1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name
[] = "e1000";
33 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k6-NAPI"
35 const char e1000_driver_version
[] = DRV_VERSION
;
36 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
86 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
88 int e1000_up(struct e1000_adapter
*adapter
);
89 void e1000_down(struct e1000_adapter
*adapter
);
90 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
91 void e1000_reset(struct e1000_adapter
*adapter
);
92 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
);
93 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
94 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
95 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
96 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
97 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
98 struct e1000_tx_ring
*txdr
);
99 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
100 struct e1000_rx_ring
*rxdr
);
101 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
102 struct e1000_tx_ring
*tx_ring
);
103 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
104 struct e1000_rx_ring
*rx_ring
);
105 void e1000_update_stats(struct e1000_adapter
*adapter
);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
110 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
111 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
112 static int e1000_sw_init(struct e1000_adapter
*adapter
);
113 static int e1000_open(struct net_device
*netdev
);
114 static int e1000_close(struct net_device
*netdev
);
115 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
116 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
117 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
120 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
121 struct e1000_tx_ring
*tx_ring
);
122 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
123 struct e1000_rx_ring
*rx_ring
);
124 static void e1000_set_rx_mode(struct net_device
*netdev
);
125 static void e1000_update_phy_info(unsigned long data
);
126 static void e1000_watchdog(unsigned long data
);
127 static void e1000_82547_tx_fifo_stall(unsigned long data
);
128 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
129 struct net_device
*netdev
);
130 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
131 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
132 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
133 static irqreturn_t
e1000_intr(int irq
, void *data
);
134 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
135 struct e1000_tx_ring
*tx_ring
);
136 static int e1000_clean(struct napi_struct
*napi
, int budget
);
137 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
138 struct e1000_rx_ring
*rx_ring
,
139 int *work_done
, int work_to_do
);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
141 struct e1000_rx_ring
*rx_ring
,
142 int *work_done
, int work_to_do
);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
144 struct e1000_rx_ring
*rx_ring
,
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
147 struct e1000_rx_ring
*rx_ring
,
149 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
150 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
152 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
153 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
154 static void e1000_tx_timeout(struct net_device
*dev
);
155 static void e1000_reset_task(struct work_struct
*work
);
156 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
158 struct sk_buff
*skb
);
160 static void e1000_vlan_rx_register(struct net_device
*netdev
, struct vlan_group
*grp
);
161 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
162 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
163 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
166 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
167 static int e1000_resume(struct pci_dev
*pdev
);
169 static void e1000_shutdown(struct pci_dev
*pdev
);
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device
*netdev
);
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
178 module_param(copybreak
, uint
, 0644);
179 MODULE_PARM_DESC(copybreak
,
180 "Maximum size of packet that is copied to a new buffer on receive");
182 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
183 pci_channel_state_t state
);
184 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
185 static void e1000_io_resume(struct pci_dev
*pdev
);
187 static struct pci_error_handlers e1000_err_handler
= {
188 .error_detected
= e1000_io_error_detected
,
189 .slot_reset
= e1000_io_slot_reset
,
190 .resume
= e1000_io_resume
,
193 static struct pci_driver e1000_driver
= {
194 .name
= e1000_driver_name
,
195 .id_table
= e1000_pci_tbl
,
196 .probe
= e1000_probe
,
197 .remove
= __devexit_p(e1000_remove
),
199 /* Power Managment Hooks */
200 .suspend
= e1000_suspend
,
201 .resume
= e1000_resume
,
203 .shutdown
= e1000_shutdown
,
204 .err_handler
= &e1000_err_handler
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION
);
212 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
213 module_param(debug
, int, 0);
214 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
217 * e1000_get_hw_dev - return device
218 * used by hardware layer to print debugging information
221 struct net_device
*e1000_get_hw_dev(struct e1000_hw
*hw
)
223 struct e1000_adapter
*adapter
= hw
->back
;
224 return adapter
->netdev
;
228 * e1000_init_module - Driver Registration Routine
230 * e1000_init_module is the first routine called when the driver is
231 * loaded. All it does is register with the PCI subsystem.
234 static int __init
e1000_init_module(void)
237 pr_info("%s - version %s\n", e1000_driver_string
, e1000_driver_version
);
239 pr_info("%s\n", e1000_copyright
);
241 ret
= pci_register_driver(&e1000_driver
);
242 if (copybreak
!= COPYBREAK_DEFAULT
) {
244 pr_info("copybreak disabled\n");
246 pr_info("copybreak enabled for "
247 "packets <= %u bytes\n", copybreak
);
252 module_init(e1000_init_module
);
255 * e1000_exit_module - Driver Exit Cleanup Routine
257 * e1000_exit_module is called just before the driver is removed
261 static void __exit
e1000_exit_module(void)
263 pci_unregister_driver(&e1000_driver
);
266 module_exit(e1000_exit_module
);
268 static int e1000_request_irq(struct e1000_adapter
*adapter
)
270 struct net_device
*netdev
= adapter
->netdev
;
271 irq_handler_t handler
= e1000_intr
;
272 int irq_flags
= IRQF_SHARED
;
275 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
278 e_err("Unable to allocate interrupt Error: %d\n", err
);
284 static void e1000_free_irq(struct e1000_adapter
*adapter
)
286 struct net_device
*netdev
= adapter
->netdev
;
288 free_irq(adapter
->pdev
->irq
, netdev
);
292 * e1000_irq_disable - Mask off interrupt generation on the NIC
293 * @adapter: board private structure
296 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
298 struct e1000_hw
*hw
= &adapter
->hw
;
302 synchronize_irq(adapter
->pdev
->irq
);
306 * e1000_irq_enable - Enable default interrupt generation settings
307 * @adapter: board private structure
310 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
312 struct e1000_hw
*hw
= &adapter
->hw
;
314 ew32(IMS
, IMS_ENABLE_MASK
);
318 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
320 struct e1000_hw
*hw
= &adapter
->hw
;
321 struct net_device
*netdev
= adapter
->netdev
;
322 u16 vid
= hw
->mng_cookie
.vlan_id
;
323 u16 old_vid
= adapter
->mng_vlan_id
;
324 if (adapter
->vlgrp
) {
325 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
326 if (hw
->mng_cookie
.status
&
327 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
328 e1000_vlan_rx_add_vid(netdev
, vid
);
329 adapter
->mng_vlan_id
= vid
;
331 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
333 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
335 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
336 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
338 adapter
->mng_vlan_id
= vid
;
342 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
344 struct e1000_hw
*hw
= &adapter
->hw
;
346 if (adapter
->en_mng_pt
) {
347 u32 manc
= er32(MANC
);
349 /* disable hardware interception of ARP */
350 manc
&= ~(E1000_MANC_ARP_EN
);
356 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
358 struct e1000_hw
*hw
= &adapter
->hw
;
360 if (adapter
->en_mng_pt
) {
361 u32 manc
= er32(MANC
);
363 /* re-enable hardware interception of ARP */
364 manc
|= E1000_MANC_ARP_EN
;
371 * e1000_configure - configure the hardware for RX and TX
372 * @adapter = private board structure
374 static void e1000_configure(struct e1000_adapter
*adapter
)
376 struct net_device
*netdev
= adapter
->netdev
;
379 e1000_set_rx_mode(netdev
);
381 e1000_restore_vlan(adapter
);
382 e1000_init_manageability(adapter
);
384 e1000_configure_tx(adapter
);
385 e1000_setup_rctl(adapter
);
386 e1000_configure_rx(adapter
);
387 /* call E1000_DESC_UNUSED which always leaves
388 * at least 1 descriptor unused to make sure
389 * next_to_use != next_to_clean */
390 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
391 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
392 adapter
->alloc_rx_buf(adapter
, ring
,
393 E1000_DESC_UNUSED(ring
));
397 int e1000_up(struct e1000_adapter
*adapter
)
399 struct e1000_hw
*hw
= &adapter
->hw
;
401 /* hardware has been reset, we need to reload some things */
402 e1000_configure(adapter
);
404 clear_bit(__E1000_DOWN
, &adapter
->flags
);
406 napi_enable(&adapter
->napi
);
408 e1000_irq_enable(adapter
);
410 netif_wake_queue(adapter
->netdev
);
412 /* fire a link change interrupt to start the watchdog */
413 ew32(ICS
, E1000_ICS_LSC
);
418 * e1000_power_up_phy - restore link in case the phy was powered down
419 * @adapter: address of board private structure
421 * The phy may be powered down to save power and turn off link when the
422 * driver is unloaded and wake on lan is not enabled (among others)
423 * *** this routine MUST be followed by a call to e1000_reset ***
427 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
429 struct e1000_hw
*hw
= &adapter
->hw
;
432 /* Just clear the power down bit to wake the phy back up */
433 if (hw
->media_type
== e1000_media_type_copper
) {
434 /* according to the manual, the phy will retain its
435 * settings across a power-down/up cycle */
436 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
437 mii_reg
&= ~MII_CR_POWER_DOWN
;
438 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
442 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
444 struct e1000_hw
*hw
= &adapter
->hw
;
446 /* Power down the PHY so no link is implied when interface is down *
447 * The PHY cannot be powered down if any of the following is true *
450 * (c) SoL/IDER session is active */
451 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
452 hw
->media_type
== e1000_media_type_copper
) {
455 switch (hw
->mac_type
) {
458 case e1000_82545_rev_3
:
460 case e1000_82546_rev_3
:
462 case e1000_82541_rev_2
:
464 case e1000_82547_rev_2
:
465 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
471 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
472 mii_reg
|= MII_CR_POWER_DOWN
;
473 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
480 void e1000_down(struct e1000_adapter
*adapter
)
482 struct e1000_hw
*hw
= &adapter
->hw
;
483 struct net_device
*netdev
= adapter
->netdev
;
486 /* signal that we're down so the interrupt handler does not
487 * reschedule our watchdog timer */
488 set_bit(__E1000_DOWN
, &adapter
->flags
);
490 /* disable receives in the hardware */
492 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
493 /* flush and sleep below */
495 netif_tx_disable(netdev
);
497 /* disable transmits in the hardware */
499 tctl
&= ~E1000_TCTL_EN
;
501 /* flush both disables and wait for them to finish */
505 napi_disable(&adapter
->napi
);
507 e1000_irq_disable(adapter
);
509 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
510 del_timer_sync(&adapter
->watchdog_timer
);
511 del_timer_sync(&adapter
->phy_info_timer
);
513 adapter
->link_speed
= 0;
514 adapter
->link_duplex
= 0;
515 netif_carrier_off(netdev
);
517 e1000_reset(adapter
);
518 e1000_clean_all_tx_rings(adapter
);
519 e1000_clean_all_rx_rings(adapter
);
522 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
524 WARN_ON(in_interrupt());
525 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
529 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
532 void e1000_reset(struct e1000_adapter
*adapter
)
534 struct e1000_hw
*hw
= &adapter
->hw
;
535 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
536 bool legacy_pba_adjust
= false;
539 /* Repartition Pba for greater than 9k mtu
540 * To take effect CTRL.RST is required.
543 switch (hw
->mac_type
) {
544 case e1000_82542_rev2_0
:
545 case e1000_82542_rev2_1
:
550 case e1000_82541_rev_2
:
551 legacy_pba_adjust
= true;
555 case e1000_82545_rev_3
:
557 case e1000_82546_rev_3
:
561 case e1000_82547_rev_2
:
562 legacy_pba_adjust
= true;
565 case e1000_undefined
:
570 if (legacy_pba_adjust
) {
571 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
572 pba
-= 8; /* allocate more FIFO for Tx */
574 if (hw
->mac_type
== e1000_82547
) {
575 adapter
->tx_fifo_head
= 0;
576 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
577 adapter
->tx_fifo_size
=
578 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
579 atomic_set(&adapter
->tx_fifo_stall
, 0);
581 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
582 /* adjust PBA for jumbo frames */
585 /* To maintain wire speed transmits, the Tx FIFO should be
586 * large enough to accommodate two full transmit packets,
587 * rounded up to the next 1KB and expressed in KB. Likewise,
588 * the Rx FIFO should be large enough to accommodate at least
589 * one full receive packet and is similarly rounded up and
590 * expressed in KB. */
592 /* upper 16 bits has Tx packet buffer allocation size in KB */
593 tx_space
= pba
>> 16;
594 /* lower 16 bits has Rx packet buffer allocation size in KB */
597 * the tx fifo also stores 16 bytes of information about the tx
598 * but don't include ethernet FCS because hardware appends it
600 min_tx_space
= (hw
->max_frame_size
+
601 sizeof(struct e1000_tx_desc
) -
603 min_tx_space
= ALIGN(min_tx_space
, 1024);
605 /* software strips receive CRC, so leave room for it */
606 min_rx_space
= hw
->max_frame_size
;
607 min_rx_space
= ALIGN(min_rx_space
, 1024);
610 /* If current Tx allocation is less than the min Tx FIFO size,
611 * and the min Tx FIFO size is less than the current Rx FIFO
612 * allocation, take space away from current Rx allocation */
613 if (tx_space
< min_tx_space
&&
614 ((min_tx_space
- tx_space
) < pba
)) {
615 pba
= pba
- (min_tx_space
- tx_space
);
617 /* PCI/PCIx hardware has PBA alignment constraints */
618 switch (hw
->mac_type
) {
619 case e1000_82545
... e1000_82546_rev_3
:
620 pba
&= ~(E1000_PBA_8K
- 1);
626 /* if short on rx space, rx wins and must trump tx
627 * adjustment or use Early Receive if available */
628 if (pba
< min_rx_space
)
636 * flow control settings:
637 * The high water mark must be low enough to fit one full frame
638 * (or the size used for early receive) above it in the Rx FIFO.
