block are allowed. The kmemleak_lock must be held
401 * when calling this function.
403 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
405 struct rb_node
*rb
= object_tree_root
.rb_node
;
408 struct kmemleak_object
*object
=
409 rb_entry(rb
, struct kmemleak_object
, rb_node
);
410 if (ptr
< object
->pointer
)
411 rb
= object
->rb_node
.rb_left
;
412 else if (object
->pointer
+ object
->size
<= ptr
)
413 rb
= object
->rb_node
.rb_right
;
414 else if (object
->pointer
== ptr
|| alias
)
417 kmemleak_warn("Found object by alias at 0x%08lx\n",
419 dump_object_info(object
);
427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428 * that once an object's use_count reached 0, the RCU freeing was already
429 * registered and the object should no longer be used. This function must be
430 * called under the protection of rcu_read_lock().
432 static int get_object(struct kmemleak_object
*object
)
434 return atomic_inc_not_zero(&object
->use_count
);
438 * RCU callback to free a kmemleak_object.
440 static void free_object_rcu(struct rcu_head
*rcu
)
442 struct hlist_node
*tmp
;
443 struct kmemleak_scan_area
*area
;
444 struct kmemleak_object
*object
=
445 container_of(rcu
, struct kmemleak_object
, rcu
);
448 * Once use_count is 0 (guaranteed by put_object), there is no other
449 * code accessing this object, hence no need for locking.
451 hlist_for_each_entry_safe(area
, tmp
, &object
->area_list
, node
) {
452 hlist_del(&area
->node
);
453 kmem_cache_free(scan_area_cache
, area
);
455 kmem_cache_free(object_cache
, object
);
459 * Decrement the object use_count. Once the count is 0, free the object using
460 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
461 * delete_object() path, the delayed RCU freeing ensures that there is no
462 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
465 static void put_object(struct kmemleak_object
*object
)
467 if (!atomic_dec_and_test(&object
->use_count
))
470 /* should only get here after delete_object was called */
471 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
473 call_rcu(&object
->rcu
, free_object_rcu
);
477 * Look up an object in the object search tree and increase its use_count.
479 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
482 struct kmemleak_object
*object
;
485 read_lock_irqsave(&kmemleak_lock
, flags
);
486 object
= lookup_object(ptr
, alias
);
487 read_unlock_irqrestore(&kmemleak_lock
, flags
);
489 /* check whether the object is still available */
490 if (object
&& !get_object(object
))
498 * Look up an object in the object search tree and remove it from both
499 * object_tree_root and object_list. The returned object's use_count should be
500 * at least 1, as initially set by create_object().
502 static struct kmemleak_object
*find_and_remove_object(unsigned long ptr
, int alias
)
505 struct kmemleak_object
*object
;
507 write_lock_irqsave(&kmemleak_lock
, flags
);
508 object
= lookup_object(ptr
, alias
);
510 rb_erase(&object
->rb_node
, &object_tree_root
);
511 list_del_rcu(&object
->object_list
);
513 write_unlock_irqrestore(&kmemleak_lock
, flags
);
519 * Save stack trace to the given array of MAX_TRACE size.
521 static int __save_stack_trace(unsigned long *trace
)
523 struct stack_trace stack_trace
;
525 stack_trace
.max_entries
= MAX_TRACE
;
526 stack_trace
.nr_entries
= 0;
527 stack_trace
.entries
= trace
;
528 stack_trace
.skip
= 2;
529 save_stack_trace(&stack_trace
);
531 return stack_trace
.nr_entries
;
535 * Create the metadata (struct kmemleak_object) corresponding to an allocated
536 * memory block and add it to the object_list and object_tree_root.
538 static struct kmemleak_object
*create_object(unsigned long ptr
, size_t size
,
539 int min_count
, gfp_t gfp
)
542 struct kmemleak_object
*object
, *parent
;
543 struct rb_node
**link
, *rb_parent
;
545 object
= kmem_cache_alloc(object_cache
, gfp_kmemleak_mask(gfp
));
547 pr_warning("Cannot allocate a kmemleak_object structure\n");
552 INIT_LIST_HEAD(&object
->object_list
);
553 INIT_LIST_HEAD(&object
->gray_list
);
554 INIT_HLIST_HEAD(&object
->area_list
);
555 spin_lock_init(&object
->lock
);
556 atomic_set(&object
->use_count
, 1);
557 object
->flags
= OBJECT_ALLOCATED
;
558 object
->pointer
= ptr
;
560 object
->min_count
= min_count
;
561 object
->count
= 0; /* white color initially */
562 object
->jiffies
= jiffies
;
563 object
->checksum
= 0;
565 /* task information */
568 strncpy(object
->comm
, "hardirq", sizeof(object
->comm
));
569 } else if (in_softirq()) {
571 strncpy(object
->comm
, "softirq", sizeof(object
->comm
));
573 object
->pid
= current
->pid
;
575 * There is a small chance of a race with set_task_comm(),
576 * however using get_task_comm() here may cause locking
577 * dependency issues with current->alloc_lock. In the worst
578 * case, the command line is not correct.
