media: vimc: Add vimc-streamer for stream control
[linux/fpc-iii.git] / mm / filemap.c
blob9f5e323e883e6f0921bf9cdbfb81c6cf698064a4
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include <linux/delayacct.h>
40 #include <linux/psi.h>
41 #include "internal.h"
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/filemap.h>
47 * FIXME: remove all knowledge of the buffer layer from the core VM
49 #include <linux/buffer_head.h> /* for try_to_free_buffers */
51 #include <asm/mman.h>
54 * Shared mappings implemented 30.11.1994. It's not fully working yet,
55 * though.
57 * Shared mappings now work. 15.8.1995 Bruno.
59 * finished 'unifying' the page and buffer cache and SMP-threaded the
60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66 * Lock ordering:
68 * ->i_mmap_rwsem (truncate_pagecache)
69 * ->private_lock (__free_pte->__set_page_dirty_buffers)
70 * ->swap_lock (exclusive_swap_page, others)
71 * ->i_pages lock
73 * ->i_mutex
74 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
76 * ->mmap_sem
77 * ->i_mmap_rwsem
78 * ->page_table_lock or pte_lock (various, mainly in memory.c)
79 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
81 * ->mmap_sem
82 * ->lock_page (access_process_vm)
84 * ->i_mutex (generic_perform_write)
85 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
87 * bdi->wb.list_lock
88 * sb_lock (fs/fs-writeback.c)
89 * ->i_pages lock (__sync_single_inode)
91 * ->i_mmap_rwsem
92 * ->anon_vma.lock (vma_adjust)
94 * ->anon_vma.lock
95 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
97 * ->page_table_lock or pte_lock
98 * ->swap_lock (try_to_unmap_one)
99 * ->private_lock (try_to_unmap_one)
100 * ->i_pages lock (try_to_unmap_one)
101 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
102 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
103 * ->private_lock (page_remove_rmap->set_page_dirty)
104 * ->i_pages lock (page_remove_rmap->set_page_dirty)
105 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
106 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
107 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
108 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
109 * ->inode->i_lock (zap_pte_range->set_page_dirty)
110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
112 * ->i_mmap_rwsem
113 * ->tasklist_lock (memory_failure, collect_procs_ao)
116 static void page_cache_delete(struct address_space *mapping,
117 struct page *page, void *shadow)
119 XA_STATE(xas, &mapping->i_pages, page->index);
120 unsigned int nr = 1;
122 mapping_set_update(&xas, mapping);
124 /* hugetlb pages are represented by a single entry in the xarray */
125 if (!PageHuge(page)) {
126 xas_set_order(&xas, page->index, compound_order(page));
127 nr = 1U << compound_order(page);
130 VM_BUG_ON_PAGE(!PageLocked(page), page);
131 VM_BUG_ON_PAGE(PageTail(page), page);
132 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
134 xas_store(&xas, shadow);
135 xas_init_marks(&xas);
137 page->mapping = NULL;
138 /* Leave page->index set: truncation lookup relies upon it */
140 if (shadow) {
141 mapping->nrexceptional += nr;
143 * Make sure the nrexceptional update is committed before
144 * the nrpages update so that final truncate racing
145 * with reclaim does not see both counters 0 at the
146 * same time and miss a shadow entry.
148 smp_wmb();
150 mapping->nrpages -= nr;
153 static void unaccount_page_cache_page(struct address_space *mapping,
154 struct page *page)
156 int nr;
159 * if we're uptodate, flush out into the cleancache, otherwise
160 * invalidate any existing cleancache entries. We can't leave
161 * stale data around in the cleancache once our page is gone
163 if (PageUptodate(page) && PageMappedToDisk(page))
164 cleancache_put_page(page);
165 else
166 cleancache_invalidate_page(mapping, page);
168 VM_BUG_ON_PAGE(PageTail(page), page);
169 VM_BUG_ON_PAGE(page_mapped(page), page);
170 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
171 int mapcount;
173 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
174 current->comm, page_to_pfn(page));
175 dump_page(page, "still mapped when deleted");
176 dump_stack();
177 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
179 mapcount = page_mapcount(page);
180 if (mapping_exiting(mapping) &&
181 page_count(page) >= mapcount + 2) {
183 * All vmas have already been torn down, so it's
184 * a good bet that actually the page is unmapped,
185 * and we'd prefer not to leak it: if we're wrong,
186 * some other bad page check should catch it later.
188 page_mapcount_reset(page);
189 page_ref_sub(page, mapcount);
193 /* hugetlb pages do not participate in page cache accounting. */
194 if (PageHuge(page))
195 return;
197 nr = hpage_nr_pages(page);
199 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
200 if (PageSwapBacked(page)) {
201 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
202 if (PageTransHuge(page))
203 __dec_node_page_state(page, NR_SHMEM_THPS);
204 } else {
205 VM_BUG_ON_PAGE(PageTransHuge(page), page);
209 * At this point page must be either written or cleaned by
210 * truncate. Dirty page here signals a bug and loss of
211 * unwritten data.
213 * This fixes dirty accounting after removing the page entirely
214 * but leaves PageDirty set: it has no effect for truncated
215 * page and anyway will be cleared before returning page into
216 * buddy allocator.
218 if (WARN_ON_ONCE(PageDirty(page)))
219 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
223 * Delete a page from the page cache and free it. Caller has to make
224 * sure the page is locked and that nobody else uses it - or that usage
225 * is safe. The caller must hold the i_pages lock.
227 void __delete_from_page_cache(struct page *page, void *shadow)
229 struct address_space *mapping = page->mapping;
231 trace_mm_filemap_delete_from_page_cache(page);
233 unaccount_page_cache_page(mapping, page);
234 page_cache_delete(mapping, page, shadow);
237 static void page_cache_free_page(struct address_space *mapping,
238 struct page *page)
240 void (*freepage)(struct page *);
242 freepage = mapping->a_ops->freepage;
243 if (freepage)
244 freepage(page);
246 if (PageTransHuge(page) && !PageHuge(page)) {
247 page_ref_sub(page, HPAGE_PMD_NR);
248 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
249 } else {
250 put_page(page);
255 * delete_from_page_cache - delete page from page cache
256 * @page: the page which the kernel is trying to remove from page cache
258 * This must be called only on pages that have been verified to be in the page
259 * cache and locked. It will never put the page into the free list, the caller
260 * has a reference on the page.
262 void delete_from_page_cache(struct page *page)
264 struct address_space *mapping = page_mapping(page);
265 unsigned long flags;
267 BUG_ON(!PageLocked(page));
268 xa_lock_irqsave(&mapping->i_pages, flags);
269 __delete_from_page_cache(page, NULL);
270 xa_unlock_irqrestore(&mapping->i_pages, flags);
272 page_cache_free_page(mapping, page);
274 EXPORT_SYMBOL(delete_from_page_cache);
277 * page_cache_delete_batch - delete several pages from page cache
278 * @mapping: the mapping to which pages belong
279 * @pvec: pagevec with pages to delete
281 * The function walks over mapping->i_pages and removes pages passed in @pvec
282 * from the mapping. The function expects @pvec to be sorted by page index.
283 * It tolerates holes in @pvec (mapping entries at those indices are not
284 * modified). The function expects only THP head pages to be present in the
285 * @pvec and takes care to delete all corresponding tail pages from the
286 * mapping as well.
288 * The function expects the i_pages lock to be held.
290 static void page_cache_delete_batch(struct address_space *mapping,
291 struct pagevec *pvec)
293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
294 int total_pages = 0;
295 int i = 0, tail_pages = 0;
296 struct page *page;
298 mapping_set_update(&xas, mapping);
299 xas_for_each(&xas, page, ULONG_MAX) {
300 if (i >= pagevec_count(pvec) && !tail_pages)
301 break;
302 if (xa_is_value(page))
303 continue;
304 if (!tail_pages) {
306 * Some page got inserted in our range? Skip it. We
307 * have our pages locked so they are protected from
308 * being removed.
310 if (page != pvec->pages[i]) {
311 VM_BUG_ON_PAGE(page->index >
312 pvec->pages[i]->index, page);
313 continue;
315 WARN_ON_ONCE(!PageLocked(page));
316 if (PageTransHuge(page) && !PageHuge(page))
317 tail_pages = HPAGE_PMD_NR - 1;
318 page->mapping = NULL;
320 * Leave page->index set: truncation lookup relies
321 * upon it
323 i++;
324 } else {
325 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages
326 != pvec->pages[i]->index, page);
327 tail_pages--;
329 xas_store(&xas, NULL);
330 total_pages++;
332 mapping->nrpages -= total_pages;
335 void delete_from_page_cache_batch(struct address_space *mapping,
336 struct pagevec *pvec)
338 int i;
339 unsigned long flags;
341 if (!pagevec_count(pvec))
342 return;
344 xa_lock_irqsave(&mapping->i_pages, flags);
345 for (i = 0; i < pagevec_count(pvec); i++) {
346 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
348 unaccount_page_cache_page(mapping, pvec->pages[i]);
350 page_cache_delete_batch(mapping, pvec);
351 xa_unlock_irqrestore(&mapping->i_pages, flags);
353 for (i = 0; i < pagevec_count(pvec); i++)
354 page_cache_free_page(mapping, pvec->pages[i]);
357 int filemap_check_errors(struct address_space *mapping)
359 int ret = 0;
360 /* Check for outstanding write errors */
361 if (test_bit(AS_ENOSPC, &mapping->flags) &&
362 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
363 ret = -ENOSPC;
364 if (test_bit(AS_EIO, &mapping->flags) &&
365 test_and_clear_bit(AS_EIO, &mapping->flags))
366 ret = -EIO;
367 return ret;
369 EXPORT_SYMBOL(filemap_check_errors);
371 static int filemap_check_and_keep_errors(struct address_space *mapping)
373 /* Check for outstanding write errors */
374 if (test_bit(AS_EIO, &mapping->flags))
375 return -EIO;
376 if (test_bit(AS_ENOSPC, &mapping->flags))
377 return -ENOSPC;
378 return 0;
382 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
383 * @mapping: address space structure to write
384 * @start: offset in bytes where the range starts
385 * @end: offset in bytes where the range ends (inclusive)
386 * @sync_mode: enable synchronous operation
388 * Start writeback against all of a mapping's dirty pages that lie
389 * within the byte offsets <start, end> inclusive.
391 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
392 * opposed to a regular memory cleansing writeback. The difference between
393 * these two operations is that if a dirty page/buffer is encountered, it must
394 * be waited upon, and not just skipped over.
396 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
397 loff_t end, int sync_mode)
399 int ret;
400 struct writeback_control wbc = {
401 .sync_mode = sync_mode,
402 .nr_to_write = LONG_MAX,
403 .range_start = start,
404 .range_end = end,
407 if (!mapping_cap_writeback_dirty(mapping))
408 return 0;
410 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
411 ret = do_writepages(mapping, &wbc);
412 wbc_detach_inode(&wbc);
413 return ret;
416 static inline int __filemap_fdatawrite(struct address_space *mapping,
417 int sync_mode)
419 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
422 int filemap_fdatawrite(struct address_space *mapping)
424 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
426 EXPORT_SYMBOL(filemap_fdatawrite);
428 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
429 loff_t end)
431 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
433 EXPORT_SYMBOL(filemap_fdatawrite_range);
436 * filemap_flush - mostly a non-blocking flush
437 * @mapping: target address_space
439 * This is a mostly non-blocking flush. Not suitable for data-integrity
440 * purposes - I/O may not be started against all dirty pages.
442 int filemap_flush(struct address_space *mapping)
444 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
446 EXPORT_SYMBOL(filemap_flush);
449 * filemap_range_has_page - check if a page exists in range.
450 * @mapping: address space within which to check
451 * @start_byte: offset in bytes where the range starts
452 * @end_byte: offset in bytes where the range ends (inclusive)
454 * Find at least one page in the range supplied, usually used to check if
455 * direct writing in this range will trigger a writeback.