639 * Set it to the lower of:
640 * - 90% of the Rx FIFO size, and
641 * - the full Rx FIFO size minus the early receive size (for parts
642 * with ERT support assuming ERT set to E1000_ERT_2048), or
643 * - the full Rx FIFO size minus one full frame
645 hwm
= min(((pba
<< 10) * 9 / 10),
646 ((pba
<< 10) - hw
->max_frame_size
));
648 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
649 hw
->fc_low_water
= hw
->fc_high_water
- 8;
650 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
652 hw
->fc
= hw
->original_fc
;
654 /* Allow time for pending master requests to run */
656 if (hw
->mac_type
>= e1000_82544
)
659 if (e1000_init_hw(hw
))
660 e_err("Hardware Error\n");
661 e1000_update_mng_vlan(adapter
);
663 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
664 if (hw
->mac_type
>= e1000_82544
&&
666 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
667 u32 ctrl
= er32(CTRL
);
668 /* clear phy power management bit if we are in gig only mode,
669 * which if enabled will attempt negotiation to 100Mb, which
670 * can cause a loss of link at power off or driver unload */
671 ctrl
&= ~E1000_CTRL_SWDPIN3
;
675 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
676 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
678 e1000_reset_adaptive(hw
);
679 e1000_phy_get_info(hw
, &adapter
->phy_info
);
681 e1000_release_manageability(adapter
);
685 * Dump the eeprom for users having checksum issues
687 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
689 struct net_device
*netdev
= adapter
->netdev
;
690 struct ethtool_eeprom eeprom
;
691 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
694 u16 csum_old
, csum_new
= 0;
696 eeprom
.len
= ops
->get_eeprom_len(netdev
);
699 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
701 pr_err("Unable to allocate memory to dump EEPROM data\n");
705 ops
->get_eeprom(netdev
, &eeprom
, data
);
707 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
708 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
709 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
710 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
711 csum_new
= EEPROM_SUM
- csum_new
;
713 pr_err("/*********************/\n");
714 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old
);
715 pr_err("Calculated : 0x%04x\n", csum_new
);
717 pr_err("Offset Values\n");
718 pr_err("======== ======\n");
719 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
721 pr_err("Include this output when contacting your support provider.\n");
722 pr_err("This is not a software error! Something bad happened to\n");
723 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
724 pr_err("result in further problems, possibly loss of data,\n");
725 pr_err("corruption or system hangs!\n");
726 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
727 pr_err("which is invalid and requires you to set the proper MAC\n");
728 pr_err("address manually before continuing to enable this network\n");
729 pr_err("device. Please inspect the EEPROM dump and report the\n");
730 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
731 pr_err("/*********************/\n");
737 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
738 * @pdev: PCI device information struct
740 * Return true if an adapter needs ioport resources
742 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
744 switch (pdev
->device
) {
745 case E1000_DEV_ID_82540EM
:
746 case E1000_DEV_ID_82540EM_LOM
:
747 case E1000_DEV_ID_82540EP
:
748 case E1000_DEV_ID_82540EP_LOM
:
749 case E1000_DEV_ID_82540EP_LP
:
750 case E1000_DEV_ID_82541EI
:
751 case E1000_DEV_ID_82541EI_MOBILE
:
752 case E1000_DEV_ID_82541ER
:
753 case E1000_DEV_ID_82541ER_LOM
:
754 case E1000_DEV_ID_82541GI
:
755 case E1000_DEV_ID_82541GI_LF
:
756 case E1000_DEV_ID_82541GI_MOBILE
:
757 case E1000_DEV_ID_82544EI_COPPER
:
758 case E1000_DEV_ID_82544EI_FIBER
:
759 case E1000_DEV_ID_82544GC_COPPER
:
760 case E1000_DEV_ID_82544GC_LOM
:
761 case E1000_DEV_ID_82545EM_COPPER
:
762 case E1000_DEV_ID_82545EM_FIBER
:
763 case E1000_DEV_ID_82546EB_COPPER
:
764 case E1000_DEV_ID_82546EB_FIBER
:
765 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
772 static const struct net_device_ops e1000_netdev_ops
= {
773 .ndo_open
= e1000_open
,
774 .ndo_stop
= e1000_close
,
775 .ndo_start_xmit
= e1000_xmit_frame
,
776 .ndo_get_stats
= e1000_get_stats
,
777 .ndo_set_rx_mode
= e1000_set_rx_mode
,
778 .ndo_set_mac_address
= e1000_set_mac
,
779 .ndo_tx_timeout
= e1000_tx_timeout
,
780 .ndo_change_mtu
= e1000_change_mtu
,
781 .ndo_do_ioctl
= e1000_ioctl
,
782 .ndo_validate_addr
= eth_validate_addr
,
784 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
785 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
786 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
787 #ifdef CONFIG_NET_POLL_CONTROLLER
788 .ndo_poll_controller
= e1000_netpoll
,
793 * e1000_probe - Device Initialization Routine
794 * @pdev: PCI device information struct
795 * @ent: entry in e1000_pci_tbl
797 * Returns 0 on success, negative on failure
799 * e1000_probe initializes an adapter identified by a pci_dev structure.
800 * The OS initialization, configuring of the adapter private structure,
801 * and a hardware reset occur.
803 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
804 const struct pci_device_id
*ent
)
806 struct net_device
*netdev
;
807 struct e1000_adapter
*adapter
;
810 static int cards_found
= 0;
811 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
812 int i
, err
, pci_using_dac
;
814 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
815 int bars
, need_ioport
;
817 /* do not allocate ioport bars when not needed */
818 need_ioport
= e1000_is_need_ioport(pdev
);
820 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
821 err
= pci_enable_device(pdev
);
823 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
824 err
= pci_enable_device_mem(pdev
);
829 if (!dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64)) &&
830 !dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
833 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
835 err
= dma_set_coherent_mask(&pdev
->dev
,
838 pr_err("No usable DMA config, aborting\n");
845 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
849 pci_set_master(pdev
);
850 err
= pci_save_state(pdev
);
852 goto err_alloc_etherdev
;
855 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
857 goto err_alloc_etherdev
;
859 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
861 pci_set_drvdata(pdev
, netdev
);
862 adapter
= netdev_priv(netdev
);
863 adapter
->netdev
= netdev
;
864 adapter
->pdev
= pdev
;
865 adapter
->msg_enable
= (1 << debug
) - 1;
866 adapter
->bars
= bars
;
867 adapter
->need_ioport
= need_ioport
;
873 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
877 if (adapter
->need_ioport
) {
878 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
879 if (pci_resource_len(pdev
, i
) == 0)
881 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
882 hw
->io_base
= pci_resource_start(pdev
, i
);
888 netdev
->netdev_ops
= &e1000_netdev_ops
;
889 e1000_set_ethtool_ops(netdev
);
890 netdev
->watchdog_timeo
= 5 * HZ
;
891 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
893 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
895 adapter
->bd_number
= cards_found
;
897 /* setup the private structure */
899 err
= e1000_sw_init(adapter
);
905 if (hw
->mac_type
>= e1000_82543
) {
906 netdev
->features
= NETIF_F_SG
|
910 NETIF_F_HW_VLAN_FILTER
;
913 if ((hw
->mac_type
>= e1000_82544
) &&
914 (hw
->mac_type
!= e1000_82547
))
915 netdev
->features
|= NETIF_F_TSO
;
918 netdev
->features
|= NETIF_F_HIGHDMA
;
920 netdev
->vlan_features
|= NETIF_F_TSO
;
921 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
922 netdev
->vlan_features
|= NETIF_F_SG
;
924 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
926 /* initialize eeprom parameters */
927 if (e1000_init_eeprom_params(hw
)) {
928 e_err("EEPROM initialization failed\n");
932 /* before reading the EEPROM, reset the controller to
933 * put the device in a known good starting state */
937 /* make sure the EEPROM is good */
938 if (e1000_validate_eeprom_checksum(hw
) < 0) {
939 e_err("The EEPROM Checksum Is Not Valid\n");
940 e1000_dump_eeprom(adapter
);
942 * set MAC address to all zeroes to invalidate and temporary
943 * disable this device for the user. This blocks regular
944 * traffic while still permitting ethtool ioctls from reaching
945 * the hardware as well as allowing the user to run the
946 * interface after manually setting a hw addr using
949 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
951 /* copy the MAC address out of the EEPROM */
952 if (e1000_read_mac_addr(hw
))
953 e_err("EEPROM Read Error\n");
955 /* don't block initalization here due to bad MAC address */
956 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
957 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
959 if (!is_valid_ether_addr(netdev
->perm_addr
))
960 e_err("Invalid MAC Address\n");
962 e1000_get_bus_info(hw
);
964 init_timer(&adapter
->tx_fifo_stall_timer
);
965 adapter
->tx_fifo_stall_timer
.function
= &e1000_82547_tx_fifo_stall
;
966 adapter
->tx_fifo_stall_timer
.data
= (unsigned long)adapter
;
968 init_timer(&adapter
->watchdog_timer
);
969 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
970 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
972 init_timer(&adapter
->phy_info_timer
);
973 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
974 adapter
->phy_info_timer
.data
= (unsigned long)adapter
;
976 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
978 e1000_check_options(adapter
);
980 /* Initial Wake on LAN setting
981 * If APM wake is enabled in the EEPROM,
982 * enable the ACPI Magic Packet filter
985 switch (hw
->mac_type
) {
986 case e1000_82542_rev2_0
:
987 case e1000_82542_rev2_1
:
991 e1000_read_eeprom(hw
,
992 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
993 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
996 case e1000_82546_rev_3
:
997 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
998 e1000_read_eeprom(hw
,
999 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1004 e1000_read_eeprom(hw
,
1005 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1008 if (eeprom_data
& eeprom_apme_mask
)
1009 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1011 /* now that we have the eeprom settings, apply the special cases
1012 * where the eeprom may be wrong or the board simply won't support
1013 * wake on lan on a particular port */
1014 switch (pdev
->device
) {
1015 case E1000_DEV_ID_82546GB_PCIE
:
1016 adapter
->eeprom_wol
= 0;
1018 case E1000_DEV_ID_82546EB_FIBER
:
1019 case E1000_DEV_ID_82546GB_FIBER
:
1020 /* Wake events only supported on port A for dual fiber
1021 * regardless of eeprom setting */
1022 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1023 adapter
->eeprom_wol
= 0;
1025 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1026 /* if quad port adapter, disable WoL on all but port A */
1027 if (global_quad_port_a
!= 0)
1028 adapter
->eeprom_wol
= 0;
1030 adapter
->quad_port_a
= 1;
1031 /* Reset for multiple quad port adapters */
1032 if (++global_quad_port_a
== 4)
1033 global_quad_port_a
= 0;
1037 /* initialize the wol settings based on the eeprom settings */
1038 adapter
->wol
= adapter
->eeprom_wol
;
1039 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1041 /* reset the hardware with the new settings */
1042 e1000_reset(adapter
);
1044 strcpy(netdev
->name
, "eth%d");
1045 err
= register_netdev(netdev
);
1049 /* print bus type/speed/width info */
1050 e_info("(PCI%s:%s:%s) ",
1051 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1052 ((hw
->bus_speed
== e1000_bus_speed_133
) ? "133MHz" :
1053 (hw
->bus_speed
== e1000_bus_speed_120
) ? "120MHz" :
1054 (hw
->bus_speed
== e1000_bus_speed_100
) ? "100MHz" :
1055 (hw
->bus_speed
== e1000_bus_speed_66
) ? "66MHz" : "33MHz"),
1056 ((hw
->bus_width
== e1000_bus_width_64
) ? "64-bit" : "32-bit"));
1058 e_info("%pM\n", netdev
->dev_addr
);
1060 /* carrier off reporting is important to ethtool even BEFORE open */
1061 netif_carrier_off(netdev
);
1063 e_info("Intel(R) PRO/1000 Network Connection\n");
1070 e1000_phy_hw_reset(hw
);
1072 if (hw
->flash_address
)
1073 iounmap(hw
->flash_address
);
1074 kfree(adapter
->tx_ring
);
1075 kfree(adapter
->rx_ring
);
1077 iounmap(hw
->hw_addr
);
1079 free_netdev(netdev
);
1081 pci_release_selected_regions(pdev
, bars
);
1084 pci_disable_device(pdev
);
1089 * e1000_remove - Device Removal Routine
1090 * @pdev: PCI device information struct
1092 * e1000_remove is called by the PCI subsystem to alert the driver
1093 * that it should release a PCI device. The could be caused by a
1094 * Hot-Plug event, or because the driver is going to be removed from
1098 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1100 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1101 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1102 struct e1000_hw
*hw
= &adapter
->hw
;
1104 set_bit(__E1000_DOWN
, &adapter
->flags
);
1105 del_timer_sync(&adapter
->tx_fifo_stall_timer
);
1106 del_timer_sync(&adapter
->watchdog_timer
);
1107 del_timer_sync(&adapter
->phy_info_timer
);
1109 cancel_work_sync(&adapter
->reset_task
);
1111 e1000_release_manageability(adapter
);
1113 unregister_netdev(netdev
);
1115 e1000_phy_hw_reset(hw
);
1117 kfree(adapter
->tx_ring
);
1118 kfree(adapter
->rx_ring
);
1120 iounmap(hw
->hw_addr
);
1121 if (hw
->flash_address
)
1122 iounmap(hw
->flash_address
);
1123 pci_release_selected_regions(pdev
, adapter
->bars
);
1125 free_netdev(netdev
);
1127 pci_disable_device(pdev
);
1131 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1132 * @adapter: board private structure to initialize
1134 * e1000_sw_init initializes the Adapter private data structure.
1135 * Fields are initialized based on PCI device information and
1136 * OS network device settings (MTU size).
1139 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1141 struct e1000_hw
*hw
= &adapter
->hw
;
1142 struct net_device
*netdev
= adapter
->netdev
;
1143 struct pci_dev
*pdev
= adapter
->pdev
;
1145 /* PCI config space info */
1147 hw
->vendor_id
= pdev
->vendor
;
1148 hw
->device_id
= pdev
->device
;
1149 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1150 hw
->subsystem_id
= pdev
->subsystem_device
;
1151 hw
->revision_id
= pdev
->revision
;
1153 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
1155 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1156 hw
->max_frame_size
= netdev
->mtu
+
1157 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
1158 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
1160 /* identify the MAC */
1162 if (e1000_set_mac_type(hw
)) {
1163 e_err("Unknown MAC Type\n");
1167 switch (hw
->mac_type
) {
1172 case e1000_82541_rev_2
:
1173 case e1000_82547_rev_2
:
1174 hw
->phy_init_script
= 1;
1178 e1000_set_media_type(hw
);
1180 hw
->wait_autoneg_complete
= false;
1181 hw
->tbi_compatibility_en
= true;
1182 hw
->adaptive_ifs
= true;
1184 /* Copper options */
1186 if (hw
->media_type
== e1000_media_type_copper
) {
1187 hw
->mdix
= AUTO_ALL_MODES
;
1188 hw
->disable_polarity_correction
= false;
1189 hw
->master_slave
= E1000_MASTER_SLAVE
;
1192 adapter
->num_tx_queues
= 1;
1193 adapter
->num_rx_queues
= 1;
1195 if (e1000_alloc_queues(adapter
)) {
1196 e_err("Unable to allocate memory for queues\n");
1200 /* Explicitly disable IRQ since the NIC can be in any state. */
1201 e1000_irq_disable(adapter
);
1203 spin_lock_init(&adapter
->stats_lock
);
1205 set_bit(__E1000_DOWN
, &adapter
->flags
);
1211 * e1000_alloc_queues - Allocate memory for all rings
1212 * @adapter: board private structure to initialize
1214 * We allocate one ring per queue at run-time since we don't know the
1215 * number of queues at compile-time.
