drm/i915: Move non-phys cursors into the GTT
[linux/fpc-iii.git] / drivers / net / skge.c
blob40e5c46e7571ad46f1c7abf655d0235f89762bfd
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 #include <linux/in.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
37 #include <linux/ip.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <asm/irq.h>
48 #include "skge.h"
50 #define DRV_NAME "skge"
51 #define DRV_VERSION "1.13"
53 #define DEFAULT_TX_RING_SIZE 128
54 #define DEFAULT_RX_RING_SIZE 512
55 #define MAX_TX_RING_SIZE 1024
56 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
57 #define MAX_RX_RING_SIZE 4096
58 #define RX_COPY_THRESHOLD 128
59 #define RX_BUF_SIZE 1536
60 #define PHY_RETRIES 1000
61 #define ETH_JUMBO_MTU 9000
62 #define TX_WATCHDOG (5 * HZ)
63 #define NAPI_WEIGHT 64
64 #define BLINK_MS 250
65 #define LINK_HZ HZ
67 #define SKGE_EEPROM_MAGIC 0x9933aabb
70 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
71 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
72 MODULE_LICENSE("GPL");
73 MODULE_VERSION(DRV_VERSION);
75 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
76 NETIF_MSG_LINK | NETIF_MSG_IFUP |
77 NETIF_MSG_IFDOWN);
79 static int debug = -1; /* defaults above */
80 module_param(debug, int, 0);
81 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
83 static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
84 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
85 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
86 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
87 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
88 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
89 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
90 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
91 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
92 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
93 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
94 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
95 { 0 }
97 MODULE_DEVICE_TABLE(pci, skge_id_table);
99 static int skge_up(struct net_device *dev);
100 static int skge_down(struct net_device *dev);
101 static void skge_phy_reset(struct skge_port *skge);
102 static void skge_tx_clean(struct net_device *dev);
103 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
104 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
105 static void genesis_get_stats(struct skge_port *skge, u64 *data);
106 static void yukon_get_stats(struct skge_port *skge, u64 *data);
107 static void yukon_init(struct skge_hw *hw, int port);
108 static void genesis_mac_init(struct skge_hw *hw, int port);
109 static void genesis_link_up(struct skge_port *skge);
110 static void skge_set_multicast(struct net_device *dev);
112 /* Avoid conditionals by using array */
113 static const int txqaddr[] = { Q_XA1, Q_XA2 };
114 static const int rxqaddr[] = { Q_R1, Q_R2 };
115 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
116 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
117 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
118 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
120 static int skge_get_regs_len(struct net_device *dev)
122 return 0x4000;
126 * Returns copy of whole control register region
127 * Note: skip RAM address register because accessing it will
128 * cause bus hangs!
130 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
131 void *p)
133 const struct skge_port *skge = netdev_priv(dev);
134 const void __iomem *io = skge->hw->regs;
136 regs->version = 1;
137 memset(p, 0, regs->len);
138 memcpy_fromio(p, io, B3_RAM_ADDR);
140 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
141 regs->len - B3_RI_WTO_R1);
144 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
145 static u32 wol_supported(const struct skge_hw *hw)
147 if (hw->chip_id == CHIP_ID_GENESIS)
148 return 0;
150 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
151 return 0;
153 return WAKE_MAGIC | WAKE_PHY;
156 static void skge_wol_init(struct skge_port *skge)
158 struct skge_hw *hw = skge->hw;
159 int port = skge->port;
160 u16 ctrl;
162 skge_write16(hw, B0_CTST, CS_RST_CLR);
163 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
165 /* Turn on Vaux */
166 skge_write8(hw, B0_POWER_CTRL,
167 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
169 /* WA code for COMA mode -- clear PHY reset */
170 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
171 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
172 u32 reg = skge_read32(hw, B2_GP_IO);
173 reg |= GP_DIR_9;
174 reg &= ~GP_IO_9;
175 skge_write32(hw, B2_GP_IO, reg);
178 skge_write32(hw, SK_REG(port, GPHY_CTRL),
179 GPC_DIS_SLEEP |
180 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
181 GPC_ANEG_1 | GPC_RST_SET);
183 skge_write32(hw, SK_REG(port, GPHY_CTRL),
184 GPC_DIS_SLEEP |
185 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
186 GPC_ANEG_1 | GPC_RST_CLR);
188 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
190 /* Force to 10/100 skge_reset will re-enable on resume */
191 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
192 (PHY_AN_100FULL | PHY_AN_100HALF |
193 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
194 /* no 1000 HD/FD */
195 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
196 gm_phy_write(hw, port, PHY_MARV_CTRL,
197 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
198 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
201 /* Set GMAC to no flow control and auto update for speed/duplex */
202 gma_write16(hw, port, GM_GP_CTRL,
203 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
204 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
206 /* Set WOL address */
207 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
208 skge->netdev->dev_addr, ETH_ALEN);
210 /* Turn on appropriate WOL control bits */
211 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
212 ctrl = 0;
213 if (skge->wol & WAKE_PHY)
214 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
215 else
216 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
218 if (skge->wol & WAKE_MAGIC)
219 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
220 else
221 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
223 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
224 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
226 /* block receiver */
227 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
230 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
232 struct skge_port *skge = netdev_priv(dev);
234 wol->supported = wol_supported(skge->hw);
235 wol->wolopts = skge->wol;
238 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
240 struct skge_port *skge = netdev_priv(dev);
241 struct skge_hw *hw = skge->hw;
243 if ((wol->wolopts & ~wol_supported(hw)) ||
244 !device_can_wakeup(&hw->pdev->dev))
245 return -EOPNOTSUPP;
247 skge->wol = wol->wolopts;
249 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
251 return 0;
254 /* Determine supported/advertised modes based on hardware.
