2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
45 #include "firmware_exports.h"
46 #include "cxgb3_offload.h"
50 #define SGE_RX_SM_BUF_SIZE 1536
52 #define SGE_RX_COPY_THRES 256
53 #define SGE_RX_PULL_LEN 128
55 #define SGE_PG_RSVD SMP_CACHE_BYTES
57 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
58 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
61 #define FL0_PG_CHUNK_SIZE 2048
62 #define FL0_PG_ORDER 0
63 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
64 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
65 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
66 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
68 #define SGE_RX_DROP_THRES 16
69 #define RX_RECLAIM_PERIOD (HZ/4)
72 * Max number of Rx buffers we replenish at a time.
74 #define MAX_RX_REFILL 16U
76 * Period of the Tx buffer reclaim timer. This timer does not need to run
77 * frequently as Tx buffers are usually reclaimed by new Tx packets.
79 #define TX_RECLAIM_PERIOD (HZ / 4)
80 #define TX_RECLAIM_TIMER_CHUNK 64U
81 #define TX_RECLAIM_CHUNK 16U
83 /* WR size in bytes */
84 #define WR_LEN (WR_FLITS * 8)
87 * Types of Tx queues in each queue set. Order here matters, do not change.
89 enum { TXQ_ETH
, TXQ_OFLD
, TXQ_CTRL
};
91 /* Values for sge_txq.flags */
93 TXQ_RUNNING
= 1 << 0, /* fetch engine is running */
94 TXQ_LAST_PKT_DB
= 1 << 1, /* last packet rang the doorbell */
98 __be64 flit
[TX_DESC_FLITS
];
108 struct tx_sw_desc
{ /* SW state per Tx descriptor */
110 u8 eop
; /* set if last descriptor for packet */
111 u8 addr_idx
; /* buffer index of first SGL entry in descriptor */
112 u8 fragidx
; /* first page fragment associated with descriptor */
113 s8 sflit
; /* start flit of first SGL entry in descriptor */
116 struct rx_sw_desc
{ /* SW state per Rx descriptor */
119 struct fl_pg_chunk pg_chunk
;
121 DEFINE_DMA_UNMAP_ADDR(dma_addr
);
124 struct rsp_desc
{ /* response queue descriptor */
125 struct rss_header rss_hdr
;
133 * Holds unmapping information for Tx packets that need deferred unmapping.
134 * This structure lives at skb->head and must be allocated by callers.
136 struct deferred_unmap_info
{
137 struct pci_dev
*pdev
;
138 dma_addr_t addr
[MAX_SKB_FRAGS
+ 1];
142 * Maps a number of flits to the number of Tx descriptors that can hold them.
145 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
147 * HW allows up to 4 descriptors to be combined into a WR.
149 static u8 flit_desc_map
[] = {
151 #if SGE_NUM_GENBITS == 1
152 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
153 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
154 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
155 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
156 #elif SGE_NUM_GENBITS == 2
157 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
158 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
159 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
160 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
162 # error "SGE_NUM_GENBITS must be 1 or 2"
166 static inline struct sge_qset
*fl_to_qset(const struct sge_fl
*q
, int qidx
)
168 return container_of(q
, struct sge_qset
, fl
[qidx
]);
171 static inline struct sge_qset
*rspq_to_qset(const struct sge_rspq
*q
)
173 return container_of(q
, struct sge_qset
, rspq
);
176 static inline struct sge_qset
*txq_to_qset(const struct sge_txq
*q
, int qidx
)
178 return container_of(q
, struct sge_qset
, txq
[qidx
]);
182 * refill_rspq - replenish an SGE response queue
183 * @adapter: the adapter
184 * @q: the response queue to replenish
185 * @credits: how many new responses to make available
187 * Replenishes a response queue by making the supplied number of responses
190 static inline void refill_rspq(struct adapter
*adapter
,
191 const struct sge_rspq
*q
, unsigned int credits
)
194 t3_write_reg(adapter
, A_SG_RSPQ_CREDIT_RETURN
,
195 V_RSPQ(q
->cntxt_id
) | V_CREDITS(credits
));
199 * need_skb_unmap - does the platform need unmapping of sk_buffs?
201 * Returns true if the platform needs sk_buff unmapping. The compiler
202 * optimizes away unecessary code if this returns true.
204 static inline int need_skb_unmap(void)
207 * This structure is used to tell if the platform needs buffer
208 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
211 DEFINE_DMA_UNMAP_ADDR(addr
);
214 return sizeof(struct dummy
) != 0;
218 * unmap_skb - unmap a packet main body and its page fragments
220 * @q: the Tx queue containing Tx descriptors for the packet
221 * @cidx: index of Tx descriptor
222 * @pdev: the PCI device
224 * Unmap the main body of an sk_buff and its page fragments, if any.
225 * Because of the fairly complicated structure of our SGLs and the desire
226 * to conserve space for metadata, the information necessary to unmap an
227 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
228 * descriptors (the physical addresses of the various data buffers), and
229 * the SW descriptor state (assorted indices). The send functions
230 * initialize the indices for the first packet descriptor so we can unmap
231 * the buffers held in the first Tx descriptor here, and we have enough
232 * information at this point to set the state for the next Tx descriptor.
234 * Note that it is possible to clean up the first descriptor of a packet
235 * before the send routines have written the next descriptors, but this
236 * race does not cause any problem. We just end up writing the unmapping
237 * info for the descriptor first.
239 static inline void unmap_skb(struct sk_buff
*skb
, struct sge_txq
*q
,
240 unsigned int cidx
, struct pci_dev
*pdev
)
242 const struct sg_ent
*sgp
;
243 struct tx_sw_desc
*d
= &q
->sdesc
[cidx
];
244 int nfrags
, frag_idx
, curflit
, j
= d
->addr_idx
;
246 sgp
= (struct sg_ent
*)&q
->desc
[cidx
].flit
[d
->sflit
];
247 frag_idx
= d
->fragidx
;
249 if (frag_idx
== 0 && skb_headlen(skb
)) {
250 pci_unmap_single(pdev
, be64_to_cpu(sgp
->addr
[0]),
251 skb_headlen(skb
), PCI_DMA_TODEVICE
);
255 curflit
= d
->sflit
+ 1 + j
;
256 nfrags
= skb_shinfo(skb
)->nr_frags
;
258 while (frag_idx
< nfrags
&& curflit
< WR_FLITS
) {
259 pci_unmap_page(pdev
, be64_to_cpu(sgp
->addr
[j
]),
260 skb_shinfo(skb
)->frags
[frag_idx
].size
,
271 if (frag_idx
< nfrags
) { /* SGL continues into next Tx descriptor */
272 d
= cidx
+ 1 == q
->size
? q
->sdesc
: d
+ 1;
273 d
->fragidx
= frag_idx
;
275 d
->sflit
= curflit
- WR_FLITS
- j
; /* sflit can be -1 */
280 * free_tx_desc - reclaims Tx descriptors and their buffers
281 * @adapter: the adapter
282 * @q: the Tx queue to reclaim descriptors from
283 * @n: the number of descriptors to reclaim
285 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
286 * Tx buffers. Called with the Tx queue lock held.
288 static void free_tx_desc(struct adapter
*adapter
, struct sge_txq
*q
,
291 struct tx_sw_desc
*d
;
292 struct pci_dev
*pdev
= adapter
->pdev
;
293 unsigned int cidx
= q
->cidx
;
295 const int need_unmap
= need_skb_unmap() &&
296 q
->cntxt_id
>= FW_TUNNEL_SGEEC_START
;
300 if (d
->skb
) { /* an SGL is present */
302 unmap_skb(d
->skb
, q
, cidx
, pdev
);
307 if (++cidx
== q
->size
) {
316 * reclaim_completed_tx - reclaims completed Tx descriptors
317 * @adapter: the adapter
318 * @q: the Tx queue to reclaim completed descriptors from
319 * @chunk: maximum number of descriptors to reclaim
321 * Reclaims Tx descriptors that the SGE has indicated it has processed,
322 * and frees the associated buffers if possible. Called with the Tx
325 static inline unsigned int reclaim_completed_tx(struct adapter
*adapter
,
329 unsigned int reclaim
= q
->processed
- q
->cleaned
;
331 reclaim
= min(chunk
, reclaim
);
333 free_tx_desc(adapter
, q
, reclaim
);
334 q
->cleaned
+= reclaim
;
335 q
->in_use
-= reclaim
;
337 return q
->processed
- q
->cleaned
;
341 * should_restart_tx - are there enough resources to restart a Tx queue?
344 * Checks if there are enough descriptors to restart a suspended Tx queue.
346 static inline int should_restart_tx(const struct sge_txq
*q
)
348 unsigned int r
= q
->processed
- q
->cleaned
;
350 return q
->in_use
- r
< (q
->size
>> 1);
353 static void clear_rx_desc(struct pci_dev
*pdev
, const struct sge_fl
*q
,
354 struct rx_sw_desc
*d
)
356 if (q
->use_pages
&& d
->pg_chunk
.page
) {
357 (*d
->pg_chunk
.p_cnt
)--;
358 if (!*d
->pg_chunk
.p_cnt
)
361 q
->alloc_size
, PCI_DMA_FROMDEVICE
);
363 put_page(d
->pg_chunk
.page
);
364 d
->pg_chunk
.page
= NULL
;
366 pci_unmap_single(pdev
, dma_unmap_addr(d
, dma_addr
),
367 q
->buf_size
, PCI_DMA_FROMDEVICE
);
374 * free_rx_bufs - free the Rx buffers on an SGE free list
375 * @pdev: the PCI device associated with the adapter
376 * @rxq: the SGE free list to clean up
378 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
379 * this queue should be stopped before calling this function.
381 static void free_rx_bufs(struct pci_dev
*pdev
, struct sge_fl
*q
)
383 unsigned int cidx
= q
->cidx
;
385 while (q
->credits
--) {
386 struct rx_sw_desc
*d
= &q
->sdesc
[cidx
];
389 clear_rx_desc(pdev
, q
, d
);
390 if (++cidx
== q
->size
)
394 if (q
->pg_chunk
.page
) {
395 __free_pages(q
->pg_chunk
.page
, q
->order
);
396 q
->pg_chunk
.page
= NULL
;
401 * add_one_rx_buf - add a packet buffer to a free-buffer list
402 * @va: buffer start VA
403 * @len: the buffer length
404 * @d: the HW Rx descriptor to write
405 * @sd: the SW Rx descriptor to write
406 * @gen: the generation bit value
407 * @pdev: the PCI device associated with the adapter
409 * Add a buffer of the given length to the supplied HW and SW Rx
412 static inline int add_one_rx_buf(void *va
, unsigned int len
,
413 struct rx_desc
*d
, struct rx_sw_desc
*sd
,
414 unsigned int gen
, struct pci_dev
*pdev
)
418 mapping
= pci_map_single(pdev
, va
, len
, PCI_DMA_FROMDEVICE
);
419 if (unlikely(pci_dma_mapping_error(pdev
, mapping
)))
422 dma_unmap_addr_set(sd
, dma_addr
, mapping
);
424 d
->addr_lo
= cpu_to_be32(mapping
);
425 d
->addr_hi
= cpu_to_be32((u64
) mapping
>> 32);
427 d
->len_gen
= cpu_to_be32(V_FLD_GEN1(gen
));
428 d
->gen2
= cpu_to_be32(V_FLD_GEN2(gen
));
432 static inline int add_one_rx_chunk(dma_addr_t mapping
, struct rx_desc
*d
,
435 d
->addr_lo
= cpu_to_be32(mapping
);
436 d
->addr_hi
= cpu_to_be32((u64
) mapping
>> 32);
438 d
->len_gen
= cpu_to_be32(V_FLD_GEN1(gen
));
439 d
->gen2
= cpu_to_be32(V_FLD_GEN2(gen
));
443 static int alloc_pg_chunk(struct adapter
*adapter
, struct sge_fl
*q
,
444 struct rx_sw_desc
*sd
, gfp_t gfp
,
447 if (!q
->pg_chunk
.page
) {
450 q
->pg_chunk
.page
= alloc_pages(gfp
, order
);
451 if (unlikely(!q
->pg_chunk
.page
))
453 q
->pg_chunk
.va
= page_address(q
->pg_chunk
.page
);
454 q
->pg_chunk
.p_cnt
= q
->pg_chunk
.va
+ (PAGE_SIZE
<< order
) -
456 q
->pg_chunk
.offset
= 0;
457 mapping
= pci_map_page(adapter
->pdev
, q
->pg_chunk
.page
,
458 0, q
->alloc_size
, PCI_DMA_FROMDEVICE
);
459 q
->pg_chunk
.mapping
= mapping
;
461 sd
->pg_chunk
= q
->pg_chunk
;
463 prefetch(sd
->pg_chunk
.p_cnt
);
465 q
->pg_chunk
.offset
+= q
->buf_size
;
466 if (q
->pg_chunk
.offset
== (PAGE_SIZE
<< order
))
467 q
->pg_chunk
.page
= NULL
;
469 q
->pg_chunk
.va
+= q
->buf_size
;
470 get_page(q
->pg_chunk
.page
);
473 if (sd
->pg_chunk
.offset
== 0)
474 *sd
->pg_chunk
.p_cnt
= 1;
476 *sd
->pg_chunk
.p_cnt
+= 1;
481 static inline void ring_fl_db(struct adapter
*adap
, struct sge_fl
*q
)
483 if (q
->pend_cred
>= q
->credits
/ 4) {
486 t3_write_reg(adap
, A_SG_KDOORBELL
, V_EGRCNTX(q
->cntxt_id
));
491 * refill_fl - refill an SGE free-buffer list
492 * @adapter: the adapter
493 * @q: the free-list to refill
494 * @n: the number of new buffers to allocate
495 * @gfp: the gfp flags for allocating new buffers
497 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
498 * allocated with the supplied gfp flags. The caller must assure that
499 * @n does not exceed the queue's capacity.