1218 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1220 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1221 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1222 if (!adapter
->tx_ring
)
1225 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1226 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1227 if (!adapter
->rx_ring
) {
1228 kfree(adapter
->tx_ring
);
1232 return E1000_SUCCESS
;
1236 * e1000_open - Called when a network interface is made active
1237 * @netdev: network interface device structure
1239 * Returns 0 on success, negative value on failure
1241 * The open entry point is called when a network interface is made
1242 * active by the system (IFF_UP). At this point all resources needed
1243 * for transmit and receive operations are allocated, the interrupt
1244 * handler is registered with the OS, the watchdog timer is started,
1245 * and the stack is notified that the interface is ready.
1248 static int e1000_open(struct net_device
*netdev
)
1250 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1251 struct e1000_hw
*hw
= &adapter
->hw
;
1254 /* disallow open during test */
1255 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1258 netif_carrier_off(netdev
);
1260 /* allocate transmit descriptors */
1261 err
= e1000_setup_all_tx_resources(adapter
);
1265 /* allocate receive descriptors */
1266 err
= e1000_setup_all_rx_resources(adapter
);
1270 e1000_power_up_phy(adapter
);
1272 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1273 if ((hw
->mng_cookie
.status
&
1274 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1275 e1000_update_mng_vlan(adapter
);
1278 /* before we allocate an interrupt, we must be ready to handle it.
1279 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1280 * as soon as we call pci_request_irq, so we have to setup our
1281 * clean_rx handler before we do so. */
1282 e1000_configure(adapter
);
1284 err
= e1000_request_irq(adapter
);
1288 /* From here on the code is the same as e1000_up() */
1289 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1291 napi_enable(&adapter
->napi
);
1293 e1000_irq_enable(adapter
);
1295 netif_start_queue(netdev
);
1297 /* fire a link status change interrupt to start the watchdog */
1298 ew32(ICS
, E1000_ICS_LSC
);
1300 return E1000_SUCCESS
;
1303 e1000_power_down_phy(adapter
);
1304 e1000_free_all_rx_resources(adapter
);
1306 e1000_free_all_tx_resources(adapter
);
1308 e1000_reset(adapter
);
1314 * e1000_close - Disables a network interface
1315 * @netdev: network interface device structure
1317 * Returns 0, this is not allowed to fail
1319 * The close entry point is called when an interface is de-activated
1320 * by the OS. The hardware is still under the drivers control, but
1321 * needs to be disabled. A global MAC reset is issued to stop the
1322 * hardware, and all transmit and receive resources are freed.
1325 static int e1000_close(struct net_device
*netdev
)
1327 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1328 struct e1000_hw
*hw
= &adapter
->hw
;
1330 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1331 e1000_down(adapter
);
1332 e1000_power_down_phy(adapter
);
1333 e1000_free_irq(adapter
);
1335 e1000_free_all_tx_resources(adapter
);
1336 e1000_free_all_rx_resources(adapter
);
1338 /* kill manageability vlan ID if supported, but not if a vlan with
1339 * the same ID is registered on the host OS (let 8021q kill it) */
1340 if ((hw
->mng_cookie
.status
&
1341 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1343 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
))) {
1344 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1351 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1352 * @adapter: address of board private structure
1353 * @start: address of beginning of memory
1354 * @len: length of memory
1356 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1359 struct e1000_hw
*hw
= &adapter
->hw
;
1360 unsigned long begin
= (unsigned long)start
;
1361 unsigned long end
= begin
+ len
;
1363 /* First rev 82545 and 82546 need to not allow any memory
1364 * write location to cross 64k boundary due to errata 23 */
1365 if (hw
->mac_type
== e1000_82545
||
1366 hw
->mac_type
== e1000_82546
) {
1367 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1374 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1375 * @adapter: board private structure
1376 * @txdr: tx descriptor ring (for a specific queue) to setup
1378 * Return 0 on success, negative on failure
1381 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1382 struct e1000_tx_ring
*txdr
)
1384 struct pci_dev
*pdev
= adapter
->pdev
;
1387 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1388 txdr
->buffer_info
= vmalloc(size
);
1389 if (!txdr
->buffer_info
) {
1390 e_err("Unable to allocate memory for the Tx descriptor ring\n");
1393 memset(txdr
->buffer_info
, 0, size
);
1395 /* round up to nearest 4K */
1397 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1398 txdr
->size
= ALIGN(txdr
->size
, 4096);
1400 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1404 vfree(txdr
->buffer_info
);
1405 e_err("Unable to allocate memory for the Tx descriptor ring\n");
1409 /* Fix for errata 23, can't cross 64kB boundary */
1410 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1411 void *olddesc
= txdr
->desc
;
1412 dma_addr_t olddma
= txdr
->dma
;
1413 e_err("txdr align check failed: %u bytes at %p\n",
1414 txdr
->size
, txdr
->desc
);
1415 /* Try again, without freeing the previous */
1416 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
,
1417 &txdr
->dma
, GFP_KERNEL
);
1418 /* Failed allocation, critical failure */
1420 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1422 goto setup_tx_desc_die
;
1425 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1427 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
1429 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1431 e_err("Unable to allocate aligned memory "
1432 "for the transmit descriptor ring\n");
1433 vfree(txdr
->buffer_info
);
1436 /* Free old allocation, new allocation was successful */
1437 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1441 memset(txdr
->desc
, 0, txdr
->size
);
1443 txdr
->next_to_use
= 0;
1444 txdr
->next_to_clean
= 0;
1450 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1451 * (Descriptors) for all queues
1452 * @adapter: board private structure
1454 * Return 0 on success, negative on failure
1457 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1461 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1462 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1464 e_err("Allocation for Tx Queue %u failed\n", i
);
1465 for (i
-- ; i
>= 0; i
--)
1466 e1000_free_tx_resources(adapter
,
1467 &adapter
->tx_ring
[i
]);
1476 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1477 * @adapter: board private structure
1479 * Configure the Tx unit of the MAC after a reset.
1482 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1485 struct e1000_hw
*hw
= &adapter
->hw
;
1486 u32 tdlen
, tctl
, tipg
;
1489 /* Setup the HW Tx Head and Tail descriptor pointers */
1491 switch (adapter
->num_tx_queues
) {
1494 tdba
= adapter
->tx_ring
[0].dma
;
1495 tdlen
= adapter
->tx_ring
[0].count
*
1496 sizeof(struct e1000_tx_desc
);
1498 ew32(TDBAH
, (tdba
>> 32));
1499 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1502 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1503 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1507 /* Set the default values for the Tx Inter Packet Gap timer */
1508 if ((hw
->media_type
== e1000_media_type_fiber
||
1509 hw
->media_type
== e1000_media_type_internal_serdes
))
1510 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1512 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1514 switch (hw
->mac_type
) {
1515 case e1000_82542_rev2_0
:
1516 case e1000_82542_rev2_1
:
1517 tipg
= DEFAULT_82542_TIPG_IPGT
;
1518 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1519 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1522 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1523 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1526 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1527 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1530 /* Set the Tx Interrupt Delay register */
1532 ew32(TIDV
, adapter
->tx_int_delay
);
1533 if (hw
->mac_type
>= e1000_82540
)
1534 ew32(TADV
, adapter
->tx_abs_int_delay
);
1536 /* Program the Transmit Control Register */
1539 tctl
&= ~E1000_TCTL_CT
;
1540 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1541 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1543 e1000_config_collision_dist(hw
);
1545 /* Setup Transmit Descriptor Settings for eop descriptor */
1546 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1548 /* only set IDE if we are delaying interrupts using the timers */
1549 if (adapter
->tx_int_delay
)
1550 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1552 if (hw
->mac_type
< e1000_82543
)
1553 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1555 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1557 /* Cache if we're 82544 running in PCI-X because we'll
1558 * need this to apply a workaround later in the send path. */
1559 if (hw
->mac_type
== e1000_82544
&&
1560 hw
->bus_type
== e1000_bus_type_pcix
)
1561 adapter
->pcix_82544
= 1;
1568 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1569 * @adapter: board private structure
1570 * @rxdr: rx descriptor ring (for a specific queue) to setup
1572 * Returns 0 on success, negative on failure
1575 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1576 struct e1000_rx_ring
*rxdr
)
1578 struct pci_dev
*pdev
= adapter
->pdev
;
1581 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1582 rxdr
->buffer_info
= vmalloc(size
);
1583 if (!rxdr
->buffer_info
) {
1584 e_err("Unable to allocate memory for the Rx descriptor ring\n");
1587 memset(rxdr
->buffer_info
, 0, size
);
1589 desc_len
= sizeof(struct e1000_rx_desc
);
1591 /* Round up to nearest 4K */
1593 rxdr
->size
= rxdr
->count
* desc_len
;
1594 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1596 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1600 e_err("Unable to allocate memory for the Rx descriptor ring\n");
1602 vfree(rxdr
->buffer_info
);
1606 /* Fix for errata 23, can't cross 64kB boundary */
1607 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1608 void *olddesc
= rxdr
->desc
;
1609 dma_addr_t olddma
= rxdr
->dma
;
1610 e_err("rxdr align check failed: %u bytes at %p\n",
1611 rxdr
->size
, rxdr
->desc
);
1612 /* Try again, without freeing the previous */
1613 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
,
1614 &rxdr
->dma
, GFP_KERNEL
);
1615 /* Failed allocation, critical failure */
1617 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1619 e_err("Unable to allocate memory for the Rx descriptor "
1621 goto setup_rx_desc_die
;
1624 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1626 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
1628 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1630 e_err("Unable to allocate aligned memory for the Rx "
1631 "descriptor ring\n");
1632 goto setup_rx_desc_die
;
1634 /* Free old allocation, new allocation was successful */
1635 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1639 memset(rxdr
->desc
, 0, rxdr
->size
);
1641 rxdr
->next_to_clean
= 0;
1642 rxdr
->next_to_use
= 0;
1643 rxdr
->rx_skb_top
= NULL
;
1649 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1650 * (Descriptors) for all queues
1651 * @adapter: board private structure
1653 * Return 0 on success, negative on failure
1656 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1660 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1661 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1663 e_err("Allocation for Rx Queue %u failed\n", i
);
1664 for (i
-- ; i
>= 0; i
--)
1665 e1000_free_rx_resources(adapter
,
1666 &adapter
->rx_ring
[i
]);
1675 * e1000_setup_rctl - configure the receive control registers
1676 * @adapter: Board private structure
1678 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1680 struct e1000_hw
*hw
= &adapter
->hw
;
1685 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1687 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1688 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1689 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1691 if (hw
->tbi_compatibility_on
== 1)
1692 rctl
|= E1000_RCTL_SBP
;
1694 rctl
&= ~E1000_RCTL_SBP
;
1696 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1697 rctl
&= ~E1000_RCTL_LPE
;
1699 rctl
|= E1000_RCTL_LPE
;
1701 /* Setup buffer sizes */
1702 rctl
&= ~E1000_RCTL_SZ_4096
;
1703 rctl
|= E1000_RCTL_BSEX
;
1704 switch (adapter
->rx_buffer_len
) {
1705 case E1000_RXBUFFER_2048
:
1707 rctl
|= E1000_RCTL_SZ_2048
;
1708 rctl
&= ~E1000_RCTL_BSEX
;
1710 case E1000_RXBUFFER_4096
:
1711 rctl
|= E1000_RCTL_SZ_4096
;
1713 case E1000_RXBUFFER_8192
:
1714 rctl
|= E1000_RCTL_SZ_8192
;
1716 case E1000_RXBUFFER_16384
:
1717 rctl
|= E1000_RCTL_SZ_16384
;
1725 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1726 * @adapter: board private structure
1728 * Configure the Rx unit of the MAC after a reset.