580 strncpy(object
->comm
, current
->comm
, sizeof(object
->comm
));
583 /* kernel backtrace */
584 object
->trace_len
= __save_stack_trace(object
->trace
);
586 write_lock_irqsave(&kmemleak_lock
, flags
);
588 min_addr
= min(min_addr
, ptr
);
589 max_addr
= max(max_addr
, ptr
+ size
);
590 link
= &object_tree_root
.rb_node
;
594 parent
= rb_entry(rb_parent
, struct kmemleak_object
, rb_node
);
595 if (ptr
+ size
<= parent
->pointer
)
596 link
= &parent
->rb_node
.rb_left
;
597 else if (parent
->pointer
+ parent
->size
<= ptr
)
598 link
= &parent
->rb_node
.rb_right
;
600 kmemleak_stop("Cannot insert 0x%lx into the object "
601 "search tree (overlaps existing)\n",
604 * No need for parent->lock here since "parent" cannot
605 * be freed while the kmemleak_lock is held.
607 dump_object_info(parent
);
608 kmem_cache_free(object_cache
, object
);
613 rb_link_node(&object
->rb_node
, rb_parent
, link
);
614 rb_insert_color(&object
->rb_node
, &object_tree_root
);
616 list_add_tail_rcu(&object
->object_list
, &object_list
);
618 write_unlock_irqrestore(&kmemleak_lock
, flags
);
623 * Mark the object as not allocated and schedule RCU freeing via put_object().
625 static void __delete_object(struct kmemleak_object
*object
)
629 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
630 WARN_ON(atomic_read(&object
->use_count
) < 1);
633 * Locking here also ensures that the corresponding memory block
634 * cannot be freed when it is being scanned.
636 spin_lock_irqsave(&object
->lock
, flags
);
637 object
->flags
&= ~OBJECT_ALLOCATED
;
638 spin_unlock_irqrestore(&object
->lock
, flags
);
643 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
646 static void delete_object_full(unsigned long ptr
)
648 struct kmemleak_object
*object
;
650 object
= find_and_remove_object(ptr
, 0);
653 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
658 __delete_object(object
);
662 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
663 * delete it. If the memory block is partially freed, the function may create
664 * additional metadata for the remaining parts of the block.
666 static void delete_object_part(unsigned long ptr
, size_t size
)
668 struct kmemleak_object
*object
;
669 unsigned long start
, end
;
671 object
= find_and_remove_object(ptr
, 1);
674 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
675 "(size %zu)\n", ptr
, size
);
681 * Create one or two objects that may result from the memory block
682 * split. Note that partial freeing is only done by free_bootmem() and
683 * this happens before kmemleak_init() is called. The path below is
684 * only executed during early log recording in kmemleak_init(), so
685 * GFP_KERNEL is enough.
687 start
= object
->pointer
;
688 end
= object
->pointer
+ object
->size
;
690 create_object(start
, ptr
- start
, object
->min_count
,
692 if (ptr
+ size
< end
)
693 create_object(ptr
+ size
, end
- ptr
- size
, object
->min_count
,
696 __delete_object(object
);
699 static void __paint_it(struct kmemleak_object
*object
, int color
)
701 object
->min_count
= color
;
702 if (color
== KMEMLEAK_BLACK
)
703 object
->flags
|= OBJECT_NO_SCAN
;
706 static void paint_it(struct kmemleak_object
*object
, int color
)
710 spin_lock_irqsave(&object
->lock
, flags
);
711 __paint_it(object
, color
);
712 spin_unlock_irqrestore(&object
->lock
, flags
);
715 static void paint_ptr(unsigned long ptr
, int color
)
717 struct kmemleak_object
*object
;
719 object
= find_and_get_object(ptr
, 0);
721 kmemleak_warn("Trying to color unknown object "
722 "at 0x%08lx as %s\n", ptr
,
723 (color
== KMEMLEAK_GREY
) ? "Grey" :
724 (color
== KMEMLEAK_BLACK
) ? "Black" : "Unknown");
727 paint_it(object
, color
);
732 * Mark an object permanently as gray-colored so that it can no longer be
733 * reported as a leak. This is used in general to mark a false positive.
735 static void make_gray_object(unsigned long ptr
)
737 paint_ptr(ptr
, KMEMLEAK_GREY
);
741 * Mark the object as black-colored so that it is ignored from scans and
744 static void make_black_object(unsigned long ptr
)
746 paint_ptr(ptr
, KMEMLEAK_BLACK
);
750 * Add a scanning area to the object. If at least one such area is added,
751 * kmemleak will only scan these ranges rather than the whole memory block.