501 static int refill_fl(struct adapter
*adap
, struct sge_fl
*q
, int n
, gfp_t gfp
)
503 struct rx_sw_desc
*sd
= &q
->sdesc
[q
->pidx
];
504 struct rx_desc
*d
= &q
->desc
[q
->pidx
];
505 unsigned int count
= 0;
512 if (unlikely(alloc_pg_chunk(adap
, q
, sd
, gfp
,
514 nomem
: q
->alloc_failed
++;
517 mapping
= sd
->pg_chunk
.mapping
+ sd
->pg_chunk
.offset
;
518 dma_unmap_addr_set(sd
, dma_addr
, mapping
);
520 add_one_rx_chunk(mapping
, d
, q
->gen
);
521 pci_dma_sync_single_for_device(adap
->pdev
, mapping
,
522 q
->buf_size
- SGE_PG_RSVD
,
527 struct sk_buff
*skb
= alloc_skb(q
->buf_size
, gfp
);
532 buf_start
= skb
->data
;
533 err
= add_one_rx_buf(buf_start
, q
->buf_size
, d
, sd
,
536 clear_rx_desc(adap
->pdev
, q
, sd
);
543 if (++q
->pidx
== q
->size
) {
553 q
->pend_cred
+= count
;
559 static inline void __refill_fl(struct adapter
*adap
, struct sge_fl
*fl
)
561 refill_fl(adap
, fl
, min(MAX_RX_REFILL
, fl
->size
- fl
->credits
),
562 GFP_ATOMIC
| __GFP_COMP
);
566 * recycle_rx_buf - recycle a receive buffer
567 * @adapter: the adapter
568 * @q: the SGE free list
569 * @idx: index of buffer to recycle
571 * Recycles the specified buffer on the given free list by adding it at
572 * the next available slot on the list.
574 static void recycle_rx_buf(struct adapter
*adap
, struct sge_fl
*q
,
577 struct rx_desc
*from
= &q
->desc
[idx
];
578 struct rx_desc
*to
= &q
->desc
[q
->pidx
];
580 q
->sdesc
[q
->pidx
] = q
->sdesc
[idx
];
581 to
->addr_lo
= from
->addr_lo
; /* already big endian */
582 to
->addr_hi
= from
->addr_hi
; /* likewise */
584 to
->len_gen
= cpu_to_be32(V_FLD_GEN1(q
->gen
));
585 to
->gen2
= cpu_to_be32(V_FLD_GEN2(q
->gen
));
587 if (++q
->pidx
== q
->size
) {
598 * alloc_ring - allocate resources for an SGE descriptor ring
599 * @pdev: the PCI device
600 * @nelem: the number of descriptors
601 * @elem_size: the size of each descriptor
602 * @sw_size: the size of the SW state associated with each ring element
603 * @phys: the physical address of the allocated ring
604 * @metadata: address of the array holding the SW state for the ring
606 * Allocates resources for an SGE descriptor ring, such as Tx queues,
607 * free buffer lists, or response queues. Each SGE ring requires
608 * space for its HW descriptors plus, optionally, space for the SW state
609 * associated with each HW entry (the metadata). The function returns
610 * three values: the virtual address for the HW ring (the return value
611 * of the function), the physical address of the HW ring, and the address
614 static void *alloc_ring(struct pci_dev
*pdev
, size_t nelem
, size_t elem_size
,
615 size_t sw_size
, dma_addr_t
* phys
, void *metadata
)
617 size_t len
= nelem
* elem_size
;
619 void *p
= dma_alloc_coherent(&pdev
->dev
, len
, phys
, GFP_KERNEL
);
623 if (sw_size
&& metadata
) {
624 s
= kcalloc(nelem
, sw_size
, GFP_KERNEL
);
627 dma_free_coherent(&pdev
->dev
, len
, p
, *phys
);
630 *(void **)metadata
= s
;
637 * t3_reset_qset - reset a sge qset
640 * Reset the qset structure.
641 * the NAPI structure is preserved in the event of
642 * the qset's reincarnation, for example during EEH recovery.
644 static void t3_reset_qset(struct sge_qset
*q
)
647 !(q
->adap
->flags
& NAPI_INIT
)) {
648 memset(q
, 0, sizeof(*q
));
653 memset(&q
->rspq
, 0, sizeof(q
->rspq
));
654 memset(q
->fl
, 0, sizeof(struct sge_fl
) * SGE_RXQ_PER_SET
);
655 memset(q
->txq
, 0, sizeof(struct sge_txq
) * SGE_TXQ_PER_SET
);
657 q
->tx_reclaim_timer
.function
= NULL
; /* for t3_stop_sge_timers() */
658 q
->rx_reclaim_timer
.function
= NULL
;
660 napi_free_frags(&q
->napi
);
665 * free_qset - free the resources of an SGE queue set
666 * @adapter: the adapter owning the queue set
669 * Release the HW and SW resources associated with an SGE queue set, such
670 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
671 * queue set must be quiesced prior to calling this.
673 static void t3_free_qset(struct adapter
*adapter
, struct sge_qset
*q
)
676 struct pci_dev
*pdev
= adapter
->pdev
;
678 for (i
= 0; i
< SGE_RXQ_PER_SET
; ++i
)
680 spin_lock_irq(&adapter
->sge
.reg_lock
);
681 t3_sge_disable_fl(adapter
, q
->fl
[i
].cntxt_id
);
682 spin_unlock_irq(&adapter
->sge
.reg_lock
);
683 free_rx_bufs(pdev
, &q
->fl
[i
]);
684 kfree(q
->fl
[i
].sdesc
);
685 dma_free_coherent(&pdev
->dev
,
687 sizeof(struct rx_desc
), q
->fl
[i
].desc
,
691 for (i
= 0; i
< SGE_TXQ_PER_SET
; ++i
)
692 if (q
->txq
[i
].desc
) {
693 spin_lock_irq(&adapter
->sge
.reg_lock
);
694 t3_sge_enable_ecntxt(adapter
, q
->txq
[i
].cntxt_id
, 0);
695 spin_unlock_irq(&adapter
->sge
.reg_lock
);
696 if (q
->txq
[i
].sdesc
) {
697 free_tx_desc(adapter
, &q
->txq
[i
],
699 kfree(q
->txq
[i
].sdesc
);
701 dma_free_coherent(&pdev
->dev
,
703 sizeof(struct tx_desc
),
704 q
->txq
[i
].desc
, q
->txq
[i
].phys_addr
);
705 __skb_queue_purge(&q
->txq
[i
].sendq
);
709 spin_lock_irq(&adapter
->sge
.reg_lock
);
710 t3_sge_disable_rspcntxt(adapter
, q
->rspq
.cntxt_id
);
711 spin_unlock_irq(&adapter
->sge
.reg_lock
);
712 dma_free_coherent(&pdev
->dev
,
713 q
->rspq
.size
* sizeof(struct rsp_desc
),
714 q
->rspq
.desc
, q
->rspq
.phys_addr
);
721 * init_qset_cntxt - initialize an SGE queue set context info
723 * @id: the queue set id
725 * Initializes the TIDs and context ids for the queues of a queue set.
727 static void init_qset_cntxt(struct sge_qset
*qs
, unsigned int id
)
729 qs
->rspq
.cntxt_id
= id
;
730 qs
->fl
[0].cntxt_id
= 2 * id
;
731 qs
->fl
[1].cntxt_id
= 2 * id
+ 1;
732 qs
->txq
[TXQ_ETH
].cntxt_id
= FW_TUNNEL_SGEEC_START
+ id
;
733 qs
->txq
[TXQ_ETH
].token
= FW_TUNNEL_TID_START
+ id
;
734 qs
->txq
[TXQ_OFLD
].cntxt_id
= FW_OFLD_SGEEC_START
+ id
;
735 qs
->txq
[TXQ_CTRL
].cntxt_id
= FW_CTRL_SGEEC_START
+ id
;
736 qs
->txq
[TXQ_CTRL
].token
= FW_CTRL_TID_START
+ id
;
740 * sgl_len - calculates the size of an SGL of the given capacity
741 * @n: the number of SGL entries
743 * Calculates the number of flits needed for a scatter/gather list that
744 * can hold the given number of entries.
746 static inline unsigned int sgl_len(unsigned int n
)
748 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
749 return (3 * n
) / 2 + (n
& 1);
753 * flits_to_desc - returns the num of Tx descriptors for the given flits
754 * @n: the number of flits
756 * Calculates the number of Tx descriptors needed for the supplied number
759 static inline unsigned int flits_to_desc(unsigned int n
)
761 BUG_ON(n
>= ARRAY_SIZE(flit_desc_map
));
762 return flit_desc_map
[n
];
766 * get_packet - return the next ingress packet buffer from a free list
767 * @adap: the adapter that received the packet
768 * @fl: the SGE free list holding the packet
769 * @len: the packet length including any SGE padding
770 * @drop_thres: # of remaining buffers before we start dropping packets
772 * Get the next packet from a free list and complete setup of the
773 * sk_buff. If the packet is small we make a copy and recycle the
774 * original buffer, otherwise we use the original buffer itself. If a
775 * positive drop threshold is supplied packets are dropped and their
776 * buffers recycled if (a) the number of remaining buffers is under the
777 * threshold and the packet is too big to copy, or (b) the packet should
778 * be copied but there is no memory for the copy.
780 static struct sk_buff
*get_packet(struct adapter
*adap
, struct sge_fl
*fl
,
781 unsigned int len
, unsigned int drop_thres
)
783 struct sk_buff
*skb
= NULL
;
784 struct rx_sw_desc
*sd
= &fl
->sdesc
[fl
->cidx
];
786 prefetch(sd
->skb
->data
);
789 if (len
<= SGE_RX_COPY_THRES
) {
790 skb
= alloc_skb(len
, GFP_ATOMIC
);
791 if (likely(skb
!= NULL
)) {
793 pci_dma_sync_single_for_cpu(adap
->pdev
,
794 dma_unmap_addr(sd
, dma_addr
), len
,
796 memcpy(skb
->data
, sd
->skb
->data
, len
);
797 pci_dma_sync_single_for_device(adap
->pdev
,
798 dma_unmap_addr(sd
, dma_addr
), len
,
800 } else if (!drop_thres
)
803 recycle_rx_buf(adap
, fl
, fl
->cidx
);
807 if (unlikely(fl
->credits
< drop_thres
) &&
808 refill_fl(adap
, fl
, min(MAX_RX_REFILL
, fl
->size
- fl
->credits
- 1),
809 GFP_ATOMIC
| __GFP_COMP
) == 0)
813 pci_unmap_single(adap
->pdev
, dma_unmap_addr(sd
, dma_addr
),
814 fl
->buf_size
, PCI_DMA_FROMDEVICE
);
817 __refill_fl(adap
, fl
);
822 * get_packet_pg - return the next ingress packet buffer from a free list
823 * @adap: the adapter that received the packet
824 * @fl: the SGE free list holding the packet
825 * @len: the packet length including any SGE padding
826 * @drop_thres: # of remaining buffers before we start dropping packets
828 * Get the next packet from a free list populated with page chunks.
829 * If the packet is small we make a copy and recycle the original buffer,
830 * otherwise we attach the original buffer as a page fragment to a fresh
831 * sk_buff. If a positive drop threshold is supplied packets are dropped
832 * and their buffers recycled if (a) the number of remaining buffers is
833 * under the threshold and the packet is too big to copy, or (b) there's
836 * Note: this function is similar to @get_packet but deals with Rx buffers
837 * that are page chunks rather than sk_buffs.
839 static struct sk_buff
*get_packet_pg(struct adapter
*adap
, struct sge_fl
*fl
,
840 struct sge_rspq
*q
, unsigned int len
,
841 unsigned int drop_thres
)
843 struct sk_buff
*newskb
, *skb
;
844 struct rx_sw_desc
*sd
= &fl
->sdesc
[fl
->cidx
];
846 dma_addr_t dma_addr
= dma_unmap_addr(sd
, dma_addr
);
848 newskb
= skb
= q
->pg_skb
;
849 if (!skb
&& (len
<= SGE_RX_COPY_THRES
)) {
850 newskb
= alloc_skb(len
, GFP_ATOMIC
);
851 if (likely(newskb
!= NULL
)) {
852 __skb_put(newskb
, len
);
853 pci_dma_sync_single_for_cpu(adap
->pdev
, dma_addr
, len
,
855 memcpy(newskb
->data
, sd
->pg_chunk
.va
, len
);
856 pci_dma_sync_single_for_device(adap
->pdev
, dma_addr
,
859 } else if (!drop_thres
)
863 recycle_rx_buf(adap
, fl
, fl
->cidx
);
868 if (unlikely(q
->rx_recycle_buf
|| (!skb
&& fl
->credits
<= drop_thres
)))
871 prefetch(sd
->pg_chunk
.p_cnt
);
874 newskb
= alloc_skb(SGE_RX_PULL_LEN
, GFP_ATOMIC
);
876 if (unlikely(!newskb
)) {
882 pci_dma_sync_single_for_cpu(adap
->pdev
, dma_addr
, len
,
884 (*sd
->pg_chunk
.p_cnt
)--;
885 if (!*sd
->pg_chunk
.p_cnt
&& sd
->pg_chunk
.page
!= fl
->pg_chunk
.page
)
886 pci_unmap_page(adap
->pdev
,
887 sd
->pg_chunk
.mapping
,
891 __skb_put(newskb
, SGE_RX_PULL_LEN
);
892 memcpy(newskb
->data
, sd
->pg_chunk
.va
, SGE_RX_PULL_LEN
);
893 skb_fill_page_desc(newskb
, 0, sd
->pg_chunk
.page
,
894 sd
->pg_chunk
.offset
+ SGE_RX_PULL_LEN
,
895 len
- SGE_RX_PULL_LEN
);
897 newskb
->data_len
= len
- SGE_RX_PULL_LEN
;
898 newskb
->truesize
+= newskb
->data_len
;
900 skb_fill_page_desc(newskb
, skb_shinfo(newskb
)->nr_frags
,
902 sd
->pg_chunk
.offset
, len
);
904 newskb
->data_len
+= len
;
905 newskb
->truesize
+= len
;
910 * We do not refill FLs here, we let the caller do it to overlap a
917 * get_imm_packet - return the next ingress packet buffer from a response
918 * @resp: the response descriptor containing the packet data
920 * Return a packet containing the immediate data of the given response.
922 static inline struct sk_buff
*get_imm_packet(const struct rsp_desc
*resp
)
924 struct sk_buff
*skb
= alloc_skb(IMMED_PKT_SIZE
, GFP_ATOMIC
);
927 __skb_put(skb
, IMMED_PKT_SIZE
);
928 skb_copy_to_linear_data(skb
, resp
->imm_data
, IMMED_PKT_SIZE
);
934 * calc_tx_descs - calculate the number of Tx descriptors for a packet
937 * Returns the number of Tx descriptors needed for the given Ethernet
938 * packet. Ethernet packets require addition of WR and CPL headers.