457 bool filemap_range_has_page(struct address_space *mapping,
458 loff_t start_byte, loff_t end_byte)
460 struct page *page;
461 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
462 pgoff_t max = end_byte >> PAGE_SHIFT;
464 if (end_byte < start_byte)
465 return false;
467 rcu_read_lock();
468 for (;;) {
469 page = xas_find(&xas, max);
470 if (xas_retry(&xas, page))
471 continue;
472 /* Shadow entries don't count */
473 if (xa_is_value(page))
474 continue;
476 * We don't need to try to pin this page; we're about to
477 * release the RCU lock anyway. It is enough to know that
478 * there was a page here recently.
480 break;
482 rcu_read_unlock();
484 return page != NULL;
486 EXPORT_SYMBOL(filemap_range_has_page);
488 static void __filemap_fdatawait_range(struct address_space *mapping,
489 loff_t start_byte, loff_t end_byte)
491 pgoff_t index = start_byte >> PAGE_SHIFT;
492 pgoff_t end = end_byte >> PAGE_SHIFT;
493 struct pagevec pvec;
494 int nr_pages;
496 if (end_byte < start_byte)
497 return;
499 pagevec_init(&pvec);
500 while (index <= end) {
501 unsigned i;
503 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
504 end, PAGECACHE_TAG_WRITEBACK);
505 if (!nr_pages)
506 break;
508 for (i = 0; i < nr_pages; i++) {
509 struct page *page = pvec.pages[i];
511 wait_on_page_writeback(page);
512 ClearPageError(page);
514 pagevec_release(&pvec);
515 cond_resched();
520 * filemap_fdatawait_range - wait for writeback to complete
521 * @mapping: address space structure to wait for
522 * @start_byte: offset in bytes where the range starts
523 * @end_byte: offset in bytes where the range ends (inclusive)
525 * Walk the list of under-writeback pages of the given address space
526 * in the given range and wait for all of them. Check error status of
527 * the address space and return it.
529 * Since the error status of the address space is cleared by this function,
530 * callers are responsible for checking the return value and handling and/or
531 * reporting the error.
533 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
534 loff_t end_byte)
536 __filemap_fdatawait_range(mapping, start_byte, end_byte);
537 return filemap_check_errors(mapping);
539 EXPORT_SYMBOL(filemap_fdatawait_range);
542 * file_fdatawait_range - wait for writeback to complete
543 * @file: file pointing to address space structure to wait for
544 * @start_byte: offset in bytes where the range starts
545 * @end_byte: offset in bytes where the range ends (inclusive)
547 * Walk the list of under-writeback pages of the address space that file
548 * refers to, in the given range and wait for all of them. Check error
549 * status of the address space vs. the file->f_wb_err cursor and return it.
551 * Since the error status of the file is advanced by this function,
552 * callers are responsible for checking the return value and handling and/or
553 * reporting the error.
555 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
557 struct address_space *mapping = file->f_mapping;
559 __filemap_fdatawait_range(mapping, start_byte, end_byte);
560 return file_check_and_advance_wb_err(file);
562 EXPORT_SYMBOL(file_fdatawait_range);
565 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
566 * @mapping: address space structure to wait for
568 * Walk the list of under-writeback pages of the given address space
569 * and wait for all of them. Unlike filemap_fdatawait(), this function
570 * does not clear error status of the address space.
572 * Use this function if callers don't handle errors themselves. Expected
573 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
574 * fsfreeze(8)
576 int filemap_fdatawait_keep_errors(struct address_space *mapping)
578 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
579 return filemap_check_and_keep_errors(mapping);
581 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
583 static bool mapping_needs_writeback(struct address_space *mapping)
585 return (!dax_mapping(mapping) && mapping->nrpages) ||
586 (dax_mapping(mapping) && mapping->nrexceptional);
589 int filemap_write_and_wait(struct address_space *mapping)
591 int err = 0;
593 if (mapping_needs_writeback(mapping)) {
594 err = filemap_fdatawrite(mapping);
596 * Even if the above returned error, the pages may be
597 * written partially (e.g. -ENOSPC), so we wait for it.
598 * But the -EIO is special case, it may indicate the worst
599 * thing (e.g. bug) happened, so we avoid waiting for it.
601 if (err != -EIO) {
602 int err2 = filemap_fdatawait(mapping);
603 if (!err)
604 err = err2;
605 } else {
606 /* Clear any previously stored errors */
607 filemap_check_errors(mapping);
609 } else {
610 err = filemap_check_errors(mapping);
612 return err;
614 EXPORT_SYMBOL(filemap_write_and_wait);
617 * filemap_write_and_wait_range - write out & wait on a file range
618 * @mapping: the address_space for the pages
619 * @lstart: offset in bytes where the range starts
620 * @lend: offset in bytes where the range ends (inclusive)
622 * Write out and wait upon file offsets lstart->lend, inclusive.
624 * Note that @lend is inclusive (describes the last byte to be written) so
625 * that this function can be used to write to the very end-of-file (end = -1).
627 int filemap_write_and_wait_range(struct address_space *mapping,
628 loff_t lstart, loff_t lend)
630 int err = 0;
632 if (mapping_needs_writeback(mapping)) {
633 err = __filemap_fdatawrite_range(mapping, lstart, lend,
634 WB_SYNC_ALL);
635 /* See comment of filemap_write_and_wait() */
636 if (err != -EIO) {
637 int err2 = filemap_fdatawait_range(mapping,
638 lstart, lend);
639 if (!err)
640 err = err2;
641 } else {
642 /* Clear any previously stored errors */
643 filemap_check_errors(mapping);
645 } else {
646 err = filemap_check_errors(mapping);
648 return err;
650 EXPORT_SYMBOL(filemap_write_and_wait_range);
652 void __filemap_set_wb_err(struct address_space *mapping, int err)
654 errseq_t eseq = errseq_set(&mapping->wb_err, err);
656 trace_filemap_set_wb_err(mapping, eseq);
658 EXPORT_SYMBOL(__filemap_set_wb_err);
661 * file_check_and_advance_wb_err - report wb error (if any) that was previously
662 * and advance wb_err to current one
663 * @file: struct file on which the error is being reported
665 * When userland calls fsync (or something like nfsd does the equivalent), we
666 * want to report any writeback errors that occurred since the last fsync (or
667 * since the file was opened if there haven't been any).
669 * Grab the wb_err from the mapping. If it matches what we have in the file,
670 * then just quickly return 0. The file is all caught up.
672 * If it doesn't match, then take the mapping value, set the "seen" flag in
673 * it and try to swap it into place. If it works, or another task beat us
674 * to it with the new value, then update the f_wb_err and return the error
675 * portion. The error at this point must be reported via proper channels
676 * (a'la fsync, or NFS COMMIT operation, etc.).
678 * While we handle mapping->wb_err with atomic operations, the f_wb_err
679 * value is protected by the f_lock since we must ensure that it reflects
680 * the latest value swapped in for this file descriptor.
682 int file_check_and_advance_wb_err(struct file *file)
684 int err = 0;
685 errseq_t old = READ_ONCE(file->f_wb_err);
686 struct address_space *mapping = file->f_mapping;
688 /* Locklessly handle the common case where nothing has changed */
689 if (errseq_check(&mapping->wb_err, old)) {
690 /* Something changed, must use slow path */
691 spin_lock(&file->f_lock);
692 old = file->f_wb_err;
693 err = errseq_check_and_advance(&mapping->wb_err,
694 &file->f_wb_err);
695 trace_file_check_and_advance_wb_err(file, old);
696 spin_unlock(&file->f_lock);
700 * We're mostly using this function as a drop in replacement for
701 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
702 * that the legacy code would have had on these flags.
704 clear_bit(AS_EIO, &mapping->flags);
705 clear_bit(AS_ENOSPC, &mapping->flags);
706 return err;
708 EXPORT_SYMBOL(file_check_and_advance_wb_err);
711 * file_write_and_wait_range - write out & wait on a file range
712 * @file: file pointing to address_space with pages
713 * @lstart: offset in bytes where the range starts
714 * @lend: offset in bytes where the range ends (inclusive)
716 * Write out and wait upon file offsets lstart->lend, inclusive.
718 * Note that @lend is inclusive (describes the last byte to be written) so
719 * that this function can be used to write to the very end-of-file (end = -1).
721 * After writing out and waiting on the data, we check and advance the
722 * f_wb_err cursor to the latest value, and return any errors detected there.
724 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
726 int err = 0, err2;
727 struct address_space *mapping = file->f_mapping;
729 if (mapping_needs_writeback(mapping)) {
730 err = __filemap_fdatawrite_range(mapping, lstart, lend,
731 WB_SYNC_ALL);
732 /* See comment of filemap_write_and_wait() */
733 if (err != -EIO)
734 __filemap_fdatawait_range(mapping, lstart, lend);
736 err2 = file_check_and_advance_wb_err(file);
737 if (!err)
738 err = err2;
739 return err;
741 EXPORT_SYMBOL(file_write_and_wait_range);
744 * replace_page_cache_page - replace a pagecache page with a new one
745 * @old: page to be replaced
746 * @new: page to replace with
747 * @gfp_mask: allocation mode
749 * This function replaces a page in the pagecache with a new one. On
750 * success it acquires the pagecache reference for the new page and
751 * drops it for the old page. Both the old and new pages must be
752 * locked. This function does not add the new page to the LRU, the
753 * caller must do that.
755 * The remove + add is atomic. This function cannot fail.
757 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
759 struct address_space *mapping = old->mapping;
760 void (*freepage)(struct page *) = mapping->a_ops->freepage;
761 pgoff_t offset = old->index;
762 XA_STATE(xas, &mapping->i_pages, offset);
763 unsigned long flags;
765 VM_BUG_ON_PAGE(!PageLocked(old), old);
766 VM_BUG_ON_PAGE(!PageLocked(new), new);
767 VM_BUG_ON_PAGE(new->mapping, new);
769 get_page(new);
770 new->mapping = mapping;
771 new->index = offset;
773 xas_lock_irqsave(&xas, flags);
774 xas_store(&xas, new);
776 old->mapping = NULL;
777 /* hugetlb pages do not participate in page cache accounting. */
778 if (!PageHuge(old))
779 __dec_node_page_state(new, NR_FILE_PAGES);
780 if (!PageHuge(new))
781 __inc_node_page_state(new, NR_FILE_PAGES);
782 if (PageSwapBacked(old))
783 __dec_node_page_state(new, NR_SHMEM);
784 if (PageSwapBacked(new))
785 __inc_node_page_state(new, NR_SHMEM);
786 xas_unlock_irqrestore(&xas, flags);
787 mem_cgroup_migrate(old, new);
788 if (freepage)
789 freepage(old);
790 put_page(old);
792 return 0;
794 EXPORT_SYMBOL_GPL(replace_page_cache_page);
796 static int __add_to_page_cache_locked(struct page *page,
797 struct address_space *mapping,
798 pgoff_t offset, gfp_t gfp_mask,
799 void **shadowp)
801 XA_STATE(xas, &mapping->i_pages, offset);
802 int huge = PageHuge(page);
803 struct mem_cgroup *memcg;
804 int error;
805 void *old;
807 VM_BUG_ON_PAGE(!PageLocked(page), page);
808 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
809 mapping_set_update(&xas, mapping);
811 if (!huge) {
812 error = mem_cgroup_try_charge(page, current->mm,
813 gfp_mask, &memcg, false);
814 if (error)
815 return error;
818 get_page(page);
819 page->mapping = mapping;
820 page->index = offset;
822 do {
823 xas_lock_irq(&xas);
824 old = xas_load(&xas);
825 if (old && !xa_is_value(old))
826 xas_set_err(&xas, -EEXIST);
827 xas_store(&xas, page);
828 if (xas_error(&xas))
829 goto unlock;
831 if (xa_is_value(old)) {
832 mapping->nrexceptional--;
833 if (shadowp)
834 *shadowp = old;
836 mapping->nrpages++;
838 /* hugetlb pages do not participate in page cache accounting */
839 if (!huge)
840 __inc_node_page_state(page, NR_FILE_PAGES);
841 unlock:
842 xas_unlock_irq(&xas);
843 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
845 if (xas_error(&xas))
846 goto error;
848 if (!huge)
849 mem_cgroup_commit_charge(page, memcg, false, false);
850 trace_mm_filemap_add_to_page_cache(page);
851 return 0;
852 error:
853 page->mapping = NULL;
854 /* Leave page->index set: truncation relies upon it */
855 if (!huge)
856 mem_cgroup_cancel_charge(page, memcg, false);
857 put_page(page);
858 return xas_error(&xas);
862 * add_to_page_cache_locked - add a locked page to the pagecache
863 * @page: page to add
864 * @mapping: the page's address_space
865 * @offset: page index
866 * @gfp_mask: page allocation mode
868 * This function is used to add a page to the pagecache. It must be locked.