1731 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1734 struct e1000_hw
*hw
= &adapter
->hw
;
1735 u32 rdlen
, rctl
, rxcsum
;
1737 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1738 rdlen
= adapter
->rx_ring
[0].count
*
1739 sizeof(struct e1000_rx_desc
);
1740 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1741 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1743 rdlen
= adapter
->rx_ring
[0].count
*
1744 sizeof(struct e1000_rx_desc
);
1745 adapter
->clean_rx
= e1000_clean_rx_irq
;
1746 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1749 /* disable receives while setting up the descriptors */
1751 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1753 /* set the Receive Delay Timer Register */
1754 ew32(RDTR
, adapter
->rx_int_delay
);
1756 if (hw
->mac_type
>= e1000_82540
) {
1757 ew32(RADV
, adapter
->rx_abs_int_delay
);
1758 if (adapter
->itr_setting
!= 0)
1759 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1762 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1763 * the Base and Length of the Rx Descriptor Ring */
1764 switch (adapter
->num_rx_queues
) {
1767 rdba
= adapter
->rx_ring
[0].dma
;
1769 ew32(RDBAH
, (rdba
>> 32));
1770 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1773 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1774 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1778 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1779 if (hw
->mac_type
>= e1000_82543
) {
1780 rxcsum
= er32(RXCSUM
);
1781 if (adapter
->rx_csum
)
1782 rxcsum
|= E1000_RXCSUM_TUOFL
;
1784 /* don't need to clear IPPCSE as it defaults to 0 */
1785 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1786 ew32(RXCSUM
, rxcsum
);
1789 /* Enable Receives */
1794 * e1000_free_tx_resources - Free Tx Resources per Queue
1795 * @adapter: board private structure
1796 * @tx_ring: Tx descriptor ring for a specific queue
1798 * Free all transmit software resources
1801 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1802 struct e1000_tx_ring
*tx_ring
)
1804 struct pci_dev
*pdev
= adapter
->pdev
;
1806 e1000_clean_tx_ring(adapter
, tx_ring
);
1808 vfree(tx_ring
->buffer_info
);
1809 tx_ring
->buffer_info
= NULL
;
1811 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1814 tx_ring
->desc
= NULL
;
1818 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1819 * @adapter: board private structure
1821 * Free all transmit software resources
1824 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1828 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1829 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1832 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1833 struct e1000_buffer
*buffer_info
)
1835 if (buffer_info
->dma
) {
1836 if (buffer_info
->mapped_as_page
)
1837 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1838 buffer_info
->length
, DMA_TO_DEVICE
);
1840 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1841 buffer_info
->length
,
1843 buffer_info
->dma
= 0;
1845 if (buffer_info
->skb
) {
1846 dev_kfree_skb_any(buffer_info
->skb
);
1847 buffer_info
->skb
= NULL
;
1849 buffer_info
->time_stamp
= 0;
1850 /* buffer_info must be completely set up in the transmit path */
1854 * e1000_clean_tx_ring - Free Tx Buffers
1855 * @adapter: board private structure
1856 * @tx_ring: ring to be cleaned
1859 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1860 struct e1000_tx_ring
*tx_ring
)
1862 struct e1000_hw
*hw
= &adapter
->hw
;
1863 struct e1000_buffer
*buffer_info
;
1867 /* Free all the Tx ring sk_buffs */
1869 for (i
= 0; i
< tx_ring
->count
; i
++) {
1870 buffer_info
= &tx_ring
->buffer_info
[i
];
1871 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1874 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1875 memset(tx_ring
->buffer_info
, 0, size
);
1877 /* Zero out the descriptor ring */
1879 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1881 tx_ring
->next_to_use
= 0;
1882 tx_ring
->next_to_clean
= 0;
1883 tx_ring
->last_tx_tso
= 0;
1885 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
1886 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
1890 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1891 * @adapter: board private structure
1894 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
1898 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1899 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
1903 * e1000_free_rx_resources - Free Rx Resources
1904 * @adapter: board private structure
1905 * @rx_ring: ring to clean the resources from
1907 * Free all receive software resources
1910 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
1911 struct e1000_rx_ring
*rx_ring
)
1913 struct pci_dev
*pdev
= adapter
->pdev
;
1915 e1000_clean_rx_ring(adapter
, rx_ring
);
1917 vfree(rx_ring
->buffer_info
);
1918 rx_ring
->buffer_info
= NULL
;
1920 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1923 rx_ring
->desc
= NULL
;
1927 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1928 * @adapter: board private structure
1930 * Free all receive software resources
1933 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
1937 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1938 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1942 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1943 * @adapter: board private structure
1944 * @rx_ring: ring to free buffers from
1947 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
1948 struct e1000_rx_ring
*rx_ring
)
1950 struct e1000_hw
*hw
= &adapter
->hw
;
1951 struct e1000_buffer
*buffer_info
;
1952 struct pci_dev
*pdev
= adapter
->pdev
;
1956 /* Free all the Rx ring sk_buffs */
1957 for (i
= 0; i
< rx_ring
->count
; i
++) {
1958 buffer_info
= &rx_ring
->buffer_info
[i
];
1959 if (buffer_info
->dma
&&
1960 adapter
->clean_rx
== e1000_clean_rx_irq
) {
1961 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1962 buffer_info
->length
,
1964 } else if (buffer_info
->dma
&&
1965 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
1966 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1967 buffer_info
->length
,
1971 buffer_info
->dma
= 0;
1972 if (buffer_info
->page
) {
1973 put_page(buffer_info
->page
);
1974 buffer_info
->page
= NULL
;
1976 if (buffer_info
->skb
) {
1977 dev_kfree_skb(buffer_info
->skb
);
1978 buffer_info
->skb
= NULL
;
1982 /* there also may be some cached data from a chained receive */
1983 if (rx_ring
->rx_skb_top
) {
1984 dev_kfree_skb(rx_ring
->rx_skb_top
);
1985 rx_ring
->rx_skb_top
= NULL
;
1988 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1989 memset(rx_ring
->buffer_info
, 0, size
);
1991 /* Zero out the descriptor ring */
1992 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1994 rx_ring
->next_to_clean
= 0;
1995 rx_ring
->next_to_use
= 0;
1997 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
1998 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2002 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2003 * @adapter: board private structure
2006 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2010 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2011 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2014 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2015 * and memory write and invalidate disabled for certain operations
2017 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2019 struct e1000_hw
*hw
= &adapter
->hw
;
2020 struct net_device
*netdev
= adapter
->netdev
;
2023 e1000_pci_clear_mwi(hw
);
2026 rctl
|= E1000_RCTL_RST
;
2028 E1000_WRITE_FLUSH();
2031 if (netif_running(netdev
))
2032 e1000_clean_all_rx_rings(adapter
);
2035 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2037 struct e1000_hw
*hw
= &adapter
->hw
;
2038 struct net_device
*netdev
= adapter
->netdev
;
2042 rctl
&= ~E1000_RCTL_RST
;
2044 E1000_WRITE_FLUSH();
2047 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2048 e1000_pci_set_mwi(hw
);
2050 if (netif_running(netdev
)) {
2051 /* No need to loop, because 82542 supports only 1 queue */
2052 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2053 e1000_configure_rx(adapter
);
2054 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2059 * e1000_set_mac - Change the Ethernet Address of the NIC
2060 * @netdev: network interface device structure
2061 * @p: pointer to an address structure
2063 * Returns 0 on success, negative on failure
2066 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2068 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2069 struct e1000_hw
*hw
= &adapter
->hw
;
2070 struct sockaddr
*addr
= p
;
2072 if (!is_valid_ether_addr(addr
->sa_data
))
2073 return -EADDRNOTAVAIL
;
2075 /* 82542 2.0 needs to be in reset to write receive address registers */
2077 if (hw
->mac_type
== e1000_82542_rev2_0
)
2078 e1000_enter_82542_rst(adapter
);
2080 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2081 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2083 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2085 if (hw
->mac_type
== e1000_82542_rev2_0
)
2086 e1000_leave_82542_rst(adapter
);
2092 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2093 * @netdev: network interface device structure
2095 * The set_rx_mode entry point is called whenever the unicast or multicast
2096 * address lists or the network interface flags are updated. This routine is
2097 * responsible for configuring the hardware for proper unicast, multicast,
2098 * promiscuous mode, and all-multi behavior.
2101 static void e1000_set_rx_mode(struct net_device
*netdev
)
2103 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2104 struct e1000_hw
*hw
= &adapter
->hw
;
2105 struct netdev_hw_addr
*ha
;
2106 bool use_uc
= false;
2109 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2110 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2111 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2114 e_err("memory allocation failed\n");
2118 /* Check for Promiscuous and All Multicast modes */
2122 if (netdev
->flags
& IFF_PROMISC
) {
2123 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2124 rctl
&= ~E1000_RCTL_VFE
;
2126 if (netdev
->flags
& IFF_ALLMULTI
)
2127 rctl
|= E1000_RCTL_MPE
;
2129 rctl
&= ~E1000_RCTL_MPE
;
2130 /* Enable VLAN filter if there is a VLAN */
2132 rctl
|= E1000_RCTL_VFE
;
2135 if (netdev_uc_count(netdev
) > rar_entries
- 1) {
2136 rctl
|= E1000_RCTL_UPE
;
2137 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2138 rctl
&= ~E1000_RCTL_UPE
;
2144 /* 82542 2.0 needs to be in reset to write receive address registers */
2146 if (hw
->mac_type
== e1000_82542_rev2_0
)
2147 e1000_enter_82542_rst(adapter
);
2149 /* load the first 14 addresses into the exact filters 1-14. Unicast
2150 * addresses take precedence to avoid disabling unicast filtering
2153 * RAR 0 is used for the station MAC adddress
2154 * if there are not 14 addresses, go ahead and clear the filters
2158 netdev_for_each_uc_addr(ha
, netdev
) {
2159 if (i
== rar_entries
)
2161 e1000_rar_set(hw
, ha
->addr
, i
++);
2164 netdev_for_each_mc_addr(ha
, netdev
) {
2165 if (i
== rar_entries
) {
2166 /* load any remaining addresses into the hash table */
2167 u32 hash_reg
, hash_bit
, mta
;
2168 hash_value
= e1000_hash_mc_addr(hw
, ha
->addr
);
2169 hash_reg
= (hash_value
>> 5) & 0x7F;
2170 hash_bit
= hash_value
& 0x1F;
2171 mta
= (1 << hash_bit
);
2172 mcarray
[hash_reg
] |= mta
;
2174 e1000_rar_set(hw
, ha
->addr
, i
++);
2178 for (; i
< rar_entries
; i
++) {
2179 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2180 E1000_WRITE_FLUSH();
2181 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2182 E1000_WRITE_FLUSH();
2185 /* write the hash table completely, write from bottom to avoid
2186 * both stupid write combining chipsets, and flushing each write */
2187 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2189 * If we are on an 82544 has an errata where writing odd
2190 * offsets overwrites the previous even offset, but writing
2191 * backwards over the range solves the issue by always
2192 * writing the odd offset first
2194 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2196 E1000_WRITE_FLUSH();
2198 if (hw
->mac_type
== e1000_82542_rev2_0
)
2199 e1000_leave_82542_rst(adapter
);
2204 /* Need to wait a few seconds after link up to get diagnostic information from
2207 static void e1000_update_phy_info(unsigned long data
)
2209 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2210 struct e1000_hw
*hw
= &adapter
->hw
;
2211 e1000_phy_get_info(hw
, &adapter
->phy_info
);
2215 * e1000_82547_tx_fifo_stall - Timer Call-back
2216 * @data: pointer to adapter cast into an unsigned long
2219 static void e1000_82547_tx_fifo_stall(unsigned long data
)
2221 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2222 struct e1000_hw
*hw
= &adapter
->hw
;
2223 struct net_device
*netdev
= adapter
->netdev
;
2226 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2227 if ((er32(TDT
) == er32(TDH
)) &&
2228 (er32(TDFT
) == er32(TDFH
)) &&
2229 (er32(TDFTS
) == er32(TDFHS
))) {
2231 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2232 ew32(TDFT
, adapter
->tx_head_addr
);
2233 ew32(TDFH
, adapter
->tx_head_addr
);
2234 ew32(TDFTS
, adapter
->tx_head_addr
);
2235 ew32(TDFHS
, adapter
->tx_head_addr
);
2237 E1000_WRITE_FLUSH();
2239 adapter
->tx_fifo_head
= 0;
2240 atomic_set(&adapter
->tx_fifo_stall
, 0);
2241 netif_wake_queue(netdev
);
2242 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2243 mod_timer(&adapter
->tx_fifo_stall_timer
, jiffies
+ 1);
2248 bool e1000_has_link(struct e1000_adapter
*adapter
)
2250 struct e1000_hw
*hw
= &adapter
->hw
;
2251 bool link_active
= false;
2253 /* get_link_status is set on LSC (link status) interrupt or
2254 * rx sequence error interrupt. get_link_status will stay
2255 * false until the e1000_check_for_link establishes link
2256 * for copper adapters ONLY
2258 switch (hw
->media_type
) {
2259 case e1000_media_type_copper
:
2260 if (hw
->get_link_status
) {
2261 e1000_check_for_link(hw
);
2262 link_active
= !hw
->get_link_status
;
2267 case e1000_media_type_fiber
:
2268 e1000_check_for_link(hw
);
2269 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2271 case e1000_media_type_internal_serdes
:
2272 e1000_check_for_link(hw
);
2273 link_active
= hw
->serdes_has_link
;
2283 * e1000_watchdog - Timer Call-back
2284 * @data: pointer to adapter cast into an unsigned long
2286 static void e1000_watchdog(unsigned long data
)
2288 struct e1000_adapter
*adapter
= (struct e1000_adapter
*)data
;
2289 struct e1000_hw
*hw
= &adapter
->hw
;
2290 struct net_device
*netdev
= adapter
->netdev
;
2291 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2294 link
= e1000_has_link(adapter
);
2295 if ((netif_carrier_ok(netdev
)) && link
)
2299 if (!netif_carrier_ok(netdev
)) {
2302 /* update snapshot of PHY registers on LSC */
2303 e1000_get_speed_and_duplex(hw
,
2304 &adapter
->link_speed
,
2305 &adapter
->link_duplex
);
2308 pr_info("%s NIC Link is Up %d Mbps %s, "
2309 "Flow Control: %s\n",
2311 adapter
->link_speed
,
2312 adapter
->link_duplex
== FULL_DUPLEX
?
2313 "Full Duplex" : "Half Duplex",
2314 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2315 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2316 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2317 E1000_CTRL_TFCE
) ? "TX" : "None")));
2319 /* adjust timeout factor according to speed/duplex */
2320 adapter
->tx_timeout_factor
= 1;
2321 switch (adapter
->link_speed
) {
2324 adapter
->tx_timeout_factor
= 16;
2328 /* maybe add some timeout factor ? */
2332 /* enable transmits in the hardware */
2334 tctl
|= E1000_TCTL_EN
;
2337 netif_carrier_on(netdev
);
2338 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2339 mod_timer(&adapter
->phy_info_timer
,
2340 round_jiffies(jiffies
+ 2 * HZ
));
2341 adapter
->smartspeed
= 0;
2344 if (netif_carrier_ok(netdev
)) {
2345 adapter
->link_speed
= 0;
2346 adapter
->link_duplex
= 0;
2347 pr_info("%s NIC Link is Down\n",
2349 netif_carrier_off(netdev
);
2351 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2352 mod_timer(&adapter
->phy_info_timer
,
2353 round_jiffies(jiffies
+ 2 * HZ
));
2356 e1000_smartspeed(adapter
);
2360 e1000_update_stats(adapter
);
2362 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2363 adapter
->tpt_old
= adapter
->stats
.tpt
;
2364 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2365 adapter
->colc_old
= adapter
->stats
.colc
;
2367 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2368 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2369 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2370 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2372 e1000_update_adaptive(hw
);
2374 if (!netif_carrier_ok(netdev
)) {
2375 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2376 /* We've lost link, so the controller stops DMA,
2377 * but we've got queued Tx work that's never going
2378 * to get done, so reset controller to flush Tx.
2379 * (Do the reset outside of interrupt context). */
2380 adapter
->tx_timeout_count
++;
2381 schedule_work(&adapter
->reset_task
);
2382 /* return immediately since reset is imminent */
2387 /* Simple mode for Interrupt Throttle Rate (ITR) */
2388 if (hw
->mac_type
>= e1000_82540
&& adapter
->itr_setting
== 4) {
2390 * Symmetric Tx/Rx gets a reduced ITR=2000;
2391 * Total asymmetrical Tx or Rx gets ITR=8000;
2392 * everyone else is between 2000-8000.
2394 u32 goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2395 u32 dif
= (adapter
->gotcl
> adapter
->gorcl
?