940 static inline unsigned int calc_tx_descs(const struct sk_buff
*skb
)
944 if (skb
->len
<= WR_LEN
- sizeof(struct cpl_tx_pkt
))
947 flits
= sgl_len(skb_shinfo(skb
)->nr_frags
+ 1) + 2;
948 if (skb_shinfo(skb
)->gso_size
)
950 return flits_to_desc(flits
);
954 * make_sgl - populate a scatter/gather list for a packet
956 * @sgp: the SGL to populate
957 * @start: start address of skb main body data to include in the SGL
958 * @len: length of skb main body data to include in the SGL
959 * @pdev: the PCI device
961 * Generates a scatter/gather list for the buffers that make up a packet
962 * and returns the SGL size in 8-byte words. The caller must size the SGL
965 static inline unsigned int make_sgl(const struct sk_buff
*skb
,
966 struct sg_ent
*sgp
, unsigned char *start
,
967 unsigned int len
, struct pci_dev
*pdev
)
970 unsigned int i
, j
= 0, nfrags
;
973 mapping
= pci_map_single(pdev
, start
, len
, PCI_DMA_TODEVICE
);
974 sgp
->len
[0] = cpu_to_be32(len
);
975 sgp
->addr
[0] = cpu_to_be64(mapping
);
979 nfrags
= skb_shinfo(skb
)->nr_frags
;
980 for (i
= 0; i
< nfrags
; i
++) {
981 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
983 mapping
= pci_map_page(pdev
, frag
->page
, frag
->page_offset
,
984 frag
->size
, PCI_DMA_TODEVICE
);
985 sgp
->len
[j
] = cpu_to_be32(frag
->size
);
986 sgp
->addr
[j
] = cpu_to_be64(mapping
);
993 return ((nfrags
+ (len
!= 0)) * 3) / 2 + j
;
997 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
1001 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1002 * where the HW is going to sleep just after we checked, however,
1003 * then the interrupt handler will detect the outstanding TX packet
1004 * and ring the doorbell for us.
1006 * When GTS is disabled we unconditionally ring the doorbell.
1008 static inline void check_ring_tx_db(struct adapter
*adap
, struct sge_txq
*q
)
1011 clear_bit(TXQ_LAST_PKT_DB
, &q
->flags
);
1012 if (test_and_set_bit(TXQ_RUNNING
, &q
->flags
) == 0) {
1013 set_bit(TXQ_LAST_PKT_DB
, &q
->flags
);
1014 t3_write_reg(adap
, A_SG_KDOORBELL
,
1015 F_SELEGRCNTX
| V_EGRCNTX(q
->cntxt_id
));
1018 wmb(); /* write descriptors before telling HW */
1019 t3_write_reg(adap
, A_SG_KDOORBELL
,
1020 F_SELEGRCNTX
| V_EGRCNTX(q
->cntxt_id
));
1024 static inline void wr_gen2(struct tx_desc
*d
, unsigned int gen
)
1026 #if SGE_NUM_GENBITS == 2
1027 d
->flit
[TX_DESC_FLITS
- 1] = cpu_to_be64(gen
);
1032 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1033 * @ndesc: number of Tx descriptors spanned by the SGL
1034 * @skb: the packet corresponding to the WR
1035 * @d: first Tx descriptor to be written
1036 * @pidx: index of above descriptors
1037 * @q: the SGE Tx queue
1039 * @flits: number of flits to the start of the SGL in the first descriptor
1040 * @sgl_flits: the SGL size in flits
1041 * @gen: the Tx descriptor generation
1042 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1043 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1045 * Write a work request header and an associated SGL. If the SGL is
1046 * small enough to fit into one Tx descriptor it has already been written
1047 * and we just need to write the WR header. Otherwise we distribute the
1048 * SGL across the number of descriptors it spans.
1050 static void write_wr_hdr_sgl(unsigned int ndesc
, struct sk_buff
*skb
,
1051 struct tx_desc
*d
, unsigned int pidx
,
1052 const struct sge_txq
*q
,
1053 const struct sg_ent
*sgl
,
1054 unsigned int flits
, unsigned int sgl_flits
,
1055 unsigned int gen
, __be32 wr_hi
,
1058 struct work_request_hdr
*wrp
= (struct work_request_hdr
*)d
;
1059 struct tx_sw_desc
*sd
= &q
->sdesc
[pidx
];
1062 if (need_skb_unmap()) {
1068 if (likely(ndesc
== 1)) {
1070 wrp
->wr_hi
= htonl(F_WR_SOP
| F_WR_EOP
| V_WR_DATATYPE(1) |
1071 V_WR_SGLSFLT(flits
)) | wr_hi
;
1073 wrp
->wr_lo
= htonl(V_WR_LEN(flits
+ sgl_flits
) |
1074 V_WR_GEN(gen
)) | wr_lo
;
1077 unsigned int ogen
= gen
;
1078 const u64
*fp
= (const u64
*)sgl
;
1079 struct work_request_hdr
*wp
= wrp
;
1081 wrp
->wr_hi
= htonl(F_WR_SOP
| V_WR_DATATYPE(1) |
1082 V_WR_SGLSFLT(flits
)) | wr_hi
;
1085 unsigned int avail
= WR_FLITS
- flits
;
1087 if (avail
> sgl_flits
)
1089 memcpy(&d
->flit
[flits
], fp
, avail
* sizeof(*fp
));
1099 if (++pidx
== q
->size
) {
1107 wrp
= (struct work_request_hdr
*)d
;
1108 wrp
->wr_hi
= htonl(V_WR_DATATYPE(1) |
1109 V_WR_SGLSFLT(1)) | wr_hi
;
1110 wrp
->wr_lo
= htonl(V_WR_LEN(min(WR_FLITS
,
1112 V_WR_GEN(gen
)) | wr_lo
;
1117 wrp
->wr_hi
|= htonl(F_WR_EOP
);
1119 wp
->wr_lo
= htonl(V_WR_LEN(WR_FLITS
) | V_WR_GEN(ogen
)) | wr_lo
;
1120 wr_gen2((struct tx_desc
*)wp
, ogen
);
1121 WARN_ON(ndesc
!= 0);
1126 * write_tx_pkt_wr - write a TX_PKT work request
1127 * @adap: the adapter
1128 * @skb: the packet to send
1129 * @pi: the egress interface
1130 * @pidx: index of the first Tx descriptor to write
1131 * @gen: the generation value to use
1133 * @ndesc: number of descriptors the packet will occupy
1134 * @compl: the value of the COMPL bit to use
1136 * Generate a TX_PKT work request to send the supplied packet.
1138 static void write_tx_pkt_wr(struct adapter
*adap
, struct sk_buff
*skb
,
1139 const struct port_info
*pi
,
1140 unsigned int pidx
, unsigned int gen
,
1141 struct sge_txq
*q
, unsigned int ndesc
,
1144 unsigned int flits
, sgl_flits
, cntrl
, tso_info
;
1145 struct sg_ent
*sgp
, sgl
[MAX_SKB_FRAGS
/ 2 + 1];
1146 struct tx_desc
*d
= &q
->desc
[pidx
];
1147 struct cpl_tx_pkt
*cpl
= (struct cpl_tx_pkt
*)d
;
1149 cpl
->len
= htonl(skb
->len
);
1150 cntrl
= V_TXPKT_INTF(pi
->port_id
);
1152 if (vlan_tx_tag_present(skb
) && pi
->vlan_grp
)
1153 cntrl
|= F_TXPKT_VLAN_VLD
| V_TXPKT_VLAN(vlan_tx_tag_get(skb
));
1155 tso_info
= V_LSO_MSS(skb_shinfo(skb
)->gso_size
);
1158 struct cpl_tx_pkt_lso
*hdr
= (struct cpl_tx_pkt_lso
*)cpl
;
1161 cntrl
|= V_TXPKT_OPCODE(CPL_TX_PKT_LSO
);
1162 hdr
->cntrl
= htonl(cntrl
);
1163 eth_type
= skb_network_offset(skb
) == ETH_HLEN
?
1164 CPL_ETH_II
: CPL_ETH_II_VLAN
;
1165 tso_info
|= V_LSO_ETH_TYPE(eth_type
) |
1166 V_LSO_IPHDR_WORDS(ip_hdr(skb
)->ihl
) |
1167 V_LSO_TCPHDR_WORDS(tcp_hdr(skb
)->doff
);
1168 hdr
->lso_info
= htonl(tso_info
);
1171 cntrl
|= V_TXPKT_OPCODE(CPL_TX_PKT
);
1172 cntrl
|= F_TXPKT_IPCSUM_DIS
; /* SW calculates IP csum */
1173 cntrl
|= V_TXPKT_L4CSUM_DIS(skb
->ip_summed
!= CHECKSUM_PARTIAL
);
1174 cpl
->cntrl
= htonl(cntrl
);
1176 if (skb
->len
<= WR_LEN
- sizeof(*cpl
)) {
1177 q
->sdesc
[pidx
].skb
= NULL
;
1179 skb_copy_from_linear_data(skb
, &d
->flit
[2],
1182 skb_copy_bits(skb
, 0, &d
->flit
[2], skb
->len
);
1184 flits
= (skb
->len
+ 7) / 8 + 2;
1185 cpl
->wr
.wr_hi
= htonl(V_WR_BCNTLFLT(skb
->len
& 7) |
1186 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT
)
1187 | F_WR_SOP
| F_WR_EOP
| compl);
1189 cpl
->wr
.wr_lo
= htonl(V_WR_LEN(flits
) | V_WR_GEN(gen
) |
1190 V_WR_TID(q
->token
));
1199 sgp
= ndesc
== 1 ? (struct sg_ent
*)&d
->flit
[flits
] : sgl
;
1200 sgl_flits
= make_sgl(skb
, sgp
, skb
->data
, skb_headlen(skb
), adap
->pdev
);
1202 write_wr_hdr_sgl(ndesc
, skb
, d
, pidx
, q
, sgl
, flits
, sgl_flits
, gen
,
1203 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT
) | compl),
1204 htonl(V_WR_TID(q
->token
)));
1207 static inline void t3_stop_tx_queue(struct netdev_queue
*txq
,
1208 struct sge_qset
*qs
, struct sge_txq
*q
)
1210 netif_tx_stop_queue(txq
);
1211 set_bit(TXQ_ETH
, &qs
->txq_stopped
);
1216 * eth_xmit - add a packet to the Ethernet Tx queue
1218 * @dev: the egress net device
1220 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1222 netdev_tx_t
t3_eth_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1225 unsigned int ndesc
, pidx
, credits
, gen
, compl;
1226 const struct port_info
*pi
= netdev_priv(dev
);
1227 struct adapter
*adap
= pi
->adapter
;
1228 struct netdev_queue
*txq
;
1229 struct sge_qset
*qs
;
1233 * The chip min packet length is 9 octets but play safe and reject
1234 * anything shorter than an Ethernet header.
1236 if (unlikely(skb
->len
< ETH_HLEN
)) {
1238 return NETDEV_TX_OK
;
1241 qidx
= skb_get_queue_mapping(skb
);
1243 q
= &qs
->txq
[TXQ_ETH
];
1244 txq
= netdev_get_tx_queue(dev
, qidx
);
1246 reclaim_completed_tx(adap
, q
, TX_RECLAIM_CHUNK
);
1248 credits
= q
->size
- q
->in_use
;
1249 ndesc
= calc_tx_descs(skb
);
1251 if (unlikely(credits
< ndesc
)) {
1252 t3_stop_tx_queue(txq
, qs
, q
);
1253 dev_err(&adap
->pdev
->dev
,
1254 "%s: Tx ring %u full while queue awake!\n",
1255 dev
->name
, q
->cntxt_id
& 7);
1256 return NETDEV_TX_BUSY
;
1260 if (unlikely(credits
- ndesc
< q
->stop_thres
)) {
1261 t3_stop_tx_queue(txq
, qs
, q
);
1263 if (should_restart_tx(q
) &&
1264 test_and_clear_bit(TXQ_ETH
, &qs
->txq_stopped
)) {
1266 netif_tx_start_queue(txq
);
1271 q
->unacked
+= ndesc
;
1272 compl = (q
->unacked
& 8) << (S_WR_COMPL
- 3);
1276 if (q
->pidx
>= q
->size
) {
1281 /* update port statistics */
1282 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
1283 qs
->port_stats
[SGE_PSTAT_TX_CSUM
]++;
1284 if (skb_shinfo(skb
)->gso_size
)
1285 qs
->port_stats
[SGE_PSTAT_TSO
]++;
1286 if (vlan_tx_tag_present(skb
) && pi
->vlan_grp
)
1287 qs
->port_stats
[SGE_PSTAT_VLANINS
]++;
1290 * We do not use Tx completion interrupts to free DMAd Tx packets.
1291 * This is good for performance but means that we rely on new Tx
1292 * packets arriving to run the destructors of completed packets,
1293 * which open up space in their sockets' send queues. Sometimes
1294 * we do not get such new packets causing Tx to stall. A single
1295 * UDP transmitter is a good example of this situation. We have
1296 * a clean up timer that periodically reclaims completed packets
1297 * but it doesn't run often enough (nor do we want it to) to prevent
1298 * lengthy stalls. A solution to this problem is to run the
1299 * destructor early, after the packet is queued but before it's DMAd.
1300 * A cons is that we lie to socket memory accounting, but the amount
1301 * of extra memory is reasonable (limited by the number of Tx
1302 * descriptors), the packets do actually get freed quickly by new
1303 * packets almost always, and for protocols like TCP that wait for
1304 * acks to really free up the data the extra memory is even less.
1305 * On the positive side we run the destructors on the sending CPU
1306 * rather than on a potentially different completing CPU, usually a
1307 * good thing. We also run them without holding our Tx queue lock,
1308 * unlike what reclaim_completed_tx() would otherwise do.
1310 * Run the destructor before telling the DMA engine about the packet
1311 * to make sure it doesn't complete and get freed prematurely.