753 static void add_scan_area(unsigned long ptr
, size_t size
, gfp_t gfp
)
756 struct kmemleak_object
*object
;
757 struct kmemleak_scan_area
*area
;
759 object
= find_and_get_object(ptr
, 1);
761 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
766 area
= kmem_cache_alloc(scan_area_cache
, gfp_kmemleak_mask(gfp
));
768 pr_warning("Cannot allocate a scan area\n");
772 spin_lock_irqsave(&object
->lock
, flags
);
773 if (size
== SIZE_MAX
) {
774 size
= object
->pointer
+ object
->size
- ptr
;
775 } else if (ptr
+ size
> object
->pointer
+ object
->size
) {
776 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
777 dump_object_info(object
);
778 kmem_cache_free(scan_area_cache
, area
);
782 INIT_HLIST_NODE(&area
->node
);
786 hlist_add_head(&area
->node
, &object
->area_list
);
788 spin_unlock_irqrestore(&object
->lock
, flags
);
794 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
795 * pointer. Such object will not be scanned by kmemleak but references to it
798 static void object_no_scan(unsigned long ptr
)
801 struct kmemleak_object
*object
;
803 object
= find_and_get_object(ptr
, 0);
805 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
809 spin_lock_irqsave(&object
->lock
, flags
);
810 object
->flags
|= OBJECT_NO_SCAN
;
811 spin_unlock_irqrestore(&object
->lock
, flags
);
816 * Log an early kmemleak_* call to the early_log buffer. These calls will be
817 * processed later once kmemleak is fully initialized.
819 static void __init
log_early(int op_type
, const void *ptr
, size_t size
,
823 struct early_log
*log
;
825 if (kmemleak_error
) {
826 /* kmemleak stopped recording, just count the requests */
831 if (crt_early_log
>= ARRAY_SIZE(early_log
)) {
838 * There is no need for locking since the kernel is still in UP mode
839 * at this stage. Disabling the IRQs is enough.
841 local_irq_save(flags
);
842 log
= &early_log
[crt_early_log
];
843 log
->op_type
= op_type
;
846 log
->min_count
= min_count
;
847 log
->trace_len
= __save_stack_trace(log
->trace
);
849 local_irq_restore(flags
);
853 * Log an early allocated block and populate the stack trace.
855 static void early_alloc(struct early_log
*log
)
857 struct kmemleak_object
*object
;
861 if (!kmemleak_enabled
|| !log
->ptr
|| IS_ERR(log
->ptr
))
865 * RCU locking needed to ensure object is not freed via put_object().
868 object
= create_object((unsigned long)log
->ptr
, log
->size
,
869 log
->min_count
, GFP_ATOMIC
);
872 spin_lock_irqsave(&object
->lock
, flags
);
873 for (i
= 0; i
< log
->trace_len
; i
++)
874 object
->trace
[i
] = log
->trace
[i
];
875 object
->trace_len
= log
->trace_len
;
876 spin_unlock_irqrestore(&object
->lock
, flags
);
882 * Log an early allocated block and populate the stack trace.
884 static void early_alloc_percpu(struct early_log
*log
)
887 const void __percpu
*ptr
= log
->ptr
;
889 for_each_possible_cpu(cpu
) {
890 log
->ptr
= per_cpu_ptr(ptr
, cpu
);
896 * kmemleak_alloc - register a newly allocated object
897 * @ptr: pointer to beginning of the object
898 * @size: size of the object
899 * @min_count: minimum number of references to this object. If during memory
900 * scanning a number of references less than @min_count is found,
901 * the object is reported as a memory leak. If @min_count is 0,
902 * the object is never reported as a leak. If @min_count is -1,
903 * the object is ignored (not scanned and not reported as a leak)
904 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
906 * This function is called from the kernel allocators when a new object
907 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
909 void __ref
kmemleak_alloc(const void *ptr
, size_t size
, int min_count
,
912 pr_debug("%s(0x%p, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
914 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
915 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
916 else if (kmemleak_early_log
)
917 log_early(KMEMLEAK_ALLOC
, ptr
, size
, min_count
);
919 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
922 * kmemleak_alloc_percpu - register a newly allocated __percpu object
923 * @ptr: __percpu pointer to beginning of the object
924 * @size: size of the object
925 * @gfp: flags used for kmemleak internal memory allocations
927 * This function is called from the kernel percpu allocator when a new object
928 * (memory block) is allocated (alloc_percpu).
930 void __ref
kmemleak_alloc_percpu(const void __percpu
*ptr
, size_t size
,
935 pr_debug("%s(0x%p, %zu)\n", __func__
, ptr
, size
);
938 * Percpu allocations are only scanned and not reported as leaks
939 * (min_count is set to 0).
941 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
942 for_each_possible_cpu(cpu
)
943 create_object((unsigned long)per_cpu_ptr(ptr
, cpu
),
945 else if (kmemleak_early_log
)
946 log_early(KMEMLEAK_ALLOC_PERCPU
, ptr
, size
, 0);
948 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu
);
951 * kmemleak_free - unregister a previously registered object
952 * @ptr: pointer to beginning of the object
954 * This function is called from the kernel allocators when an object (memory
955 * block) is freed (kmem_cache_free, kfree, vfree etc.).
957 void __ref
kmemleak_free(const void *ptr
)
959 pr_debug("%s(0x%p)\n", __func__
, ptr
);
961 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
962 delete_object_full((unsigned long)ptr
);
963 else if (kmemleak_early_log
)
964 log_early(KMEMLEAK_FREE
, ptr
, 0, 0);
966 EXPORT_SYMBOL_GPL(kmemleak_free
);
969 * kmemleak_free_part - partially unregister a previously registered object
970 * @ptr: pointer to the beginning or inside the object. This also
971 * represents the start of the range to be freed
972 * @size: size to be unregistered
974 * This function is called when only a part of a memory block is freed
975 * (usually from the bootmem allocator).