2396 adapter
->gotcl
- adapter
->gorcl
:
2397 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2398 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2400 ew32(ITR
, 1000000000 / (itr
* 256));
2403 /* Cause software interrupt to ensure rx ring is cleaned */
2404 ew32(ICS
, E1000_ICS_RXDMT0
);
2406 /* Force detection of hung controller every watchdog period */
2407 adapter
->detect_tx_hung
= true;
2409 /* Reset the timer */
2410 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2411 mod_timer(&adapter
->watchdog_timer
,
2412 round_jiffies(jiffies
+ 2 * HZ
));
2415 enum latency_range
{
2419 latency_invalid
= 255
2423 * e1000_update_itr - update the dynamic ITR value based on statistics
2424 * @adapter: pointer to adapter
2425 * @itr_setting: current adapter->itr
2426 * @packets: the number of packets during this measurement interval
2427 * @bytes: the number of bytes during this measurement interval
2429 * Stores a new ITR value based on packets and byte
2430 * counts during the last interrupt. The advantage of per interrupt
2431 * computation is faster updates and more accurate ITR for the current
2432 * traffic pattern. Constants in this function were computed
2433 * based on theoretical maximum wire speed and thresholds were set based
2434 * on testing data as well as attempting to minimize response time
2435 * while increasing bulk throughput.
2436 * this functionality is controlled by the InterruptThrottleRate module
2437 * parameter (see e1000_param.c)
2439 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2440 u16 itr_setting
, int packets
, int bytes
)
2442 unsigned int retval
= itr_setting
;
2443 struct e1000_hw
*hw
= &adapter
->hw
;
2445 if (unlikely(hw
->mac_type
< e1000_82540
))
2446 goto update_itr_done
;
2449 goto update_itr_done
;
2451 switch (itr_setting
) {
2452 case lowest_latency
:
2453 /* jumbo frames get bulk treatment*/
2454 if (bytes
/packets
> 8000)
2455 retval
= bulk_latency
;
2456 else if ((packets
< 5) && (bytes
> 512))
2457 retval
= low_latency
;
2459 case low_latency
: /* 50 usec aka 20000 ints/s */
2460 if (bytes
> 10000) {
2461 /* jumbo frames need bulk latency setting */
2462 if (bytes
/packets
> 8000)
2463 retval
= bulk_latency
;
2464 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2465 retval
= bulk_latency
;
2466 else if ((packets
> 35))
2467 retval
= lowest_latency
;
2468 } else if (bytes
/packets
> 2000)
2469 retval
= bulk_latency
;
2470 else if (packets
<= 2 && bytes
< 512)
2471 retval
= lowest_latency
;
2473 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2474 if (bytes
> 25000) {
2476 retval
= low_latency
;
2477 } else if (bytes
< 6000) {
2478 retval
= low_latency
;
2487 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2489 struct e1000_hw
*hw
= &adapter
->hw
;
2491 u32 new_itr
= adapter
->itr
;
2493 if (unlikely(hw
->mac_type
< e1000_82540
))
2496 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2497 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2503 adapter
->tx_itr
= e1000_update_itr(adapter
,
2505 adapter
->total_tx_packets
,
2506 adapter
->total_tx_bytes
);
2507 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2508 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2509 adapter
->tx_itr
= low_latency
;
2511 adapter
->rx_itr
= e1000_update_itr(adapter
,
2513 adapter
->total_rx_packets
,
2514 adapter
->total_rx_bytes
);
2515 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2516 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2517 adapter
->rx_itr
= low_latency
;
2519 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2521 switch (current_itr
) {
2522 /* counts and packets in update_itr are dependent on these numbers */
2523 case lowest_latency
:
2527 new_itr
= 20000; /* aka hwitr = ~200 */
2537 if (new_itr
!= adapter
->itr
) {
2538 /* this attempts to bias the interrupt rate towards Bulk
2539 * by adding intermediate steps when interrupt rate is
2541 new_itr
= new_itr
> adapter
->itr
?
2542 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2544 adapter
->itr
= new_itr
;
2545 ew32(ITR
, 1000000000 / (new_itr
* 256));
2549 #define E1000_TX_FLAGS_CSUM 0x00000001
2550 #define E1000_TX_FLAGS_VLAN 0x00000002
2551 #define E1000_TX_FLAGS_TSO 0x00000004
2552 #define E1000_TX_FLAGS_IPV4 0x00000008
2553 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2554 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2556 static int e1000_tso(struct e1000_adapter
*adapter
,
2557 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2559 struct e1000_context_desc
*context_desc
;
2560 struct e1000_buffer
*buffer_info
;
2563 u16 ipcse
= 0, tucse
, mss
;
2564 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2567 if (skb_is_gso(skb
)) {
2568 if (skb_header_cloned(skb
)) {
2569 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2574 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2575 mss
= skb_shinfo(skb
)->gso_size
;
2576 if (skb
->protocol
== htons(ETH_P_IP
)) {
2577 struct iphdr
*iph
= ip_hdr(skb
);
2580 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2584 cmd_length
= E1000_TXD_CMD_IP
;
2585 ipcse
= skb_transport_offset(skb
) - 1;
2586 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2587 ipv6_hdr(skb
)->payload_len
= 0;
2588 tcp_hdr(skb
)->check
=
2589 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2590 &ipv6_hdr(skb
)->daddr
,
2594 ipcss
= skb_network_offset(skb
);
2595 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2596 tucss
= skb_transport_offset(skb
);
2597 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2600 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2601 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2603 i
= tx_ring
->next_to_use
;
2604 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2605 buffer_info
= &tx_ring
->buffer_info
[i
];
2607 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2608 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2609 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2610 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2611 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2612 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2613 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2614 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2615 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2617 buffer_info
->time_stamp
= jiffies
;
2618 buffer_info
->next_to_watch
= i
;
2620 if (++i
== tx_ring
->count
) i
= 0;
2621 tx_ring
->next_to_use
= i
;
2628 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2629 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2631 struct e1000_context_desc
*context_desc
;
2632 struct e1000_buffer
*buffer_info
;
2635 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2637 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2640 switch (skb
->protocol
) {
2641 case cpu_to_be16(ETH_P_IP
):
2642 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2643 cmd_len
|= E1000_TXD_CMD_TCP
;
2645 case cpu_to_be16(ETH_P_IPV6
):
2646 /* XXX not handling all IPV6 headers */
2647 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2648 cmd_len
|= E1000_TXD_CMD_TCP
;
2651 if (unlikely(net_ratelimit()))
2652 e_warn("checksum_partial proto=%x!\n", skb
->protocol
);
2656 css
= skb_transport_offset(skb
);
2658 i
= tx_ring
->next_to_use
;
2659 buffer_info
= &tx_ring
->buffer_info
[i
];
2660 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2662 context_desc
->lower_setup
.ip_config
= 0;
2663 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2664 context_desc
->upper_setup
.tcp_fields
.tucso
=
2665 css
+ skb
->csum_offset
;
2666 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2667 context_desc
->tcp_seg_setup
.data
= 0;
2668 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2670 buffer_info
->time_stamp
= jiffies
;
2671 buffer_info
->next_to_watch
= i
;
2673 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2674 tx_ring
->next_to_use
= i
;
2679 #define E1000_MAX_TXD_PWR 12
2680 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2682 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2683 struct e1000_tx_ring
*tx_ring
,
2684 struct sk_buff
*skb
, unsigned int first
,
2685 unsigned int max_per_txd
, unsigned int nr_frags
,
2688 struct e1000_hw
*hw
= &adapter
->hw
;
2689 struct pci_dev
*pdev
= adapter
->pdev
;
2690 struct e1000_buffer
*buffer_info
;
2691 unsigned int len
= skb_headlen(skb
);
2692 unsigned int offset
= 0, size
, count
= 0, i
;
2695 i
= tx_ring
->next_to_use
;
2698 buffer_info
= &tx_ring
->buffer_info
[i
];
2699 size
= min(len
, max_per_txd
);
2700 /* Workaround for Controller erratum --
2701 * descriptor for non-tso packet in a linear SKB that follows a
2702 * tso gets written back prematurely before the data is fully
2703 * DMA'd to the controller */
2704 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2706 tx_ring
->last_tx_tso
= 0;
2710 /* Workaround for premature desc write-backs
2711 * in TSO mode. Append 4-byte sentinel desc */
2712 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2714 /* work-around for errata 10 and it applies
2715 * to all controllers in PCI-X mode
2716 * The fix is to make sure that the first descriptor of a
2717 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2719 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2720 (size
> 2015) && count
== 0))
2723 /* Workaround for potential 82544 hang in PCI-X. Avoid
2724 * terminating buffers within evenly-aligned dwords. */
2725 if (unlikely(adapter
->pcix_82544
&&
2726 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2730 buffer_info
->length
= size
;
2731 /* set time_stamp *before* dma to help avoid a possible race */
2732 buffer_info
->time_stamp
= jiffies
;
2733 buffer_info
->mapped_as_page
= false;
2734 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
2736 size
, DMA_TO_DEVICE
);
2737 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2739 buffer_info
->next_to_watch
= i
;
2746 if (unlikely(i
== tx_ring
->count
))
2751 for (f
= 0; f
< nr_frags
; f
++) {
2752 struct skb_frag_struct
*frag
;
2754 frag
= &skb_shinfo(skb
)->frags
[f
];
2756 offset
= frag
->page_offset
;
2760 if (unlikely(i
== tx_ring
->count
))
2763 buffer_info
= &tx_ring
->buffer_info
[i
];
2764 size
= min(len
, max_per_txd
);
2765 /* Workaround for premature desc write-backs
2766 * in TSO mode. Append 4-byte sentinel desc */
2767 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2769 /* Workaround for potential 82544 hang in PCI-X.
2770 * Avoid terminating buffers within evenly-aligned
2772 if (unlikely(adapter
->pcix_82544
&&
2773 !((unsigned long)(page_to_phys(frag
->page
) + offset
2778 buffer_info
->length
= size
;
2779 buffer_info
->time_stamp
= jiffies
;
2780 buffer_info
->mapped_as_page
= true;
2781 buffer_info
->dma
= dma_map_page(&pdev
->dev
, frag
->page
,
2784 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2786 buffer_info
->next_to_watch
= i
;
2794 tx_ring
->buffer_info
[i
].skb
= skb
;
2795 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2800 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2801 buffer_info
->dma
= 0;
2807 i
+= tx_ring
->count
;
2809 buffer_info
= &tx_ring
->buffer_info
[i
];
2810 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2816 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2817 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2820 struct e1000_hw
*hw
= &adapter
->hw
;
2821 struct e1000_tx_desc
*tx_desc
= NULL
;
2822 struct e1000_buffer
*buffer_info
;
2823 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2826 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2827 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2829 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2831 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2832 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2835 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2836 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2837 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2840 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2841 txd_lower
|= E1000_TXD_CMD_VLE
;
2842 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2845 i
= tx_ring
->next_to_use
;
2848 buffer_info
= &tx_ring
->buffer_info
[i
];
2849 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
2850 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2851 tx_desc
->lower
.data
=
2852 cpu_to_le32(txd_lower
| buffer_info
->length
);
2853 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
2854 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2857 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
2859 /* Force memory writes to complete before letting h/w
2860 * know there are new descriptors to fetch. (Only
2861 * applicable for weak-ordered memory model archs,
2862 * such as IA-64). */
2865 tx_ring
->next_to_use
= i
;
2866 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
2867 /* we need this if more than one processor can write to our tail
2868 * at a time, it syncronizes IO on IA64/Altix systems */
2873 * 82547 workaround to avoid controller hang in half-duplex environment.
2874 * The workaround is to avoid queuing a large packet that would span
2875 * the internal Tx FIFO ring boundary by notifying the stack to resend
2876 * the packet at a later time. This gives the Tx FIFO an opportunity to
2877 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2878 * to the beginning of the Tx FIFO.
