2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Keith Packard <keithp@keithp.com>
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
37 #include "drm_dp_helper.h"
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43 #define DP_LINK_CONFIGURATION_SIZE 9
45 #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
47 struct intel_dp_priv
{
50 uint8_t link_configuration
[DP_LINK_CONFIGURATION_SIZE
];
56 struct intel_encoder
*intel_encoder
;
57 struct i2c_adapter adapter
;
58 struct i2c_algo_dp_aux_data algo
;
62 intel_dp_link_train(struct intel_encoder
*intel_encoder
, uint32_t DP
,
63 uint8_t link_configuration
[DP_LINK_CONFIGURATION_SIZE
]);
66 intel_dp_link_down(struct intel_encoder
*intel_encoder
, uint32_t DP
);
69 intel_edp_link_config (struct intel_encoder
*intel_encoder
,
70 int *lane_num
, int *link_bw
)
72 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
74 *lane_num
= dp_priv
->lane_count
;
75 if (dp_priv
->link_bw
== DP_LINK_BW_1_62
)
77 else if (dp_priv
->link_bw
== DP_LINK_BW_2_7
)
82 intel_dp_max_lane_count(struct intel_encoder
*intel_encoder
)
84 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
85 int max_lane_count
= 4;
87 if (dp_priv
->dpcd
[0] >= 0x11) {
88 max_lane_count
= dp_priv
->dpcd
[2] & 0x1f;
89 switch (max_lane_count
) {
90 case 1: case 2: case 4:
96 return max_lane_count
;
100 intel_dp_max_link_bw(struct intel_encoder
*intel_encoder
)
102 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
103 int max_link_bw
= dp_priv
->dpcd
[1];
105 switch (max_link_bw
) {
106 case DP_LINK_BW_1_62
:
110 max_link_bw
= DP_LINK_BW_1_62
;
117 intel_dp_link_clock(uint8_t link_bw
)
119 if (link_bw
== DP_LINK_BW_2_7
)
125 /* I think this is a fiction */
127 intel_dp_link_required(struct drm_device
*dev
,
128 struct intel_encoder
*intel_encoder
, int pixel_clock
)
130 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
132 if (IS_eDP(intel_encoder
))
133 return (pixel_clock
* dev_priv
->edp_bpp
) / 8;
135 return pixel_clock
* 3;
139 intel_dp_mode_valid(struct drm_connector
*connector
,
140 struct drm_display_mode
*mode
)
142 struct drm_encoder
*encoder
= intel_attached_encoder(connector
);
143 struct intel_encoder
*intel_encoder
= enc_to_intel_encoder(encoder
);
144 int max_link_clock
= intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder
));
145 int max_lanes
= intel_dp_max_lane_count(intel_encoder
);
147 if (intel_dp_link_required(connector
->dev
, intel_encoder
, mode
->clock
)
148 > max_link_clock
* max_lanes
)
149 return MODE_CLOCK_HIGH
;
151 if (mode
->clock
< 10000)
152 return MODE_CLOCK_LOW
;
158 pack_aux(uint8_t *src
, int src_bytes
)
165 for (i
= 0; i
< src_bytes
; i
++)
166 v
|= ((uint32_t) src
[i
]) << ((3-i
) * 8);
171 unpack_aux(uint32_t src
, uint8_t *dst
, int dst_bytes
)
176 for (i
= 0; i
< dst_bytes
; i
++)
177 dst
[i
] = src
>> ((3-i
) * 8);
180 /* hrawclock is 1/4 the FSB frequency */
182 intel_hrawclk(struct drm_device
*dev
)
184 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
187 clkcfg
= I915_READ(CLKCFG
);
188 switch (clkcfg
& CLKCFG_FSB_MASK
) {
197 case CLKCFG_FSB_1067
:
199 case CLKCFG_FSB_1333
:
201 /* these two are just a guess; one of them might be right */
202 case CLKCFG_FSB_1600
:
203 case CLKCFG_FSB_1600_ALT
:
211 intel_dp_aux_ch(struct intel_encoder
*intel_encoder
,
212 uint8_t *send
, int send_bytes
,
213 uint8_t *recv
, int recv_size
)
215 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
216 uint32_t output_reg
= dp_priv
->output_reg
;
217 struct drm_device
*dev
= intel_encoder
->enc
.dev
;
218 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
219 uint32_t ch_ctl
= output_reg
+ 0x10;
220 uint32_t ch_data
= ch_ctl
+ 4;
225 uint32_t aux_clock_divider
;
228 /* The clock divider is based off the hrawclk,
229 * and would like to run at 2MHz. So, take the
230 * hrawclk value and divide by 2 and use that
232 if (IS_eDP(intel_encoder
)) {
234 aux_clock_divider
= 200; /* SNB eDP input clock at 400Mhz */
236 aux_clock_divider
= 225; /* eDP input clock at 450Mhz */
237 } else if (HAS_PCH_SPLIT(dev
))
238 aux_clock_divider
= 62; /* IRL input clock fixed at 125Mhz */
240 aux_clock_divider
= intel_hrawclk(dev
) / 2;
247 /* Must try at least 3 times according to DP spec */
248 for (try = 0; try < 5; try++) {
249 /* Load the send data into the aux channel data registers */
250 for (i
= 0; i
< send_bytes
; i
+= 4) {
251 uint32_t d
= pack_aux(send
+ i
, send_bytes
- i
);
253 I915_WRITE(ch_data
+ i
, d
);
256 ctl
= (DP_AUX_CH_CTL_SEND_BUSY
|
257 DP_AUX_CH_CTL_TIME_OUT_400us
|
258 (send_bytes
<< DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT
) |
259 (precharge
<< DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT
) |
260 (aux_clock_divider
<< DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT
) |
262 DP_AUX_CH_CTL_TIME_OUT_ERROR
|
263 DP_AUX_CH_CTL_RECEIVE_ERROR
);
265 /* Send the command and wait for it to complete */
266 I915_WRITE(ch_ctl
, ctl
);
267 (void) I915_READ(ch_ctl
);
270 status
= I915_READ(ch_ctl
);
271 if ((status
& DP_AUX_CH_CTL_SEND_BUSY
) == 0)
275 /* Clear done status and any errors */
276 I915_WRITE(ch_ctl
, (status
|
278 DP_AUX_CH_CTL_TIME_OUT_ERROR
|
279 DP_AUX_CH_CTL_RECEIVE_ERROR
));
280 (void) I915_READ(ch_ctl
);
281 if ((status
& DP_AUX_CH_CTL_TIME_OUT_ERROR
) == 0)
285 if ((status
& DP_AUX_CH_CTL_DONE
) == 0) {
286 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status
);
290 /* Check for timeout or receive error.