977 void __ref
kmemleak_free_part(const void *ptr
, size_t size
)
979 pr_debug("%s(0x%p)\n", __func__
, ptr
);
981 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
982 delete_object_part((unsigned long)ptr
, size
);
983 else if (kmemleak_early_log
)
984 log_early(KMEMLEAK_FREE_PART
, ptr
, size
, 0);
986 EXPORT_SYMBOL_GPL(kmemleak_free_part
);
989 * kmemleak_free_percpu - unregister a previously registered __percpu object
990 * @ptr: __percpu pointer to beginning of the object
992 * This function is called from the kernel percpu allocator when an object
993 * (memory block) is freed (free_percpu).
995 void __ref
kmemleak_free_percpu(const void __percpu
*ptr
)
999 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1001 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
1002 for_each_possible_cpu(cpu
)
1003 delete_object_full((unsigned long)per_cpu_ptr(ptr
,
1005 else if (kmemleak_early_log
)
1006 log_early(KMEMLEAK_FREE_PERCPU
, ptr
, 0, 0);
1008 EXPORT_SYMBOL_GPL(kmemleak_free_percpu
);
1011 * kmemleak_update_trace - update object allocation stack trace
1012 * @ptr: pointer to beginning of the object
1014 * Override the object allocation stack trace for cases where the actual
1015 * allocation place is not always useful.
1017 void __ref
kmemleak_update_trace(const void *ptr
)
1019 struct kmemleak_object
*object
;
1020 unsigned long flags
;
1022 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1024 if (!kmemleak_enabled
|| IS_ERR_OR_NULL(ptr
))
1027 object
= find_and_get_object((unsigned long)ptr
, 1);
1030 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1036 spin_lock_irqsave(&object
->lock
, flags
);
1037 object
->trace_len
= __save_stack_trace(object
->trace
);
1038 spin_unlock_irqrestore(&object
->lock
, flags
);
1042 EXPORT_SYMBOL(kmemleak_update_trace
);
1045 * kmemleak_not_leak - mark an allocated object as false positive
1046 * @ptr: pointer to beginning of the object
1048 * Calling this function on an object will cause the memory block to no longer
1049 * be reported as leak and always be scanned.
1051 void __ref
kmemleak_not_leak(const void *ptr
)
1053 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1055 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1056 make_gray_object((unsigned long)ptr
);
1057 else if (kmemleak_early_log
)
1058 log_early(KMEMLEAK_NOT_LEAK
, ptr
, 0, 0);
1060 EXPORT_SYMBOL(kmemleak_not_leak
);
1063 * kmemleak_ignore - ignore an allocated object
1064 * @ptr: pointer to beginning of the object
1066 * Calling this function on an object will cause the memory block to be
1067 * ignored (not scanned and not reported as a leak). This is usually done when
1068 * it is known that the corresponding block is not a leak and does not contain
1069 * any references to other allocated memory blocks.
1071 void __ref
kmemleak_ignore(const void *ptr
)
1073 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1075 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1076 make_black_object((unsigned long)ptr
);
1077 else if (kmemleak_early_log
)
1078 log_early(KMEMLEAK_IGNORE
, ptr
, 0, 0);
1080 EXPORT_SYMBOL(kmemleak_ignore
);
1083 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1084 * @ptr: pointer to beginning or inside the object. This also
1085 * represents the start of the scan area
1086 * @size: size of the scan area
1087 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1089 * This function is used when it is known that only certain parts of an object
1090 * contain references to other objects. Kmemleak will only scan these areas
1091 * reducing the number false negatives.
1093 void __ref
kmemleak_scan_area(const void *ptr
, size_t size
, gfp_t gfp
)
1095 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1097 if (kmemleak_enabled
&& ptr
&& size
&& !IS_ERR(ptr
))
1098 add_scan_area((unsigned long)ptr
, size
, gfp
);
1099 else if (kmemleak_early_log
)
1100 log_early(KMEMLEAK_SCAN_AREA
, ptr
, size
, 0);
1102 EXPORT_SYMBOL(kmemleak_scan_area
);
1105 * kmemleak_no_scan - do not scan an allocated object
1106 * @ptr: pointer to beginning of the object
1108 * This function notifies kmemleak not to scan the given memory block. Useful
1109 * in situations where it is known that the given object does not contain any
1110 * references to other objects. Kmemleak will not scan such objects reducing
1111 * the number of false negatives.
1113 void __ref
kmemleak_no_scan(const void *ptr
)
1115 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1117 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1118 object_no_scan((unsigned long)ptr
);
1119 else if (kmemleak_early_log
)
1120 log_early(KMEMLEAK_NO_SCAN
, ptr
, 0, 0);
1122 EXPORT_SYMBOL(kmemleak_no_scan
);
1125 * Update an object's checksum and return true if it was modified.
1127 static bool update_checksum(struct kmemleak_object
*object
)
1129 u32 old_csum
= object
->checksum
;
1131 if (!kmemcheck_is_obj_initialized(object
->pointer
, object
->size
))
1134 kasan_disable_current();
1135 object
->checksum
= crc32(0, (void *)object
->pointer
, object
->size
);
1136 kasan_enable_current();
1138 return object
->checksum
!= old_csum
;
1142 * Memory scanning is a long process and it needs to be interruptable. This
1143 * function checks whether such interrupt condition occurred.