869 * This function does not add the page to the LRU. The caller must do that.
871 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
872 pgoff_t offset, gfp_t gfp_mask)
874 return __add_to_page_cache_locked(page, mapping, offset,
875 gfp_mask, NULL);
877 EXPORT_SYMBOL(add_to_page_cache_locked);
879 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
880 pgoff_t offset, gfp_t gfp_mask)
882 void *shadow = NULL;
883 int ret;
885 __SetPageLocked(page);
886 ret = __add_to_page_cache_locked(page, mapping, offset,
887 gfp_mask, &shadow);
888 if (unlikely(ret))
889 __ClearPageLocked(page);
890 else {
892 * The page might have been evicted from cache only
893 * recently, in which case it should be activated like
894 * any other repeatedly accessed page.
895 * The exception is pages getting rewritten; evicting other
896 * data from the working set, only to cache data that will
897 * get overwritten with something else, is a waste of memory.
899 WARN_ON_ONCE(PageActive(page));
900 if (!(gfp_mask & __GFP_WRITE) && shadow)
901 workingset_refault(page, shadow);
902 lru_cache_add(page);
904 return ret;
906 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
908 #ifdef CONFIG_NUMA
909 struct page *__page_cache_alloc(gfp_t gfp)
911 int n;
912 struct page *page;
914 if (cpuset_do_page_mem_spread()) {
915 unsigned int cpuset_mems_cookie;
916 do {
917 cpuset_mems_cookie = read_mems_allowed_begin();
918 n = cpuset_mem_spread_node();
919 page = __alloc_pages_node(n, gfp, 0);
920 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
922 return page;
924 return alloc_pages(gfp, 0);
926 EXPORT_SYMBOL(__page_cache_alloc);
927 #endif
930 * In order to wait for pages to become available there must be
931 * waitqueues associated with pages. By using a hash table of
932 * waitqueues where the bucket discipline is to maintain all
933 * waiters on the same queue and wake all when any of the pages
934 * become available, and for the woken contexts to check to be
935 * sure the appropriate page became available, this saves space
936 * at a cost of "thundering herd" phenomena during rare hash
937 * collisions.
939 #define PAGE_WAIT_TABLE_BITS 8
940 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
941 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
943 static wait_queue_head_t *page_waitqueue(struct page *page)
945 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
948 void __init pagecache_init(void)
950 int i;
952 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
953 init_waitqueue_head(&page_wait_table[i]);
955 page_writeback_init();
958 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
959 struct wait_page_key {
960 struct page *page;
961 int bit_nr;
962 int page_match;
965 struct wait_page_queue {
966 struct page *page;
967 int bit_nr;
968 wait_queue_entry_t wait;
971 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
973 struct wait_page_key *key = arg;
974 struct wait_page_queue *wait_page
975 = container_of(wait, struct wait_page_queue, wait);
977 if (wait_page->page != key->page)
978 return 0;
979 key->page_match = 1;
981 if (wait_page->bit_nr != key->bit_nr)
982 return 0;
985 * Stop walking if it's locked.
986 * Is this safe if put_and_wait_on_page_locked() is in use?
987 * Yes: the waker must hold a reference to this page, and if PG_locked
988 * has now already been set by another task, that task must also hold
989 * a reference to the *same usage* of this page; so there is no need
990 * to walk on to wake even the put_and_wait_on_page_locked() callers.
992 if (test_bit(key->bit_nr, &key->page->flags))
993 return -1;
995 return autoremove_wake_function(wait, mode, sync, key);
998 static void wake_up_page_bit(struct page *page, int bit_nr)
1000 wait_queue_head_t *q = page_waitqueue(page);
1001 struct wait_page_key key;
1002 unsigned long flags;
1003 wait_queue_entry_t bookmark;
1005 key.page = page;
1006 key.bit_nr = bit_nr;
1007 key.page_match = 0;
1009 bookmark.flags = 0;
1010 bookmark.private = NULL;
1011 bookmark.func = NULL;
1012 INIT_LIST_HEAD(&bookmark.entry);
1014 spin_lock_irqsave(&q->lock, flags);
1015 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1017 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1019 * Take a breather from holding the lock,
1020 * allow pages that finish wake up asynchronously
1021 * to acquire the lock and remove themselves
1022 * from wait queue
1024 spin_unlock_irqrestore(&q->lock, flags);
1025 cpu_relax();
1026 spin_lock_irqsave(&q->lock, flags);
1027 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1031 * It is possible for other pages to have collided on the waitqueue
1032 * hash, so in that case check for a page match. That prevents a long-
1033 * term waiter
1035 * It is still possible to miss a case here, when we woke page waiters
1036 * and removed them from the waitqueue, but there are still other
1037 * page waiters.
1039 if (!waitqueue_active(q) || !key.page_match) {
1040 ClearPageWaiters(page);
1042 * It's possible to miss clearing Waiters here, when we woke
1043 * our page waiters, but the hashed waitqueue has waiters for
1044 * other pages on it.
1046 * That's okay, it's a rare case. The next waker will clear it.
1049 spin_unlock_irqrestore(&q->lock, flags);
1052 static void wake_up_page(struct page *page, int bit)
1054 if (!PageWaiters(page))
1055 return;
1056 wake_up_page_bit(page, bit);
1060 * A choice of three behaviors for wait_on_page_bit_common():
1062 enum behavior {
1063 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1064 * __lock_page() waiting on then setting PG_locked.
1066 SHARED, /* Hold ref to page and check the bit when woken, like
1067 * wait_on_page_writeback() waiting on PG_writeback.
1069 DROP, /* Drop ref to page before wait, no check when woken,
1070 * like put_and_wait_on_page_locked() on PG_locked.
1074 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075 struct page *page, int bit_nr, int state, enum behavior behavior)
1077 struct wait_page_queue wait_page;
1078 wait_queue_entry_t *wait = &wait_page.wait;
1079 bool bit_is_set;
1080 bool thrashing = false;
1081 bool delayacct = false;
1082 unsigned long pflags;
1083 int ret = 0;
1085 if (bit_nr == PG_locked &&
1086 !PageUptodate(page) && PageWorkingset(page)) {
1087 if (!PageSwapBacked(page)) {
1088 delayacct_thrashing_start();
1089 delayacct = true;
1091 psi_memstall_enter(&pflags);
1092 thrashing = true;
1095 init_wait(wait);
1096 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1097 wait->func = wake_page_function;
1098 wait_page.page = page;
1099 wait_page.bit_nr = bit_nr;
1101 for (;;) {
1102 spin_lock_irq(&q->lock);
1104 if (likely(list_empty(&wait->entry))) {
1105 __add_wait_queue_entry_tail(q, wait);
1106 SetPageWaiters(page);
1109 set_current_state(state);
1111 spin_unlock_irq(&q->lock);
1113 bit_is_set = test_bit(bit_nr, &page->flags);
1114 if (behavior == DROP)
1115 put_page(page);
1117 if (likely(bit_is_set))
1118 io_schedule();
1120 if (behavior == EXCLUSIVE) {
1121 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1122 break;
1123 } else if (behavior == SHARED) {
1124 if (!test_bit(bit_nr, &page->flags))
1125 break;
1128 if (signal_pending_state(state, current)) {
1129 ret = -EINTR;
1130 break;
1133 if (behavior == DROP) {
1135 * We can no longer safely access page->flags:
1136 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1137 * there is a risk of waiting forever on a page reused
1138 * for something that keeps it locked indefinitely.
1139 * But best check for -EINTR above before breaking.
1141 break;
1145 finish_wait(q, wait);
1147 if (thrashing) {
1148 if (delayacct)
1149 delayacct_thrashing_end();
1150 psi_memstall_leave(&pflags);
1154 * A signal could leave PageWaiters set. Clearing it here if
1155 * !waitqueue_active would be possible (by open-coding finish_wait),
1156 * but still fail to catch it in the case of wait hash collision. We
1157 * already can fail to clear wait hash collision cases, so don't
1158 * bother with signals either.
1161 return ret;
1164 void wait_on_page_bit(struct page *page, int bit_nr)
1166 wait_queue_head_t *q = page_waitqueue(page);
1167 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1169 EXPORT_SYMBOL(wait_on_page_bit);
1171 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1173 wait_queue_head_t *q = page_waitqueue(page);
1174 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1176 EXPORT_SYMBOL(wait_on_page_bit_killable);
1179 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1180 * @page: The page to wait for.
1182 * The caller should hold a reference on @page. They expect the page to
1183 * become unlocked relatively soon, but do not wish to hold up migration
1184 * (for example) by holding the reference while waiting for the page to
1185 * come unlocked. After this function returns, the caller should not
1186 * dereference @page.
1188 void put_and_wait_on_page_locked(struct page *page)
1190 wait_queue_head_t *q;
1192 page = compound_head(page);
1193 q = page_waitqueue(page);
1194 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1198 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1199 * @page: Page defining the wait queue of interest
1200 * @waiter: Waiter to add to the queue
1202 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1204 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1206 wait_queue_head_t *q = page_waitqueue(page);
1207 unsigned long flags;
1209 spin_lock_irqsave(&q->lock, flags);
1210 __add_wait_queue_entry_tail(q, waiter);
1211 SetPageWaiters(page);
1212 spin_unlock_irqrestore(&q->lock, flags);
1214 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1216 #ifndef clear_bit_unlock_is_negative_byte
1219 * PG_waiters is the high bit in the same byte as PG_lock.
1221 * On x86 (and on many other architectures), we can clear PG_lock and
1222 * test the sign bit at the same time. But if the architecture does
1223 * not support that special operation, we just do this all by hand
1224 * instead.
1226 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1227 * being cleared, but a memory barrier should be unneccssary since it is
1228 * in the same byte as PG_locked.
1230 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1232 clear_bit_unlock(nr, mem);
1233 /* smp_mb__after_atomic(); */
1234 return test_bit(PG_waiters, mem);
1237 #endif
1240 * unlock_page - unlock a locked page
1241 * @page: the page
1243 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1244 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1245 * mechanism between PageLocked pages and PageWriteback pages is shared.
1246 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1248 * Note that this depends on PG_waiters being the sign bit in the byte
1249 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1250 * clear the PG_locked bit and test PG_waiters at the same time fairly
1251 * portably (architectures that do LL/SC can test any bit, while x86 can
1252 * test the sign bit).
1254 void unlock_page(struct page *page)
1256 BUILD_BUG_ON(PG_waiters != 7);
1257 page = compound_head(page);
1258 VM_BUG_ON_PAGE(!PageLocked(page), page);
1259 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1260 wake_up_page_bit(page, PG_locked);
1262 EXPORT_SYMBOL(unlock_page);
1265 * end_page_writeback - end writeback against a page
1266 * @page: the page
1268 void end_page_writeback(struct page *page)
1271 * TestClearPageReclaim could be used here but it is an atomic
1272 * operation and overkill in this particular case. Failing to
1273 * shuffle a page marked for immediate reclaim is too mild to
1274 * justify taking an atomic operation penalty at the end of
1275 * ever page writeback.