2881 #define E1000_FIFO_HDR 0x10
2882 #define E1000_82547_PAD_LEN 0x3E0
2884 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
2885 struct sk_buff
*skb
)
2887 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
2888 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
2890 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
2892 if (adapter
->link_duplex
!= HALF_DUPLEX
)
2893 goto no_fifo_stall_required
;
2895 if (atomic_read(&adapter
->tx_fifo_stall
))
2898 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
2899 atomic_set(&adapter
->tx_fifo_stall
, 1);
2903 no_fifo_stall_required
:
2904 adapter
->tx_fifo_head
+= skb_fifo_len
;
2905 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
2906 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
2910 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
2912 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2913 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
2915 netif_stop_queue(netdev
);
2916 /* Herbert's original patch had:
2917 * smp_mb__after_netif_stop_queue();
2918 * but since that doesn't exist yet, just open code it. */
2921 /* We need to check again in a case another CPU has just
2922 * made room available. */
2923 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
2927 netif_start_queue(netdev
);
2928 ++adapter
->restart_queue
;
2932 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
2933 struct e1000_tx_ring
*tx_ring
, int size
)
2935 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
2937 return __e1000_maybe_stop_tx(netdev
, size
);
2940 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2941 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
2942 struct net_device
*netdev
)
2944 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2945 struct e1000_hw
*hw
= &adapter
->hw
;
2946 struct e1000_tx_ring
*tx_ring
;
2947 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
2948 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
2949 unsigned int tx_flags
= 0;
2950 unsigned int len
= skb_headlen(skb
);
2951 unsigned int nr_frags
;
2957 /* This goes back to the question of how to logically map a tx queue
2958 * to a flow. Right now, performance is impacted slightly negatively
2959 * if using multiple tx queues. If the stack breaks away from a
2960 * single qdisc implementation, we can look at this again. */
2961 tx_ring
= adapter
->tx_ring
;
2963 if (unlikely(skb
->len
<= 0)) {
2964 dev_kfree_skb_any(skb
);
2965 return NETDEV_TX_OK
;
2968 mss
= skb_shinfo(skb
)->gso_size
;
2969 /* The controller does a simple calculation to
2970 * make sure there is enough room in the FIFO before
2971 * initiating the DMA for each buffer. The calc is:
2972 * 4 = ceil(buffer len/mss). To make sure we don't
2973 * overrun the FIFO, adjust the max buffer len if mss
2977 max_per_txd
= min(mss
<< 2, max_per_txd
);
2978 max_txd_pwr
= fls(max_per_txd
) - 1;
2980 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2981 if (skb
->data_len
&& hdr_len
== len
) {
2982 switch (hw
->mac_type
) {
2983 unsigned int pull_size
;
2985 /* Make sure we have room to chop off 4 bytes,
2986 * and that the end alignment will work out to
2987 * this hardware's requirements
2988 * NOTE: this is a TSO only workaround
2989 * if end byte alignment not correct move us
2990 * into the next dword */
2991 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
2994 pull_size
= min((unsigned int)4, skb
->data_len
);
2995 if (!__pskb_pull_tail(skb
, pull_size
)) {
2996 e_err("__pskb_pull_tail failed.\n");
2997 dev_kfree_skb_any(skb
);
2998 return NETDEV_TX_OK
;
3000 len
= skb_headlen(skb
);
3009 /* reserve a descriptor for the offload context */
3010 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3014 /* Controller Erratum workaround */
3015 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3018 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3020 if (adapter
->pcix_82544
)
3023 /* work-around for errata 10 and it applies to all controllers
3024 * in PCI-X mode, so add one more descriptor to the count
3026 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3030 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3031 for (f
= 0; f
< nr_frags
; f
++)
3032 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
3034 if (adapter
->pcix_82544
)
3037 /* need: count + 2 desc gap to keep tail from touching
3038 * head, otherwise try next time */
3039 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3040 return NETDEV_TX_BUSY
;
3042 if (unlikely(hw
->mac_type
== e1000_82547
)) {
3043 if (unlikely(e1000_82547_fifo_workaround(adapter
, skb
))) {
3044 netif_stop_queue(netdev
);
3045 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3046 mod_timer(&adapter
->tx_fifo_stall_timer
,
3048 return NETDEV_TX_BUSY
;
3052 if (unlikely(adapter
->vlgrp
&& vlan_tx_tag_present(skb
))) {
3053 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3054 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3057 first
= tx_ring
->next_to_use
;
3059 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3061 dev_kfree_skb_any(skb
);
3062 return NETDEV_TX_OK
;
3066 if (likely(hw
->mac_type
!= e1000_82544
))
3067 tx_ring
->last_tx_tso
= 1;
3068 tx_flags
|= E1000_TX_FLAGS_TSO
;
3069 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3070 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3072 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3073 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3075 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3079 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3080 /* Make sure there is space in the ring for the next send. */
3081 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3084 dev_kfree_skb_any(skb
);
3085 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3086 tx_ring
->next_to_use
= first
;
3089 return NETDEV_TX_OK
;
3093 * e1000_tx_timeout - Respond to a Tx Hang
3094 * @netdev: network interface device structure
3097 static void e1000_tx_timeout(struct net_device
*netdev
)
3099 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3101 /* Do the reset outside of interrupt context */
3102 adapter
->tx_timeout_count
++;
3103 schedule_work(&adapter
->reset_task
);
3106 static void e1000_reset_task(struct work_struct
*work
)
3108 struct e1000_adapter
*adapter
=
3109 container_of(work
, struct e1000_adapter
, reset_task
);
3111 e1000_reinit_locked(adapter
);
3115 * e1000_get_stats - Get System Network Statistics
3116 * @netdev: network interface device structure
3118 * Returns the address of the device statistics structure.
3119 * The statistics are actually updated from the timer callback.
3122 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3124 /* only return the current stats */
3125 return &netdev
->stats
;
3129 * e1000_change_mtu - Change the Maximum Transfer Unit
3130 * @netdev: network interface device structure
3131 * @new_mtu: new value for maximum frame size
3133 * Returns 0 on success, negative on failure
3136 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3138 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3139 struct e1000_hw
*hw
= &adapter
->hw
;
3140 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3142 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3143 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3144 e_err("Invalid MTU setting\n");
3148 /* Adapter-specific max frame size limits. */
3149 switch (hw
->mac_type
) {
3150 case e1000_undefined
... e1000_82542_rev2_1
:
3151 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3152 e_err("Jumbo Frames not supported.\n");
3157 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3161 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3163 /* e1000_down has a dependency on max_frame_size */
3164 hw
->max_frame_size
= max_frame
;
3165 if (netif_running(netdev
))
3166 e1000_down(adapter
);
3168 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3169 * means we reserve 2 more, this pushes us to allocate from the next
3171 * i.e. RXBUFFER_2048 --> size-4096 slab
3172 * however with the new *_jumbo_rx* routines, jumbo receives will use
3173 * fragmented skbs */
3175 if (max_frame
<= E1000_RXBUFFER_2048
)
3176 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3178 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3179 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3180 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3181 adapter
->rx_buffer_len
= PAGE_SIZE
;
3184 /* adjust allocation if LPE protects us, and we aren't using SBP */
3185 if (!hw
->tbi_compatibility_on
&&
3186 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3187 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3188 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3190 pr_info("%s changing MTU from %d to %d\n",
3191 netdev
->name
, netdev
->mtu
, new_mtu
);
3192 netdev
->mtu
= new_mtu
;
3194 if (netif_running(netdev
))
3197 e1000_reset(adapter
);
3199 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3205 * e1000_update_stats - Update the board statistics counters
3206 * @adapter: board private structure
3209 void e1000_update_stats(struct e1000_adapter
*adapter
)
3211 struct net_device
*netdev
= adapter
->netdev
;
3212 struct e1000_hw
*hw
= &adapter
->hw
;
3213 struct pci_dev
*pdev
= adapter
->pdev
;
3214 unsigned long flags
;
3217 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3220 * Prevent stats update while adapter is being reset, or if the pci
3221 * connection is down.
3223 if (adapter
->link_speed
== 0)
3225 if (pci_channel_offline(pdev
))
3228 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3230 /* these counters are modified from e1000_tbi_adjust_stats,
3231 * called from the interrupt context, so they must only
3232 * be written while holding adapter->stats_lock
3235 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3236 adapter
->stats
.gprc
+= er32(GPRC
);
3237 adapter
->stats
.gorcl
+= er32(GORCL
);
3238 adapter
->stats
.gorch
+= er32(GORCH
);
3239 adapter
->stats
.bprc
+= er32(BPRC
);
3240 adapter
->stats
.mprc
+= er32(MPRC
);
3241 adapter
->stats
.roc
+= er32(ROC
);
3243 adapter
->stats
.prc64
+= er32(PRC64
);
3244 adapter
->stats
.prc127
+= er32(PRC127
);
3245 adapter
->stats
.prc255
+= er32(PRC255
);
3246 adapter
->stats
.prc511
+= er32(PRC511
);
3247 adapter
->stats
.prc1023
+= er32(PRC1023
);
3248 adapter
->stats
.prc1522
+= er32(PRC1522
);
3250 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3251 adapter
->stats
.mpc
+= er32(MPC
);
3252 adapter
->stats
.scc
+= er32(SCC
);
3253 adapter
->stats
.ecol
+= er32(ECOL
);
3254 adapter
->stats
.mcc
+= er32(MCC
);
3255 adapter
->stats
.latecol
+= er32(LATECOL
);
3256 adapter
->stats
.dc
+= er32(DC
);
3257 adapter
->stats
.sec
+= er32(SEC
);
3258 adapter
->stats
.rlec
+= er32(RLEC
);
3259 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3260 adapter
->stats
.xontxc
+= er32(XONTXC
);
3261 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3262 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3263 adapter
->stats
.fcruc
+= er32(FCRUC
);
3264 adapter
->stats
.gptc
+= er32(GPTC
);
3265 adapter
->stats
.gotcl
+= er32(GOTCL
);
3266 adapter
->stats
.gotch
+= er32(GOTCH
);
3267 adapter
->stats
.rnbc
+= er32(RNBC
);
3268 adapter
->stats
.ruc
+= er32(RUC
);
3269 adapter
->stats
.rfc
+= er32(RFC
);
3270 adapter
->stats
.rjc
+= er32(RJC
);
3271 adapter
->stats
.torl
+= er32(TORL
);
3272 adapter
->stats
.torh
+= er32(TORH
);
3273 adapter
->stats
.totl
+= er32(TOTL
);
3274 adapter
->stats
.toth
+= er32(TOTH
);
3275 adapter
->stats
.tpr
+= er32(TPR
);
3277 adapter
->stats
.ptc64
+= er32(PTC64
);
3278 adapter
->stats
.ptc127
+= er32(PTC127
);
3279 adapter
->stats
.ptc255
+= er32(PTC255
);
3280 adapter
->stats
.ptc511
+= er32(PTC511
);
3281 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3282 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3284 adapter
->stats
.mptc
+= er32(MPTC
);
3285 adapter
->stats
.bptc
+= er32(BPTC
);
3287 /* used for adaptive IFS */
3289 hw
->tx_packet_delta
= er32(TPT
);
3290 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3291 hw
->collision_delta
= er32(COLC
);
3292 adapter
->stats
.colc
+= hw
->collision_delta
;
3294 if (hw
->mac_type
>= e1000_82543
) {
3295 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3296 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3297 adapter
->stats
.tncrs
+= er32(TNCRS
);
3298 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3299 adapter
->stats
.tsctc
+= er32(TSCTC
);
3300 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3303 /* Fill out the OS statistics structure */
3304 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3305 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3309 /* RLEC on some newer hardware can be incorrect so build
3310 * our own version based on RUC and ROC */
3311 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3312 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3313 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3314 adapter
->stats
.cexterr
;
3315 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3316 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3317 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3318 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3319 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3322 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3323 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3324 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3325 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3326 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3327 if (hw
->bad_tx_carr_stats_fd
&&
3328 adapter
->link_duplex
== FULL_DUPLEX
) {
3329 netdev
->stats
.tx_carrier_errors
= 0;
3330 adapter
->stats
.tncrs
= 0;
3333 /* Tx Dropped needs to be maintained elsewhere */
3336 if (hw
->media_type
== e1000_media_type_copper
) {
3337 if ((adapter
->link_speed
== SPEED_1000
) &&
3338 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3339 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3340 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3343 if ((hw
->mac_type
<= e1000_82546
) &&
3344 (hw
->phy_type
== e1000_phy_m88
) &&
3345 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3346 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3349 /* Management Stats */
3350 if (hw
->has_smbus
) {
3351 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3352 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3353 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3356 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3360 * e1000_intr - Interrupt Handler
3361 * @irq: interrupt number
3362 * @data: pointer to a network interface device structure
3365 static irqreturn_t
e1000_intr(int irq
, void *data
)
3367 struct net_device
*netdev
= data
;
3368 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3369 struct e1000_hw
*hw
= &adapter
->hw
;
3370 u32 icr
= er32(ICR
);
3372 if (unlikely((!icr
) || test_bit(__E1000_DOWN
, &adapter
->flags
)))
3373 return IRQ_NONE
; /* Not our interrupt */
3375 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3376 hw
->get_link_status
= 1;
3377 /* guard against interrupt when we're going down */
3378 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3379 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3382 /* disable interrupts, without the synchronize_irq bit */
3384 E1000_WRITE_FLUSH();
3386 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3387 adapter
->total_tx_bytes
= 0;
3388 adapter
->total_tx_packets
= 0;
3389 adapter
->total_rx_bytes
= 0;
3390 adapter
->total_rx_packets
= 0;
3391 __napi_schedule(&adapter
->napi
);
3393 /* this really should not happen! if it does it is basically a
3394 * bug, but not a hard error, so enable ints and continue */
3395 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3396 e1000_irq_enable(adapter
);
3403 * e1000_clean - NAPI Rx polling callback
3404 * @adapter: board private structure
3406 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3408 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3409 int tx_clean_complete
= 0, work_done
= 0;
3411 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3413 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3415 if (!tx_clean_complete
)
3418 /* If budget not fully consumed, exit the polling mode */
3419 if (work_done
< budget
) {
3420 if (likely(adapter
->itr_setting
& 3))
3421 e1000_set_itr(adapter
);
3422 napi_complete(napi
);
3423 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3424 e1000_irq_enable(adapter
);
3431 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3432 * @adapter: board private structure
3434 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3435 struct e1000_tx_ring
*tx_ring
)
3437 struct e1000_hw
*hw
= &adapter
->hw
;
3438 struct net_device
*netdev
= adapter
->netdev
;
3439 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3440 struct e1000_buffer
*buffer_info
;
3441 unsigned int i
, eop
;
3442 unsigned int count
= 0;
3443 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3445 i
= tx_ring
->next_to_clean
;
3446 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3447 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3449 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3450 (count
< tx_ring
->count
)) {
3451 bool cleaned
= false;
3452 for ( ; !cleaned
; count
++) {
3453 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3454 buffer_info
= &tx_ring
->buffer_info
[i
];
3455 cleaned
= (i
== eop
);
3458 struct sk_buff
*skb
= buffer_info
->skb
;
3459 unsigned int segs
, bytecount
;
3460 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3461 /* multiply data chunks by size of headers */
3462 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3464 total_tx_packets
+= segs
;
3465 total_tx_bytes
+= bytecount
;
3467 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3468 tx_desc
->upper
.data
= 0;
3470 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3473 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3474 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3477 tx_ring
->next_to_clean
= i
;
3479 #define TX_WAKE_THRESHOLD 32
3480 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3481 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3482 /* Make sure that anybody stopping the queue after this
3483 * sees the new next_to_clean.