291 * Timeouts occur when the sink is not connected
293 if (status
& DP_AUX_CH_CTL_RECEIVE_ERROR
) {
294 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status
);
298 /* Timeouts occur when the device isn't connected, so they're
299 * "normal" -- don't fill the kernel log with these */
300 if (status
& DP_AUX_CH_CTL_TIME_OUT_ERROR
) {
301 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status
);
305 /* Unload any bytes sent back from the other side */
306 recv_bytes
= ((status
& DP_AUX_CH_CTL_MESSAGE_SIZE_MASK
) >>
307 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT
);
309 if (recv_bytes
> recv_size
)
310 recv_bytes
= recv_size
;
312 for (i
= 0; i
< recv_bytes
; i
+= 4) {
313 uint32_t d
= I915_READ(ch_data
+ i
);
315 unpack_aux(d
, recv
+ i
, recv_bytes
- i
);
321 /* Write data to the aux channel in native mode */
323 intel_dp_aux_native_write(struct intel_encoder
*intel_encoder
,
324 uint16_t address
, uint8_t *send
, int send_bytes
)
333 msg
[0] = AUX_NATIVE_WRITE
<< 4;
334 msg
[1] = address
>> 8;
335 msg
[2] = address
& 0xff;
336 msg
[3] = send_bytes
- 1;
337 memcpy(&msg
[4], send
, send_bytes
);
338 msg_bytes
= send_bytes
+ 4;
340 ret
= intel_dp_aux_ch(intel_encoder
, msg
, msg_bytes
, &ack
, 1);
343 if ((ack
& AUX_NATIVE_REPLY_MASK
) == AUX_NATIVE_REPLY_ACK
)
345 else if ((ack
& AUX_NATIVE_REPLY_MASK
) == AUX_NATIVE_REPLY_DEFER
)
353 /* Write a single byte to the aux channel in native mode */
355 intel_dp_aux_native_write_1(struct intel_encoder
*intel_encoder
,
356 uint16_t address
, uint8_t byte
)
358 return intel_dp_aux_native_write(intel_encoder
, address
, &byte
, 1);
361 /* read bytes from a native aux channel */
363 intel_dp_aux_native_read(struct intel_encoder
*intel_encoder
,
364 uint16_t address
, uint8_t *recv
, int recv_bytes
)
373 msg
[0] = AUX_NATIVE_READ
<< 4;
374 msg
[1] = address
>> 8;
375 msg
[2] = address
& 0xff;
376 msg
[3] = recv_bytes
- 1;
379 reply_bytes
= recv_bytes
+ 1;
382 ret
= intel_dp_aux_ch(intel_encoder
, msg
, msg_bytes
,
389 if ((ack
& AUX_NATIVE_REPLY_MASK
) == AUX_NATIVE_REPLY_ACK
) {
390 memcpy(recv
, reply
+ 1, ret
- 1);
393 else if ((ack
& AUX_NATIVE_REPLY_MASK
) == AUX_NATIVE_REPLY_DEFER
)
401 intel_dp_i2c_aux_ch(struct i2c_adapter
*adapter
, int mode
,
402 uint8_t write_byte
, uint8_t *read_byte
)
404 struct i2c_algo_dp_aux_data
*algo_data
= adapter
->algo_data
;
405 struct intel_dp_priv
*dp_priv
= container_of(adapter
,
406 struct intel_dp_priv
,
408 struct intel_encoder
*intel_encoder
= dp_priv
->intel_encoder
;
409 uint16_t address
= algo_data
->address
;
416 /* Set up the command byte */
417 if (mode
& MODE_I2C_READ
)
418 msg
[0] = AUX_I2C_READ
<< 4;
420 msg
[0] = AUX_I2C_WRITE
<< 4;
422 if (!(mode
& MODE_I2C_STOP
))
423 msg
[0] |= AUX_I2C_MOT
<< 4;
425 msg
[1] = address
>> 8;
447 ret
= intel_dp_aux_ch(intel_encoder
,
451 DRM_DEBUG_KMS("aux_ch failed %d\n", ret
);
454 switch (reply
[0] & AUX_I2C_REPLY_MASK
) {
455 case AUX_I2C_REPLY_ACK
:
456 if (mode
== MODE_I2C_READ
) {
457 *read_byte
= reply
[1];
459 return reply_bytes
- 1;
460 case AUX_I2C_REPLY_NACK
:
461 DRM_DEBUG_KMS("aux_ch nack\n");
463 case AUX_I2C_REPLY_DEFER
:
464 DRM_DEBUG_KMS("aux_ch defer\n");
468 DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply
[0]);
475 intel_dp_i2c_init(struct intel_encoder
*intel_encoder
,
476 struct intel_connector
*intel_connector
, const char *name
)
478 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
480 DRM_DEBUG_KMS("i2c_init %s\n", name
);
481 dp_priv
->algo
.running
= false;
482 dp_priv
->algo
.address
= 0;
483 dp_priv
->algo
.aux_ch
= intel_dp_i2c_aux_ch
;
485 memset(&dp_priv
->adapter
, '\0', sizeof (dp_priv
->adapter
));
486 dp_priv
->adapter
.owner
= THIS_MODULE
;
487 dp_priv
->adapter
.class = I2C_CLASS_DDC
;
488 strncpy (dp_priv
->adapter
.name
, name
, sizeof(dp_priv
->adapter
.name
) - 1);
489 dp_priv
->adapter
.name
[sizeof(dp_priv
->adapter
.name
) - 1] = '\0';
490 dp_priv
->adapter
.algo_data
= &dp_priv
->algo
;
491 dp_priv
->adapter