1277 if (PageReclaim(page)) {
1278 ClearPageReclaim(page);
1279 rotate_reclaimable_page(page);
1282 if (!test_clear_page_writeback(page))
1283 BUG();
1285 smp_mb__after_atomic();
1286 wake_up_page(page, PG_writeback);
1288 EXPORT_SYMBOL(end_page_writeback);
1291 * After completing I/O on a page, call this routine to update the page
1292 * flags appropriately
1294 void page_endio(struct page *page, bool is_write, int err)
1296 if (!is_write) {
1297 if (!err) {
1298 SetPageUptodate(page);
1299 } else {
1300 ClearPageUptodate(page);
1301 SetPageError(page);
1303 unlock_page(page);
1304 } else {
1305 if (err) {
1306 struct address_space *mapping;
1308 SetPageError(page);
1309 mapping = page_mapping(page);
1310 if (mapping)
1311 mapping_set_error(mapping, err);
1313 end_page_writeback(page);
1316 EXPORT_SYMBOL_GPL(page_endio);
1319 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1320 * @__page: the page to lock
1322 void __lock_page(struct page *__page)
1324 struct page *page = compound_head(__page);
1325 wait_queue_head_t *q = page_waitqueue(page);
1326 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1327 EXCLUSIVE);
1329 EXPORT_SYMBOL(__lock_page);
1331 int __lock_page_killable(struct page *__page)
1333 struct page *page = compound_head(__page);
1334 wait_queue_head_t *q = page_waitqueue(page);
1335 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1336 EXCLUSIVE);
1338 EXPORT_SYMBOL_GPL(__lock_page_killable);
1341 * Return values:
1342 * 1 - page is locked; mmap_sem is still held.
1343 * 0 - page is not locked.
1344 * mmap_sem has been released (up_read()), unless flags had both
1345 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1346 * which case mmap_sem is still held.
1348 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1349 * with the page locked and the mmap_sem unperturbed.
1351 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1352 unsigned int flags)
1354 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1356 * CAUTION! In this case, mmap_sem is not released
1357 * even though return 0.
1359 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1360 return 0;
1362 up_read(&mm->mmap_sem);
1363 if (flags & FAULT_FLAG_KILLABLE)
1364 wait_on_page_locked_killable(page);
1365 else
1366 wait_on_page_locked(page);
1367 return 0;
1368 } else {
1369 if (flags & FAULT_FLAG_KILLABLE) {
1370 int ret;
1372 ret = __lock_page_killable(page);
1373 if (ret) {
1374 up_read(&mm->mmap_sem);
1375 return 0;
1377 } else
1378 __lock_page(page);
1379 return 1;
1384 * page_cache_next_miss() - Find the next gap in the page cache.
1385 * @mapping: Mapping.
1386 * @index: Index.
1387 * @max_scan: Maximum range to search.
1389 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1390 * gap with the lowest index.
1392 * This function may be called under the rcu_read_lock. However, this will
1393 * not atomically search a snapshot of the cache at a single point in time.
1394 * For example, if a gap is created at index 5, then subsequently a gap is
1395 * created at index 10, page_cache_next_miss covering both indices may
1396 * return 10 if called under the rcu_read_lock.
1398 * Return: The index of the gap if found, otherwise an index outside the
1399 * range specified (in which case 'return - index >= max_scan' will be true).
1400 * In the rare case of index wrap-around, 0 will be returned.
1402 pgoff_t page_cache_next_miss(struct address_space *mapping,
1403 pgoff_t index, unsigned long max_scan)
1405 XA_STATE(xas, &mapping->i_pages, index);
1407 while (max_scan--) {
1408 void *entry = xas_next(&xas);
1409 if (!entry || xa_is_value(entry))
1410 break;
1411 if (xas.xa_index == 0)
1412 break;
1415 return xas.xa_index;
1417 EXPORT_SYMBOL(page_cache_next_miss);
1420 * page_cache_prev_miss() - Find the next gap in the page cache.
1421 * @mapping: Mapping.
1422 * @index: Index.
1423 * @max_scan: Maximum range to search.
1425 * Search the range [max(index - max_scan + 1, 0), index] for the
1426 * gap with the highest index.
1428 * This function may be called under the rcu_read_lock. However, this will
1429 * not atomically search a snapshot of the cache at a single point in time.
1430 * For example, if a gap is created at index 10, then subsequently a gap is
1431 * created at index 5, page_cache_prev_miss() covering both indices may
1432 * return 5 if called under the rcu_read_lock.
1434 * Return: The index of the gap if found, otherwise an index outside the
1435 * range specified (in which case 'index - return >= max_scan' will be true).
1436 * In the rare case of wrap-around, ULONG_MAX will be returned.
1438 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1439 pgoff_t index, unsigned long max_scan)
1441 XA_STATE(xas, &mapping->i_pages, index);
1443 while (max_scan--) {
1444 void *entry = xas_prev(&xas);
1445 if (!entry || xa_is_value(entry))
1446 break;
1447 if (xas.xa_index == ULONG_MAX)
1448 break;
1451 return xas.xa_index;
1453 EXPORT_SYMBOL(page_cache_prev_miss);
1456 * find_get_entry - find and get a page cache entry
1457 * @mapping: the address_space to search
1458 * @offset: the page cache index
1460 * Looks up the page cache slot at @mapping & @offset. If there is a
1461 * page cache page, it is returned with an increased refcount.
1463 * If the slot holds a shadow entry of a previously evicted page, or a
1464 * swap entry from shmem/tmpfs, it is returned.
1466 * Otherwise, %NULL is returned.
1468 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1470 XA_STATE(xas, &mapping->i_pages, offset);
1471 struct page *head, *page;
1473 rcu_read_lock();
1474 repeat:
1475 xas_reset(&xas);
1476 page = xas_load(&xas);
1477 if (xas_retry(&xas, page))
1478 goto repeat;
1480 * A shadow entry of a recently evicted page, or a swap entry from
1481 * shmem/tmpfs. Return it without attempting to raise page count.
1483 if (!page || xa_is_value(page))
1484 goto out;
1486 head = compound_head(page);
1487 if (!page_cache_get_speculative(head))
1488 goto repeat;
1490 /* The page was split under us? */
1491 if (compound_head(page) != head) {
1492 put_page(head);
1493 goto repeat;
1497 * Has the page moved?
1498 * This is part of the lockless pagecache protocol. See
1499 * include/linux/pagemap.h for details.
1501 if (unlikely(page != xas_reload(&xas))) {
1502 put_page(head);
1503 goto repeat;
1505 out:
1506 rcu_read_unlock();
1508 return page;
1510 EXPORT_SYMBOL(find_get_entry);
1513 * find_lock_entry - locate, pin and lock a page cache entry
1514 * @mapping: the address_space to search
1515 * @offset: the page cache index
1517 * Looks up the page cache slot at @mapping & @offset. If there is a
1518 * page cache page, it is returned locked and with an increased
1519 * refcount.
1521 * If the slot holds a shadow entry of a previously evicted page, or a
1522 * swap entry from shmem/tmpfs, it is returned.
1524 * Otherwise, %NULL is returned.
1526 * find_lock_entry() may sleep.
1528 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1530 struct page *page;
1532 repeat:
1533 page = find_get_entry(mapping, offset);
1534 if (page && !xa_is_value(page)) {
1535 lock_page(page);
1536 /* Has the page been truncated? */
1537 if (unlikely(page_mapping(page) != mapping)) {
1538 unlock_page(page);
1539 put_page(page);
1540 goto repeat;
1542 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1544 return page;
1546 EXPORT_SYMBOL(find_lock_entry);
1549 * pagecache_get_page - find and get a page reference
1550 * @mapping: the address_space to search
1551 * @offset: the page index
1552 * @fgp_flags: PCG flags
1553 * @gfp_mask: gfp mask to use for the page cache data page allocation
1555 * Looks up the page cache slot at @mapping & @offset.
1557 * PCG flags modify how the page is returned.
1559 * @fgp_flags can be:
1561 * - FGP_ACCESSED: the page will be marked accessed
1562 * - FGP_LOCK: Page is return locked
1563 * - FGP_CREAT: If page is not present then a new page is allocated using
1564 * @gfp_mask and added to the page cache and the VM's LRU
1565 * list. The page is returned locked and with an increased
1566 * refcount. Otherwise, NULL is returned.
1568 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1569 * if the GFP flags specified for FGP_CREAT are atomic.
1571 * If there is a page cache page, it is returned with an increased refcount.
1573 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1574 int fgp_flags, gfp_t gfp_mask)
1576 struct page *page;
1578 repeat:
1579 page = find_get_entry(mapping, offset);
1580 if (xa_is_value(page))
1581 page = NULL;
1582 if (!page)
1583 goto no_page;
1585 if (fgp_flags & FGP_LOCK) {
1586 if (fgp_flags & FGP_NOWAIT) {
1587 if (!trylock_page(page)) {
1588 put_page(page);
1589 return NULL;
1591 } else {
1592 lock_page(page);
1595 /* Has the page been truncated? */
1596 if (unlikely(page->mapping != mapping)) {
1597 unlock_page(page);
1598 put_page(page);
1599 goto repeat;
1601 VM_BUG_ON_PAGE(page->index != offset, page);
1604 if (fgp_flags & FGP_ACCESSED)
1605 mark_page_accessed(page);
1607 no_page:
1608 if (!page && (fgp_flags & FGP_CREAT)) {
1609 int err;
1610 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1611 gfp_mask |= __GFP_WRITE;
1612 if (fgp_flags & FGP_NOFS)
1613 gfp_mask &= ~__GFP_FS;
1615 page = __page_cache_alloc(gfp_mask);
1616 if (!page)
1617 return NULL;
1619 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1620 fgp_flags |= FGP_LOCK;
1622 /* Init accessed so avoid atomic mark_page_accessed later */
1623 if (fgp_flags & FGP_ACCESSED)
1624 __SetPageReferenced(page);
1626 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1627 if (unlikely(err)) {
1628 put_page(page);
1629 page = NULL;
1630 if (err == -EEXIST)
1631 goto repeat;
1635 return page;
1637 EXPORT_SYMBOL(pagecache_get_page);
1640 * find_get_entries - gang pagecache lookup
1641 * @mapping: The address_space to search
1642 * @start: The starting page cache index
1643 * @nr_entries: The maximum number of entries
1644 * @entries: Where the resulting entries are placed
1645 * @indices: The cache indices corresponding to the entries in @entries
1647 * find_get_entries() will search for and return a group of up to
1648 * @nr_entries entries in the mapping. The entries are placed at
1649 * @entries. find_get_entries() takes a reference against any actual
1650 * pages it returns.
1652 * The search returns a group of mapping-contiguous page cache entries
1653 * with ascending indexes. There may be holes in the indices due to
1654 * not-present pages.
1656 * Any shadow entries of evicted pages, or swap entries from
1657 * shmem/tmpfs, are included in the returned array.
1659 * find_get_entries() returns the number of pages and shadow entries
1660 * which were found.
1662 unsigned find_get_entries(struct address_space *mapping,
1663 pgoff_t start, unsigned int nr_entries,
1664 struct page **entries, pgoff_t *indices)
1666 XA_STATE(xas, &mapping->i_pages, start);
1667 struct page *page;
1668 unsigned int ret = 0;
1670 if (!nr_entries)
1671 return 0;
1673 rcu_read_lock();
1674 xas_for_each(&xas, page, ULONG_MAX) {
1675 struct page *head;
1676 if (xas_retry(&xas, page))
1677 continue;
1679 * A shadow entry of a recently evicted page, a swap
1680 * entry from shmem/tmpfs or a DAX entry. Return it
1681 * without attempting to raise page count.
1683 if (xa_is_value(page))
1684 goto export;
1686 head = compound_head(page);
1687 if (!page_cache_get_speculative(head))
1688 goto retry;
1690 /* The page was split under us? */
1691 if (compound_head(page) != head)
1692 goto put_page;
1694 /* Has the page moved? */
1695 if (unlikely(page != xas_reload(&xas)))
1696 goto put_page;
1698 export:
1699 indices[ret] = xas.xa_index;
1700 entries[ret] = page;
1701 if (++ret == nr_entries)
1702 break;
1703 continue;
1704 put_page:
1705 put_page(head);
1706 retry:
1707 xas_reset(&xas);
1709 rcu_read_unlock();
1710 return ret;
1714 * find_get_pages_range - gang pagecache lookup
1715 * @mapping: The address_space to search
1716 * @start: The starting page index
1717 * @end: The final page index (inclusive)
1718 * @nr_pages: The maximum number of pages
1719 * @pages: Where the resulting pages are placed
1721 * find_get_pages_range() will search for and return a group of up to @nr_pages
1722 * pages in the mapping starting at index @start and up to index @end
1723 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1724 * a reference against the returned pages.