255 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
257 static u32 skge_supported_modes(const struct skge_hw *hw)
259 u32 supported;
261 if (hw->copper) {
262 supported = (SUPPORTED_10baseT_Half |
263 SUPPORTED_10baseT_Full |
264 SUPPORTED_100baseT_Half |
265 SUPPORTED_100baseT_Full |
266 SUPPORTED_1000baseT_Half |
267 SUPPORTED_1000baseT_Full |
268 SUPPORTED_Autoneg |
269 SUPPORTED_TP);
271 if (hw->chip_id == CHIP_ID_GENESIS)
272 supported &= ~(SUPPORTED_10baseT_Half |
273 SUPPORTED_10baseT_Full |
274 SUPPORTED_100baseT_Half |
275 SUPPORTED_100baseT_Full);
277 else if (hw->chip_id == CHIP_ID_YUKON)
278 supported &= ~SUPPORTED_1000baseT_Half;
279 } else
280 supported = (SUPPORTED_1000baseT_Full |
281 SUPPORTED_1000baseT_Half |
282 SUPPORTED_FIBRE |
283 SUPPORTED_Autoneg);
285 return supported;
288 static int skge_get_settings(struct net_device *dev,
289 struct ethtool_cmd *ecmd)
291 struct skge_port *skge = netdev_priv(dev);
292 struct skge_hw *hw = skge->hw;
294 ecmd->transceiver = XCVR_INTERNAL;
295 ecmd->supported = skge_supported_modes(hw);
297 if (hw->copper) {
298 ecmd->port = PORT_TP;
299 ecmd->phy_address = hw->phy_addr;
300 } else
301 ecmd->port = PORT_FIBRE;
303 ecmd->advertising = skge->advertising;
304 ecmd->autoneg = skge->autoneg;
305 ecmd->speed = skge->speed;
306 ecmd->duplex = skge->duplex;
307 return 0;
310 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
312 struct skge_port *skge = netdev_priv(dev);
313 const struct skge_hw *hw = skge->hw;
314 u32 supported = skge_supported_modes(hw);
315 int err = 0;
317 if (ecmd->autoneg == AUTONEG_ENABLE) {
318 ecmd->advertising = supported;
319 skge->duplex = -1;
320 skge->speed = -1;
321 } else {
322 u32 setting;
324 switch (ecmd->speed) {
325 case SPEED_1000:
326 if (ecmd->duplex == DUPLEX_FULL)
327 setting = SUPPORTED_1000baseT_Full;
328 else if (ecmd->duplex == DUPLEX_HALF)
329 setting = SUPPORTED_1000baseT_Half;
330 else
331 return -EINVAL;
332 break;
333 case SPEED_100:
334 if (ecmd->duplex == DUPLEX_FULL)
335 setting = SUPPORTED_100baseT_Full;
336 else if (ecmd->duplex == DUPLEX_HALF)
337 setting = SUPPORTED_100baseT_Half;
338 else
339 return -EINVAL;
340 break;
342 case SPEED_10:
343 if (ecmd->duplex == DUPLEX_FULL)
344 setting = SUPPORTED_10baseT_Full;
345 else if (ecmd->duplex == DUPLEX_HALF)
346 setting = SUPPORTED_10baseT_Half;
347 else
348 return -EINVAL;
349 break;
350 default:
351 return -EINVAL;
354 if ((setting & supported) == 0)
355 return -EINVAL;
357 skge->speed = ecmd->speed;
358 skge->duplex = ecmd->duplex;
361 skge->autoneg = ecmd->autoneg;
362 skge->advertising = ecmd->advertising;
364 if (netif_running(dev)) {
365 skge_down(dev);
366 err = skge_up(dev);
367 if (err) {
368 dev_close(dev);
369 return err;
373 return 0;
376 static void skge_get_drvinfo(struct net_device *dev,
377 struct ethtool_drvinfo *info)
379 struct skge_port *skge = netdev_priv(dev);
381 strcpy(info->driver, DRV_NAME);
382 strcpy(info->version, DRV_VERSION);
383 strcpy(info->fw_version, "N/A");
384 strcpy(info->bus_info, pci_name(skge->hw->pdev));
387 static const struct skge_stat {
388 char name[ETH_GSTRING_LEN];
389 u16 xmac_offset;
390 u16 gma_offset;
391 } skge_stats[] = {
392 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
393 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
395 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
396 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
397 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
398 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
399 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
400 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
401 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
402 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
404 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
405 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
406 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
407 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
408 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
409 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
411 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
412 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
413 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
414 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
415 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
418 static int skge_get_sset_count(struct net_device *dev, int sset)
420 switch (sset) {
421 case ETH_SS_STATS:
422 return ARRAY_SIZE(skge_stats);
423 default:
424 return -EOPNOTSUPP;
428 static void skge_get_ethtool_stats(struct net_device *dev,
429 struct ethtool_stats *stats, u64 *data)
431 struct skge_port *skge = netdev_priv(dev);
433 if (skge->hw->chip_id == CHIP_ID_GENESIS)
434 genesis_get_stats(skge, data);
435 else
436 yukon_get_stats(skge, data);
439 /* Use hardware MIB variables for critical path statistics and
440 * transmit feedback not reported at interrupt.