.dev
.parent
= &intel_connector
->base
.kdev
;
493 return i2c_dp_aux_add_bus(&dp_priv
->adapter
);
497 intel_dp_mode_fixup(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
,
498 struct drm_display_mode
*adjusted_mode
)
500 struct intel_encoder
*intel_encoder
= enc_to_intel_encoder(encoder
);
501 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
502 int lane_count
, clock
;
503 int max_lane_count
= intel_dp_max_lane_count(intel_encoder
);
504 int max_clock
= intel_dp_max_link_bw(intel_encoder
) == DP_LINK_BW_2_7
? 1 : 0;
505 static int bws
[2] = { DP_LINK_BW_1_62
, DP_LINK_BW_2_7
};
507 for (lane_count
= 1; lane_count
<= max_lane_count
; lane_count
<<= 1) {
508 for (clock
= 0; clock
<= max_clock
; clock
++) {
509 int link_avail
= intel_dp_link_clock(bws
[clock
]) * lane_count
;
511 if (intel_dp_link_required(encoder
->dev
, intel_encoder
, mode
->clock
)
513 dp_priv
->link_bw
= bws
[clock
];
514 dp_priv
->lane_count
= lane_count
;
515 adjusted_mode
->clock
= intel_dp_link_clock(dp_priv
->link_bw
);
516 DRM_DEBUG_KMS("Display port link bw %02x lane "
517 "count %d clock %d\n",
518 dp_priv
->link_bw
, dp_priv
->lane_count
,
519 adjusted_mode
->clock
);
527 struct intel_dp_m_n
{
536 intel_reduce_ratio(uint32_t *num
, uint32_t *den
)
538 while (*num
> 0xffffff || *den
> 0xffffff) {
545 intel_dp_compute_m_n(int bytes_per_pixel
,
549 struct intel_dp_m_n
*m_n
)
552 m_n
->gmch_m
= pixel_clock
* bytes_per_pixel
;
553 m_n
->gmch_n
= link_clock
* nlanes
;
554 intel_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
555 m_n
->link_m
= pixel_clock
;
556 m_n
->link_n
= link_clock
;
557 intel_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
561 intel_dp_set_m_n(struct drm_crtc
*crtc
, struct drm_display_mode
*mode
,
562 struct drm_display_mode
*adjusted_mode
)
564 struct drm_device
*dev
= crtc
->dev
;
565 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
566 struct drm_encoder
*encoder
;
567 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
568 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
570 struct intel_dp_m_n m_n
;
573 * Find the lane count in the intel_encoder private
575 list_for_each_entry(encoder
, &mode_config
->encoder_list
, head
) {
576 struct intel_encoder
*intel_encoder
;
577 struct intel_dp_priv
*dp_priv
;
579 if (encoder
->crtc
!= crtc
)
582 intel_encoder
= enc_to_intel_encoder(encoder
);
583 dp_priv
= intel_encoder
->dev_priv
;
585 if (intel_encoder
->type
== INTEL_OUTPUT_DISPLAYPORT
) {
586 lane_count
= dp_priv
->lane_count
;
592 * Compute the GMCH and Link ratios. The '3' here is
593 * the number of bytes_per_pixel post-LUT, which we always
594 * set up for 8-bits of R/G/B, or 3 bytes total.
596 intel_dp_compute_m_n(3, lane_count
,
597 mode
->clock
, adjusted_mode
->clock
, &m_n
);
599 if (HAS_PCH_SPLIT(dev
)) {
600 if (intel_crtc
->pipe
== 0) {
601 I915_WRITE(TRANSA_DATA_M1
,
602 ((m_n
.tu
- 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT
) |
604 I915_WRITE(TRANSA_DATA_N1
, m_n
.gmch_n
);
605 I915_WRITE(TRANSA_DP_LINK_M1
, m_n
.link_m
);
606 I915_WRITE(TRANSA_DP_LINK_N1
, m_n
.link_n
);
608 I915_WRITE(TRANSB_DATA_M1
,
609 ((m_n
.tu
- 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT
) |
611 I915_WRITE(TRANSB_DATA_N1
, m_n
.gmch_n
);
612 I915_WRITE(TRANSB_DP_LINK_M1
, m_n
.link_m
);
613 I915_WRITE(TRANSB_DP_LINK_N1
, m_n
.link_n
);
616 if (intel_crtc
->pipe
== 0) {
617 I915_WRITE(PIPEA_GMCH_DATA_M
,
618 ((m_n
.tu
- 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT
) |
620 I915_WRITE(PIPEA_GMCH_DATA_N
,
622 I915_WRITE(PIPEA_DP_LINK_M
, m_n
.link_m
);
623 I915_WRITE(PIPEA_DP_LINK_N
, m_n
.link_n
);
625 I915_WRITE(PIPEB_GMCH_DATA_M
,
626 ((m_n
.tu
- 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT
) |
628 I915_WRITE(PIPEB_GMCH_DATA_N
,
630 I915_WRITE(PIPEB_DP_LINK_M
, m_n
.link_m
);
631 I915_WRITE(PIPEB_DP_LINK_N
, m_n
.link_n
);
637 intel_dp_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
,
638 struct drm_display_mode
*adjusted_mode
)
640 struct drm_device