1145 static int scan_should_stop(void)
1147 if (!kmemleak_enabled
)
1151 * This function may be called from either process or kthread context,
1152 * hence the need to check for both stop conditions.
1155 return signal_pending(current
);
1157 return kthread_should_stop();
1163 * Scan a memory block (exclusive range) for valid pointers and add those
1164 * found to the gray list.
1166 static void scan_block(void *_start
, void *_end
,
1167 struct kmemleak_object
*scanned
)
1170 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
1171 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
1172 unsigned long flags
;
1174 read_lock_irqsave(&kmemleak_lock
, flags
);
1175 for (ptr
= start
; ptr
< end
; ptr
++) {
1176 struct kmemleak_object
*object
;
1177 unsigned long pointer
;
1179 if (scan_should_stop())
1182 /* don't scan uninitialized memory */
1183 if (!kmemcheck_is_obj_initialized((unsigned long)ptr
,
1187 kasan_disable_current();
1189 kasan_enable_current();
1191 if (pointer
< min_addr
|| pointer
>= max_addr
)
1195 * No need for get_object() here since we hold kmemleak_lock.
1196 * object->use_count cannot be dropped to 0 while the object
1197 * is still present in object_tree_root and object_list
1198 * (with updates protected by kmemleak_lock).
1200 object
= lookup_object(pointer
, 1);
1203 if (object
== scanned
)
1204 /* self referenced, ignore */
1208 * Avoid the lockdep recursive warning on object->lock being
1209 * previously acquired in scan_object(). These locks are
1210 * enclosed by scan_mutex.
1212 spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1213 if (!color_white(object
)) {
1214 /* non-orphan, ignored or new */
1215 spin_unlock(&object
->lock
);
1220 * Increase the object's reference count (number of pointers
1221 * to the memory block). If this count reaches the required
1222 * minimum, the object's color will become gray and it will be
1223 * added to the gray_list.
1226 if (color_gray(object
)) {
1227 /* put_object() called when removing from gray_list */
1228 WARN_ON(!get_object(object
));
1229 list_add_tail(&object
->gray_list
, &gray_list
);
1231 spin_unlock(&object
->lock
);
1233 read_unlock_irqrestore(&kmemleak_lock
, flags
);
1237 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1239 static void scan_large_block(void *start
, void *end
)
1243 while (start
< end
) {
1244 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1245 scan_block(start
, next
, NULL
);
1252 * Scan a memory block corresponding to a kmemleak_object. A condition is
1253 * that object->use_count >= 1.
1255 static void scan_object(struct kmemleak_object
*object
)
1257 struct kmemleak_scan_area
*area
;
1258 unsigned long flags
;
1261 * Once the object->lock is acquired, the corresponding memory block
1262 * cannot be freed (the same lock is acquired in delete_object).
1264 spin_lock_irqsave(&object
->lock
, flags
);
1265 if (object
->flags
& OBJECT_NO_SCAN
)
1267 if (!(object
->flags
& OBJECT_ALLOCATED
))
1268 /* already freed object */
1270 if (hlist_empty(&object
->area_list
)) {
1271 void *start
= (void *)object
->pointer
;
1272 void *end
= (void *)(object
->pointer
+ object
->size
);
1276 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1277 scan_block(start
, next
, object
);
1283 spin_unlock_irqrestore(&object
->lock
, flags
);
1285 spin_lock_irqsave(&object
->lock
, flags
);
1286 } while (object
->flags
& OBJECT_ALLOCATED
);
1288 hlist_for_each_entry(area
, &object
->area_list
, node
)
1289 scan_block((void *)area
->start
,
1290 (void *)(area
->start
+ area
->size
),
1293 spin_unlock_irqrestore(&object
->lock
, flags
);
1297 * Scan the objects already referenced (gray objects). More objects will be
1298 * referenced and, if there are no memory leaks, all the objects are scanned.
1300 static void scan_gray_list(void)
1302 struct kmemleak_object
*object
, *tmp
;
1305 * The list traversal is safe for both tail additions and removals
1306 * from inside the loop. The kmemleak objects cannot be freed from
1307 * outside the loop because their use_count was incremented.
1309 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
1310 while (&object
->gray_list
!= &gray_list
) {
1313 /* may add new objects to the list */
1314 if (!scan_should_stop())
1315 scan_object(object
);
1317 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
1320 /* remove the object from the list and release it */
1321 list_del(&object
->gray_list
);
1326 WARN_ON(!list_empty(&gray_list
));
1330 * Scan data sections and all the referenced memory blocks allocated via the
1331 * kernel's standard allocators. This function must be called with the
1334 static void kmemleak_scan(void)
1336 unsigned long flags
;
1337 struct kmemleak_object
*object
;
1341 jiffies_last_scan
= jiffies
;
1343 /* prepare the kmemleak_object's */
1345 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1346 spin_lock_irqsave(&object
->lock
, flags
);
1349 * With a few exceptions there should be a maximum of
1350 * 1 reference to any object at this point.