1726 * The search returns a group of mapping-contiguous pages with ascending
1727 * indexes. There may be holes in the indices due to not-present pages.
1728 * We also update @start to index the next page for the traversal.
1730 * find_get_pages_range() returns the number of pages which were found. If this
1731 * number is smaller than @nr_pages, the end of specified range has been
1732 * reached.
1734 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1735 pgoff_t end, unsigned int nr_pages,
1736 struct page **pages)
1738 XA_STATE(xas, &mapping->i_pages, *start);
1739 struct page *page;
1740 unsigned ret = 0;
1742 if (unlikely(!nr_pages))
1743 return 0;
1745 rcu_read_lock();
1746 xas_for_each(&xas, page, end) {
1747 struct page *head;
1748 if (xas_retry(&xas, page))
1749 continue;
1750 /* Skip over shadow, swap and DAX entries */
1751 if (xa_is_value(page))
1752 continue;
1754 head = compound_head(page);
1755 if (!page_cache_get_speculative(head))
1756 goto retry;
1758 /* The page was split under us? */
1759 if (compound_head(page) != head)
1760 goto put_page;
1762 /* Has the page moved? */
1763 if (unlikely(page != xas_reload(&xas)))
1764 goto put_page;
1766 pages[ret] = page;
1767 if (++ret == nr_pages) {
1768 *start = page->index + 1;
1769 goto out;
1771 continue;
1772 put_page:
1773 put_page(head);
1774 retry:
1775 xas_reset(&xas);
1779 * We come here when there is no page beyond @end. We take care to not
1780 * overflow the index @start as it confuses some of the callers. This
1781 * breaks the iteration when there is a page at index -1 but that is
1782 * already broken anyway.
1784 if (end == (pgoff_t)-1)
1785 *start = (pgoff_t)-1;
1786 else
1787 *start = end + 1;
1788 out:
1789 rcu_read_unlock();
1791 return ret;
1795 * find_get_pages_contig - gang contiguous pagecache lookup
1796 * @mapping: The address_space to search
1797 * @index: The starting page index
1798 * @nr_pages: The maximum number of pages
1799 * @pages: Where the resulting pages are placed
1801 * find_get_pages_contig() works exactly like find_get_pages(), except
1802 * that the returned number of pages are guaranteed to be contiguous.
1804 * find_get_pages_contig() returns the number of pages which were found.
1806 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1807 unsigned int nr_pages, struct page **pages)
1809 XA_STATE(xas, &mapping->i_pages, index);
1810 struct page *page;
1811 unsigned int ret = 0;
1813 if (unlikely(!nr_pages))
1814 return 0;
1816 rcu_read_lock();
1817 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1818 struct page *head;
1819 if (xas_retry(&xas, page))
1820 continue;
1822 * If the entry has been swapped out, we can stop looking.
1823 * No current caller is looking for DAX entries.
1825 if (xa_is_value(page))
1826 break;
1828 head = compound_head(page);
1829 if (!page_cache_get_speculative(head))
1830 goto retry;
1832 /* The page was split under us? */
1833 if (compound_head(page) != head)
1834 goto put_page;
1836 /* Has the page moved? */
1837 if (unlikely(page != xas_reload(&xas)))
1838 goto put_page;
1841 * must check mapping and index after taking the ref.
1842 * otherwise we can get both false positives and false
1843 * negatives, which is just confusing to the caller.
1845 if (!page->mapping || page_to_pgoff(page) != xas.xa_index) {
1846 put_page(page);
1847 break;
1850 pages[ret] = page;
1851 if (++ret == nr_pages)
1852 break;
1853 continue;
1854 put_page:
1855 put_page(head);
1856 retry:
1857 xas_reset(&xas);
1859 rcu_read_unlock();
1860 return ret;
1862 EXPORT_SYMBOL(find_get_pages_contig);
1865 * find_get_pages_range_tag - find and return pages in given range matching @tag
1866 * @mapping: the address_space to search
1867 * @index: the starting page index
1868 * @end: The final page index (inclusive)
1869 * @tag: the tag index
1870 * @nr_pages: the maximum number of pages
1871 * @pages: where the resulting pages are placed
1873 * Like find_get_pages, except we only return pages which are tagged with
1874 * @tag. We update @index to index the next page for the traversal.
1876 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1877 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1878 struct page **pages)
1880 XA_STATE(xas, &mapping->i_pages, *index);
1881 struct page *page;
1882 unsigned ret = 0;
1884 if (unlikely(!nr_pages))
1885 return 0;
1887 rcu_read_lock();
1888 xas_for_each_marked(&xas, page, end, tag) {
1889 struct page *head;
1890 if (xas_retry(&xas, page))
1891 continue;
1893 * Shadow entries should never be tagged, but this iteration
1894 * is lockless so there is a window for page reclaim to evict
1895 * a page we saw tagged. Skip over it.
1897 if (xa_is_value(page))
1898 continue;
1900 head = compound_head(page);
1901 if (!page_cache_get_speculative(head))
1902 goto retry;
1904 /* The page was split under us? */
1905 if (compound_head(page) != head)
1906 goto put_page;
1908 /* Has the page moved? */
1909 if (unlikely(page != xas_reload(&xas)))
1910 goto put_page;
1912 pages[ret] = page;
1913 if (++ret == nr_pages) {
1914 *index = page->index + 1;
1915 goto out;
1917 continue;
1918 put_page:
1919 put_page(head);
1920 retry:
1921 xas_reset(&xas);
1925 * We come here when we got to @end. We take care to not overflow the
1926 * index @index as it confuses some of the callers. This breaks the
1927 * iteration when there is a page at index -1 but that is already
1928 * broken anyway.
1930 if (end == (pgoff_t)-1)
1931 *index = (pgoff_t)-1;
1932 else
1933 *index = end + 1;
1934 out:
1935 rcu_read_unlock();
1937 return ret;
1939 EXPORT_SYMBOL(find_get_pages_range_tag);
1942 * find_get_entries_tag - find and return entries that match @tag
1943 * @mapping: the address_space to search
1944 * @start: the starting page cache index
1945 * @tag: the tag index
1946 * @nr_entries: the maximum number of entries
1947 * @entries: where the resulting entries are placed
1948 * @indices: the cache indices corresponding to the entries in @entries
1950 * Like find_get_entries, except we only return entries which are tagged with
1951 * @tag.
1953 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1954 xa_mark_t tag, unsigned int nr_entries,
1955 struct page **entries, pgoff_t *indices)
1957 XA_STATE(xas, &mapping->i_pages, start);
1958 struct page *page;
1959 unsigned int ret = 0;
1961 if (!nr_entries)
1962 return 0;
1964 rcu_read_lock();
1965 xas_for_each_marked(&xas, page, ULONG_MAX, tag) {
1966 struct page *head;
1967 if (xas_retry(&xas, page))
1968 continue;
1970 * A shadow entry of a recently evicted page, a swap
1971 * entry from shmem/tmpfs or a DAX entry. Return it
1972 * without attempting to raise page count.
1974 if (xa_is_value(page))
1975 goto export;
1977 head = compound_head(page);
1978 if (!page_cache_get_speculative(head))
1979 goto retry;
1981 /* The page was split under us? */
1982 if (compound_head(page) != head)
1983 goto put_page;
1985 /* Has the page moved? */
1986 if (unlikely(page != xas_reload(&xas)))
1987 goto put_page;
1989 export:
1990 indices[ret] = xas.xa_index;
1991 entries[ret] = page;
1992 if (++ret == nr_entries)
1993 break;
1994 continue;
1995 put_page:
1996 put_page(head);
1997 retry:
1998 xas_reset(&xas);
2000 rcu_read_unlock();
2001 return ret;
2003 EXPORT_SYMBOL(find_get_entries_tag);
2006 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2007 * a _large_ part of the i/o request. Imagine the worst scenario:
2009 * ---R__________________________________________B__________
2010 * ^ reading here ^ bad block(assume 4k)
2012 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2013 * => failing the whole request => read(R) => read(R+1) =>
2014 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2015 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2016 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2018 * It is going insane. Fix it by quickly scaling down the readahead size.
2020 static void shrink_readahead_size_eio(struct file *filp,
2021 struct file_ra_state *ra)
2023 ra->ra_pages /= 4;
2027 * generic_file_buffered_read - generic file read routine
2028 * @iocb: the iocb to read
2029 * @iter: data destination
2030 * @written: already copied
2032 * This is a generic file read routine, and uses the
2033 * mapping->a_ops->readpage() function for the actual low-level stuff.
2035 * This is really ugly. But the goto's actually try to clarify some
2036 * of the logic when it comes to error handling etc.
2038 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2039 struct iov_iter *iter, ssize_t written)
2041 struct file *filp = iocb->ki_filp;
2042 struct address_space *mapping = filp->f_mapping;
2043 struct inode *inode = mapping->host;
2044 struct file_ra_state *ra = &filp->f_ra;
2045 loff_t *ppos = &iocb->ki_pos;
2046 pgoff_t index;
2047 pgoff_t last_index;
2048 pgoff_t prev_index;
2049 unsigned long offset; /* offset into pagecache page */
2050 unsigned int prev_offset;
2051 int error = 0;
2053 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2054 return 0;
2055 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2057 index = *ppos >> PAGE_SHIFT;
2058 prev_index = ra->prev_pos >> PAGE_SHIFT;
2059 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2060 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2061 offset = *ppos & ~PAGE_MASK;
2063 for (;;) {
2064 struct page *page;
2065 pgoff_t end_index;
2066 loff_t isize;
2067 unsigned long nr, ret;
2069 cond_resched();
2070 find_page:
2071 if (fatal_signal_pending(current)) {
2072 error = -EINTR;
2073 goto out;
2076 page = find_get_page(mapping, index);
2077 if (!page) {
2078 if (iocb->ki_flags & IOCB_NOWAIT)
2079 goto would_block;
2080 page_cache_sync_readahead(mapping,
2081 ra, filp,
2082 index, last_index - index);
2083 page = find_get_page(mapping, index);
2084 if (unlikely(page == NULL))
2085 goto no_cached_page;
2087 if (PageReadahead(page)) {
2088 page_cache_async_readahead(mapping,
2089 ra, filp, page,
2090 index, last_index - index);
2092 if (!PageUptodate(page)) {
2093 if (iocb->ki_flags & IOCB_NOWAIT) {
2094 put_page(page);
2095 goto would_block;
2099 * See comment in do_read_cache_page on why
2100 * wait_on_page_locked is used to avoid unnecessarily
2101 * serialisations and why it's safe.
2103 error = wait_on_page_locked_killable(page);
2104 if (unlikely(error))
2105 goto readpage_error;
2106 if (PageUptodate(page))
2107 goto page_ok;
2109 if (inode->i_blkbits == PAGE_SHIFT ||
2110 !mapping->a_ops->is_partially_uptodate)
2111 goto page_not_up_to_date;
2112 /* pipes can't handle partially uptodate pages */
2113 if (unlikely(iov_iter_is_pipe(iter)))
2114 goto page_not_up_to_date;
2115 if (!trylock_page(page))
2116 goto page_not_up_to_date;
2117 /* Did it get truncated before we got the lock? */
2118 if (!page->mapping)
2119 goto page_not_up_to_date_locked;
2120 if (!mapping->a_ops->is_partially_uptodate(page,
2121 offset, iter->count))
2122 goto page_not_up_to_date_locked;
2123 unlock_page(page);
2125 page_ok:
2127 * i_size must be checked after we know the page is Uptodate.
2129 * Checking i_size after the check allows us to calculate
2130 * the correct value for "nr", which means the zero-filled
2131 * part of the page is not copied back to userspace (unless
2132 * another truncate extends the file - this is desired though).