*dev
= encoder
->dev
;
641 struct intel_encoder
*intel_encoder
= enc_to_intel_encoder(encoder
);
642 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
643 struct drm_crtc
*crtc
= intel_encoder
->enc
.crtc
;
644 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
646 dp_priv
->DP
= (DP_VOLTAGE_0_4
|
649 if (adjusted_mode
->flags
& DRM_MODE_FLAG_PHSYNC
)
650 dp_priv
->DP
|= DP_SYNC_HS_HIGH
;
651 if (adjusted_mode
->flags
& DRM_MODE_FLAG_PVSYNC
)
652 dp_priv
->DP
|= DP_SYNC_VS_HIGH
;
654 if (HAS_PCH_CPT(dev
) && !IS_eDP(intel_encoder
))
655 dp_priv
->DP
|= DP_LINK_TRAIN_OFF_CPT
;
657 dp_priv
->DP
|= DP_LINK_TRAIN_OFF
;
659 switch (dp_priv
->lane_count
) {
661 dp_priv
->DP
|= DP_PORT_WIDTH_1
;
664 dp_priv
->DP
|= DP_PORT_WIDTH_2
;
667 dp_priv
->DP
|= DP_PORT_WIDTH_4
;
670 if (dp_priv
->has_audio
)
671 dp_priv
->DP
|= DP_AUDIO_OUTPUT_ENABLE
;
673 memset(dp_priv
->link_configuration
, 0, DP_LINK_CONFIGURATION_SIZE
);
674 dp_priv
->link_configuration
[0] = dp_priv
->link_bw
;
675 dp_priv
->link_configuration
[1] = dp_priv
->lane_count
;
678 * Check for DPCD version > 1.1 and enhanced framing support
680 if (dp_priv
->dpcd
[0] >= 0x11 && (dp_priv
->dpcd
[2] & DP_ENHANCED_FRAME_CAP
)) {
681 dp_priv
->link_configuration
[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN
;
682 dp_priv
->DP
|= DP_ENHANCED_FRAMING
;
685 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
686 if (intel_crtc
->pipe
== 1 && !HAS_PCH_CPT(dev
))
687 dp_priv
->DP
|= DP_PIPEB_SELECT
;
689 if (IS_eDP(intel_encoder
)) {
690 /* don't miss out required setting for eDP */
691 dp_priv
->DP
|= DP_PLL_ENABLE
;
692 if (adjusted_mode
->clock
< 200000)
693 dp_priv
->DP
|= DP_PLL_FREQ_160MHZ
;
695 dp_priv
->DP
|= DP_PLL_FREQ_270MHZ
;
699 static void ironlake_edp_backlight_on (struct drm_device
*dev
)
701 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
705 pp
= I915_READ(PCH_PP_CONTROL
);
706 pp
|= EDP_BLC_ENABLE
;
707 I915_WRITE(PCH_PP_CONTROL
, pp
);
710 static void ironlake_edp_backlight_off (struct drm_device
*dev
)
712 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
716 pp
= I915_READ(PCH_PP_CONTROL
);
717 pp
&= ~EDP_BLC_ENABLE
;
718 I915_WRITE(PCH_PP_CONTROL
, pp
);
722 intel_dp_dpms(struct drm_encoder
*encoder
, int mode
)
724 struct intel_encoder
*intel_encoder
= enc_to_intel_encoder(encoder
);
725 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
726 struct drm_device
*dev
= encoder
->dev
;
727 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
728 uint32_t dp_reg
= I915_READ(dp_priv
->output_reg
);
730 if (mode
!= DRM_MODE_DPMS_ON
) {
731 if (dp_reg
& DP_PORT_EN
) {
732 intel_dp_link_down(intel_encoder
, dp_priv
->DP
);
733 if (IS_eDP(intel_encoder
))
734 ironlake_edp_backlight_off(dev
);
737 if (!(dp_reg
& DP_PORT_EN
)) {
738 intel_dp_link_train(intel_encoder
, dp_priv
->DP
, dp_priv
->link_configuration
);
739 if (IS_eDP(intel_encoder
))
740 ironlake_edp_backlight_on(dev
);
743 dp_priv
->dpms_mode
= mode
;
747 * Fetch AUX CH registers 0x202 - 0x207 which contain
748 * link status information
751 intel_dp_get_link_status(struct intel_encoder
*intel_encoder
,
752 uint8_t link_status
[DP_LINK_STATUS_SIZE
])
756 ret
= intel_dp_aux_native_read(intel_encoder
,
758 link_status
, DP_LINK_STATUS_SIZE
);
759 if (ret
!= DP_LINK_STATUS_SIZE
)
765 intel_dp_link_status(uint8_t link_status
[DP_LINK_STATUS_SIZE
],
768 return link_status
[r
- DP_LANE0_1_STATUS
];
772 intel_get_adjust_request_voltage(uint8_t link_status
[DP_LINK_STATUS_SIZE
],
775 int i
= DP_ADJUST_REQUEST_LANE0_1
+ (lane
>> 1);
776 int s
= ((lane
& 1) ?
777 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT
:
778 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT
);
779 uint8_t l
= intel_dp_link_status(link_status
, i
);
781 return ((l
>> s
) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT
;
785 intel_get_adjust_request_pre_emphasis(uint8_t link_status
[DP_LINK_STATUS_SIZE
],
788 int i
= DP_ADJUST_REQUEST_LANE0_1
+ (lane
>> 1);
789 int s
= ((lane
& 1) ?