1313 if (likely(!skb_shared(skb
)))
1316 write_tx_pkt_wr(adap
, skb
, pi
, pidx
, gen
, q
, ndesc
, compl);
1317 check_ring_tx_db(adap
, q
);
1318 return NETDEV_TX_OK
;
1322 * write_imm - write a packet into a Tx descriptor as immediate data
1323 * @d: the Tx descriptor to write
1325 * @len: the length of packet data to write as immediate data
1326 * @gen: the generation bit value to write
1328 * Writes a packet as immediate data into a Tx descriptor. The packet
1329 * contains a work request at its beginning. We must write the packet
1330 * carefully so the SGE doesn't read it accidentally before it's written
1333 static inline void write_imm(struct tx_desc
*d
, struct sk_buff
*skb
,
1334 unsigned int len
, unsigned int gen
)
1336 struct work_request_hdr
*from
= (struct work_request_hdr
*)skb
->data
;
1337 struct work_request_hdr
*to
= (struct work_request_hdr
*)d
;
1339 if (likely(!skb
->data_len
))
1340 memcpy(&to
[1], &from
[1], len
- sizeof(*from
));
1342 skb_copy_bits(skb
, sizeof(*from
), &to
[1], len
- sizeof(*from
));
1344 to
->wr_hi
= from
->wr_hi
| htonl(F_WR_SOP
| F_WR_EOP
|
1345 V_WR_BCNTLFLT(len
& 7));
1347 to
->wr_lo
= from
->wr_lo
| htonl(V_WR_GEN(gen
) |
1348 V_WR_LEN((len
+ 7) / 8));
1354 * check_desc_avail - check descriptor availability on a send queue
1355 * @adap: the adapter
1356 * @q: the send queue
1357 * @skb: the packet needing the descriptors
1358 * @ndesc: the number of Tx descriptors needed
1359 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1361 * Checks if the requested number of Tx descriptors is available on an
1362 * SGE send queue. If the queue is already suspended or not enough
1363 * descriptors are available the packet is queued for later transmission.
1364 * Must be called with the Tx queue locked.
1366 * Returns 0 if enough descriptors are available, 1 if there aren't
1367 * enough descriptors and the packet has been queued, and 2 if the caller
1368 * needs to retry because there weren't enough descriptors at the
1369 * beginning of the call but some freed up in the mean time.
1371 static inline int check_desc_avail(struct adapter
*adap
, struct sge_txq
*q
,
1372 struct sk_buff
*skb
, unsigned int ndesc
,
1375 if (unlikely(!skb_queue_empty(&q
->sendq
))) {
1376 addq_exit
:__skb_queue_tail(&q
->sendq
, skb
);
1379 if (unlikely(q
->size
- q
->in_use
< ndesc
)) {
1380 struct sge_qset
*qs
= txq_to_qset(q
, qid
);
1382 set_bit(qid
, &qs
->txq_stopped
);
1383 smp_mb__after_clear_bit();
1385 if (should_restart_tx(q
) &&
1386 test_and_clear_bit(qid
, &qs
->txq_stopped
))
1396 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1397 * @q: the SGE control Tx queue
1399 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1400 * that send only immediate data (presently just the control queues) and
1401 * thus do not have any sk_buffs to release.
1403 static inline void reclaim_completed_tx_imm(struct sge_txq
*q
)
1405 unsigned int reclaim
= q
->processed
- q
->cleaned
;
1407 q
->in_use
-= reclaim
;
1408 q
->cleaned
+= reclaim
;
1411 static inline int immediate(const struct sk_buff
*skb
)
1413 return skb
->len
<= WR_LEN
;
1417 * ctrl_xmit - send a packet through an SGE control Tx queue
1418 * @adap: the adapter
1419 * @q: the control queue
1422 * Send a packet through an SGE control Tx queue. Packets sent through
1423 * a control queue must fit entirely as immediate data in a single Tx
1424 * descriptor and have no page fragments.
1426 static int ctrl_xmit(struct adapter
*adap
, struct sge_txq
*q
,
1427 struct sk_buff
*skb
)
1430 struct work_request_hdr
*wrp
= (struct work_request_hdr
*)skb
->data
;
1432 if (unlikely(!immediate(skb
))) {
1435 return NET_XMIT_SUCCESS
;
1438 wrp
->wr_hi
|= htonl(F_WR_SOP
| F_WR_EOP
);
1439 wrp
->wr_lo
= htonl(V_WR_TID(q
->token
));
1441 spin_lock(&q
->lock
);
1442 again
:reclaim_completed_tx_imm(q
);
1444 ret
= check_desc_avail(adap
, q
, skb
, 1, TXQ_CTRL
);
1445 if (unlikely(ret
)) {
1447 spin_unlock(&q
->lock
);
1453 write_imm(&q
->desc
[q
->pidx
], skb
, skb
->len
, q
->gen
);
1456 if (++q
->pidx
>= q
->size
) {
1460 spin_unlock(&q
->lock
);
1462 t3_write_reg(adap
, A_SG_KDOORBELL
,
1463 F_SELEGRCNTX
| V_EGRCNTX(q
->cntxt_id
));
1464 return NET_XMIT_SUCCESS
;
1468 * restart_ctrlq - restart a suspended control queue
1469 * @qs: the queue set cotaining the control queue
1471 * Resumes transmission on a suspended Tx control queue.
1473 static void restart_ctrlq(unsigned long data
)
1475 struct sk_buff
*skb
;
1476 struct sge_qset
*qs
= (struct sge_qset
*)data
;
1477 struct sge_txq
*q
= &qs
->txq
[TXQ_CTRL
];
1479 spin_lock(&q
->lock
);
1480 again
:reclaim_completed_tx_imm(q
);
1482 while (q
->in_use
< q
->size
&&
1483 (skb
= __skb_dequeue(&q
->sendq
)) != NULL
) {
1485 write_imm(&q
->desc
[q
->pidx
], skb
, skb
->len
, q
->gen
);
1487 if (++q
->pidx
>= q
->size
) {
1494 if (!skb_queue_empty(&q
->sendq
)) {
1495 set_bit(TXQ_CTRL
, &qs
->txq_stopped
);
1496 smp_mb__after_clear_bit();
1498 if (should_restart_tx(q
) &&
1499 test_and_clear_bit(TXQ_CTRL
, &qs
->txq_stopped
))
1504 spin_unlock(&q
->lock
);
1506 t3_write_reg(qs
->adap
, A_SG_KDOORBELL
,
1507 F_SELEGRCNTX
| V_EGRCNTX(q
->cntxt_id
));
1511 * Send a management message through control queue 0
1513 int t3_mgmt_tx(struct adapter
*adap
, struct sk_buff
*skb
)
1517 ret
= ctrl_xmit(adap
, &adap
->sge
.qs
[0].txq
[TXQ_CTRL
], skb
);
1524 * deferred_unmap_destructor - unmap a packet when it is freed
1527 * This is the packet destructor used for Tx packets that need to remain
1528 * mapped until they are freed rather than until their Tx descriptors are
1531 static void deferred_unmap_destructor(struct sk_buff
*skb
)
1534 const dma_addr_t
*p
;
1535 const struct skb_shared_info
*si
;
1536 const struct deferred_unmap_info
*dui
;
1538 dui
= (struct deferred_unmap_info
*)skb
->head
;
1541 if (skb
->tail
- skb
->transport_header
)
1542 pci_unmap_single(dui
->pdev
, *p
++,
1543 skb
->tail
- skb
->transport_header
,
1546 si
= skb_shinfo(skb
);
1547 for (i
= 0; i
< si
->nr_frags
; i
++)
1548 pci_unmap_page(dui
->pdev
, *p
++, si
->frags
[i
].size
,
1552 static void setup_deferred_unmapping(struct sk_buff
*skb
, struct pci_dev
*pdev
,
1553 const struct sg_ent
*sgl
, int sgl_flits
)
1556 struct deferred_unmap_info
*dui
;
1558 dui
= (struct deferred_unmap_info
*)skb
->head
;
1560 for (p
= dui
->addr
; sgl_flits
>= 3; sgl
++, sgl_flits
-= 3) {
1561 *p
++ = be64_to_cpu(sgl
->addr
[0]);
1562 *p
++ = be64_to_cpu(sgl
->addr
[1]);
1565 *p
= be64_to_cpu(sgl
->addr
[0]);
1569 * write_ofld_wr - write an offload work request
1570 * @adap: the adapter
1571 * @skb: the packet to send
1573 * @pidx: index of the first Tx descriptor to write
1574 * @gen: the generation value to use
1575 * @ndesc: number of descriptors the packet will occupy
1577 * Write an offload work request to send the supplied packet. The packet
1578 * data already carry the work request with most fields populated.
1580 static void write_ofld_wr(struct adapter
*adap
, struct sk_buff
*skb
,
1581 struct sge_txq
*q
, unsigned int pidx
,
1582 unsigned int gen
, unsigned int ndesc
)
1584 unsigned int sgl_flits
, flits
;
1585 struct work_request_hdr
*from
;
1586 struct sg_ent
*sgp
, sgl
[MAX_SKB_FRAGS
/ 2 + 1];
1587 struct tx_desc
*d
= &q
->desc
[pidx
];
1589 if (immediate(skb
)) {
1590 q
->sdesc
[pidx
].skb
= NULL
;
1591 write_imm(d
, skb
, skb
->len
, gen
);
1595 /* Only TX_DATA builds SGLs */
1597 from
= (struct work_request_hdr
*)skb
->data
;
1598 memcpy(&d
->flit
[1], &from
[1],
1599 skb_transport_offset(skb
) - sizeof(*from
));
1601 flits
= skb_transport_offset(skb
) / 8;
1602 sgp
= ndesc
== 1 ? (struct sg_ent
*)&d
->flit
[flits
] : sgl
;
1603 sgl_flits
= make_sgl(skb
, sgp
, skb_transport_header(skb
),
1604 skb
->tail
- skb
->transport_header
,
1606 if (need_skb_unmap()) {
1607 setup_deferred_unmapping(skb
, adap
->pdev
, sgp
, sgl_flits
);
1608 skb
->destructor
= deferred_unmap_destructor
;
1611 write_wr_hdr_sgl(ndesc
, skb
, d
, pidx
, q
, sgl
, flits
, sgl_flits
,
1612 gen
, from
->wr_hi
, from
->wr_lo
);
1616 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1619 * Returns the number of Tx descriptors needed for the given offload
1620 * packet. These packets are already fully constructed.
1622 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff
*skb
)
1624 unsigned int flits
, cnt
;
1626 if (skb
->len
<= WR_LEN
)
1627 return 1; /* packet fits as immediate data */
1629 flits
= skb_transport_offset(skb
) / 8; /* headers */
1630 cnt
= skb_shinfo(skb
)->nr_frags
;
1631 if (skb
->tail
!= skb
->transport_header
)
1633 return flits_to_desc(flits
+ sgl_len(cnt
));
1637 * ofld_xmit - send a packet through an offload queue
1638 * @adap: the adapter
1639 * @q: the Tx offload queue
1642 * Send an offload packet through an SGE offload queue.
1644 static int ofld_xmit(struct adapter
*adap
, struct sge_txq
*q
,
1645 struct sk_buff
*skb
)
1648 unsigned int ndesc
= calc_tx_descs_ofld(skb
), pidx
, gen
;
1650 spin_lock(&q
->lock
);
1651 again
: reclaim_completed_tx(adap
, q
, TX_RECLAIM_CHUNK
);
1653 ret
= check_desc_avail(adap
, q
, skb
, ndesc
, TXQ_OFLD
);
1654 if (unlikely(ret
)) {
1656 skb
->priority
= ndesc
; /* save for restart */
1657 spin_unlock(&q
->lock
);
1667 if (q
->pidx
>= q
->size
) {
1671 spin_unlock(&q
->lock
);
1673 write_ofld_wr(adap
, skb
, q
, pidx
, gen
, ndesc
);
1674 check_ring_tx_db(adap
, q
);
1675 return NET_XMIT_SUCCESS
;
1679 * restart_offloadq - restart a suspended offload queue
1680 * @qs: the queue set cotaining the offload queue
1682 * Resumes transmission on a suspended Tx offload queue.
1684 static void restart_offloadq(unsigned long data
)
1686 struct sk_buff
*skb
;
1687 struct sge_qset
*qs
= (struct sge_qset
*)data
;
1688 struct sge_txq
*q
= &qs
->txq
[TXQ_OFLD
];
1689 const struct port_info
*pi
= netdev_priv(qs
->netdev
);
1690 struct adapter
*adap
= pi
->adapter
;
1692 spin_lock(&q
->lock
);
1693 again
: reclaim_completed_tx(adap
, q
, TX_RECLAIM_CHUNK
);
1695 while ((skb
= skb_peek(&q
->sendq
)) != NULL
) {
1696 unsigned int gen
, pidx
;
1697 unsigned int ndesc
= skb
->priority
;
1699 if (unlikely(q
->size
- q
->in_use
< ndesc
)) {
1700 set_bit(TXQ_OFLD
, &qs
->txq_stopped
);
1701 smp_mb__after_clear_bit();
1703 if (should_restart_tx(q
) &&
1704 test_and_clear_bit(TXQ_OFLD
, &qs
->txq_stopped
))
1714 if (q
->pidx
>= q
->size
) {
1718 __skb_unlink(skb
, &q
->sendq
);
1719 spin_unlock(&q
->lock
);
1721 write_ofld_wr(adap
, skb
, q
, pidx
, gen
, ndesc
);
1722 spin_lock(&q
->lock
);
1724 spin_unlock(&q
->lock
);
1727 set_bit(TXQ_RUNNING
, &q
->flags
);
1728 set_bit(TXQ_LAST_PKT_DB
, &q
->flags
);
1731 t3_write_reg(adap
, A_SG_KDOORBELL
,
1732 F_SELEGRCNTX
| V_EGRCNTX(q
->cntxt_id
));
1736 * queue_set - return the queue set a packet should use
1739 * Maps a packet to the SGE queue set it should use. The desired queue
1740 * set is carried in bits 1-3 in the packet's priority.
1742 static inline int queue_set(const struct sk_buff
*skb
)
1744 return skb
->priority
>> 1;
1748 * is_ctrl_pkt - return whether an offload packet is a control packet
1751 * Determines whether an offload packet should use an OFLD or a CTRL
1752 * Tx queue. This is indicated by bit 0 in the packet's priority.
1754 static inline int is_ctrl_pkt(const struct sk_buff
*skb
)
1756 return skb
->priority
& 1;
1760 * t3_offload_tx - send an offload packet
1761 * @tdev: the offload device to send to
1764 * Sends an offload packet. We use the packet priority to select the
1765 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1766 * should be sent as regular or control, bits 1-3 select the queue set.