2135 isize = i_size_read(inode);
2136 end_index = (isize - 1) >> PAGE_SHIFT;
2137 if (unlikely(!isize || index > end_index)) {
2138 put_page(page);
2139 goto out;
2142 /* nr is the maximum number of bytes to copy from this page */
2143 nr = PAGE_SIZE;
2144 if (index == end_index) {
2145 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2146 if (nr <= offset) {
2147 put_page(page);
2148 goto out;
2151 nr = nr - offset;
2153 /* If users can be writing to this page using arbitrary
2154 * virtual addresses, take care about potential aliasing
2155 * before reading the page on the kernel side.
2157 if (mapping_writably_mapped(mapping))
2158 flush_dcache_page(page);
2161 * When a sequential read accesses a page several times,
2162 * only mark it as accessed the first time.
2164 if (prev_index != index || offset != prev_offset)
2165 mark_page_accessed(page);
2166 prev_index = index;
2169 * Ok, we have the page, and it's up-to-date, so
2170 * now we can copy it to user space...
2173 ret = copy_page_to_iter(page, offset, nr, iter);
2174 offset += ret;
2175 index += offset >> PAGE_SHIFT;
2176 offset &= ~PAGE_MASK;
2177 prev_offset = offset;
2179 put_page(page);
2180 written += ret;
2181 if (!iov_iter_count(iter))
2182 goto out;
2183 if (ret < nr) {
2184 error = -EFAULT;
2185 goto out;
2187 continue;
2189 page_not_up_to_date:
2190 /* Get exclusive access to the page ... */
2191 error = lock_page_killable(page);
2192 if (unlikely(error))
2193 goto readpage_error;
2195 page_not_up_to_date_locked:
2196 /* Did it get truncated before we got the lock? */
2197 if (!page->mapping) {
2198 unlock_page(page);
2199 put_page(page);
2200 continue;
2203 /* Did somebody else fill it already? */
2204 if (PageUptodate(page)) {
2205 unlock_page(page);
2206 goto page_ok;
2209 readpage:
2211 * A previous I/O error may have been due to temporary
2212 * failures, eg. multipath errors.
2213 * PG_error will be set again if readpage fails.
2215 ClearPageError(page);
2216 /* Start the actual read. The read will unlock the page. */
2217 error = mapping->a_ops->readpage(filp, page);
2219 if (unlikely(error)) {
2220 if (error == AOP_TRUNCATED_PAGE) {
2221 put_page(page);
2222 error = 0;
2223 goto find_page;
2225 goto readpage_error;
2228 if (!PageUptodate(page)) {
2229 error = lock_page_killable(page);
2230 if (unlikely(error))
2231 goto readpage_error;
2232 if (!PageUptodate(page)) {
2233 if (page->mapping == NULL) {
2235 * invalidate_mapping_pages got it
2237 unlock_page(page);
2238 put_page(page);
2239 goto find_page;
2241 unlock_page(page);
2242 shrink_readahead_size_eio(filp, ra);
2243 error = -EIO;
2244 goto readpage_error;
2246 unlock_page(page);
2249 goto page_ok;
2251 readpage_error:
2252 /* UHHUH! A synchronous read error occurred. Report it */
2253 put_page(page);
2254 goto out;
2256 no_cached_page:
2258 * Ok, it wasn't cached, so we need to create a new
2259 * page..
2261 page = page_cache_alloc(mapping);
2262 if (!page) {
2263 error = -ENOMEM;
2264 goto out;
2266 error = add_to_page_cache_lru(page, mapping, index,
2267 mapping_gfp_constraint(mapping, GFP_KERNEL));
2268 if (error) {
2269 put_page(page);
2270 if (error == -EEXIST) {
2271 error = 0;
2272 goto find_page;
2274 goto out;
2276 goto readpage;
2279 would_block:
2280 error = -EAGAIN;
2281 out:
2282 ra->prev_pos = prev_index;
2283 ra->prev_pos <<= PAGE_SHIFT;
2284 ra->prev_pos |= prev_offset;
2286 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2287 file_accessed(filp);
2288 return written ? written : error;
2292 * generic_file_read_iter - generic filesystem read routine
2293 * @iocb: kernel I/O control block
2294 * @iter: destination for the data read
2296 * This is the "read_iter()" routine for all filesystems
2297 * that can use the page cache directly.
2299 ssize_t
2300 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2302 size_t count = iov_iter_count(iter);
2303 ssize_t retval = 0;
2305 if (!count)
2306 goto out; /* skip atime */
2308 if (iocb->ki_flags & IOCB_DIRECT) {
2309 struct file *file = iocb->ki_filp;
2310 struct address_space *mapping = file->f_mapping;
2311 struct inode *inode = mapping->host;
2312 loff_t size;
2314 size = i_size_read(inode);
2315 if (iocb->ki_flags & IOCB_NOWAIT) {
2316 if (filemap_range_has_page(mapping, iocb->ki_pos,
2317 iocb->ki_pos + count - 1))
2318 return -EAGAIN;
2319 } else {
2320 retval = filemap_write_and_wait_range(mapping,
2321 iocb->ki_pos,
2322 iocb->ki_pos + count - 1);
2323 if (retval < 0)
2324 goto out;
2327 file_accessed(file);
2329 retval = mapping->a_ops->direct_IO(iocb, iter);
2330 if (retval >= 0) {
2331 iocb->ki_pos += retval;
2332 count -= retval;
2334 iov_iter_revert(iter, count - iov_iter_count(iter));
2337 * Btrfs can have a short DIO read if we encounter
2338 * compressed extents, so if there was an error, or if
2339 * we've already read everything we wanted to, or if
2340 * there was a short read because we hit EOF, go ahead
2341 * and return. Otherwise fallthrough to buffered io for
2342 * the rest of the read. Buffered reads will not work for
2343 * DAX files, so don't bother trying.
2345 if (retval < 0 || !count || iocb->ki_pos >= size ||
2346 IS_DAX(inode))
2347 goto out;
2350 retval = generic_file_buffered_read(iocb, iter, retval);
2351 out:
2352 return retval;
2354 EXPORT_SYMBOL(generic_file_read_iter);
2356 #ifdef CONFIG_MMU
2358 * page_cache_read - adds requested page to the page cache if not already there
2359 * @file: file to read
2360 * @offset: page index
2361 * @gfp_mask: memory allocation flags
2363 * This adds the requested page to the page cache if it isn't already there,
2364 * and schedules an I/O to read in its contents from disk.
2366 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2368 struct address_space *mapping = file->f_mapping;
2369 struct page *page;
2370 int ret;
2372 do {
2373 page = __page_cache_alloc(gfp_mask);
2374 if (!page)
2375 return -ENOMEM;
2377 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2378 if (ret == 0)
2379 ret = mapping->a_ops->readpage(file, page);
2380 else if (ret == -EEXIST)
2381 ret = 0; /* losing race to add is OK */
2383 put_page(page);
2385 } while (ret == AOP_TRUNCATED_PAGE);
2387 return ret;
2390 #define MMAP_LOTSAMISS (100)
2393 * Synchronous readahead happens when we don't even find
2394 * a page in the page cache at all.
2396 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2397 struct file_ra_state *ra,
2398 struct file *file,
2399 pgoff_t offset)
2401 struct address_space *mapping = file->f_mapping;
2403 /* If we don't want any read-ahead, don't bother */
2404 if (vma->vm_flags & VM_RAND_READ)
2405 return;
2406 if (!ra->ra_pages)
2407 return;
2409 if (vma->vm_flags & VM_SEQ_READ) {
2410 page_cache_sync_readahead(mapping, ra, file, offset,
2411 ra->ra_pages);
2412 return;
2415 /* Avoid banging the cache line if not needed */
2416 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2417 ra->mmap_miss++;
2420 * Do we miss much more than hit in this file? If so,
2421 * stop bothering with read-ahead. It will only hurt.
2423 if (ra->mmap_miss > MMAP_LOTSAMISS)
2424 return;
2427 * mmap read-around
2429 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2430 ra->size = ra->ra_pages;
2431 ra->async_size = ra->ra_pages / 4;
2432 ra_submit(ra, mapping, file);
2436 * Asynchronous readahead happens when we find the page and PG_readahead,
2437 * so we want to possibly extend the readahead further..
2439 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2440 struct file_ra_state *ra,
2441 struct file *file,
2442 struct page *page,
2443 pgoff_t offset)
2445 struct address_space *mapping = file->f_mapping;
2447 /* If we don't want any read-ahead, don't bother */
2448 if (vma->vm_flags & VM_RAND_READ)
2449 return;
2450 if (ra->mmap_miss > 0)
2451 ra->mmap_miss--;
2452 if (PageReadahead(page))
2453 page_cache_async_readahead(mapping, ra, file,
2454 page, offset, ra->ra_pages);
2458 * filemap_fault - read in file data for page fault handling
2459 * @vmf: struct vm_fault containing details of the fault
2461 * filemap_fault() is invoked via the vma operations vector for a
2462 * mapped memory region to read in file data during a page fault.
2464 * The goto's are kind of ugly, but this streamlines the normal case of having
2465 * it in the page cache, and handles the special cases reasonably without
2466 * having a lot of duplicated code.
2468 * vma->vm_mm->mmap_sem must be held on entry.
2470 * If our return value has VM_FAULT_RETRY set, it's because
2471 * lock_page_or_retry() returned 0.
2472 * The mmap_sem has usually been released in this case.
2473 * See __lock_page_or_retry() for the exception.
2475 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2476 * has not been released.
2478 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2480 vm_fault_t filemap_fault(struct vm_fault *vmf)
2482 int error;
2483 struct file *file = vmf->vma->vm_file;
2484 struct address_space *mapping = file->f_mapping;
2485 struct file_ra_state *ra = &file->f_ra;
2486 struct inode *inode = mapping->host;
2487 pgoff_t offset = vmf->pgoff;
2488 pgoff_t max_off;
2489 struct page *page;
2490 vm_fault_t ret = 0;
2492 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2493 if (unlikely(offset >= max_off))
2494 return VM_FAULT_SIGBUS;
2497 * Do we have something in the page cache already?
2499 page = find_get_page(mapping, offset);
2500 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2502 * We found the page, so try async readahead before
2503 * waiting for the lock.
2505 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2506 } else if (!page) {
2507 /* No page in the page cache at all */
2508 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2509 count_vm_event(PGMAJFAULT);
2510 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2511 ret = VM_FAULT_MAJOR;
2512 retry_find:
2513 page = find_get_page(mapping, offset);
2514 if (!page)
2515 goto no_cached_page;
2518 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2519 put_page(page);
2520 return ret | VM_FAULT_RETRY;
2523 /* Did it get truncated? */
2524 if (unlikely(page->mapping != mapping)) {
2525 unlock_page(page);
2526 put_page(page);
2527 goto retry_find;
2529 VM_BUG_ON_PAGE(page->index != offset, page);
2532 * We have a locked page in the page cache, now we need to check
2533 * that it's up-to-date. If not, it is going to be due to an error.
2535 if (unlikely(!PageUptodate(page)))
2536 goto page_not_uptodate;
2539 * Found the page and have a reference on it.
2540 * We must recheck i_size under page lock.
2542 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2543 if (unlikely(offset >= max_off)) {
2544 unlock_page(page);
2545 put_page(page);
2546 return VM_FAULT_SIGBUS;
2549 vmf->page = page;
2550 return ret | VM_FAULT_LOCKED;
2552 no_cached_page:
2554 * We're only likely to ever get here if MADV_RANDOM is in
2555 * effect.
2557 error = page_cache_read(file, offset, vmf->gfp_mask);
2560 * The page we want has now been added to the page cache.
2561 * In the unlikely event that someone removed it in the
2562 * meantime, we'll just come back here and read it again.
2564 if (error >= 0)
2565 goto retry_find;
2568 * An error return from page_cache_read can result if the
2569 * system is low on memory, or a problem occurs while trying
2570 * to schedule I/O.
2572 return vmf_error(error);
2574 page_not_uptodate:
2576 * Umm, take care of errors if the page isn't up-to-date.
2577 * Try to re-read it _once_. We do this synchronously,
2578 * because there really aren't any performance issues here
2579 * and we need to check for errors.