790 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT
:
791 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT
);
792 uint8_t l
= intel_dp_link_status(link_status
, i
);
794 return ((l
>> s
) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT
;
799 static char *voltage_names
[] = {
800 "0.4V", "0.6V", "0.8V", "1.2V"
802 static char *pre_emph_names
[] = {
803 "0dB", "3.5dB", "6dB", "9.5dB"
805 static char *link_train_names
[] = {
806 "pattern 1", "pattern 2", "idle", "off"
811 * These are source-specific values; current Intel hardware supports
812 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
814 #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
817 intel_dp_pre_emphasis_max(uint8_t voltage_swing
)
819 switch (voltage_swing
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
820 case DP_TRAIN_VOLTAGE_SWING_400
:
821 return DP_TRAIN_PRE_EMPHASIS_6
;
822 case DP_TRAIN_VOLTAGE_SWING_600
:
823 return DP_TRAIN_PRE_EMPHASIS_6
;
824 case DP_TRAIN_VOLTAGE_SWING_800
:
825 return DP_TRAIN_PRE_EMPHASIS_3_5
;
826 case DP_TRAIN_VOLTAGE_SWING_1200
:
828 return DP_TRAIN_PRE_EMPHASIS_0
;
833 intel_get_adjust_train(struct intel_encoder
*intel_encoder
,
834 uint8_t link_status
[DP_LINK_STATUS_SIZE
],
836 uint8_t train_set
[4])
842 for (lane
= 0; lane
< lane_count
; lane
++) {
843 uint8_t this_v
= intel_get_adjust_request_voltage(link_status
, lane
);
844 uint8_t this_p
= intel_get_adjust_request_pre_emphasis(link_status
, lane
);
852 if (v
>= I830_DP_VOLTAGE_MAX
)
853 v
= I830_DP_VOLTAGE_MAX
| DP_TRAIN_MAX_SWING_REACHED
;
855 if (p
>= intel_dp_pre_emphasis_max(v
))
856 p
= intel_dp_pre_emphasis_max(v
) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED
;
858 for (lane
= 0; lane
< 4; lane
++)
859 train_set
[lane
] = v
| p
;
863 intel_dp_signal_levels(uint8_t train_set
, int lane_count
)
865 uint32_t signal_levels
= 0;
867 switch (train_set
& DP_TRAIN_VOLTAGE_SWING_MASK
) {
868 case DP_TRAIN_VOLTAGE_SWING_400
:
870 signal_levels
|= DP_VOLTAGE_0_4
;
872 case DP_TRAIN_VOLTAGE_SWING_600
:
873 signal_levels
|= DP_VOLTAGE_0_6
;
875 case DP_TRAIN_VOLTAGE_SWING_800
:
876 signal_levels
|= DP_VOLTAGE_0_8
;
878 case DP_TRAIN_VOLTAGE_SWING_1200
:
879 signal_levels
|= DP_VOLTAGE_1_2
;
882 switch (train_set
& DP_TRAIN_PRE_EMPHASIS_MASK
) {
883 case DP_TRAIN_PRE_EMPHASIS_0
:
885 signal_levels
|= DP_PRE_EMPHASIS_0
;
887 case DP_TRAIN_PRE_EMPHASIS_3_5
:
888 signal_levels
|= DP_PRE_EMPHASIS_3_5
;
890 case DP_TRAIN_PRE_EMPHASIS_6
:
891 signal_levels
|= DP_PRE_EMPHASIS_6
;
893 case DP_TRAIN_PRE_EMPHASIS_9_5
:
894 signal_levels
|= DP_PRE_EMPHASIS_9_5
;
897 return signal_levels
;
900 /* Gen6's DP voltage swing and pre-emphasis control */
902 intel_gen6_edp_signal_levels(uint8_t train_set
)
904 switch (train_set
& (DP_TRAIN_VOLTAGE_SWING_MASK
|DP_TRAIN_PRE_EMPHASIS_MASK
)) {
905 case DP_TRAIN_VOLTAGE_SWING_400
| DP_TRAIN_PRE_EMPHASIS_0
:
906 return EDP_LINK_TRAIN_400MV_0DB_SNB_B
;
907 case DP_TRAIN_VOLTAGE_SWING_400
| DP_TRAIN_PRE_EMPHASIS_6
:
908 return EDP_LINK_TRAIN_400MV_6DB_SNB_B
;
909 case DP_TRAIN_VOLTAGE_SWING_600
| DP_TRAIN_PRE_EMPHASIS_3_5
:
910 return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B
;
911 case DP_TRAIN_VOLTAGE_SWING_800
| DP_TRAIN_PRE_EMPHASIS_0
:
912 return EDP_LINK_TRAIN_800MV_0DB_SNB_B
;
914 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
915 return EDP_LINK_TRAIN_400MV_0DB_SNB_B
;
920 intel_get_lane_status(uint8_t link_status
[DP_LINK_STATUS_SIZE
],
923 int i
= DP_LANE0_1_STATUS
+ (lane
>> 1);
924 int s
= (lane
& 1) * 4;
925 uint8_t l
= intel_dp_link_status(link_status
, i
);
927 return (l
>> s
) & 0xf;
930 /* Check for clock recovery is done on all channels */
932 intel_clock_recovery_ok(uint8_t link_status
[DP_LINK_STATUS_SIZE
], int lane_count
)
937 for (lane
= 0; lane
< lane_count
; lane
++) {
938 lane_status
= intel_get_lane_status(link_status
, lane
);
939 if ((lane_status
& DP_LANE_CR_DONE
) == 0)
945 /* Check to see if channel eq is done on all channels */
946 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
947 DP_LANE_CHANNEL_EQ_DONE|\
948 DP_LANE_SYMBOL_LOCKED)
950 intel_channel_eq_ok(uint8_t link_status
[DP_LINK_STATUS_SIZE
], int lane_count
)
956 lane_align
= intel_dp_link_status(link_status
,
957 DP_LANE_ALIGN_STATUS_UPDATED
);
958 if ((lane_align
& DP_INTERLANE_ALIGN_DONE
) == 0)
960 for (lane
= 0; lane
< lane_count
; lane
++) {
961 lane_status
= intel_get_lane_status(link_status
, lane
);
962 if ((lane_status
& CHANNEL_EQ_BITS
) != CHANNEL_EQ_BITS
)
969 intel_dp_set_link_train(struct intel_encoder
*intel_encoder
,
970 uint32_t dp_reg_value
,
971 uint8_t dp_train_pat
,
972 uint8_t train_set
[4],
975 struct drm_device