1768 int t3_offload_tx(struct t3cdev
*tdev
, struct sk_buff
*skb
)
1770 struct adapter
*adap
= tdev2adap(tdev
);
1771 struct sge_qset
*qs
= &adap
->sge
.qs
[queue_set(skb
)];
1773 if (unlikely(is_ctrl_pkt(skb
)))
1774 return ctrl_xmit(adap
, &qs
->txq
[TXQ_CTRL
], skb
);
1776 return ofld_xmit(adap
, &qs
->txq
[TXQ_OFLD
], skb
);
1780 * offload_enqueue - add an offload packet to an SGE offload receive queue
1781 * @q: the SGE response queue
1784 * Add a new offload packet to an SGE response queue's offload packet
1785 * queue. If the packet is the first on the queue it schedules the RX
1786 * softirq to process the queue.
1788 static inline void offload_enqueue(struct sge_rspq
*q
, struct sk_buff
*skb
)
1790 int was_empty
= skb_queue_empty(&q
->rx_queue
);
1792 __skb_queue_tail(&q
->rx_queue
, skb
);
1795 struct sge_qset
*qs
= rspq_to_qset(q
);
1797 napi_schedule(&qs
->napi
);
1802 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1803 * @tdev: the offload device that will be receiving the packets
1804 * @q: the SGE response queue that assembled the bundle
1805 * @skbs: the partial bundle
1806 * @n: the number of packets in the bundle
1808 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1810 static inline void deliver_partial_bundle(struct t3cdev
*tdev
,
1812 struct sk_buff
*skbs
[], int n
)
1815 q
->offload_bundles
++;
1816 tdev
->recv(tdev
, skbs
, n
);
1821 * ofld_poll - NAPI handler for offload packets in interrupt mode
1822 * @dev: the network device doing the polling
1823 * @budget: polling budget
1825 * The NAPI handler for offload packets when a response queue is serviced
1826 * by the hard interrupt handler, i.e., when it's operating in non-polling
1827 * mode. Creates small packet batches and sends them through the offload
1828 * receive handler. Batches need to be of modest size as we do prefetches
1829 * on the packets in each.
1831 static int ofld_poll(struct napi_struct
*napi
, int budget
)
1833 struct sge_qset
*qs
= container_of(napi
, struct sge_qset
, napi
);
1834 struct sge_rspq
*q
= &qs
->rspq
;
1835 struct adapter
*adapter
= qs
->adap
;
1838 while (work_done
< budget
) {
1839 struct sk_buff
*skb
, *tmp
, *skbs
[RX_BUNDLE_SIZE
];
1840 struct sk_buff_head queue
;
1843 spin_lock_irq(&q
->lock
);
1844 __skb_queue_head_init(&queue
);
1845 skb_queue_splice_init(&q
->rx_queue
, &queue
);
1846 if (skb_queue_empty(&queue
)) {
1847 napi_complete(napi
);
1848 spin_unlock_irq(&q
->lock
);
1851 spin_unlock_irq(&q
->lock
);
1854 skb_queue_walk_safe(&queue
, skb
, tmp
) {
1855 if (work_done
>= budget
)
1859 __skb_unlink(skb
, &queue
);
1860 prefetch(skb
->data
);
1861 skbs
[ngathered
] = skb
;
1862 if (++ngathered
== RX_BUNDLE_SIZE
) {
1863 q
->offload_bundles
++;
1864 adapter
->tdev
.recv(&adapter
->tdev
, skbs
,
1869 if (!skb_queue_empty(&queue
)) {
1870 /* splice remaining packets back onto Rx queue */
1871 spin_lock_irq(&q
->lock
);
1872 skb_queue_splice(&queue
, &q
->rx_queue
);
1873 spin_unlock_irq(&q
->lock
);
1875 deliver_partial_bundle(&adapter
->tdev
, q
, skbs
, ngathered
);
1882 * rx_offload - process a received offload packet
1883 * @tdev: the offload device receiving the packet
1884 * @rq: the response queue that received the packet
1886 * @rx_gather: a gather list of packets if we are building a bundle
1887 * @gather_idx: index of the next available slot in the bundle
1889 * Process an ingress offload pakcet and add it to the offload ingress
1890 * queue. Returns the index of the next available slot in the bundle.
1892 static inline int rx_offload(struct t3cdev
*tdev
, struct sge_rspq
*rq
,
1893 struct sk_buff
*skb
, struct sk_buff
*rx_gather
[],
1894 unsigned int gather_idx
)
1896 skb_reset_mac_header(skb
);
1897 skb_reset_network_header(skb
);
1898 skb_reset_transport_header(skb
);
1901 rx_gather
[gather_idx
++] = skb
;
1902 if (gather_idx
== RX_BUNDLE_SIZE
) {
1903 tdev
->recv(tdev
, rx_gather
, RX_BUNDLE_SIZE
);
1905 rq
->offload_bundles
++;
1908 offload_enqueue(rq
, skb
);
1914 * restart_tx - check whether to restart suspended Tx queues
1915 * @qs: the queue set to resume
1917 * Restarts suspended Tx queues of an SGE queue set if they have enough
1918 * free resources to resume operation.
1920 static void restart_tx(struct sge_qset
*qs
)
1922 if (test_bit(TXQ_ETH
, &qs
->txq_stopped
) &&
1923 should_restart_tx(&qs
->txq
[TXQ_ETH
]) &&
1924 test_and_clear_bit(TXQ_ETH
, &qs
->txq_stopped
)) {
1925 qs
->txq
[TXQ_ETH
].restarts
++;
1926 if (netif_running(qs
->netdev
))
1927 netif_tx_wake_queue(qs
->tx_q
);
1930 if (test_bit(TXQ_OFLD
, &qs
->txq_stopped
) &&
1931 should_restart_tx(&qs
->txq
[TXQ_OFLD
]) &&
1932 test_and_clear_bit(TXQ_OFLD
, &qs
->txq_stopped
)) {
1933 qs
->txq
[TXQ_OFLD
].restarts
++;
1934 tasklet_schedule(&qs
->txq
[TXQ_OFLD
].qresume_tsk
);
1936 if (test_bit(TXQ_CTRL
, &qs
->txq_stopped
) &&
1937 should_restart_tx(&qs
->txq
[TXQ_CTRL
]) &&
1938 test_and_clear_bit(TXQ_CTRL
, &qs
->txq_stopped
)) {
1939 qs
->txq
[TXQ_CTRL
].restarts
++;
1940 tasklet_schedule(&qs
->txq
[TXQ_CTRL
].qresume_tsk
);
1945 * cxgb3_arp_process - process an ARP request probing a private IP address
1946 * @adapter: the adapter
1947 * @skb: the skbuff containing the ARP request
1949 * Check if the ARP request is probing the private IP address
1950 * dedicated to iSCSI, generate an ARP reply if so.
1952 static void cxgb3_arp_process(struct port_info
*pi
, struct sk_buff
*skb
)
1954 struct net_device
*dev
= skb
->dev
;
1956 unsigned char *arp_ptr
;
1963 skb_reset_network_header(skb
);
1966 if (arp
->ar_op
!= htons(ARPOP_REQUEST
))
1969 arp_ptr
= (unsigned char *)(arp
+ 1);
1971 arp_ptr
+= dev
->addr_len
;
1972 memcpy(&sip
, arp_ptr
, sizeof(sip
));
1973 arp_ptr
+= sizeof(sip
);
1974 arp_ptr
+= dev
->addr_len
;
1975 memcpy(&tip
, arp_ptr
, sizeof(tip
));
1977 if (tip
!= pi
->iscsi_ipv4addr
)
1980 arp_send(ARPOP_REPLY
, ETH_P_ARP
, sip
, dev
, tip
, sha
,
1981 pi
->iscsic
.mac_addr
, sha
);
1985 static inline int is_arp(struct sk_buff
*skb
)
1987 return skb
->protocol
== htons(ETH_P_ARP
);
1990 static void cxgb3_process_iscsi_prov_pack(struct port_info
*pi
,
1991 struct sk_buff
*skb
)
1994 cxgb3_arp_process(pi
, skb
);
1998 if (pi
->iscsic
.recv
)
1999 pi
->iscsic
.recv(pi
, skb
);
2004 * rx_eth - process an ingress ethernet packet
2005 * @adap: the adapter
2006 * @rq: the response queue that received the packet
2008 * @pad: amount of padding at the start of the buffer
2010 * Process an ingress ethernet pakcet and deliver it to the stack.
2011 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2012 * if it was immediate data in a response.
2014 static void rx_eth(struct adapter
*adap
, struct sge_rspq
*rq
,
2015 struct sk_buff
*skb
, int pad
, int lro
)
2017 struct cpl_rx_pkt
*p
= (struct cpl_rx_pkt
*)(skb
->data
+ pad
);
2018 struct sge_qset
*qs
= rspq_to_qset(rq
);
2019 struct port_info
*pi
;
2021 skb_pull(skb
, sizeof(*p
) + pad
);
2022 skb
->protocol
= eth_type_trans(skb
, adap
->port
[p
->iff
]);
2023 pi
= netdev_priv(skb
->dev
);
2024 if ((pi
->rx_offload
& T3_RX_CSUM
) && p
->csum_valid
&&
2025 p
->csum
== htons(0xffff) && !p
->fragment
) {
2026 qs
->port_stats
[SGE_PSTAT_RX_CSUM_GOOD
]++;
2027 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2029 skb
->ip_summed
= CHECKSUM_NONE
;
2030 skb_record_rx_queue(skb
, qs
- &adap
->sge
.qs
[0]);
2032 if (unlikely(p
->vlan_valid
)) {
2033 struct vlan_group
*grp
= pi
->vlan_grp
;
2035 qs
->port_stats
[SGE_PSTAT_VLANEX
]++;
2038 vlan_gro_receive(&qs
->napi
, grp
,
2039 ntohs(p
->vlan
), skb
);
2041 if (unlikely(pi
->iscsic
.flags
)) {
2042 unsigned short vtag
= ntohs(p
->vlan
) &
2044 skb
->dev
= vlan_group_get_device(grp
,
2046 cxgb3_process_iscsi_prov_pack(pi
, skb
);
2048 __vlan_hwaccel_rx(skb
, grp
, ntohs(p
->vlan
),
2052 dev_kfree_skb_any(skb
);
2053 } else if (rq
->polling
) {
2055 napi_gro_receive(&qs
->napi
, skb
);
2057 if (unlikely(pi
->iscsic
.flags
))
2058 cxgb3_process_iscsi_prov_pack(pi
, skb
);
2059 netif_receive_skb(skb
);
2065 static inline int is_eth_tcp(u32 rss
)
2067 return G_HASHTYPE(ntohl(rss
)) == RSS_HASH_4_TUPLE
;
2071 * lro_add_page - add a page chunk to an LRO session
2072 * @adap: the adapter
2073 * @qs: the associated queue set
2074 * @fl: the free list containing the page chunk to add
2075 * @len: packet length
2076 * @complete: Indicates the last fragment of a frame
2078 * Add a received packet contained in a page chunk to an existing LRO
2081 static void lro_add_page(struct adapter
*adap
, struct sge_qset
*qs
,
2082 struct sge_fl
*fl
, int len
, int complete
)
2084 struct rx_sw_desc
*sd
= &fl
->sdesc
[fl
->cidx
];
2085 struct port_info
*pi
= netdev_priv(qs
->netdev
);
2086 struct sk_buff
*skb
= NULL
;
2087 struct cpl_rx_pkt
*cpl
;
2088 struct skb_frag_struct
*rx_frag
;
2093 skb
= napi_get_frags(&qs
->napi
);
2099 pci_dma_sync_single_for_cpu(adap
->pdev
,
2100 dma_unmap_addr(sd
, dma_addr
),
2101 fl
->buf_size
- SGE_PG_RSVD
,
2102 PCI_DMA_FROMDEVICE
);
2104 (*sd
->pg_chunk
.p_cnt
)--;
2105 if (!*sd
->pg_chunk
.p_cnt
&& sd
->pg_chunk
.page
!= fl
->pg_chunk
.page
)
2106 pci_unmap_page(adap
->pdev
,
2107 sd
->pg_chunk
.mapping
,
2109 PCI_DMA_FROMDEVICE
);
2112 put_page(sd
->pg_chunk
.page
);
2118 rx_frag
= skb_shinfo(skb
)->frags
;
2119 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2122 offset
= 2 + sizeof(struct cpl_rx_pkt
);
2123 cpl
= qs
->lro_va
= sd
->pg_chunk
.va
+ 2;
2125 if ((pi
->rx_offload
& T3_RX_CSUM
) &&
2126 cpl
->csum_valid
&& cpl
->csum
== htons(0xffff)) {
2127 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2128 qs
->port_stats
[SGE_PSTAT_RX_CSUM_GOOD
]++;
2130 skb
->ip_summed
= CHECKSUM_NONE
;
2136 rx_frag
+= nr_frags
;
2137 rx_frag
->page
= sd
->pg_chunk
.page
;
2138 rx_frag
->page_offset
= sd
->pg_chunk
.offset
+ offset
;
2139 rx_frag
->size
= len
;
2142 skb
->data_len
+= len
;
2143 skb
->truesize
+= len
;
2144 skb_shinfo(skb
)->nr_frags
++;
2149 skb_record_rx_queue(skb
, qs
- &adap
->sge
.qs
[0]);
2151 if (unlikely(cpl
->vlan_valid
)) {
2152 struct vlan_group
*grp
= pi
->vlan_grp
;
2154 if (likely(grp
!= NULL
)) {
2155 vlan_gro_frags(&qs
->napi
, grp
, ntohs(cpl
->vlan
));
2159 napi_gro_frags(&qs
->napi
);
2163 * handle_rsp_cntrl_info - handles control information in a response
2164 * @qs: the queue set corresponding to the response
2165 * @flags: the response control flags
2167 * Handles the control information of an SGE response, such as GTS
2168 * indications and completion credits for the queue set's Tx queues.
2169 * HW coalesces credits, we don't do any extra SW coalescing.