3487 if (netif_queue_stopped(netdev
) &&
3488 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3489 netif_wake_queue(netdev
);
3490 ++adapter
->restart_queue
;
3494 if (adapter
->detect_tx_hung
) {
3495 /* Detect a transmit hang in hardware, this serializes the
3496 * check with the clearing of time_stamp and movement of i */
3497 adapter
->detect_tx_hung
= false;
3498 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3499 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3500 (adapter
->tx_timeout_factor
* HZ
)) &&
3501 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3503 /* detected Tx unit hang */
3504 e_err("Detected Tx Unit Hang\n"
3508 " next_to_use <%x>\n"
3509 " next_to_clean <%x>\n"
3510 "buffer_info[next_to_clean]\n"
3511 " time_stamp <%lx>\n"
3512 " next_to_watch <%x>\n"
3514 " next_to_watch.status <%x>\n",
3515 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3516 sizeof(struct e1000_tx_ring
)),
3517 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3518 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3519 tx_ring
->next_to_use
,
3520 tx_ring
->next_to_clean
,
3521 tx_ring
->buffer_info
[eop
].time_stamp
,
3524 eop_desc
->upper
.fields
.status
);
3525 netif_stop_queue(netdev
);
3528 adapter
->total_tx_bytes
+= total_tx_bytes
;
3529 adapter
->total_tx_packets
+= total_tx_packets
;
3530 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3531 netdev
->stats
.tx_packets
+= total_tx_packets
;
3532 return (count
< tx_ring
->count
);
3536 * e1000_rx_checksum - Receive Checksum Offload for 82543
3537 * @adapter: board private structure
3538 * @status_err: receive descriptor status and error fields
3539 * @csum: receive descriptor csum field
3540 * @sk_buff: socket buffer with received data
3543 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3544 u32 csum
, struct sk_buff
*skb
)
3546 struct e1000_hw
*hw
= &adapter
->hw
;
3547 u16 status
= (u16
)status_err
;
3548 u8 errors
= (u8
)(status_err
>> 24);
3549 skb
->ip_summed
= CHECKSUM_NONE
;
3551 /* 82543 or newer only */
3552 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3553 /* Ignore Checksum bit is set */
3554 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3555 /* TCP/UDP checksum error bit is set */
3556 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3557 /* let the stack verify checksum errors */
3558 adapter
->hw_csum_err
++;
3561 /* TCP/UDP Checksum has not been calculated */
3562 if (!(status
& E1000_RXD_STAT_TCPCS
))
3565 /* It must be a TCP or UDP packet with a valid checksum */
3566 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3567 /* TCP checksum is good */
3568 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3570 adapter
->hw_csum_good
++;
3574 * e1000_consume_page - helper function
3576 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3581 skb
->data_len
+= length
;
3582 skb
->truesize
+= length
;
3586 * e1000_receive_skb - helper function to handle rx indications
3587 * @adapter: board private structure
3588 * @status: descriptor status field as written by hardware
3589 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3590 * @skb: pointer to sk_buff to be indicated to stack
3592 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3593 __le16 vlan
, struct sk_buff
*skb
)
3595 if (unlikely(adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))) {
3596 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3598 E1000_RXD_SPC_VLAN_MASK
);
3600 netif_receive_skb(skb
);
3605 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3606 * @adapter: board private structure
3607 * @rx_ring: ring to clean
3608 * @work_done: amount of napi work completed this call
3609 * @work_to_do: max amount of work allowed for this call to do
3611 * the return value indicates whether actual cleaning was done, there
3612 * is no guarantee that everything was cleaned
3614 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
3615 struct e1000_rx_ring
*rx_ring
,
3616 int *work_done
, int work_to_do
)
3618 struct e1000_hw
*hw
= &adapter
->hw
;
3619 struct net_device
*netdev
= adapter
->netdev
;
3620 struct pci_dev
*pdev
= adapter
->pdev
;
3621 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3622 struct e1000_buffer
*buffer_info
, *next_buffer
;
3623 unsigned long irq_flags
;
3626 int cleaned_count
= 0;
3627 bool cleaned
= false;
3628 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3630 i
= rx_ring
->next_to_clean
;
3631 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3632 buffer_info
= &rx_ring
->buffer_info
[i
];
3634 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3635 struct sk_buff
*skb
;
3638 if (*work_done
>= work_to_do
)
3642 status
= rx_desc
->status
;
3643 skb
= buffer_info
->skb
;
3644 buffer_info
->skb
= NULL
;
3646 if (++i
== rx_ring
->count
) i
= 0;
3647 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3650 next_buffer
= &rx_ring
->buffer_info
[i
];
3654 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
3655 buffer_info
->length
, DMA_FROM_DEVICE
);
3656 buffer_info
->dma
= 0;
3658 length
= le16_to_cpu(rx_desc
->length
);
3660 /* errors is only valid for DD + EOP descriptors */
3661 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
3662 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
3663 u8 last_byte
= *(skb
->data
+ length
- 1);
3664 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3666 spin_lock_irqsave(&adapter
->stats_lock
,
3668 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3670 spin_unlock_irqrestore(&adapter
->stats_lock
,
3674 /* recycle both page and skb */
3675 buffer_info
->skb
= skb
;
3676 /* an error means any chain goes out the window
3678 if (rx_ring
->rx_skb_top
)
3679 dev_kfree_skb(rx_ring
->rx_skb_top
);
3680 rx_ring
->rx_skb_top
= NULL
;
3685 #define rxtop rx_ring->rx_skb_top
3686 if (!(status
& E1000_RXD_STAT_EOP
)) {
3687 /* this descriptor is only the beginning (or middle) */
3689 /* this is the beginning of a chain */
3691 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
3694 /* this is the middle of a chain */
3695 skb_fill_page_desc(rxtop
,
3696 skb_shinfo(rxtop
)->nr_frags
,
3697 buffer_info
->page
, 0, length
);
3698 /* re-use the skb, only consumed the page */
3699 buffer_info
->skb
= skb
;
3701 e1000_consume_page(buffer_info
, rxtop
, length
);
3705 /* end of the chain */
3706 skb_fill_page_desc(rxtop
,
3707 skb_shinfo(rxtop
)->nr_frags
,
3708 buffer_info
->page
, 0, length
);
3709 /* re-use the current skb, we only consumed the
3711 buffer_info
->skb
= skb
;
3714 e1000_consume_page(buffer_info
, skb
, length
);
3716 /* no chain, got EOP, this buf is the packet
3717 * copybreak to save the put_page/alloc_page */
3718 if (length
<= copybreak
&&
3719 skb_tailroom(skb
) >= length
) {
3721 vaddr
= kmap_atomic(buffer_info
->page
,
3722 KM_SKB_DATA_SOFTIRQ
);
3723 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
3724 kunmap_atomic(vaddr
,
3725 KM_SKB_DATA_SOFTIRQ
);
3726 /* re-use the page, so don't erase
3727 * buffer_info->page */
3728 skb_put(skb
, length
);
3730 skb_fill_page_desc(skb
, 0,
3731 buffer_info
->page
, 0,
3733 e1000_consume_page(buffer_info
, skb
,
3739 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3740 e1000_rx_checksum(adapter
,
3742 ((u32
)(rx_desc
->errors
) << 24),
3743 le16_to_cpu(rx_desc
->csum
), skb
);
3745 pskb_trim(skb
, skb
->len
- 4);
3747 /* probably a little skewed due to removing CRC */
3748 total_rx_bytes
+= skb
->len
;
3751 /* eth type trans needs skb->data to point to something */
3752 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
3753 e_err("pskb_may_pull failed.\n");
3758 skb
->protocol
= eth_type_trans(skb
, netdev
);
3760 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3763 rx_desc
->status
= 0;
3765 /* return some buffers to hardware, one at a time is too slow */
3766 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3767 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3771 /* use prefetched values */
3773 buffer_info
= next_buffer
;
3775 rx_ring
->next_to_clean
= i
;
3777 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3779 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3781 adapter
->total_rx_packets
+= total_rx_packets
;
3782 adapter
->total_rx_bytes
+= total_rx_bytes
;
3783 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3784 netdev
->stats
.rx_packets
+= total_rx_packets
;
3789 * this should improve performance for small packets with large amounts
3790 * of reassembly being done in the stack
3792 static void e1000_check_copybreak(struct net_device
*netdev
,
3793 struct e1000_buffer
*buffer_info
,
3794 u32 length
, struct sk_buff
**skb
)
3796 struct sk_buff
*new_skb
;
3798 if (length
> copybreak
)
3801 new_skb
= netdev_alloc_skb_ip_align(netdev
, length
);
3805 skb_copy_to_linear_data_offset(new_skb
, -NET_IP_ALIGN
,
3806 (*skb
)->data
- NET_IP_ALIGN
,
3807 length
+ NET_IP_ALIGN
);
3808 /* save the skb in buffer_info as good */
3809 buffer_info
->skb
= *skb
;
3814 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3815 * @adapter: board private structure
3816 * @rx_ring: ring to clean
3817 * @work_done: amount of napi work completed this call
3818 * @work_to_do: max amount of work allowed for this call to do
3820 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3821 struct e1000_rx_ring
*rx_ring
,
3822 int *work_done
, int work_to_do
)
3824 struct e1000_hw
*hw
= &adapter
->hw
;
3825 struct net_device
*netdev
= adapter
->netdev
;
3826 struct pci_dev
*pdev
= adapter
->pdev
;
3827 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3828 struct e1000_buffer
*buffer_info
, *next_buffer
;
3829 unsigned long flags
;
3832 int cleaned_count
= 0;
3833 bool cleaned
= false;
3834 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3836 i
= rx_ring
->next_to_clean
;
3837 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3838 buffer_info
= &rx_ring
->buffer_info
[i
];
3840 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3841 struct sk_buff
*skb
;
3844 if (*work_done
>= work_to_do
)
3848 status
= rx_desc
->status
;
3849 skb
= buffer_info
->skb
;
3850 buffer_info
->skb
= NULL
;
3852 prefetch(skb
->data
- NET_IP_ALIGN
);
3854 if (++i
== rx_ring
->count
) i
= 0;
3855 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3858 next_buffer
= &rx_ring
->buffer_info
[i
];
3862 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
3863 buffer_info
->length
, DMA_FROM_DEVICE
);
3864 buffer_info
->dma
= 0;
3866 length
= le16_to_cpu(rx_desc
->length
);
3867 /* !EOP means multiple descriptors were used to store a single
3868 * packet, if thats the case we need to toss it. In fact, we
3869 * to toss every packet with the EOP bit clear and the next
3870 * frame that _does_ have the EOP bit set, as it is by
3871 * definition only a frame fragment
3873 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
3874 adapter
->discarding
= true;
3876 if (adapter
->discarding
) {
3877 /* All receives must fit into a single buffer */
3878 e_info("Receive packet consumed multiple buffers\n");
3880 buffer_info
->skb
= skb
;
3881 if (status
& E1000_RXD_STAT_EOP
)
3882 adapter
->discarding
= false;
3886 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
3887 u8 last_byte
= *(skb
->data
+ length
- 1);
3888 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3890 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3891 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3893 spin_unlock_irqrestore(&adapter
->stats_lock
,
3898 buffer_info
->skb
= skb
;
3903 /* adjust length to remove Ethernet CRC, this must be
3904 * done after the TBI_ACCEPT workaround above */
3907 /* probably a little skewed due to removing CRC */
3908 total_rx_bytes
+= length
;
3911 e1000_check_copybreak(netdev
, buffer_info
, length
, &skb
);
3913 skb_put(skb
, length
);
3915 /* Receive Checksum Offload */
3916 e1000_rx_checksum(adapter
,
3918 ((u32
)(rx_desc
->errors
) << 24),
3919 le16_to_cpu(rx_desc
->csum
), skb
);
3921 skb
->protocol
= eth_type_trans(skb
, netdev
);
3923 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3926 rx_desc
->status
= 0;
3928 /* return some buffers to hardware, one at a time is too slow */
3929 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3930 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3934 /* use prefetched values */
3936 buffer_info
= next_buffer
;
3938 rx_ring
->next_to_clean
= i
;
3940 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3942 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3944 adapter
->total_rx_packets
+= total_rx_packets
;
3945 adapter
->total_rx_bytes
+= total_rx_bytes
;
3946 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3947 netdev
->stats
.rx_packets
+= total_rx_packets
;
3952 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3953 * @adapter: address of board private structure
3954 * @rx_ring: pointer to receive ring structure
3955 * @cleaned_count: number of buffers to allocate this pass
3959 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
3960 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
3962 struct net_device
*netdev
= adapter
->netdev
;
3963 struct pci_dev
*pdev
= adapter
->pdev
;
3964 struct e1000_rx_desc
*rx_desc
;
3965 struct e1000_buffer
*buffer_info
;
3966 struct sk_buff
*skb
;
3968 unsigned int bufsz
= 256 - 16 /*for skb_reserve */ ;
3970 i
= rx_ring
->next_to_use
;
3971 buffer_info
= &rx_ring
->buffer_info
[i
];
3973 while (cleaned_count
--) {
3974 skb
= buffer_info
->skb
;
3980 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
3981 if (unlikely(!skb
)) {
3982 /* Better luck next round */
3983 adapter
->alloc_rx_buff_failed
++;
3987 /* Fix for errata 23, can't cross 64kB boundary */
3988 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
3989 struct sk_buff
*oldskb
= skb
;
3990 e_err("skb align check failed: %u bytes at %p\n",
3992 /* Try again, without freeing the previous */
3993 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
3994 /* Failed allocation, critical failure */
3996 dev_kfree_skb(oldskb
);
3997 adapter
->alloc_rx_buff_failed
++;
4001 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4004 dev_kfree_skb(oldskb
);
4005 break; /* while (cleaned_count--) */
4008 /* Use new allocation */
4009 dev_kfree_skb(oldskb
);
4011 buffer_info
->skb
= skb
;
4012 buffer_info
->length
= adapter
->rx_buffer_len
;
4014 /* allocate a new page if necessary */
4015 if (!buffer_info
->page
) {
4016 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4017 if (unlikely(!buffer_info
->page
)) {
4018 adapter
->alloc_rx_buff_failed
++;
4023 if (!buffer_info
->dma
) {
4024 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
4025 buffer_info
->page
, 0,
4026 buffer_info
->length
,
4028 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4029 put_page(buffer_info
->page
);
4031 buffer_info
->page
= NULL
;
4032 buffer_info
->skb
= NULL
;
4033 buffer_info
->dma
= 0;
4034 adapter
->alloc_rx_buff_failed
++;
4035 break; /* while !buffer_info->skb */
4039 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4040 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4042 if (unlikely(++i
== rx_ring
->count
))
4044 buffer_info
= &rx_ring
->buffer_info
[i
];
4047 if (likely(rx_ring
->next_to_use
!= i
)) {
4048 rx_ring
->next_to_use
= i
;
4049 if (unlikely(i
-- == 0))
4050 i
= (rx_ring
->count
- 1);
4052 /* Force memory writes to complete before letting h/w
4053 * know there are new descriptors to fetch. (Only
4054 * applicable for weak-ordered memory model archs,
4055 * such as IA-64). */
4057 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4062 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4063 * @adapter: address of board private structure
4066 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4067 struct e1000_rx_ring
*rx_ring
,
4070 struct e1000_hw
*hw
= &adapter
->hw
;
4071 struct net_device
*netdev
= adapter
->netdev
;
4072 struct pci_dev
*pdev
= adapter
->pdev
;
4073 struct e1000_rx_desc
*rx_desc
;
4074 struct e1000_buffer
*buffer_info
;
4075 struct sk_buff
*skb
;