*dev
= intel_encoder
->enc
.dev
;
976 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
977 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
980 I915_WRITE(dp_priv
->output_reg
, dp_reg_value
);
981 POSTING_READ(dp_priv
->output_reg
);
983 intel_wait_for_vblank(dev
);
985 intel_dp_aux_native_write_1(intel_encoder
,
986 DP_TRAINING_PATTERN_SET
,
989 ret
= intel_dp_aux_native_write(intel_encoder
,
990 DP_TRAINING_LANE0_SET
, train_set
, 4);
998 intel_dp_link_train(struct intel_encoder
*intel_encoder
, uint32_t DP
,
999 uint8_t link_configuration
[DP_LINK_CONFIGURATION_SIZE
])
1001 struct drm_device
*dev
= intel_encoder
->enc
.dev
;
1002 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1003 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
1004 uint8_t train_set
[4];
1005 uint8_t link_status
[DP_LINK_STATUS_SIZE
];
1008 bool clock_recovery
= false;
1009 bool channel_eq
= false;
1014 /* Write the link configuration data */
1015 intel_dp_aux_native_write(intel_encoder
, DP_LINK_BW_SET
,
1016 link_configuration
, DP_LINK_CONFIGURATION_SIZE
);
1019 if (HAS_PCH_CPT(dev
) && !IS_eDP(intel_encoder
))
1020 DP
&= ~DP_LINK_TRAIN_MASK_CPT
;
1022 DP
&= ~DP_LINK_TRAIN_MASK
;
1023 memset(train_set
, 0, 4);
1026 clock_recovery
= false;
1028 /* Use train_set[0] to set the voltage and pre emphasis values */
1029 uint32_t signal_levels
;
1030 if (IS_GEN6(dev
) && IS_eDP(intel_encoder
)) {
1031 signal_levels
= intel_gen6_edp_signal_levels(train_set
[0]);
1032 DP
= (DP
& ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB
) | signal_levels
;
1034 signal_levels
= intel_dp_signal_levels(train_set
[0], dp_priv
->lane_count
);
1035 DP
= (DP
& ~(DP_VOLTAGE_MASK
|DP_PRE_EMPHASIS_MASK
)) | signal_levels
;
1038 if (HAS_PCH_CPT(dev
) && !IS_eDP(intel_encoder
))
1039 reg
= DP
| DP_LINK_TRAIN_PAT_1_CPT
;
1041 reg
= DP
| DP_LINK_TRAIN_PAT_1
;
1043 if (!intel_dp_set_link_train(intel_encoder
, reg
,
1044 DP_TRAINING_PATTERN_1
, train_set
, first
))
1047 /* Set training pattern 1 */
1050 if (!intel_dp_get_link_status(intel_encoder
, link_status
))
1053 if (intel_clock_recovery_ok(link_status
, dp_priv
->lane_count
)) {
1054 clock_recovery
= true;
1058 /* Check to see if we've tried the max voltage */
1059 for (i
= 0; i
< dp_priv
->lane_count
; i
++)
1060 if ((train_set
[i
] & DP_TRAIN_MAX_SWING_REACHED
) == 0)
1062 if (i
== dp_priv
->lane_count
)
1065 /* Check to see if we've tried the same voltage 5 times */
1066 if ((train_set
[0] & DP_TRAIN_VOLTAGE_SWING_MASK
) == voltage
) {
1072 voltage
= train_set
[0] & DP_TRAIN_VOLTAGE_SWING_MASK
;
1074 /* Compute new train_set as requested by target */
1075 intel_get_adjust_train(intel_encoder
, link_status
, dp_priv
->lane_count
, train_set
);
1078 /* channel equalization */
1082 /* Use train_set[0] to set the voltage and pre emphasis values */
1083 uint32_t signal_levels
;
1085 if (IS_GEN6(dev
) && IS_eDP(intel_encoder
)) {
1086 signal_levels
= intel_gen6_edp_signal_levels(train_set
[0]);
1087 DP
= (DP
& ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB
) | signal_levels
;
1089 signal_levels
= intel_dp_signal_levels(train_set
[0], dp_priv
->lane_count
);
1090 DP
= (DP
& ~(DP_VOLTAGE_MASK
|DP_PRE_EMPHASIS_MASK
)) | signal_levels
;
1093 if (HAS_PCH_CPT(dev
) && !IS_eDP(intel_encoder
))
1094 reg
= DP
| DP_LINK_TRAIN_PAT_2_CPT
;
1096 reg
= DP
| DP_LINK_TRAIN_PAT_2
;
1098 /* channel eq pattern */
1099 if (!intel_dp_set_link_train(intel_encoder
, reg
,
1100 DP_TRAINING_PATTERN_2
, train_set
,
1105 if (!intel_dp_get_link_status(intel_encoder
, link_status
))
1108 if (intel_channel_eq_ok(link_status
, dp_priv
->lane_count
)) {
1117 /* Compute new train_set as requested by target */
1118 intel_get_adjust_train(intel_encoder
, link_status
, dp_priv
->lane_count
, train_set
);
1122 if (HAS_PCH_CPT(dev
) && !IS_eDP(intel_encoder
))
1123 reg
= DP
| DP_LINK_TRAIN_OFF_CPT
;
1125 reg
= DP
| DP_LINK_TRAIN_OFF
;
1127 I915_WRITE(dp_priv
->output_reg
, reg
);
1128 POSTING_READ(dp_priv
->output_reg
);
1129 intel_dp_aux_native_write_1(intel_encoder
,
1130 DP_TRAINING_PATTERN_SET
, DP_TRAINING_PATTERN_DISABLE
);
1134 intel_dp_link_down(struct intel_encoder
*intel_encoder
, uint32_t DP
)
1136 struct drm_device
*dev
= intel_encoder
->enc
.dev
;
1137 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1138 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
1140 DRM_DEBUG_KMS("\n");
1142 if (IS_eDP(intel_encoder
)) {
1143 DP
&= ~DP_PLL_ENABLE
;
1144 I915_WRITE(dp_priv
->output_reg
, DP
);
1145 POSTING_READ(dp_priv
->output_reg
);
1149 if (HAS_PCH_CPT(dev
) && !IS_eDP(intel_encoder
)) {
1150 DP
&= ~DP_LINK_TRAIN_MASK_CPT
;
1151 I915_WRITE(dp_priv