2171 static inline void handle_rsp_cntrl_info(struct sge_qset
*qs
, u32 flags
)
2173 unsigned int credits
;
2176 if (flags
& F_RSPD_TXQ0_GTS
)
2177 clear_bit(TXQ_RUNNING
, &qs
->txq
[TXQ_ETH
].flags
);
2180 credits
= G_RSPD_TXQ0_CR(flags
);
2182 qs
->txq
[TXQ_ETH
].processed
+= credits
;
2184 credits
= G_RSPD_TXQ2_CR(flags
);
2186 qs
->txq
[TXQ_CTRL
].processed
+= credits
;
2189 if (flags
& F_RSPD_TXQ1_GTS
)
2190 clear_bit(TXQ_RUNNING
, &qs
->txq
[TXQ_OFLD
].flags
);
2192 credits
= G_RSPD_TXQ1_CR(flags
);
2194 qs
->txq
[TXQ_OFLD
].processed
+= credits
;
2198 * check_ring_db - check if we need to ring any doorbells
2199 * @adapter: the adapter
2200 * @qs: the queue set whose Tx queues are to be examined
2201 * @sleeping: indicates which Tx queue sent GTS
2203 * Checks if some of a queue set's Tx queues need to ring their doorbells
2204 * to resume transmission after idling while they still have unprocessed
2207 static void check_ring_db(struct adapter
*adap
, struct sge_qset
*qs
,
2208 unsigned int sleeping
)
2210 if (sleeping
& F_RSPD_TXQ0_GTS
) {
2211 struct sge_txq
*txq
= &qs
->txq
[TXQ_ETH
];
2213 if (txq
->cleaned
+ txq
->in_use
!= txq
->processed
&&
2214 !test_and_set_bit(TXQ_LAST_PKT_DB
, &txq
->flags
)) {
2215 set_bit(TXQ_RUNNING
, &txq
->flags
);
2216 t3_write_reg(adap
, A_SG_KDOORBELL
, F_SELEGRCNTX
|
2217 V_EGRCNTX(txq
->cntxt_id
));
2221 if (sleeping
& F_RSPD_TXQ1_GTS
) {
2222 struct sge_txq
*txq
= &qs
->txq
[TXQ_OFLD
];
2224 if (txq
->cleaned
+ txq
->in_use
!= txq
->processed
&&
2225 !test_and_set_bit(TXQ_LAST_PKT_DB
, &txq
->flags
)) {
2226 set_bit(TXQ_RUNNING
, &txq
->flags
);
2227 t3_write_reg(adap
, A_SG_KDOORBELL
, F_SELEGRCNTX
|
2228 V_EGRCNTX(txq
->cntxt_id
));
2234 * is_new_response - check if a response is newly written
2235 * @r: the response descriptor
2236 * @q: the response queue
2238 * Returns true if a response descriptor contains a yet unprocessed
2241 static inline int is_new_response(const struct rsp_desc
*r
,
2242 const struct sge_rspq
*q
)
2244 return (r
->intr_gen
& F_RSPD_GEN2
) == q
->gen
;
2247 static inline void clear_rspq_bufstate(struct sge_rspq
* const q
)
2250 q
->rx_recycle_buf
= 0;
2253 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2254 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2255 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2256 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2257 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2259 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2260 #define NOMEM_INTR_DELAY 2500
2263 * process_responses - process responses from an SGE response queue
2264 * @adap: the adapter
2265 * @qs: the queue set to which the response queue belongs
2266 * @budget: how many responses can be processed in this round
2268 * Process responses from an SGE response queue up to the supplied budget.
2269 * Responses include received packets as well as credits and other events
2270 * for the queues that belong to the response queue's queue set.
2271 * A negative budget is effectively unlimited.
2273 * Additionally choose the interrupt holdoff time for the next interrupt
2274 * on this queue. If the system is under memory shortage use a fairly
2275 * long delay to help recovery.
2277 static int process_responses(struct adapter
*adap
, struct sge_qset
*qs
,
2280 struct sge_rspq
*q
= &qs
->rspq
;
2281 struct rsp_desc
*r
= &q
->desc
[q
->cidx
];
2282 int budget_left
= budget
;
2283 unsigned int sleeping
= 0;
2284 struct sk_buff
*offload_skbs
[RX_BUNDLE_SIZE
];
2287 q
->next_holdoff
= q
->holdoff_tmr
;
2289 while (likely(budget_left
&& is_new_response(r
, q
))) {
2290 int packet_complete
, eth
, ethpad
= 2, lro
= qs
->lro_enabled
;
2291 struct sk_buff
*skb
= NULL
;
2293 __be32 rss_hi
, rss_lo
;
2296 eth
= r
->rss_hdr
.opcode
== CPL_RX_PKT
;
2297 rss_hi
= *(const __be32
*)r
;
2298 rss_lo
= r
->rss_hdr
.rss_hash_val
;
2299 flags
= ntohl(r
->flags
);
2301 if (unlikely(flags
& F_RSPD_ASYNC_NOTIF
)) {
2302 skb
= alloc_skb(AN_PKT_SIZE
, GFP_ATOMIC
);
2306 memcpy(__skb_put(skb
, AN_PKT_SIZE
), r
, AN_PKT_SIZE
);
2307 skb
->data
[0] = CPL_ASYNC_NOTIF
;
2308 rss_hi
= htonl(CPL_ASYNC_NOTIF
<< 24);
2310 } else if (flags
& F_RSPD_IMM_DATA_VALID
) {
2311 skb
= get_imm_packet(r
);
2312 if (unlikely(!skb
)) {
2314 q
->next_holdoff
= NOMEM_INTR_DELAY
;
2316 /* consume one credit since we tried */
2322 } else if ((len
= ntohl(r
->len_cq
)) != 0) {
2325 lro
&= eth
&& is_eth_tcp(rss_hi
);
2327 fl
= (len
& F_RSPD_FLQ
) ? &qs
->fl
[1] : &qs
->fl
[0];
2328 if (fl
->use_pages
) {
2329 void *addr
= fl
->sdesc
[fl
->cidx
].pg_chunk
.va
;
2332 #if L1_CACHE_BYTES < 128
2333 prefetch(addr
+ L1_CACHE_BYTES
);
2335 __refill_fl(adap
, fl
);
2337 lro_add_page(adap
, qs
, fl
,
2339 flags
& F_RSPD_EOP
);
2343 skb
= get_packet_pg(adap
, fl
, q
,
2346 SGE_RX_DROP_THRES
: 0);
2349 skb
= get_packet(adap
, fl
, G_RSPD_LEN(len
),
2350 eth
? SGE_RX_DROP_THRES
: 0);
2351 if (unlikely(!skb
)) {
2355 } else if (unlikely(r
->rss_hdr
.opcode
== CPL_TRACE_PKT
))
2358 if (++fl
->cidx
== fl
->size
)
2363 if (flags
& RSPD_CTRL_MASK
) {
2364 sleeping
|= flags
& RSPD_GTS_MASK
;
2365 handle_rsp_cntrl_info(qs
, flags
);
2369 if (unlikely(++q
->cidx
== q
->size
)) {
2376 if (++q
->credits
>= (q
->size
/ 4)) {
2377 refill_rspq(adap
, q
, q
->credits
);
2381 packet_complete
= flags
&
2382 (F_RSPD_EOP
| F_RSPD_IMM_DATA_VALID
|
2383 F_RSPD_ASYNC_NOTIF
);
2385 if (skb
!= NULL
&& packet_complete
) {
2387 rx_eth(adap
, q
, skb
, ethpad
, lro
);
2390 /* Preserve the RSS info in csum & priority */
2392 skb
->priority
= rss_lo
;
2393 ngathered
= rx_offload(&adap
->tdev
, q
, skb
,
2398 if (flags
& F_RSPD_EOP
)
2399 clear_rspq_bufstate(q
);
2404 deliver_partial_bundle(&adap
->tdev
, q
, offload_skbs
, ngathered
);
2407 check_ring_db(adap
, qs
, sleeping
);
2409 smp_mb(); /* commit Tx queue .processed updates */
2410 if (unlikely(qs
->txq_stopped
!= 0))
2413 budget
-= budget_left
;
2417 static inline int is_pure_response(const struct rsp_desc
*r
)
2419 __be32 n
= r
->flags
& htonl(F_RSPD_ASYNC_NOTIF
| F_RSPD_IMM_DATA_VALID
);
2421 return (n
| r
->len_cq
) == 0;
2425 * napi_rx_handler - the NAPI handler for Rx processing
2426 * @napi: the napi instance
2427 * @budget: how many packets we can process in this round
2429 * Handler for new data events when using NAPI.
2431 static int napi_rx_handler(struct napi_struct
*napi
, int budget
)
2433 struct sge_qset
*qs
= container_of(napi
, struct sge_qset
, napi
);
2434 struct adapter
*adap
= qs
->adap
;
2435 int work_done
= process_responses(adap
, qs
, budget
);
2437 if (likely(work_done
< budget
)) {
2438 napi_complete(napi
);
2441 * Because we don't atomically flush the following
2442 * write it is possible that in very rare cases it can
2443 * reach the device in a way that races with a new
2444 * response being written plus an error interrupt
2445 * causing the NAPI interrupt handler below to return
2446 * unhandled status to the OS. To protect against
2447 * this would require flushing the write and doing
2448 * both the write and the flush with interrupts off.
2449 * Way too expensive and unjustifiable given the
2450 * rarity of the race.
2452 * The race cannot happen at all with MSI-X.
2454 t3_write_reg(adap
, A_SG_GTS
, V_RSPQ(qs
->rspq
.cntxt_id
) |
2455 V_NEWTIMER(qs
->rspq
.next_holdoff
) |
2456 V_NEWINDEX(qs
->rspq
.cidx
));
2462 * Returns true if the device is already scheduled for polling.
2464 static inline int napi_is_scheduled(struct napi_struct
*napi
)
2466 return test_bit(NAPI_STATE_SCHED
, &napi
->state
);
2470 * process_pure_responses - process pure responses from a response queue
2471 * @adap: the adapter
2472 * @qs: the queue set owning the response queue
2473 * @r: the first pure response to process
2475 * A simpler version of process_responses() that handles only pure (i.e.,
2476 * non data-carrying) responses. Such respones are too light-weight to
2477 * justify calling a softirq under NAPI, so we handle them specially in
2478 * the interrupt handler. The function is called with a pointer to a
2479 * response, which the caller must ensure is a valid pure response.
2481 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2483 static int process_pure_responses(struct adapter
*adap
, struct sge_qset
*qs
,
2486 struct sge_rspq
*q
= &qs
->rspq
;
2487 unsigned int sleeping
= 0;
2490 u32 flags
= ntohl(r
->flags
);
2493 if (unlikely(++q
->cidx
== q
->size
)) {
2500 if (flags
& RSPD_CTRL_MASK
) {
2501 sleeping
|= flags
& RSPD_GTS_MASK
;
2502 handle_rsp_cntrl_info(qs
, flags
);
2506 if (++q
->credits
>= (q
->size
/ 4)) {
2507 refill_rspq(adap
, q
, q
->credits
);
2510 if (!is_new_response(r
, q
))
2513 } while (is_pure_response(r
));
2516 check_ring_db(adap
, qs
, sleeping
);
2518 smp_mb(); /* commit Tx queue .processed updates */
2519 if (unlikely(qs
->txq_stopped
!= 0))
2522 return is_new_response(r
, q
);
2526 * handle_responses - decide what to do with new responses in NAPI mode
2527 * @adap: the adapter
2528 * @q: the response queue
2530 * This is used by the NAPI interrupt handlers to decide what to do with
2531 * new SGE responses. If there are no new responses it returns -1. If
2532 * there are new responses and they are pure (i.e., non-data carrying)
2533 * it handles them straight in hard interrupt context as they are very
2534 * cheap and don't deliver any packets. Finally, if there are any data
2535 * signaling responses it schedules the NAPI handler. Returns 1 if it
2536 * schedules NAPI, 0 if all new responses were pure.
2538 * The caller must ascertain NAPI is not already running.
2540 static inline int handle_responses(struct adapter
*adap
, struct sge_rspq
*q
)
2542 struct sge_qset
*qs
= rspq_to_qset(q
);
2543 struct rsp_desc
*r
= &q
->desc
[q
->cidx
];
2545 if (!is_new_response(r
, q
))
2548 if (is_pure_response(r
) && process_pure_responses(adap
, qs
, r
) == 0) {
2549 t3_write_reg(adap
, A_SG_GTS
, V_RSPQ(q
->cntxt_id
) |
2550 V_NEWTIMER(q
->holdoff_tmr
) | V_NEWINDEX(q
->cidx
));
2553 napi_schedule(&qs
->napi
);
2558 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2559 * (i.e., response queue serviced in hard interrupt).
2561 irqreturn_t
t3_sge_intr_msix(int irq
, void *cookie
)
2563 struct sge_qset
*qs
= cookie
;
2564 struct adapter
*adap
= qs
->adap
;
2565 struct sge_rspq
*q
= &qs
->rspq
;
2567 spin_lock(&q
->lock
);
2568 if (process_responses(adap
, qs
, -1) == 0)
2569 q
->unhandled_irqs
++;
2570 t3_write_reg(adap
, A_SG_GTS
, V_RSPQ(q
->cntxt_id
) |
2571 V_NEWTIMER(q
->next_holdoff
) | V_NEWINDEX(q
->cidx
));
2572 spin_unlock(&q
->lock
);
2577 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2578 * (i.e., response queue serviced by NAPI polling).
2580 static irqreturn_t
t3_sge_intr_msix_napi(int irq
, void *cookie
)
2582 struct sge_qset
*qs
= cookie
;
2583 struct sge_rspq
*q
= &qs
->rspq
;
2585 spin_lock(&q
->lock
);
2587 if (handle_responses(qs
->adap
, q
) < 0)
2588 q
->unhandled_irqs
++;
2589 spin_unlock(&q
->lock
);
2594 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2595 * SGE response queues as well as error and other async events as they all use
2596 * the same MSI vector. We use one SGE response queue per port in this mode
2597 * and protect all response queues with queue 0's lock.
2599 static irqreturn_t
t3_intr_msi(int irq
, void *cookie
)
2601 int new_packets
= 0;
2602 struct adapter
*adap
= cookie
;
2603 struct sge_rspq
*q
= &adap
->sge
.qs
[0].rspq
;
2605 spin_lock(&q
->lock
);
2607 if (process_responses(adap
, &adap
->sge
.qs
[0], -1)) {
2608 t3_write_reg(adap
, A_SG_GTS
, V_RSPQ(q
->cntxt_id
) |
2609 V_NEWTIMER(q
->next_holdoff
) | V_NEWINDEX(q
->cidx
));
2613 if (adap
->params
.nports
== 2 &&
2614 process_responses(adap
, &adap
->sge
.qs
[1], -1)) {
2615 struct sge_rspq
*q1
= &adap
->sge
.qs
[1].rspq
;
2617 t3_write_reg(adap
, A_SG_GTS
, V_RSPQ(q1
->cntxt_id
) |
2618 V_NEWTIMER(q1
->next_holdoff
) |
2619 V_NEWINDEX(q1
->cidx
));
2623 if (!new_packets
&& t3_slow_intr_handler(adap
) == 0)
2624 q
->unhandled_irqs
++;
2626 spin_unlock(&q
->lock
);
2630 static int rspq_check_napi(struct sge_qset
*qs
)
2632 struct sge_rspq
*q
= &qs
->rspq
;
2634 if (!napi_is_scheduled(&qs
->napi
) &&
2635 is_new_response(&q
->desc
[q
->cidx
], q
)) {
2636 napi_schedule(&qs
->napi
);
2643 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2644 * by NAPI polling). Handles data events from SGE response queues as well as
2645 * error and other async events as they all use the same MSI vector. We use
2646 * one SGE response queue per port in this mode and protect all response
2647 * queues with queue 0's lock.