4077 unsigned int bufsz
= adapter
->rx_buffer_len
;
4079 i
= rx_ring
->next_to_use
;
4080 buffer_info
= &rx_ring
->buffer_info
[i
];
4082 while (cleaned_count
--) {
4083 skb
= buffer_info
->skb
;
4089 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4090 if (unlikely(!skb
)) {
4091 /* Better luck next round */
4092 adapter
->alloc_rx_buff_failed
++;
4096 /* Fix for errata 23, can't cross 64kB boundary */
4097 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4098 struct sk_buff
*oldskb
= skb
;
4099 e_err("skb align check failed: %u bytes at %p\n",
4101 /* Try again, without freeing the previous */
4102 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4103 /* Failed allocation, critical failure */
4105 dev_kfree_skb(oldskb
);
4106 adapter
->alloc_rx_buff_failed
++;
4110 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4113 dev_kfree_skb(oldskb
);
4114 adapter
->alloc_rx_buff_failed
++;
4115 break; /* while !buffer_info->skb */
4118 /* Use new allocation */
4119 dev_kfree_skb(oldskb
);
4121 buffer_info
->skb
= skb
;
4122 buffer_info
->length
= adapter
->rx_buffer_len
;
4124 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4126 buffer_info
->length
,
4128 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4130 buffer_info
->skb
= NULL
;
4131 buffer_info
->dma
= 0;
4132 adapter
->alloc_rx_buff_failed
++;
4133 break; /* while !buffer_info->skb */
4137 * XXX if it was allocated cleanly it will never map to a
4141 /* Fix for errata 23, can't cross 64kB boundary */
4142 if (!e1000_check_64k_bound(adapter
,
4143 (void *)(unsigned long)buffer_info
->dma
,
4144 adapter
->rx_buffer_len
)) {
4145 e_err("dma align check failed: %u bytes at %p\n",
4146 adapter
->rx_buffer_len
,
4147 (void *)(unsigned long)buffer_info
->dma
);
4149 buffer_info
->skb
= NULL
;
4151 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4152 adapter
->rx_buffer_len
,
4154 buffer_info
->dma
= 0;
4156 adapter
->alloc_rx_buff_failed
++;
4157 break; /* while !buffer_info->skb */
4159 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4160 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4162 if (unlikely(++i
== rx_ring
->count
))
4164 buffer_info
= &rx_ring
->buffer_info
[i
];
4167 if (likely(rx_ring
->next_to_use
!= i
)) {
4168 rx_ring
->next_to_use
= i
;
4169 if (unlikely(i
-- == 0))
4170 i
= (rx_ring
->count
- 1);
4172 /* Force memory writes to complete before letting h/w
4173 * know there are new descriptors to fetch. (Only
4174 * applicable for weak-ordered memory model archs,
4175 * such as IA-64). */
4177 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4182 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4186 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4188 struct e1000_hw
*hw
= &adapter
->hw
;
4192 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4193 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4196 if (adapter
->smartspeed
== 0) {
4197 /* If Master/Slave config fault is asserted twice,
4198 * we assume back-to-back */
4199 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4200 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4201 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4202 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4203 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4204 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4205 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4206 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4208 adapter
->smartspeed
++;
4209 if (!e1000_phy_setup_autoneg(hw
) &&
4210 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4212 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4213 MII_CR_RESTART_AUTO_NEG
);
4214 e1000_write_phy_reg(hw
, PHY_CTRL
,
4219 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4220 /* If still no link, perhaps using 2/3 pair cable */
4221 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4222 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4223 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4224 if (!e1000_phy_setup_autoneg(hw
) &&
4225 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4226 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4227 MII_CR_RESTART_AUTO_NEG
);
4228 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4231 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4232 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4233 adapter
->smartspeed
= 0;
4243 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4249 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4262 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4265 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4266 struct e1000_hw
*hw
= &adapter
->hw
;
4267 struct mii_ioctl_data
*data
= if_mii(ifr
);
4271 unsigned long flags
;
4273 if (hw
->media_type
!= e1000_media_type_copper
)
4278 data
->phy_id
= hw
->phy_addr
;
4281 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4282 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4284 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4287 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4290 if (data
->reg_num
& ~(0x1F))
4292 mii_reg
= data
->val_in
;
4293 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4294 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4296 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4299 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4300 if (hw
->media_type
== e1000_media_type_copper
) {
4301 switch (data
->reg_num
) {
4303 if (mii_reg
& MII_CR_POWER_DOWN
)
4305 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4307 hw
->autoneg_advertised
= 0x2F;
4310 spddplx
= SPEED_1000
;
4311 else if (mii_reg
& 0x2000)
4312 spddplx
= SPEED_100
;
4315 spddplx
+= (mii_reg
& 0x100)
4318 retval
= e1000_set_spd_dplx(adapter
,
4323 if (netif_running(adapter
->netdev
))
4324 e1000_reinit_locked(adapter
);
4326 e1000_reset(adapter
);
4328 case M88E1000_PHY_SPEC_CTRL
:
4329 case M88E1000_EXT_PHY_SPEC_CTRL
:
4330 if (e1000_phy_reset(hw
))
4335 switch (data
->reg_num
) {
4337 if (mii_reg
& MII_CR_POWER_DOWN
)
4339 if (netif_running(adapter
->netdev
))
4340 e1000_reinit_locked(adapter
);
4342 e1000_reset(adapter
);
4350 return E1000_SUCCESS
;
4353 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4355 struct e1000_adapter
*adapter
= hw
->back
;
4356 int ret_val
= pci_set_mwi(adapter
->pdev
);
4359 e_err("Error in setting MWI\n");
4362 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4364 struct e1000_adapter
*adapter
= hw
->back
;
4366 pci_clear_mwi(adapter
->pdev
);
4369 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4371 struct e1000_adapter
*adapter
= hw
->back
;
4372 return pcix_get_mmrbc(adapter
->pdev
);
4375 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4377 struct e1000_adapter
*adapter
= hw
->back
;
4378 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4381 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4386 static void e1000_vlan_rx_register(struct net_device
*netdev
,
4387 struct vlan_group
*grp
)
4389 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4390 struct e1000_hw
*hw
= &adapter
->hw
;
4393 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4394 e1000_irq_disable(adapter
);
4395 adapter
->vlgrp
= grp
;
4398 /* enable VLAN tag insert/strip */
4400 ctrl
|= E1000_CTRL_VME
;
4403 /* enable VLAN receive filtering */
4405 rctl
&= ~E1000_RCTL_CFIEN
;
4406 if (!(netdev
->flags
& IFF_PROMISC
))
4407 rctl
|= E1000_RCTL_VFE
;
4409 e1000_update_mng_vlan(adapter
);
4411 /* disable VLAN tag insert/strip */
4413 ctrl
&= ~E1000_CTRL_VME
;
4416 /* disable VLAN receive filtering */
4418 rctl
&= ~E1000_RCTL_VFE
;
4421 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
4422 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4423 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
4427 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4428 e1000_irq_enable(adapter
);
4431 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4433 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4434 struct e1000_hw
*hw
= &adapter
->hw
;
4437 if ((hw
->mng_cookie
.status
&
4438 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4439 (vid
== adapter
->mng_vlan_id
))
4441 /* add VID to filter table */
4442 index
= (vid
>> 5) & 0x7F;
4443 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4444 vfta
|= (1 << (vid
& 0x1F));
4445 e1000_write_vfta(hw
, index
, vfta
);
4448 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4450 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4451 struct e1000_hw
*hw
= &adapter
->hw
;
4454 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4455 e1000_irq_disable(adapter
);
4456 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4457 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4458 e1000_irq_enable(adapter
);
4460 /* remove VID from filter table */
4461 index
= (vid
>> 5) & 0x7F;
4462 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4463 vfta
&= ~(1 << (vid
& 0x1F));
4464 e1000_write_vfta(hw
, index
, vfta
);
4467 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4469 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4471 if (adapter
->vlgrp
) {
4473 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4474 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4476 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4481 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
4483 struct e1000_hw
*hw
= &adapter
->hw
;
4487 /* Fiber NICs only allow 1000 gbps Full duplex */
4488 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4489 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4490 e_err("Unsupported Speed/Duplex configuration\n");
4495 case SPEED_10
+ DUPLEX_HALF
:
4496 hw
->forced_speed_duplex
= e1000_10_half
;
4498 case SPEED_10
+ DUPLEX_FULL
:
4499 hw
->forced_speed_duplex
= e1000_10_full
;
4501 case SPEED_100
+ DUPLEX_HALF
:
4502 hw
->forced_speed_duplex
= e1000_100_half
;
4504 case SPEED_100
+ DUPLEX_FULL
:
4505 hw
->forced_speed_duplex
= e1000_100_full
;
4507 case SPEED_1000
+ DUPLEX_FULL
:
4509 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4511 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4513 e_err("Unsupported Speed/Duplex configuration\n");
4519 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4521 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4522 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4523 struct e1000_hw
*hw
= &adapter
->hw
;
4524 u32 ctrl
, ctrl_ext
, rctl
, status
;
4525 u32 wufc
= adapter
->wol
;
4530 netif_device_detach(netdev
);
4532 if (netif_running(netdev
)) {
4533 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4534 e1000_down(adapter
);
4538 retval
= pci_save_state(pdev
);
4543 status
= er32(STATUS
);
4544 if (status
& E1000_STATUS_LU
)
4545 wufc
&= ~E1000_WUFC_LNKC
;
4548 e1000_setup_rctl(adapter
);
4549 e1000_set_rx_mode(netdev
);
4551 /* turn on all-multi mode if wake on multicast is enabled */
4552 if (wufc
& E1000_WUFC_MC
) {
4554 rctl
|= E1000_RCTL_MPE
;
4558 if (hw
->mac_type
>= e1000_82540
) {
4560 /* advertise wake from D3Cold */
4561 #define E1000_CTRL_ADVD3WUC 0x00100000
4562 /* phy power management enable */
4563 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4564 ctrl
|= E1000_CTRL_ADVD3WUC
|
4565 E1000_CTRL_EN_PHY_PWR_MGMT
;
4569 if (hw
->media_type
== e1000_media_type_fiber
||
4570 hw
->media_type
== e1000_media_type_internal_serdes
) {
4571 /* keep the laser running in D3 */
4572 ctrl_ext
= er32(CTRL_EXT
);
4573 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4574 ew32(CTRL_EXT
, ctrl_ext
);
4577 ew32(WUC
, E1000_WUC_PME_EN
);
4584 e1000_release_manageability(adapter
);
4586 *enable_wake
= !!wufc
;
4588 /* make sure adapter isn't asleep if manageability is enabled */
4589 if (adapter
->en_mng_pt
)
4590 *enable_wake
= true;
4592 if (netif_running(netdev
))
4593 e1000_free_irq(adapter
);
4595 pci_disable_device(pdev
);
4601 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4606 retval
= __e1000_shutdown(pdev
, &wake
);
4611 pci_prepare_to_sleep(pdev
);
4613 pci_wake_from_d3(pdev
, false);
4614 pci_set_power_state(pdev
, PCI_D3hot
);
4620 static int e1000_resume(struct pci_dev
*pdev
)
4622 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4623 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4624 struct e1000_hw
*hw
= &adapter
->hw
;
4627 pci_set_power_state(pdev
, PCI_D0
);
4628 pci_restore_state(pdev
);
4629 pci_save_state(pdev
);
4631 if (adapter
->need_ioport
)
4632 err
= pci_enable_device(pdev
);
4634 err
= pci_enable_device_mem(pdev
);
4636 pr_err("Cannot enable PCI device from suspend\n");
4639 pci_set_master(pdev
);
4641 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4642 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4644 if (netif_running(netdev
)) {
4645 err
= e1000_request_irq(adapter
);
4650 e1000_power_up_phy(adapter
);
4651 e1000_reset(adapter
);
4654 e1000_init_manageability(adapter
);
4656 if (netif_running(netdev
))
4659 netif_device_attach(netdev
);
4665 static void e1000_shutdown(struct pci_dev
*pdev
)
4669 __e1000_shutdown(pdev
, &wake
);
4671 if (system_state
== SYSTEM_POWER_OFF
) {
4672 pci_wake_from_d3(pdev
, wake
);
4673 pci_set_power_state(pdev
, PCI_D3hot
);
4677 #ifdef CONFIG_NET_POLL_CONTROLLER
4679 * Polling 'interrupt' - used by things like netconsole to send skbs
4680 * without having to re-enable interrupts. It's not called while
4681 * the interrupt routine is executing.
4683 static void e1000_netpoll(struct net_device
*netdev
)
4685 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4687 disable_irq(adapter
->pdev
->irq
);
4688 e1000_intr(adapter
->pdev
->irq
, netdev
);
4689 enable_irq(adapter
->pdev
->irq
);
4694 * e1000_io_error_detected - called when PCI error is detected
4695 * @pdev: Pointer to PCI device
4696 * @state: The current pci connection state
4698 * This function is called after a PCI bus error affecting
4699 * this device has been detected.
4701 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4702 pci_channel_state_t state
)
4704 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4705 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4707 netif_device_detach(netdev
);
4709 if (state
== pci_channel_io_perm_failure
)
4710 return PCI_ERS_RESULT_DISCONNECT
;
4712 if (netif_running(netdev
))
4713 e1000_down(adapter
);
4714 pci_disable_device(pdev
);
4716 /* Request a slot slot reset. */
4717 return PCI_ERS_RESULT_NEED_RESET
;
4721 * e1000_io_slot_reset - called after the pci bus has been reset.
4722 * @pdev: Pointer to PCI device
4724 * Restart the card from scratch, as if from a cold-boot. Implementation
4725 * resembles the first-half of the e1000_resume routine.
4727 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4729 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4730 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4731 struct e1000_hw
*hw
= &adapter
->hw
;
4734 if (adapter
->need_ioport
)
4735 err
= pci_enable_device(pdev
);
4737 err
= pci_enable_device_mem(pdev
);
4739 pr_err("Cannot re-enable PCI device after reset.\n");
4740 return PCI_ERS_RESULT_DISCONNECT
;
4742 pci_set_master(pdev
);
4744 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4745 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4747 e1000_reset(adapter
);
4750 return PCI_ERS_RESULT_RECOVERED
;
4754 * e1000_io_resume - called when traffic can start flowing again.
4755 * @pdev: Pointer to PCI device
4757 * This callback is called when the error recovery driver tells us that
4758 * its OK to resume normal operation. Implementation resembles the
4759 * second-half of the e1000_resume routine.
4761 static void e1000_io_resume(struct pci_dev
*pdev
)
4763 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4764 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4766 e1000_init_manageability(adapter
);
4768 if (netif_running(netdev
)) {
4769 if (e1000_up(adapter
)) {
4770 pr_info("can't bring device back up after reset\n");
4775 netif_device_attach(netdev
);