->output_reg
, DP
| DP_LINK_TRAIN_PAT_IDLE_CPT
);
1152 POSTING_READ(dp_priv
->output_reg
);
1154 DP
&= ~DP_LINK_TRAIN_MASK
;
1155 I915_WRITE(dp_priv
->output_reg
, DP
| DP_LINK_TRAIN_PAT_IDLE
);
1156 POSTING_READ(dp_priv
->output_reg
);
1161 if (IS_eDP(intel_encoder
))
1162 DP
|= DP_LINK_TRAIN_OFF
;
1163 I915_WRITE(dp_priv
->output_reg
, DP
& ~DP_PORT_EN
);
1164 POSTING_READ(dp_priv
->output_reg
);
1168 * According to DP spec
1171 * 2. Configure link according to Receiver Capabilities
1172 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1173 * 4. Check link status on receipt of hot-plug interrupt
1177 intel_dp_check_link_status(struct intel_encoder
*intel_encoder
)
1179 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
1180 uint8_t link_status
[DP_LINK_STATUS_SIZE
];
1182 if (!intel_encoder
->enc
.crtc
)
1185 if (!intel_dp_get_link_status(intel_encoder
, link_status
)) {
1186 intel_dp_link_down(intel_encoder
, dp_priv
->DP
);
1190 if (!intel_channel_eq_ok(link_status
, dp_priv
->lane_count
))
1191 intel_dp_link_train(intel_encoder
, dp_priv
->DP
, dp_priv
->link_configuration
);
1194 static enum drm_connector_status
1195 ironlake_dp_detect(struct drm_connector
*connector
)
1197 struct drm_encoder
*encoder
= intel_attached_encoder(connector
);
1198 struct intel_encoder
*intel_encoder
= enc_to_intel_encoder(encoder
);
1199 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
1200 enum drm_connector_status status
;
1202 status
= connector_status_disconnected
;
1203 if (intel_dp_aux_native_read(intel_encoder
,
1204 0x000, dp_priv
->dpcd
,
1205 sizeof (dp_priv
->dpcd
)) == sizeof (dp_priv
->dpcd
))
1207 if (dp_priv
->dpcd
[0] != 0)
1208 status
= connector_status_connected
;
1210 DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", dp_priv
->dpcd
[0],
1211 dp_priv
->dpcd
[1], dp_priv
->dpcd
[2], dp_priv
->dpcd
[3]);
1216 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1218 * \return true if DP port is connected.
1219 * \return false if DP port is disconnected.
1221 static enum drm_connector_status
1222 intel_dp_detect(struct drm_connector
*connector
)
1224 struct drm_encoder
*encoder
= intel_attached_encoder(connector
);
1225 struct intel_encoder
*intel_encoder
= enc_to_intel_encoder(encoder
);
1226 struct drm_device
*dev
= intel_encoder
->enc
.dev
;
1227 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1228 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
1230 enum drm_connector_status status
;
1232 dp_priv
->has_audio
= false;
1234 if (HAS_PCH_SPLIT(dev
))
1235 return ironlake_dp_detect(connector
);
1237 switch (dp_priv
->output_reg
) {
1239 bit
= DPB_HOTPLUG_INT_STATUS
;
1242 bit
= DPC_HOTPLUG_INT_STATUS
;
1245 bit
= DPD_HOTPLUG_INT_STATUS
;
1248 return connector_status_unknown
;
1251 temp
= I915_READ(PORT_HOTPLUG_STAT
);
1253 if ((temp
& bit
) == 0)
1254 return connector_status_disconnected
;
1256 status
= connector_status_disconnected
;
1257 if (intel_dp_aux_native_read(intel_encoder
,
1258 0x000, dp_priv
->dpcd
,
1259 sizeof (dp_priv
->dpcd
)) == sizeof (dp_priv
->dpcd
))
1261 if (dp_priv
->dpcd
[0] != 0)
1262 status
= connector_status_connected
;
1267 static int intel_dp_get_modes(struct drm_connector
*connector
)
1269 struct drm_encoder
*encoder
= intel_attached_encoder(connector
);
1270 struct intel_encoder
*intel_encoder
= enc_to_intel_encoder(encoder
);
1271 struct drm_device
*dev
= intel_encoder
->enc
.dev
;
1272 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1275 /* We should parse the EDID data and find out if it has an audio sink
1278 ret
= intel_ddc_get_modes(connector
, intel_encoder
->ddc_bus
);
1282 /* if eDP has no EDID, try to use fixed panel mode from VBT */
1283 if (IS_eDP(intel_encoder
)) {
1284 if (dev_priv
->panel_fixed_mode
!= NULL
) {
1285 struct drm_display_mode
*mode
;
1286 mode
= drm_mode_duplicate(dev
, dev_priv
->panel_fixed_mode
);
1287 drm_mode_probed_add(connector
, mode
);
1295 intel_dp_destroy (struct drm_connector
*connector
)
1297 drm_sysfs_connector_remove(connector
);
1298 drm_connector_cleanup(connector
);
1302 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs
= {
1303 .dpms
= intel_dp_dpms
,
1304 .mode_fixup
= intel_dp_mode_fixup
,
1305 .prepare
= intel_encoder_prepare
,
1306 .mode_set
= intel_dp_mode_set
,
1307 .commit
= intel_encoder_commit
,
1310 static const struct drm_connector_funcs intel_dp_connector_funcs
= {
1311 .dpms
= drm_helper_connector_dpms
,
1312 .detect
= intel_dp_detect
,
1313 .fill_modes
= drm_helper_probe_single_connector_modes
,
1314 .destroy
= intel_dp_destroy
,
1317 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs
= {
1318 .get_modes
= intel_dp_get_modes
,