2649 static irqreturn_t
t3_intr_msi_napi(int irq
, void *cookie
)
2652 struct adapter
*adap
= cookie
;
2653 struct sge_rspq
*q
= &adap
->sge
.qs
[0].rspq
;
2655 spin_lock(&q
->lock
);
2657 new_packets
= rspq_check_napi(&adap
->sge
.qs
[0]);
2658 if (adap
->params
.nports
== 2)
2659 new_packets
+= rspq_check_napi(&adap
->sge
.qs
[1]);
2660 if (!new_packets
&& t3_slow_intr_handler(adap
) == 0)
2661 q
->unhandled_irqs
++;
2663 spin_unlock(&q
->lock
);
2668 * A helper function that processes responses and issues GTS.
2670 static inline int process_responses_gts(struct adapter
*adap
,
2671 struct sge_rspq
*rq
)
2675 work
= process_responses(adap
, rspq_to_qset(rq
), -1);
2676 t3_write_reg(adap
, A_SG_GTS
, V_RSPQ(rq
->cntxt_id
) |
2677 V_NEWTIMER(rq
->next_holdoff
) | V_NEWINDEX(rq
->cidx
));
2682 * The legacy INTx interrupt handler. This needs to handle data events from
2683 * SGE response queues as well as error and other async events as they all use
2684 * the same interrupt pin. We use one SGE response queue per port in this mode
2685 * and protect all response queues with queue 0's lock.
2687 static irqreturn_t
t3_intr(int irq
, void *cookie
)
2689 int work_done
, w0
, w1
;
2690 struct adapter
*adap
= cookie
;
2691 struct sge_rspq
*q0
= &adap
->sge
.qs
[0].rspq
;
2692 struct sge_rspq
*q1
= &adap
->sge
.qs
[1].rspq
;
2694 spin_lock(&q0
->lock
);
2696 w0
= is_new_response(&q0
->desc
[q0
->cidx
], q0
);
2697 w1
= adap
->params
.nports
== 2 &&
2698 is_new_response(&q1
->desc
[q1
->cidx
], q1
);
2700 if (likely(w0
| w1
)) {
2701 t3_write_reg(adap
, A_PL_CLI
, 0);
2702 t3_read_reg(adap
, A_PL_CLI
); /* flush */
2705 process_responses_gts(adap
, q0
);
2708 process_responses_gts(adap
, q1
);
2710 work_done
= w0
| w1
;
2712 work_done
= t3_slow_intr_handler(adap
);
2714 spin_unlock(&q0
->lock
);
2715 return IRQ_RETVAL(work_done
!= 0);
2719 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2720 * Handles data events from SGE response queues as well as error and other
2721 * async events as they all use the same interrupt pin. We use one SGE
2722 * response queue per port in this mode and protect all response queues with
2725 static irqreturn_t
t3b_intr(int irq
, void *cookie
)
2728 struct adapter
*adap
= cookie
;
2729 struct sge_rspq
*q0
= &adap
->sge
.qs
[0].rspq
;
2731 t3_write_reg(adap
, A_PL_CLI
, 0);
2732 map
= t3_read_reg(adap
, A_SG_DATA_INTR
);
2734 if (unlikely(!map
)) /* shared interrupt, most likely */
2737 spin_lock(&q0
->lock
);
2739 if (unlikely(map
& F_ERRINTR
))
2740 t3_slow_intr_handler(adap
);
2742 if (likely(map
& 1))
2743 process_responses_gts(adap
, q0
);
2746 process_responses_gts(adap
, &adap
->sge
.qs
[1].rspq
);
2748 spin_unlock(&q0
->lock
);
2753 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2754 * Handles data events from SGE response queues as well as error and other
2755 * async events as they all use the same interrupt pin. We use one SGE
2756 * response queue per port in this mode and protect all response queues with
2759 static irqreturn_t
t3b_intr_napi(int irq
, void *cookie
)
2762 struct adapter
*adap
= cookie
;
2763 struct sge_qset
*qs0
= &adap
->sge
.qs
[0];
2764 struct sge_rspq
*q0
= &qs0
->rspq
;
2766 t3_write_reg(adap
, A_PL_CLI
, 0);
2767 map
= t3_read_reg(adap
, A_SG_DATA_INTR
);
2769 if (unlikely(!map
)) /* shared interrupt, most likely */
2772 spin_lock(&q0
->lock
);
2774 if (unlikely(map
& F_ERRINTR
))
2775 t3_slow_intr_handler(adap
);
2777 if (likely(map
& 1))
2778 napi_schedule(&qs0
->napi
);
2781 napi_schedule(&adap
->sge
.qs
[1].napi
);
2783 spin_unlock(&q0
->lock
);
2788 * t3_intr_handler - select the top-level interrupt handler
2789 * @adap: the adapter
2790 * @polling: whether using NAPI to service response queues
2792 * Selects the top-level interrupt handler based on the type of interrupts
2793 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2796 irq_handler_t
t3_intr_handler(struct adapter
*adap
, int polling
)
2798 if (adap
->flags
& USING_MSIX
)
2799 return polling
? t3_sge_intr_msix_napi
: t3_sge_intr_msix
;
2800 if (adap
->flags
& USING_MSI
)
2801 return polling
? t3_intr_msi_napi
: t3_intr_msi
;
2802 if (adap
->params
.rev
> 0)
2803 return polling
? t3b_intr_napi
: t3b_intr
;
2807 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2808 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2809 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2810 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2812 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2813 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2817 * t3_sge_err_intr_handler - SGE async event interrupt handler
2818 * @adapter: the adapter
2820 * Interrupt handler for SGE asynchronous (non-data) events.
2822 void t3_sge_err_intr_handler(struct adapter
*adapter
)
2824 unsigned int v
, status
= t3_read_reg(adapter
, A_SG_INT_CAUSE
) &
2827 if (status
& SGE_PARERR
)
2828 CH_ALERT(adapter
, "SGE parity error (0x%x)\n",
2829 status
& SGE_PARERR
);
2830 if (status
& SGE_FRAMINGERR
)
2831 CH_ALERT(adapter
, "SGE framing error (0x%x)\n",
2832 status
& SGE_FRAMINGERR
);
2834 if (status
& F_RSPQCREDITOVERFOW
)
2835 CH_ALERT(adapter
, "SGE response queue credit overflow\n");
2837 if (status
& F_RSPQDISABLED
) {
2838 v
= t3_read_reg(adapter
, A_SG_RSPQ_FL_STATUS
);
2841 "packet delivered to disabled response queue "
2842 "(0x%x)\n", (v
>> S_RSPQ0DISABLED
) & 0xff);
2845 if (status
& (F_HIPIODRBDROPERR
| F_LOPIODRBDROPERR
))
2846 queue_work(cxgb3_wq
, &adapter
->db_drop_task
);
2848 if (status
& (F_HIPRIORITYDBFULL
| F_LOPRIORITYDBFULL
))
2849 queue_work(cxgb3_wq
, &adapter
->db_full_task
);
2851 if (status
& (F_HIPRIORITYDBEMPTY
| F_LOPRIORITYDBEMPTY
))
2852 queue_work(cxgb3_wq
, &adapter
->db_empty_task
);
2854 t3_write_reg(adapter
, A_SG_INT_CAUSE
, status
);
2855 if (status
& SGE_FATALERR
)
2856 t3_fatal_err(adapter
);
2860 * sge_timer_tx - perform periodic maintenance of an SGE qset
2861 * @data: the SGE queue set to maintain
2863 * Runs periodically from a timer to perform maintenance of an SGE queue
2864 * set. It performs two tasks:
2866 * Cleans up any completed Tx descriptors that may still be pending.
2867 * Normal descriptor cleanup happens when new packets are added to a Tx
2868 * queue so this timer is relatively infrequent and does any cleanup only
2869 * if the Tx queue has not seen any new packets in a while. We make a
2870 * best effort attempt to reclaim descriptors, in that we don't wait
2871 * around if we cannot get a queue's lock (which most likely is because
2872 * someone else is queueing new packets and so will also handle the clean
2873 * up). Since control queues use immediate data exclusively we don't
2874 * bother cleaning them up here.
2877 static void sge_timer_tx(unsigned long data
)
2879 struct sge_qset
*qs
= (struct sge_qset
*)data
;
2880 struct port_info
*pi
= netdev_priv(qs
->netdev
);
2881 struct adapter
*adap
= pi
->adapter
;
2882 unsigned int tbd
[SGE_TXQ_PER_SET
] = {0, 0};
2883 unsigned long next_period
;
2885 if (__netif_tx_trylock(qs
->tx_q
)) {
2886 tbd
[TXQ_ETH
] = reclaim_completed_tx(adap
, &qs
->txq
[TXQ_ETH
],
2887 TX_RECLAIM_TIMER_CHUNK
);
2888 __netif_tx_unlock(qs
->tx_q
);
2891 if (spin_trylock(&qs
->txq
[TXQ_OFLD
].lock
)) {
2892 tbd
[TXQ_OFLD
] = reclaim_completed_tx(adap
, &qs
->txq
[TXQ_OFLD
],
2893 TX_RECLAIM_TIMER_CHUNK
);
2894 spin_unlock(&qs
->txq
[TXQ_OFLD
].lock
);
2897 next_period
= TX_RECLAIM_PERIOD
>>
2898 (max(tbd
[TXQ_ETH
], tbd
[TXQ_OFLD
]) /
2899 TX_RECLAIM_TIMER_CHUNK
);
2900 mod_timer(&qs
->tx_reclaim_timer
, jiffies
+ next_period
);
2904 * sge_timer_rx - perform periodic maintenance of an SGE qset
2905 * @data: the SGE queue set to maintain
2907 * a) Replenishes Rx queues that have run out due to memory shortage.
2908 * Normally new Rx buffers are added when existing ones are consumed but
2909 * when out of memory a queue can become empty. We try to add only a few
2910 * buffers here, the queue will be replenished fully as these new buffers
2911 * are used up if memory shortage has subsided.
2913 * b) Return coalesced response queue credits in case a response queue is
2917 static void sge_timer_rx(unsigned long data
)
2920 struct sge_qset
*qs
= (struct sge_qset
*)data
;
2921 struct port_info
*pi
= netdev_priv(qs
->netdev
);
2922 struct adapter
*adap
= pi
->adapter
;
2925 lock
= adap
->params
.rev
> 0 ?
2926 &qs
->rspq
.lock
: &adap
->sge
.qs
[0].rspq
.lock
;
2928 if (!spin_trylock_irq(lock
))
2931 if (napi_is_scheduled(&qs
->napi
))
2934 if (adap
->params
.rev
< 4) {
2935 status
= t3_read_reg(adap
, A_SG_RSPQ_FL_STATUS
);
2937 if (status
& (1 << qs
->rspq
.cntxt_id
)) {
2939 if (qs
->rspq
.credits
) {
2941 refill_rspq(adap
, &qs
->rspq
, 1);
2942 qs
->rspq
.restarted
++;
2943 t3_write_reg(adap
, A_SG_RSPQ_FL_STATUS
,
2944 1 << qs
->rspq
.cntxt_id
);
2949 if (qs
->fl
[0].credits
< qs
->fl
[0].size
)
2950 __refill_fl(adap
, &qs
->fl
[0]);
2951 if (qs
->fl
[1].credits
< qs
->fl
[1].size
)
2952 __refill_fl(adap
, &qs
->fl
[1]);
2955 spin_unlock_irq(lock
);
2957 mod_timer(&qs
->rx_reclaim_timer
, jiffies
+ RX_RECLAIM_PERIOD
);
2961 * t3_update_qset_coalesce - update coalescing settings for a queue set
2962 * @qs: the SGE queue set
2963 * @p: new queue set parameters
2965 * Update the coalescing settings for an SGE queue set. Nothing is done
2966 * if the queue set is not initialized yet.
2968 void t3_update_qset_coalesce(struct sge_qset
*qs
, const struct qset_params
*p
)
2970 qs
->rspq
.holdoff_tmr
= max(p
->coalesce_usecs
* 10, 1U);/* can't be 0 */
2971 qs
->rspq
.polling
= p
->polling
;
2972 qs
->napi
.poll
= p
->polling
? napi_rx_handler
: ofld_poll
;
2976 * t3_sge_alloc_qset - initialize an SGE queue set
2977 * @adapter: the adapter
2978 * @id: the queue set id
2979 * @nports: how many Ethernet ports will be using this queue set
2980 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2981 * @p: configuration parameters for this queue set
2982 * @ntxq: number of Tx queues for the queue set
2983 * @netdev: net device associated with this queue set
2984 * @netdevq: net device TX queue associated with this queue set
2986 * Allocate resources and initialize an SGE queue set. A queue set
2987 * comprises a response queue, two Rx free-buffer queues, and up to 3
2988 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2989 * queue, offload queue, and control queue.
2991 int t3_sge_alloc_qset(struct adapter
*adapter
, unsigned int id
, int nports
,
2992 int irq_vec_idx
, const struct qset_params
*p
,
2993 int ntxq
, struct net_device
*dev
,
2994 struct netdev_queue
*netdevq
)
2996 int i
, avail
, ret
= -ENOMEM
;
2997 struct sge_qset
*q
= &adapter
->sge
.qs
[id
];
2999 init_qset_cntxt(q
, id
);
3000 setup_timer(&q
->tx_reclaim_timer
, sge_timer_tx
, (unsigned long)q
);
3001 setup_timer(&q
->rx_reclaim_timer
, sge_timer_rx
, (unsigned long)q
);
3003 q
->fl
[0].desc
= alloc_ring(adapter
->pdev
, p
->fl_size
,
3004 sizeof(struct rx_desc
),
3005 sizeof(struct rx_sw_desc
),
3006 &q
->fl
[0].phys_addr
, &q
->fl
[0].sdesc
);
3010 q
->fl
[1].desc
= alloc_ring(adapter
->pdev
, p
->jumbo_size
,
3011 sizeof(struct rx_desc
),
3012 sizeof(struct rx_sw_desc
),
3013 &q
->fl
[1].phys_addr
, &q
->fl
[1].sdesc
);
3017 q
->rspq
.desc
= alloc_ring(adapter
->pdev
, p
->rspq_size
,
3018 sizeof(struct rsp_desc
), 0,
3019 &q
->rspq
.phys_addr
, NULL
);
3023 for (i
= 0; i
< ntxq
; ++i
) {
3025 * The control queue always uses immediate data so does not
3026 * need to keep track of any sk_buffs.