1352 if (atomic_read(&object
->use_count
) > 1) {
1353 pr_debug("object->use_count = %d\n",
1354 atomic_read(&object
->use_count
));
1355 dump_object_info(object
);
1358 /* reset the reference count (whiten the object) */
1360 if (color_gray(object
) && get_object(object
))
1361 list_add_tail(&object
->gray_list
, &gray_list
);
1363 spin_unlock_irqrestore(&object
->lock
, flags
);
1367 /* data/bss scanning */
1368 scan_large_block(_sdata
, _edata
);
1369 scan_large_block(__bss_start
, __bss_stop
);
1372 /* per-cpu sections scanning */
1373 for_each_possible_cpu(i
)
1374 scan_large_block(__per_cpu_start
+ per_cpu_offset(i
),
1375 __per_cpu_end
+ per_cpu_offset(i
));
1379 * Struct page scanning for each node.
1382 for_each_online_node(i
) {
1383 unsigned long start_pfn
= node_start_pfn(i
);
1384 unsigned long end_pfn
= node_end_pfn(i
);
1387 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1390 if (!pfn_valid(pfn
))
1392 page
= pfn_to_page(pfn
);
1393 /* only scan if page is in use */
1394 if (page_count(page
) == 0)
1396 scan_block(page
, page
+ 1, NULL
);
1397 if (!(pfn
% (MAX_SCAN_SIZE
/ sizeof(*page
))))
1404 * Scanning the task stacks (may introduce false negatives).
1406 if (kmemleak_stack_scan
) {
1407 struct task_struct
*p
, *g
;
1409 read_lock(&tasklist_lock
);
1410 do_each_thread(g
, p
) {
1411 scan_block(task_stack_page(p
), task_stack_page(p
) +
1413 } while_each_thread(g
, p
);
1414 read_unlock(&tasklist_lock
);
1418 * Scan the objects already referenced from the sections scanned
1424 * Check for new or unreferenced objects modified since the previous
1425 * scan and color them gray until the next scan.
1428 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1429 spin_lock_irqsave(&object
->lock
, flags
);
1430 if (color_white(object
) && (object
->flags
& OBJECT_ALLOCATED
)
1431 && update_checksum(object
) && get_object(object
)) {
1432 /* color it gray temporarily */
1433 object
->count
= object
->min_count
;
1434 list_add_tail(&object
->gray_list
, &gray_list
);
1436 spin_unlock_irqrestore(&object
->lock
, flags
);
1441 * Re-scan the gray list for modified unreferenced objects.
1446 * If scanning was stopped do not report any new unreferenced objects.
1448 if (scan_should_stop())
1452 * Scanning result reporting.
1455 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1456 spin_lock_irqsave(&object
->lock
, flags
);
1457 if (unreferenced_object(object
) &&
1458 !(object
->flags
& OBJECT_REPORTED
)) {
1459 object
->flags
|= OBJECT_REPORTED
;
1462 spin_unlock_irqrestore(&object
->lock
, flags
);
1467 kmemleak_found_leaks
= true;
1469 pr_info("%d new suspected memory leaks (see "
1470 "/sys/kernel/debug/kmemleak)\n", new_leaks
);
1476 * Thread function performing automatic memory scanning. Unreferenced objects
1477 * at the end of a memory scan are reported but only the first time.
1479 static int kmemleak_scan_thread(void *arg
)
1481 static int first_run
= 1;
1483 pr_info("Automatic memory scanning thread started\n");
1484 set_user_nice(current
, 10);
1487 * Wait before the first scan to allow the system to fully initialize.
1491 ssleep(SECS_FIRST_SCAN
);
1494 while (!kthread_should_stop()) {
1495 signed long timeout
= jiffies_scan_wait
;
1497 mutex_lock(&scan_mutex
);
1499 mutex_unlock(&scan_mutex
);
1501 /* wait before the next scan */
1502 while (timeout
&& !kthread_should_stop())
1503 timeout
= schedule_timeout_interruptible(timeout
);
1506 pr_info("Automatic memory scanning thread ended\n");
1512 * Start the automatic memory scanning thread. This function must be called
1513 * with the scan_mutex held.
1515 static void start_scan_thread(void)
1519 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1520 if (IS_ERR(scan_thread
)) {
1521 pr_warning("Failed to create the scan thread\n");
1527 * Stop the automatic memory scanning thread. This function must be called
1528 * with the scan_mutex held.
1530 static void stop_scan_thread(void)
1533 kthread_stop(scan_thread
);
1539 * Iterate over the object_list and return the first valid object at or after
1540 * the required position with its use_count incremented. The function triggers
1541 * a memory scanning when the pos argument points to the first position.
1543 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1545 struct kmemleak_object
*object
;
1549 err
= mutex_lock_interruptible(&scan_mutex
);
1551 return ERR_PTR(err
);
1554 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1557 if (get_object(object
))
1566 * Return the next object in the object_list. The function decrements the
1567 * use_count of the previous object and increases that of the next one.