2581 ClearPageError(page);
2582 error = mapping->a_ops->readpage(file, page);
2583 if (!error) {
2584 wait_on_page_locked(page);
2585 if (!PageUptodate(page))
2586 error = -EIO;
2588 put_page(page);
2590 if (!error || error == AOP_TRUNCATED_PAGE)
2591 goto retry_find;
2593 /* Things didn't work out. Return zero to tell the mm layer so. */
2594 shrink_readahead_size_eio(file, ra);
2595 return VM_FAULT_SIGBUS;
2597 EXPORT_SYMBOL(filemap_fault);
2599 void filemap_map_pages(struct vm_fault *vmf,
2600 pgoff_t start_pgoff, pgoff_t end_pgoff)
2602 struct file *file = vmf->vma->vm_file;
2603 struct address_space *mapping = file->f_mapping;
2604 pgoff_t last_pgoff = start_pgoff;
2605 unsigned long max_idx;
2606 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2607 struct page *head, *page;
2609 rcu_read_lock();
2610 xas_for_each(&xas, page, end_pgoff) {
2611 if (xas_retry(&xas, page))
2612 continue;
2613 if (xa_is_value(page))
2614 goto next;
2616 head = compound_head(page);
2619 * Check for a locked page first, as a speculative
2620 * reference may adversely influence page migration.
2622 if (PageLocked(head))
2623 goto next;
2624 if (!page_cache_get_speculative(head))
2625 goto next;
2627 /* The page was split under us? */
2628 if (compound_head(page) != head)
2629 goto skip;
2631 /* Has the page moved? */
2632 if (unlikely(page != xas_reload(&xas)))
2633 goto skip;
2635 if (!PageUptodate(page) ||
2636 PageReadahead(page) ||
2637 PageHWPoison(page))
2638 goto skip;
2639 if (!trylock_page(page))
2640 goto skip;
2642 if (page->mapping != mapping || !PageUptodate(page))
2643 goto unlock;
2645 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2646 if (page->index >= max_idx)
2647 goto unlock;
2649 if (file->f_ra.mmap_miss > 0)
2650 file->f_ra.mmap_miss--;
2652 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2653 if (vmf->pte)
2654 vmf->pte += xas.xa_index - last_pgoff;
2655 last_pgoff = xas.xa_index;
2656 if (alloc_set_pte(vmf, NULL, page))
2657 goto unlock;
2658 unlock_page(page);
2659 goto next;
2660 unlock:
2661 unlock_page(page);
2662 skip:
2663 put_page(page);
2664 next:
2665 /* Huge page is mapped? No need to proceed. */
2666 if (pmd_trans_huge(*vmf->pmd))
2667 break;
2669 rcu_read_unlock();
2671 EXPORT_SYMBOL(filemap_map_pages);
2673 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2675 struct page *page = vmf->page;
2676 struct inode *inode = file_inode(vmf->vma->vm_file);
2677 vm_fault_t ret = VM_FAULT_LOCKED;
2679 sb_start_pagefault(inode->i_sb);
2680 file_update_time(vmf->vma->vm_file);
2681 lock_page(page);
2682 if (page->mapping != inode->i_mapping) {
2683 unlock_page(page);
2684 ret = VM_FAULT_NOPAGE;
2685 goto out;
2688 * We mark the page dirty already here so that when freeze is in
2689 * progress, we are guaranteed that writeback during freezing will
2690 * see the dirty page and writeprotect it again.
2692 set_page_dirty(page);
2693 wait_for_stable_page(page);
2694 out:
2695 sb_end_pagefault(inode->i_sb);
2696 return ret;
2699 const struct vm_operations_struct generic_file_vm_ops = {
2700 .fault = filemap_fault,
2701 .map_pages = filemap_map_pages,
2702 .page_mkwrite = filemap_page_mkwrite,
2705 /* This is used for a general mmap of a disk file */
2707 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2709 struct address_space *mapping = file->f_mapping;
2711 if (!mapping->a_ops->readpage)
2712 return -ENOEXEC;
2713 file_accessed(file);
2714 vma->vm_ops = &generic_file_vm_ops;
2715 return 0;
2719 * This is for filesystems which do not implement ->writepage.
2721 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2723 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2724 return -EINVAL;
2725 return generic_file_mmap(file, vma);
2727 #else
2728 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2730 return VM_FAULT_SIGBUS;
2732 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2734 return -ENOSYS;
2736 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2738 return -ENOSYS;
2740 #endif /* CONFIG_MMU */
2742 EXPORT_SYMBOL(filemap_page_mkwrite);
2743 EXPORT_SYMBOL(generic_file_mmap);
2744 EXPORT_SYMBOL(generic_file_readonly_mmap);
2746 static struct page *wait_on_page_read(struct page *page)
2748 if (!IS_ERR(page)) {
2749 wait_on_page_locked(page);
2750 if (!PageUptodate(page)) {
2751 put_page(page);
2752 page = ERR_PTR(-EIO);
2755 return page;
2758 static struct page *do_read_cache_page(struct address_space *mapping,
2759 pgoff_t index,
2760 int (*filler)(void *, struct page *),
2761 void *data,
2762 gfp_t gfp)
2764 struct page *page;
2765 int err;
2766 repeat:
2767 page = find_get_page(mapping, index);
2768 if (!page) {
2769 page = __page_cache_alloc(gfp);
2770 if (!page)
2771 return ERR_PTR(-ENOMEM);
2772 err = add_to_page_cache_lru(page, mapping, index, gfp);
2773 if (unlikely(err)) {
2774 put_page(page);
2775 if (err == -EEXIST)
2776 goto repeat;
2777 /* Presumably ENOMEM for xarray node */
2778 return ERR_PTR(err);
2781 filler:
2782 err = filler(data, page);
2783 if (err < 0) {
2784 put_page(page);
2785 return ERR_PTR(err);
2788 page = wait_on_page_read(page);
2789 if (IS_ERR(page))
2790 return page;
2791 goto out;
2793 if (PageUptodate(page))
2794 goto out;
2797 * Page is not up to date and may be locked due one of the following
2798 * case a: Page is being filled and the page lock is held
2799 * case b: Read/write error clearing the page uptodate status
2800 * case c: Truncation in progress (page locked)
2801 * case d: Reclaim in progress
2803 * Case a, the page will be up to date when the page is unlocked.
2804 * There is no need to serialise on the page lock here as the page
2805 * is pinned so the lock gives no additional protection. Even if the
2806 * the page is truncated, the data is still valid if PageUptodate as
2807 * it's a race vs truncate race.
2808 * Case b, the page will not be up to date
2809 * Case c, the page may be truncated but in itself, the data may still
2810 * be valid after IO completes as it's a read vs truncate race. The
2811 * operation must restart if the page is not uptodate on unlock but
2812 * otherwise serialising on page lock to stabilise the mapping gives
2813 * no additional guarantees to the caller as the page lock is
2814 * released before return.
2815 * Case d, similar to truncation. If reclaim holds the page lock, it
2816 * will be a race with remove_mapping that determines if the mapping
2817 * is valid on unlock but otherwise the data is valid and there is
2818 * no need to serialise with page lock.
2820 * As the page lock gives no additional guarantee, we optimistically
2821 * wait on the page to be unlocked and check if it's up to date and
2822 * use the page if it is. Otherwise, the page lock is required to
2823 * distinguish between the different cases. The motivation is that we
2824 * avoid spurious serialisations and wakeups when multiple processes
2825 * wait on the same page for IO to complete.
2827 wait_on_page_locked(page);
2828 if (PageUptodate(page))
2829 goto out;
2831 /* Distinguish between all the cases under the safety of the lock */
2832 lock_page(page);
2834 /* Case c or d, restart the operation */
2835 if (!page->mapping) {
2836 unlock_page(page);
2837 put_page(page);
2838 goto repeat;
2841 /* Someone else locked and filled the page in a very small window */
2842 if (PageUptodate(page)) {
2843 unlock_page(page);
2844 goto out;
2846 goto filler;
2848 out:
2849 mark_page_accessed(page);
2850 return page;
2854 * read_cache_page - read into page cache, fill it if needed
2855 * @mapping: the page's address_space
2856 * @index: the page index
2857 * @filler: function to perform the read
2858 * @data: first arg to filler(data, page) function, often left as NULL
2860 * Read into the page cache. If a page already exists, and PageUptodate() is
2861 * not set, try to fill the page and wait for it to become unlocked.
2863 * If the page does not get brought uptodate, return -EIO.
2865 struct page *read_cache_page(struct address_space *mapping,
2866 pgoff_t index,
2867 int (*filler)(void *, struct page *),
2868 void *data)
2870 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2872 EXPORT_SYMBOL(read_cache_page);
2875 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2876 * @mapping: the page's address_space
2877 * @index: the page index
2878 * @gfp: the page allocator flags to use if allocating
2880 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2881 * any new page allocations done using the specified allocation flags.
2883 * If the page does not get brought uptodate, return -EIO.
2885 struct page *read_cache_page_gfp(struct address_space *mapping,
2886 pgoff_t index,
2887 gfp_t gfp)
2889 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2891 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2893 EXPORT_SYMBOL(read_cache_page_gfp);
2896 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2897 * LFS limits. If pos is under the limit it becomes a short access. If it
2898 * exceeds the limit we return -EFBIG.
2900 static int generic_access_check_limits(struct file *file, loff_t pos,
2901 loff_t *count)
2903 struct inode *inode = file->f_mapping->host;
2904 loff_t max_size = inode->i_sb->s_maxbytes;
2906 if (!(file->f_flags & O_LARGEFILE))
2907 max_size = MAX_NON_LFS;
2909 if (unlikely(pos >= max_size))
2910 return -EFBIG;
2911 *count = min(*count, max_size - pos);
2912 return 0;
2915 static int generic_write_check_limits(struct file *file, loff_t pos,
2916 loff_t *count)
2918 loff_t limit = rlimit(RLIMIT_FSIZE);
2920 if (limit != RLIM_INFINITY) {
2921 if (pos >= limit) {
2922 send_sig(SIGXFSZ, current, 0);
2923 return -EFBIG;
2925 *count = min(*count, limit - pos);
2928 return generic_access_check_limits(file, pos, count);
2932 * Performs necessary checks before doing a write
2934 * Can adjust writing position or amount of bytes to write.
2935 * Returns appropriate error code that caller should return or
2936 * zero in case that write should be allowed.
2938 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2940 struct file *file = iocb->ki_filp;
2941 struct inode *inode = file->f_mapping->host;
2942 loff_t count;
2943 int ret;
2945 if (!iov_iter_count(from))
2946 return 0;
2948 /* FIXME: this is for backwards compatibility with 2.4 */
2949 if (iocb->ki_flags & IOCB_APPEND)
2950 iocb->ki_pos = i_size_read(inode);
2952 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2953 return -EINVAL;
2955 count = iov_iter_count(from);
2956 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2957 if (ret)
2958 return ret;
2960 iov_iter_truncate(from, count);
2961 return iov_iter_count(from);
2963 EXPORT_SYMBOL(generic_write_checks);
2966 * Performs necessary checks before doing a clone.
2968 * Can adjust amount of bytes to clone.
2969 * Returns appropriate error code that caller should return or
2970 * zero in case the clone should be allowed.