3028 size_t sz
= i
== TXQ_CTRL
? 0 : sizeof(struct tx_sw_desc
);
3030 q
->txq
[i
].desc
= alloc_ring(adapter
->pdev
, p
->txq_size
[i
],
3031 sizeof(struct tx_desc
), sz
,
3032 &q
->txq
[i
].phys_addr
,
3034 if (!q
->txq
[i
].desc
)
3038 q
->txq
[i
].size
= p
->txq_size
[i
];
3039 spin_lock_init(&q
->txq
[i
].lock
);
3040 skb_queue_head_init(&q
->txq
[i
].sendq
);
3043 tasklet_init(&q
->txq
[TXQ_OFLD
].qresume_tsk
, restart_offloadq
,
3045 tasklet_init(&q
->txq
[TXQ_CTRL
].qresume_tsk
, restart_ctrlq
,
3048 q
->fl
[0].gen
= q
->fl
[1].gen
= 1;
3049 q
->fl
[0].size
= p
->fl_size
;
3050 q
->fl
[1].size
= p
->jumbo_size
;
3053 q
->rspq
.size
= p
->rspq_size
;
3054 spin_lock_init(&q
->rspq
.lock
);
3055 skb_queue_head_init(&q
->rspq
.rx_queue
);
3057 q
->txq
[TXQ_ETH
].stop_thres
= nports
*
3058 flits_to_desc(sgl_len(MAX_SKB_FRAGS
+ 1) + 3);
3060 #if FL0_PG_CHUNK_SIZE > 0
3061 q
->fl
[0].buf_size
= FL0_PG_CHUNK_SIZE
;
3063 q
->fl
[0].buf_size
= SGE_RX_SM_BUF_SIZE
+ sizeof(struct cpl_rx_data
);
3065 #if FL1_PG_CHUNK_SIZE > 0
3066 q
->fl
[1].buf_size
= FL1_PG_CHUNK_SIZE
;
3068 q
->fl
[1].buf_size
= is_offload(adapter
) ?
3069 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)) :
3070 MAX_FRAME_SIZE
+ 2 + sizeof(struct cpl_rx_pkt
);
3073 q
->fl
[0].use_pages
= FL0_PG_CHUNK_SIZE
> 0;
3074 q
->fl
[1].use_pages
= FL1_PG_CHUNK_SIZE
> 0;
3075 q
->fl
[0].order
= FL0_PG_ORDER
;
3076 q
->fl
[1].order
= FL1_PG_ORDER
;
3077 q
->fl
[0].alloc_size
= FL0_PG_ALLOC_SIZE
;
3078 q
->fl
[1].alloc_size
= FL1_PG_ALLOC_SIZE
;
3080 spin_lock_irq(&adapter
->sge
.reg_lock
);
3082 /* FL threshold comparison uses < */
3083 ret
= t3_sge_init_rspcntxt(adapter
, q
->rspq
.cntxt_id
, irq_vec_idx
,
3084 q
->rspq
.phys_addr
, q
->rspq
.size
,
3085 q
->fl
[0].buf_size
- SGE_PG_RSVD
, 1, 0);
3089 for (i
= 0; i
< SGE_RXQ_PER_SET
; ++i
) {
3090 ret
= t3_sge_init_flcntxt(adapter
, q
->fl
[i
].cntxt_id
, 0,
3091 q
->fl
[i
].phys_addr
, q
->fl
[i
].size
,
3092 q
->fl
[i
].buf_size
- SGE_PG_RSVD
,
3093 p
->cong_thres
, 1, 0);
3098 ret
= t3_sge_init_ecntxt(adapter
, q
->txq
[TXQ_ETH
].cntxt_id
, USE_GTS
,
3099 SGE_CNTXT_ETH
, id
, q
->txq
[TXQ_ETH
].phys_addr
,
3100 q
->txq
[TXQ_ETH
].size
, q
->txq
[TXQ_ETH
].token
,
3106 ret
= t3_sge_init_ecntxt(adapter
, q
->txq
[TXQ_OFLD
].cntxt_id
,
3107 USE_GTS
, SGE_CNTXT_OFLD
, id
,
3108 q
->txq
[TXQ_OFLD
].phys_addr
,
3109 q
->txq
[TXQ_OFLD
].size
, 0, 1, 0);
3115 ret
= t3_sge_init_ecntxt(adapter
, q
->txq
[TXQ_CTRL
].cntxt_id
, 0,
3117 q
->txq
[TXQ_CTRL
].phys_addr
,
3118 q
->txq
[TXQ_CTRL
].size
,
3119 q
->txq
[TXQ_CTRL
].token
, 1, 0);
3124 spin_unlock_irq(&adapter
->sge
.reg_lock
);
3129 t3_update_qset_coalesce(q
, p
);
3131 avail
= refill_fl(adapter
, &q
->fl
[0], q
->fl
[0].size
,
3132 GFP_KERNEL
| __GFP_COMP
);
3134 CH_ALERT(adapter
, "free list queue 0 initialization failed\n");
3137 if (avail
< q
->fl
[0].size
)
3138 CH_WARN(adapter
, "free list queue 0 enabled with %d credits\n",
3141 avail
= refill_fl(adapter
, &q
->fl
[1], q
->fl
[1].size
,
3142 GFP_KERNEL
| __GFP_COMP
);
3143 if (avail
< q
->fl
[1].size
)
3144 CH_WARN(adapter
, "free list queue 1 enabled with %d credits\n",
3146 refill_rspq(adapter
, &q
->rspq
, q
->rspq
.size
- 1);
3148 t3_write_reg(adapter
, A_SG_GTS
, V_RSPQ(q
->rspq
.cntxt_id
) |
3149 V_NEWTIMER(q
->rspq
.holdoff_tmr
));
3154 spin_unlock_irq(&adapter
->sge
.reg_lock
);
3156 t3_free_qset(adapter
, q
);
3161 * t3_start_sge_timers - start SGE timer call backs
3162 * @adap: the adapter
3164 * Starts each SGE queue set's timer call back
3166 void t3_start_sge_timers(struct adapter
*adap
)
3170 for (i
= 0; i
< SGE_QSETS
; ++i
) {
3171 struct sge_qset
*q
= &adap
->sge
.qs
[i
];
3173 if (q
->tx_reclaim_timer
.function
)
3174 mod_timer(&q
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
3176 if (q
->rx_reclaim_timer
.function
)
3177 mod_timer(&q
->rx_reclaim_timer
, jiffies
+ RX_RECLAIM_PERIOD
);
3182 * t3_stop_sge_timers - stop SGE timer call backs
3183 * @adap: the adapter
3185 * Stops each SGE queue set's timer call back
3187 void t3_stop_sge_timers(struct adapter
*adap
)
3191 for (i
= 0; i
< SGE_QSETS
; ++i
) {
3192 struct sge_qset
*q
= &adap
->sge
.qs
[i
];
3194 if (q
->tx_reclaim_timer
.function
)
3195 del_timer_sync(&q
->tx_reclaim_timer
);
3196 if (q
->rx_reclaim_timer
.function
)
3197 del_timer_sync(&q
->rx_reclaim_timer
);
3202 * t3_free_sge_resources - free SGE resources
3203 * @adap: the adapter
3205 * Frees resources used by the SGE queue sets.
3207 void t3_free_sge_resources(struct adapter
*adap
)
3211 for (i
= 0; i
< SGE_QSETS
; ++i
)
3212 t3_free_qset(adap
, &adap
->sge
.qs
[i
]);
3216 * t3_sge_start - enable SGE
3217 * @adap: the adapter
3219 * Enables the SGE for DMAs. This is the last step in starting packet
3222 void t3_sge_start(struct adapter
*adap
)
3224 t3_set_reg_field(adap
, A_SG_CONTROL
, F_GLOBALENABLE
, F_GLOBALENABLE
);
3228 * t3_sge_stop - disable SGE operation
3229 * @adap: the adapter
3231 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3232 * from error interrupts) or from normal process context. In the latter
3233 * case it also disables any pending queue restart tasklets. Note that
3234 * if it is called in interrupt context it cannot disable the restart
3235 * tasklets as it cannot wait, however the tasklets will have no effect
3236 * since the doorbells are disabled and the driver will call this again
3237 * later from process context, at which time the tasklets will be stopped
3238 * if they are still running.
3240 void t3_sge_stop(struct adapter
*adap
)
3242 t3_set_reg_field(adap
, A_SG_CONTROL
, F_GLOBALENABLE
, 0);
3243 if (!in_interrupt()) {
3246 for (i
= 0; i
< SGE_QSETS
; ++i
) {
3247 struct sge_qset
*qs
= &adap
->sge
.qs
[i
];
3249 tasklet_kill(&qs
->txq
[TXQ_OFLD
].qresume_tsk
);
3250 tasklet_kill(&qs
->txq
[TXQ_CTRL
].qresume_tsk
);
3256 * t3_sge_init - initialize SGE
3257 * @adap: the adapter
3258 * @p: the SGE parameters
3260 * Performs SGE initialization needed every time after a chip reset.
3261 * We do not initialize any of the queue sets here, instead the driver
3262 * top-level must request those individually. We also do not enable DMA
3263 * here, that should be done after the queues have been set up.
3265 void t3_sge_init(struct adapter
*adap
, struct sge_params
*p
)
3267 unsigned int ctrl
, ups
= ffs(pci_resource_len(adap
->pdev
, 2) >> 12);
3269 ctrl
= F_DROPPKT
| V_PKTSHIFT(2) | F_FLMODE
| F_AVOIDCQOVFL
|
3270 F_CQCRDTCTRL
| F_CONGMODE
| F_TNLFLMODE
| F_FATLPERREN
|
3271 V_HOSTPAGESIZE(PAGE_SHIFT
- 11) | F_BIGENDIANINGRESS
|
3272 V_USERSPACESIZE(ups
? ups
- 1 : 0) | F_ISCSICOALESCING
;
3273 #if SGE_NUM_GENBITS == 1
3274 ctrl
|= F_EGRGENCTRL
;
3276 if (adap
->params
.rev
> 0) {
3277 if (!(adap
->flags
& (USING_MSIX
| USING_MSI
)))
3278 ctrl
|= F_ONEINTMULTQ
| F_OPTONEINTMULTQ
;
3280 t3_write_reg(adap
, A_SG_CONTROL
, ctrl
);
3281 t3_write_reg(adap
, A_SG_EGR_RCQ_DRB_THRSH
, V_HIRCQDRBTHRSH(512) |
3282 V_LORCQDRBTHRSH(512));
3283 t3_write_reg(adap
, A_SG_TIMER_TICK
, core_ticks_per_usec(adap
) / 10);
3284 t3_write_reg(adap
, A_SG_CMDQ_CREDIT_TH
, V_THRESHOLD(32) |
3285 V_TIMEOUT(200 * core_ticks_per_usec(adap
)));
3286 t3_write_reg(adap
, A_SG_HI_DRB_HI_THRSH
,
3287 adap
->params
.rev
< T3_REV_C
? 1000 : 500);
3288 t3_write_reg(adap
, A_SG_HI_DRB_LO_THRSH
, 256);
3289 t3_write_reg(adap
, A_SG_LO_DRB_HI_THRSH
, 1000);
3290 t3_write_reg(adap
, A_SG_LO_DRB_LO_THRSH
, 256);
3291 t3_write_reg(adap
, A_SG_OCO_BASE
, V_BASE1(0xfff));
3292 t3_write_reg(adap
, A_SG_DRB_PRI_THRESH
, 63 * 1024);
3296 * t3_sge_prep - one-time SGE initialization
3297 * @adap: the associated adapter
3298 * @p: SGE parameters
3300 * Performs one-time initialization of SGE SW state. Includes determining
3301 * defaults for the assorted SGE parameters, which admins can change until
3302 * they are used to initialize the SGE.
3304 void t3_sge_prep(struct adapter
*adap
, struct sge_params
*p
)
3308 p
->max_pkt_size
= (16 * 1024) - sizeof(struct cpl_rx_data
) -
3309 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
3311 for (i
= 0; i
< SGE_QSETS
; ++i
) {
3312 struct qset_params
*q
= p
->qset
+ i
;
3314 q
->polling
= adap
->params
.rev
> 0;
3315 q
->coalesce_usecs
= 5;
3316 q
->rspq_size
= 1024;
3318 q
->jumbo_size
= 512;
3319 q
->txq_size
[TXQ_ETH
] = 1024;
3320 q
->txq_size
[TXQ_OFLD
] = 1024;
3321 q
->txq_size
[TXQ_CTRL
] = 256;
3325 spin_lock_init(&adap
->sge
.reg_lock
);
3329 * t3_get_desc - dump an SGE descriptor for debugging purposes
3330 * @qs: the queue set
3331 * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
3332 * @idx: the descriptor index in the queue
3333 * @data: where to dump the descriptor contents
3335 * Dumps the contents of a HW descriptor of an SGE queue. Returns the
3336 * size of the descriptor.
3338 int t3_get_desc(const struct sge_qset
*qs
, unsigned int qnum
, unsigned int idx
,
3339 unsigned char *data
)
3345 if (!qs
->txq
[qnum
].desc
|| idx
>= qs
->txq
[qnum
].size
)
3347 memcpy(data
, &qs
->txq
[qnum
].desc
[idx
], sizeof(struct tx_desc
));
3348 return sizeof(struct tx_desc
);
3352 if (!qs
->rspq
.desc
|| idx
>= qs
->rspq
.size
)
3354 memcpy(data
, &qs
->rspq
.desc
[idx
], sizeof(struct rsp_desc
));
3355 return sizeof(struct rsp_desc
);
3359 if (!qs
->fl
[qnum
].desc
|| idx
>= qs
->fl
[qnum
].size
)
3361 memcpy(data
, &qs
->fl
[qnum
].desc
[idx
], sizeof(struct rx_desc
));
3362 return sizeof(struct rx_desc
);