1569 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1571 struct kmemleak_object
*prev_obj
= v
;
1572 struct kmemleak_object
*next_obj
= NULL
;
1573 struct kmemleak_object
*obj
= prev_obj
;
1577 list_for_each_entry_continue_rcu(obj
, &object_list
, object_list
) {
1578 if (get_object(obj
)) {
1584 put_object(prev_obj
);
1589 * Decrement the use_count of the last object required, if any.
1591 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1595 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1596 * waiting was interrupted, so only release it if !IS_ERR.
1599 mutex_unlock(&scan_mutex
);
1606 * Print the information for an unreferenced object to the seq file.
1608 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1610 struct kmemleak_object
*object
= v
;
1611 unsigned long flags
;
1613 spin_lock_irqsave(&object
->lock
, flags
);
1614 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
))
1615 print_unreferenced(seq
, object
);
1616 spin_unlock_irqrestore(&object
->lock
, flags
);
1620 static const struct seq_operations kmemleak_seq_ops
= {
1621 .start
= kmemleak_seq_start
,
1622 .next
= kmemleak_seq_next
,
1623 .stop
= kmemleak_seq_stop
,
1624 .show
= kmemleak_seq_show
,
1627 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1629 return seq_open(file
, &kmemleak_seq_ops
);
1632 static int dump_str_object_info(const char *str
)
1634 unsigned long flags
;
1635 struct kmemleak_object
*object
;
1638 if (kstrtoul(str
, 0, &addr
))
1640 object
= find_and_get_object(addr
, 0);
1642 pr_info("Unknown object at 0x%08lx\n", addr
);
1646 spin_lock_irqsave(&object
->lock
, flags
);
1647 dump_object_info(object
);
1648 spin_unlock_irqrestore(&object
->lock
, flags
);
1655 * We use grey instead of black to ensure we can do future scans on the same
1656 * objects. If we did not do future scans these black objects could
1657 * potentially contain references to newly allocated objects in the future and
1658 * we'd end up with false positives.
1660 static void kmemleak_clear(void)
1662 struct kmemleak_object
*object
;
1663 unsigned long flags
;
1666 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1667 spin_lock_irqsave(&object
->lock
, flags
);
1668 if ((object
->flags
& OBJECT_REPORTED
) &&
1669 unreferenced_object(object
))
1670 __paint_it(object
, KMEMLEAK_GREY
);
1671 spin_unlock_irqrestore(&object
->lock
, flags
);
1675 kmemleak_found_leaks
= false;
1678 static void __kmemleak_do_cleanup(void);
1681 * File write operation to configure kmemleak at run-time. The following
1682 * commands can be written to the /sys/kernel/debug/kmemleak file:
1683 * off - disable kmemleak (irreversible)
1684 * stack=on - enable the task stacks scanning
1685 * stack=off - disable the tasks stacks scanning
1686 * scan=on - start the automatic memory scanning thread
1687 * scan=off - stop the automatic memory scanning thread
1688 * scan=... - set the automatic memory scanning period in seconds (0 to
1690 * scan - trigger a memory scan
1691 * clear - mark all current reported unreferenced kmemleak objects as
1692 * grey to ignore printing them, or free all kmemleak objects
1693 * if kmemleak has been disabled.
1694 * dump=... - dump information about the object found at the given address
1696 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
1697 size_t size
, loff_t
*ppos
)
1703 buf_size
= min(size
, (sizeof(buf
) - 1));
1704 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
1708 ret
= mutex_lock_interruptible(&scan_mutex
);
1712 if (strncmp(buf
, "clear", 5) == 0) {
1713 if (kmemleak_enabled
)
1716 __kmemleak_do_cleanup();
1720 if (!kmemleak_enabled
) {
1725 if (strncmp(buf
, "off", 3) == 0)
1727 else if (strncmp(buf
, "stack=on", 8) == 0)
1728 kmemleak_stack_scan
= 1;
1729 else if (strncmp(buf
, "stack=off", 9) == 0)
1730 kmemleak_stack_scan
= 0;
1731 else if (strncmp(buf
, "scan=on", 7) == 0)
1732 start_scan_thread();
1733 else if (strncmp(buf
, "scan=off", 8) == 0)
1735 else if (strncmp(buf
, "scan=", 5) == 0) {
1738 ret
= kstrtoul(buf
+ 5, 0, &secs
);
1743 jiffies_scan_wait
= msecs_to_jiffies(secs
* 1000);
1744 start_scan_thread();
1746 } else if (strncmp(buf
, "scan", 4) == 0)
1748 else if (strncmp(buf
, "dump=", 5) == 0)
1749 ret
= dump_str_object_info(buf
+ 5);
1754 mutex_unlock(&scan_mutex
);
1758 /* ignore the rest of the buffer, only one command at a time */
1763 static const struct file_operations kmemleak_fops
= {
1764 .owner
= THIS_MODULE
,
1765 .open
= kmemleak_open
,
1767 .write
= kmemleak_write
,
1768 .llseek
= seq_lseek
,
1769 .release
= seq_release
,
1772 static void __kmemleak_do_cleanup(void)
1774 struct kmemleak_object
*object
;
1777 list_for_each_entry_rcu(object
, &object_list
, object_list
)
1778 delete_object_full(object
->pointer
);
1783 * Stop the memory scanning thread and free the kmemleak internal objects if
1784 * no previous scan thread (otherwise, kmemleak may still have some useful
1785 * information on memory leaks).