1319 .mode_valid
= intel_dp_mode_valid
,
1320 .best_encoder
= intel_attached_encoder
,
1323 static void intel_dp_enc_destroy(struct drm_encoder
*encoder
)
1325 struct intel_encoder
*intel_encoder
= enc_to_intel_encoder(encoder
);
1327 if (intel_encoder
->i2c_bus
)
1328 intel_i2c_destroy(intel_encoder
->i2c_bus
);
1329 drm_encoder_cleanup(encoder
);
1330 kfree(intel_encoder
);
1333 static const struct drm_encoder_funcs intel_dp_enc_funcs
= {
1334 .destroy
= intel_dp_enc_destroy
,
1338 intel_dp_hot_plug(struct intel_encoder
*intel_encoder
)
1340 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
1342 if (dp_priv
->dpms_mode
== DRM_MODE_DPMS_ON
)
1343 intel_dp_check_link_status(intel_encoder
);
1346 /* Return which DP Port should be selected for Transcoder DP control */
1348 intel_trans_dp_port_sel (struct drm_crtc
*crtc
)
1350 struct drm_device
*dev
= crtc
->dev
;
1351 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
1352 struct drm_encoder
*encoder
;
1353 struct intel_encoder
*intel_encoder
= NULL
;
1355 list_for_each_entry(encoder
, &mode_config
->encoder_list
, head
) {
1356 if (encoder
->crtc
!= crtc
)
1359 intel_encoder
= enc_to_intel_encoder(encoder
);
1360 if (intel_encoder
->type
== INTEL_OUTPUT_DISPLAYPORT
) {
1361 struct intel_dp_priv
*dp_priv
= intel_encoder
->dev_priv
;
1362 return dp_priv
->output_reg
;
1369 intel_dp_init(struct drm_device
*dev
, int output_reg
)
1371 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1372 struct drm_connector
*connector
;
1373 struct intel_encoder
*intel_encoder
;
1374 struct intel_connector
*intel_connector
;
1375 struct intel_dp_priv
*dp_priv
;
1376 const char *name
= NULL
;
1378 intel_encoder
= kcalloc(sizeof(struct intel_encoder
) +
1379 sizeof(struct intel_dp_priv
), 1, GFP_KERNEL
);
1383 intel_connector
= kzalloc(sizeof(struct intel_connector
), GFP_KERNEL
);
1384 if (!intel_connector
) {
1385 kfree(intel_encoder
);
1389 dp_priv
= (struct intel_dp_priv
*)(intel_encoder
+ 1);
1391 connector
= &intel_connector
->base
;
1392 drm_connector_init(dev
, connector
, &intel_dp_connector_funcs
,
1393 DRM_MODE_CONNECTOR_DisplayPort
);
1394 drm_connector_helper_add(connector
, &intel_dp_connector_helper_funcs
);
1396 connector
->polled
= DRM_CONNECTOR_POLL_HPD
;
1398 if (output_reg
== DP_A
)
1399 intel_encoder
->type
= INTEL_OUTPUT_EDP
;
1401 intel_encoder
->type
= INTEL_OUTPUT_DISPLAYPORT
;
1403 if (output_reg
== DP_B
|| output_reg
== PCH_DP_B
)
1404 intel_encoder
->clone_mask
= (1 << INTEL_DP_B_CLONE_BIT
);
1405 else if (output_reg
== DP_C
|| output_reg
== PCH_DP_C
)
1406 intel_encoder
->clone_mask
= (1 << INTEL_DP_C_CLONE_BIT
);
1407 else if (output_reg
== DP_D
|| output_reg
== PCH_DP_D
)
1408 intel_encoder
->clone_mask
= (1 << INTEL_DP_D_CLONE_BIT
);
1410 if (IS_eDP(intel_encoder
))
1411 intel_encoder
->clone_mask
= (1 << INTEL_EDP_CLONE_BIT
);
1413 intel_encoder
->crtc_mask
= (1 << 0) | (1 << 1);
1414 connector
->interlace_allowed
= true;
1415 connector
->doublescan_allowed
= 0;
1417 dp_priv
->intel_encoder
= intel_encoder
;
1418 dp_priv
->output_reg
= output_reg
;
1419 dp_priv
->has_audio
= false;
1420 dp_priv
->dpms_mode
= DRM_MODE_DPMS_ON
;
1421 intel_encoder
->dev_priv
= dp_priv
;
1423 drm_encoder_init(dev
, &intel_encoder
->enc
, &intel_dp_enc_funcs
,
1424 DRM_MODE_ENCODER_TMDS
);
1425 drm_encoder_helper_add(&intel_encoder
->enc
, &intel_dp_helper_funcs
);
1427 drm_mode_connector_attach_encoder(&intel_connector
->base
,
1428 &intel_encoder
->enc
);
1429 drm_sysfs_connector_add(connector
);
1431 /* Set up the DDC bus. */
1432 switch (output_reg
) {
1438 dev_priv
->hotplug_supported_mask
|=
1439 HDMIB_HOTPLUG_INT_STATUS
;
1444 dev_priv
->hotplug_supported_mask
|=
1445 HDMIC_HOTPLUG_INT_STATUS
;
1450 dev_priv
->hotplug_supported_mask
|=
1451 HDMID_HOTPLUG_INT_STATUS
;
1456 intel_dp_i2c_init(intel_encoder
, intel_connector
, name
);
1458 intel_encoder
->ddc_bus
= &dp_priv
->adapter
;
1459 intel_encoder
->hot_plug
= intel_dp_hot_plug
;
1461 if (output_reg
== DP_A
) {
1462 /* initialize panel mode from VBT if available for eDP */
1463 if (dev_priv
->lfp_lvds_vbt_mode
) {
1464 dev_priv
->panel_fixed_mode
=
1465 drm_mode_duplicate(dev
, dev_priv
->lfp_lvds_vbt_mode
);
1466 if (dev_priv
->panel_fixed_mode
) {
1467 dev_priv
->panel_fixed_mode
->type
|=
1468 DRM_MODE_TYPE_PREFERRED
;
1473 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1474 * 0xd. Failure to do so will result in spurious interrupts being
1475 * generated on the port when a cable is not attached.
1477 if (IS_G4X(dev
) && !IS_GM45(dev
)) {
1478 u32 temp
= I915_READ(PEG_BAND_GAP_DATA
);
1479 I915_WRITE(PEG_BAND_GAP_DATA
, (temp
& ~0xf) | 0xd);