2972 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2973 struct file *file_out, loff_t pos_out,
2974 loff_t *req_count, unsigned int remap_flags)
2976 struct inode *inode_in = file_in->f_mapping->host;
2977 struct inode *inode_out = file_out->f_mapping->host;
2978 uint64_t count = *req_count;
2979 uint64_t bcount;
2980 loff_t size_in, size_out;
2981 loff_t bs = inode_out->i_sb->s_blocksize;
2982 int ret;
2984 /* The start of both ranges must be aligned to an fs block. */
2985 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2986 return -EINVAL;
2988 /* Ensure offsets don't wrap. */
2989 if (pos_in + count < pos_in || pos_out + count < pos_out)
2990 return -EINVAL;
2992 size_in = i_size_read(inode_in);
2993 size_out = i_size_read(inode_out);
2995 /* Dedupe requires both ranges to be within EOF. */
2996 if ((remap_flags & REMAP_FILE_DEDUP) &&
2997 (pos_in >= size_in || pos_in + count > size_in ||
2998 pos_out >= size_out || pos_out + count > size_out))
2999 return -EINVAL;
3001 /* Ensure the infile range is within the infile. */
3002 if (pos_in >= size_in)
3003 return -EINVAL;
3004 count = min(count, size_in - (uint64_t)pos_in);
3006 ret = generic_access_check_limits(file_in, pos_in, &count);
3007 if (ret)
3008 return ret;
3010 ret = generic_write_check_limits(file_out, pos_out, &count);
3011 if (ret)
3012 return ret;
3015 * If the user wanted us to link to the infile's EOF, round up to the
3016 * next block boundary for this check.
3018 * Otherwise, make sure the count is also block-aligned, having
3019 * already confirmed the starting offsets' block alignment.
3021 if (pos_in + count == size_in) {
3022 bcount = ALIGN(size_in, bs) - pos_in;
3023 } else {
3024 if (!IS_ALIGNED(count, bs))
3025 count = ALIGN_DOWN(count, bs);
3026 bcount = count;
3029 /* Don't allow overlapped cloning within the same file. */
3030 if (inode_in == inode_out &&
3031 pos_out + bcount > pos_in &&
3032 pos_out < pos_in + bcount)
3033 return -EINVAL;
3036 * We shortened the request but the caller can't deal with that, so
3037 * bounce the request back to userspace.
3039 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3040 return -EINVAL;
3042 *req_count = count;
3043 return 0;
3046 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3047 loff_t pos, unsigned len, unsigned flags,
3048 struct page **pagep, void **fsdata)
3050 const struct address_space_operations *aops = mapping->a_ops;
3052 return aops->write_begin(file, mapping, pos, len, flags,
3053 pagep, fsdata);
3055 EXPORT_SYMBOL(pagecache_write_begin);
3057 int pagecache_write_end(struct file *file, struct address_space *mapping,
3058 loff_t pos, unsigned len, unsigned copied,
3059 struct page *page, void *fsdata)
3061 const struct address_space_operations *aops = mapping->a_ops;
3063 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3065 EXPORT_SYMBOL(pagecache_write_end);
3067 ssize_t
3068 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3070 struct file *file = iocb->ki_filp;
3071 struct address_space *mapping = file->f_mapping;
3072 struct inode *inode = mapping->host;
3073 loff_t pos = iocb->ki_pos;
3074 ssize_t written;
3075 size_t write_len;
3076 pgoff_t end;
3078 write_len = iov_iter_count(from);
3079 end = (pos + write_len - 1) >> PAGE_SHIFT;
3081 if (iocb->ki_flags & IOCB_NOWAIT) {
3082 /* If there are pages to writeback, return */
3083 if (filemap_range_has_page(inode->i_mapping, pos,
3084 pos + write_len))
3085 return -EAGAIN;
3086 } else {
3087 written = filemap_write_and_wait_range(mapping, pos,
3088 pos + write_len - 1);
3089 if (written)
3090 goto out;
3094 * After a write we want buffered reads to be sure to go to disk to get
3095 * the new data. We invalidate clean cached page from the region we're
3096 * about to write. We do this *before* the write so that we can return
3097 * without clobbering -EIOCBQUEUED from ->direct_IO().
3099 written = invalidate_inode_pages2_range(mapping,
3100 pos >> PAGE_SHIFT, end);
3102 * If a page can not be invalidated, return 0 to fall back
3103 * to buffered write.
3105 if (written) {
3106 if (written == -EBUSY)
3107 return 0;
3108 goto out;
3111 written = mapping->a_ops->direct_IO(iocb, from);
3114 * Finally, try again to invalidate clean pages which might have been
3115 * cached by non-direct readahead, or faulted in by get_user_pages()
3116 * if the source of the write was an mmap'ed region of the file
3117 * we're writing. Either one is a pretty crazy thing to do,
3118 * so we don't support it 100%. If this invalidation
3119 * fails, tough, the write still worked...
3121 * Most of the time we do not need this since dio_complete() will do
3122 * the invalidation for us. However there are some file systems that
3123 * do not end up with dio_complete() being called, so let's not break
3124 * them by removing it completely
3126 if (mapping->nrpages)
3127 invalidate_inode_pages2_range(mapping,
3128 pos >> PAGE_SHIFT, end);
3130 if (written > 0) {
3131 pos += written;
3132 write_len -= written;
3133 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3134 i_size_write(inode, pos);
3135 mark_inode_dirty(inode);
3137 iocb->ki_pos = pos;
3139 iov_iter_revert(from, write_len - iov_iter_count(from));
3140 out:
3141 return written;
3143 EXPORT_SYMBOL(generic_file_direct_write);
3146 * Find or create a page at the given pagecache position. Return the locked
3147 * page. This function is specifically for buffered writes.
3149 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3150 pgoff_t index, unsigned flags)
3152 struct page *page;
3153 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3155 if (flags & AOP_FLAG_NOFS)
3156 fgp_flags |= FGP_NOFS;
3158 page = pagecache_get_page(mapping, index, fgp_flags,
3159 mapping_gfp_mask(mapping));
3160 if (page)
3161 wait_for_stable_page(page);
3163 return page;
3165 EXPORT_SYMBOL(grab_cache_page_write_begin);
3167 ssize_t generic_perform_write(struct file *file,
3168 struct iov_iter *i, loff_t pos)
3170 struct address_space *mapping = file->f_mapping;
3171 const struct address_space_operations *a_ops = mapping->a_ops;
3172 long status = 0;
3173 ssize_t written = 0;
3174 unsigned int flags = 0;
3176 do {
3177 struct page *page;
3178 unsigned long offset; /* Offset into pagecache page */
3179 unsigned long bytes; /* Bytes to write to page */
3180 size_t copied; /* Bytes copied from user */
3181 void *fsdata;
3183 offset = (pos & (PAGE_SIZE - 1));
3184 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3185 iov_iter_count(i));
3187 again:
3189 * Bring in the user page that we will copy from _first_.
3190 * Otherwise there's a nasty deadlock on copying from the
3191 * same page as we're writing to, without it being marked
3192 * up-to-date.
3194 * Not only is this an optimisation, but it is also required
3195 * to check that the address is actually valid, when atomic
3196 * usercopies are used, below.
3198 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3199 status = -EFAULT;
3200 break;
3203 if (fatal_signal_pending(current)) {
3204 status = -EINTR;
3205 break;
3208 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3209 &page, &fsdata);
3210 if (unlikely(status < 0))
3211 break;
3213 if (mapping_writably_mapped(mapping))
3214 flush_dcache_page(page);
3216 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3217 flush_dcache_page(page);
3219 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3220 page, fsdata);
3221 if (unlikely(status < 0))
3222 break;
3223 copied = status;
3225 cond_resched();
3227 iov_iter_advance(i, copied);
3228 if (unlikely(copied == 0)) {
3230 * If we were unable to copy any data at all, we must
3231 * fall back to a single segment length write.
3233 * If we didn't fallback here, we could livelock
3234 * because not all segments in the iov can be copied at
3235 * once without a pagefault.
3237 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3238 iov_iter_single_seg_count(i));
3239 goto again;
3241 pos += copied;
3242 written += copied;
3244 balance_dirty_pages_ratelimited(mapping);
3245 } while (iov_iter_count(i));
3247 return written ? written : status;
3249 EXPORT_SYMBOL(generic_perform_write);
3252 * __generic_file_write_iter - write data to a file
3253 * @iocb: IO state structure (file, offset, etc.)
3254 * @from: iov_iter with data to write
3256 * This function does all the work needed for actually writing data to a
3257 * file. It does all basic checks, removes SUID from the file, updates
3258 * modification times and calls proper subroutines depending on whether we
3259 * do direct IO or a standard buffered write.
3261 * It expects i_mutex to be grabbed unless we work on a block device or similar
3262 * object which does not need locking at all.
3264 * This function does *not* take care of syncing data in case of O_SYNC write.
3265 * A caller has to handle it. This is mainly due to the fact that we want to
3266 * avoid syncing under i_mutex.
3268 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3270 struct file *file = iocb->ki_filp;
3271 struct address_space * mapping = file->f_mapping;
3272 struct inode *inode = mapping->host;
3273 ssize_t written = 0;
3274 ssize_t err;
3275 ssize_t status;
3277 /* We can write back this queue in page reclaim */
3278 current->backing_dev_info = inode_to_bdi(inode);
3279 err = file_remove_privs(file);
3280 if (err)
3281 goto out;
3283 err = file_update_time(file);
3284 if (err)
3285 goto out;
3287 if (iocb->ki_flags & IOCB_DIRECT) {
3288 loff_t pos, endbyte;
3290 written = generic_file_direct_write(iocb, from);
3292 * If the write stopped short of completing, fall back to
3293 * buffered writes. Some filesystems do this for writes to
3294 * holes, for example. For DAX files, a buffered write will
3295 * not succeed (even if it did, DAX does not handle dirty
3296 * page-cache pages correctly).
3298 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3299 goto out;
3301 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3303 * If generic_perform_write() returned a synchronous error
3304 * then we want to return the number of bytes which were
3305 * direct-written, or the error code if that was zero. Note
3306 * that this differs from normal direct-io semantics, which
3307 * will return -EFOO even if some bytes were written.
3309 if (unlikely(status < 0)) {
3310 err = status;
3311 goto out;
3314 * We need to ensure that the page cache pages are written to
3315 * disk and invalidated to preserve the expected O_DIRECT
3316 * semantics.
3318 endbyte = pos + status - 1;
3319 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3320 if (err == 0) {
3321 iocb->ki_pos = endbyte + 1;
3322 written += status;
3323 invalidate_mapping_pages(mapping,
3324 pos >> PAGE_SHIFT,
3325 endbyte >> PAGE_SHIFT);
3326 } else {
3328 * We don't know how much we wrote, so just return
3329 * the number of bytes which were direct-written
3332 } else {
3333 written = generic_perform_write(file, from, iocb->ki_pos);
3334 if (likely(written > 0))
3335 iocb->ki_pos += written;
3337 out:
3338 current->backing_dev_info = NULL;
3339 return written ? written : err;
3341 EXPORT_SYMBOL(__generic_file_write_iter);
3344 * generic_file_write_iter - write data to a file
3345 * @iocb: IO state structure
3346 * @from: iov_iter with data to write
3348 * This is a wrapper around __generic_file_write_iter() to be used by most
3349 * filesystems. It takes care of syncing the file in case of O_SYNC file
3350 * and acquires i_mutex as needed.
3352 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3354 struct file *file = iocb->ki_filp;
3355 struct inode *inode = file->f_mapping->host;
3356 ssize_t ret;
3358 inode_lock(inode);
3359 ret = generic_write_checks(iocb, from);
3360 if (ret > 0)
3361 ret = __generic_file_write_iter(iocb, from);
3362 inode_unlock(inode);
3364 if (ret > 0)
3365 ret = generic_write_sync(iocb, ret);
3366 return ret;
3368 EXPORT_SYMBOL(generic_file_write_iter);
3371 * try_to_release_page() - release old fs-specific metadata on a page
3373 * @page: the page which the kernel is trying to free
3374 * @gfp_mask: memory allocation flags (and I/O mode)
3376 * The address_space is to try to release any data against the page
3377 * (presumably at page->private). If the release was successful, return '1'.
3378 * Otherwise return zero.
3380 * This may also be called if PG_fscache is set on a page, indicating that the
3381 * page is known to the local caching routines.
3383 * The @gfp_mask argument specifies whether I/O may be performed to release
3384 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3387 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3389 struct address_space * const mapping = page->mapping;
3391 BUG_ON(!PageLocked(page));
3392 if (PageWriteback(page))
3393 return 0;
3395 if (mapping && mapping->a_ops->releasepage)
3396 return mapping->a_ops->releasepage(page, gfp_mask);
3397 return try_to_free_buffers(page);
3400 EXPORT_SYMBOL(try_to_release_page);