1787 static void kmemleak_do_cleanup(struct work_struct
*work
)
1792 * Once the scan thread has stopped, it is safe to no longer track
1793 * object freeing. Ordering of the scan thread stopping and the memory
1794 * accesses below is guaranteed by the kthread_stop() function.
1796 kmemleak_free_enabled
= 0;
1798 if (!kmemleak_found_leaks
)
1799 __kmemleak_do_cleanup();
1801 pr_info("Kmemleak disabled without freeing internal data. "
1802 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1805 static DECLARE_WORK(cleanup_work
, kmemleak_do_cleanup
);
1808 * Disable kmemleak. No memory allocation/freeing will be traced once this
1809 * function is called. Disabling kmemleak is an irreversible operation.
1811 static void kmemleak_disable(void)
1813 /* atomically check whether it was already invoked */
1814 if (cmpxchg(&kmemleak_error
, 0, 1))
1817 /* stop any memory operation tracing */
1818 kmemleak_enabled
= 0;
1820 /* check whether it is too early for a kernel thread */
1821 if (kmemleak_initialized
)
1822 schedule_work(&cleanup_work
);
1824 kmemleak_free_enabled
= 0;
1826 pr_info("Kernel memory leak detector disabled\n");
1830 * Allow boot-time kmemleak disabling (enabled by default).
1832 static int kmemleak_boot_config(char *str
)
1836 if (strcmp(str
, "off") == 0)
1838 else if (strcmp(str
, "on") == 0)
1839 kmemleak_skip_disable
= 1;
1844 early_param("kmemleak", kmemleak_boot_config
);
1846 static void __init
print_log_trace(struct early_log
*log
)
1848 struct stack_trace trace
;
1850 trace
.nr_entries
= log
->trace_len
;
1851 trace
.entries
= log
->trace
;
1853 pr_notice("Early log backtrace:\n");
1854 print_stack_trace(&trace
, 2);
1858 * Kmemleak initialization.
1860 void __init
kmemleak_init(void)
1863 unsigned long flags
;
1865 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1866 if (!kmemleak_skip_disable
) {
1867 kmemleak_early_log
= 0;
1873 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
1874 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
1876 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
1877 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
1879 if (crt_early_log
> ARRAY_SIZE(early_log
))
1880 pr_warning("Early log buffer exceeded (%d), please increase "
1881 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log
);
1883 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1884 local_irq_save(flags
);
1885 kmemleak_early_log
= 0;
1886 if (kmemleak_error
) {
1887 local_irq_restore(flags
);
1890 kmemleak_enabled
= 1;
1891 kmemleak_free_enabled
= 1;
1893 local_irq_restore(flags
);
1896 * This is the point where tracking allocations is safe. Automatic
1897 * scanning is started during the late initcall. Add the early logged
1898 * callbacks to the kmemleak infrastructure.
1900 for (i
= 0; i
< crt_early_log
; i
++) {
1901 struct early_log
*log
= &early_log
[i
];
1903 switch (log
->op_type
) {
1904 case KMEMLEAK_ALLOC
:
1907 case KMEMLEAK_ALLOC_PERCPU
:
1908 early_alloc_percpu(log
);
1911 kmemleak_free(log
->ptr
);
1913 case KMEMLEAK_FREE_PART
:
1914 kmemleak_free_part(log
->ptr
, log
->size
);
1916 case KMEMLEAK_FREE_PERCPU
:
1917 kmemleak_free_percpu(log
->ptr
);
1919 case KMEMLEAK_NOT_LEAK
:
1920 kmemleak_not_leak(log
->ptr
);
1922 case KMEMLEAK_IGNORE
:
1923 kmemleak_ignore(log
->ptr
);
1925 case KMEMLEAK_SCAN_AREA
:
1926 kmemleak_scan_area(log
->ptr
, log
->size
, GFP_KERNEL
);
1928 case KMEMLEAK_NO_SCAN
:
1929 kmemleak_no_scan(log
->ptr
);
1932 kmemleak_warn("Unknown early log operation: %d\n",
1936 if (kmemleak_warning
) {
1937 print_log_trace(log
);
1938 kmemleak_warning
= 0;
1944 * Late initialization function.
1946 static int __init
kmemleak_late_init(void)
1948 struct dentry
*dentry
;
1950 kmemleak_initialized
= 1;
1952 if (kmemleak_error
) {
1954 * Some error occurred and kmemleak was disabled. There is a
1955 * small chance that kmemleak_disable() was called immediately
1956 * after setting kmemleak_initialized and we may end up with
1957 * two clean-up threads but serialized by scan_mutex.
1959 schedule_work(&cleanup_work
);
1963 dentry
= debugfs_create_file("kmemleak", S_IRUGO
, NULL
, NULL
,
1966 pr_warning("Failed to create the debugfs kmemleak file\n");
1967 mutex_lock(&scan_mutex
);
1968 start_scan_thread();
1969 mutex_unlock(&scan_mutex
);
1971 pr_info("Kernel memory leak detector initialized\n");
1975 late_initcall(kmemleak_late_init
);