441 * Other errors are accounted for in interrupt handler.
443 static struct net_device_stats *skge_get_stats(struct net_device *dev)
445 struct skge_port *skge = netdev_priv(dev);
446 u64 data[ARRAY_SIZE(skge_stats)];
448 if (skge->hw->chip_id == CHIP_ID_GENESIS)
449 genesis_get_stats(skge, data);
450 else
451 yukon_get_stats(skge, data);
453 dev->stats.tx_bytes = data[0];
454 dev->stats.rx_bytes = data[1];
455 dev->stats.tx_packets = data[2] + data[4] + data[6];
456 dev->stats.rx_packets = data[3] + data[5] + data[7];
457 dev->stats.multicast = data[3] + data[5];
458 dev->stats.collisions = data[10];
459 dev->stats.tx_aborted_errors = data[12];
461 return &dev->stats;
464 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
466 int i;
468 switch (stringset) {
469 case ETH_SS_STATS:
470 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
471 memcpy(data + i * ETH_GSTRING_LEN,
472 skge_stats[i].name, ETH_GSTRING_LEN);
473 break;
477 static void skge_get_ring_param(struct net_device *dev,
478 struct ethtool_ringparam *p)
480 struct skge_port *skge = netdev_priv(dev);
482 p->rx_max_pending = MAX_RX_RING_SIZE;
483 p->tx_max_pending = MAX_TX_RING_SIZE;
484 p->rx_mini_max_pending = 0;
485 p->rx_jumbo_max_pending = 0;
487 p->rx_pending = skge->rx_ring.count;
488 p->tx_pending = skge->tx_ring.count;
489 p->rx_mini_pending = 0;
490 p->rx_jumbo_pending = 0;
493 static int skge_set_ring_param(struct net_device *dev,
494 struct ethtool_ringparam *p)
496 struct skge_port *skge = netdev_priv(dev);
497 int err = 0;
499 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
500 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
501 return -EINVAL;
503 skge->rx_ring.count = p->rx_pending;
504 skge->tx_ring.count = p->tx_pending;
506 if (netif_running(dev)) {
507 skge_down(dev);
508 err = skge_up(dev);
509 if (err)
510 dev_close(dev);
513 return err;
516 static u32 skge_get_msglevel(struct net_device *netdev)
518 struct skge_port *skge = netdev_priv(netdev);
519 return skge->msg_enable;
522 static void skge_set_msglevel(struct net_device *netdev, u32 value)
524 struct skge_port *skge = netdev_priv(netdev);
525 skge->msg_enable = value;
528 static int skge_nway_reset(struct net_device *dev)
530 struct skge_port *skge = netdev_priv(dev);
532 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
533 return -EINVAL;
535 skge_phy_reset(skge);
536 return 0;
539 static int skge_set_sg(struct net_device *dev, u32 data)
541 struct skge_port *skge = netdev_priv(dev);
542 struct skge_hw *hw = skge->hw;
544 if (hw->chip_id == CHIP_ID_GENESIS && data)
545 return -EOPNOTSUPP;
546 return ethtool_op_set_sg(dev, data);
549 static int skge_set_tx_csum(struct net_device *dev, u32 data)
551 struct skge_port *skge = netdev_priv(dev);
552 struct skge_hw *hw = skge->hw;
554 if (hw->chip_id == CHIP_ID_GENESIS && data)
555 return -EOPNOTSUPP;
557 return ethtool_op_set_tx_csum(dev, data);
560 static u32 skge_get_rx_csum(struct net_device *dev)
562 struct skge_port *skge = netdev_priv(dev);
564 return skge->rx_csum;
567 /* Only Yukon supports checksum offload. */
568 static int skge_set_rx_csum(struct net_device *dev, u32 data)
570 struct skge_port *skge = netdev_priv(dev);
572 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
573 return -EOPNOTSUPP;
575 skge->rx_csum = data;
576 return 0;
579 static void skge_get_pauseparam(struct net_device *dev,
580 struct ethtool_pauseparam *ecmd)
582 struct skge_port *skge = netdev_priv(dev);
584 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
585 (skge->flow_control == FLOW_MODE_SYM_OR_REM));
586 ecmd->tx_pause = (ecmd->rx_pause ||
587 (skge->flow_control == FLOW_MODE_LOC_SEND));
589 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
592 static int skge_set_pauseparam(struct net_device *dev,
593 struct ethtool_pauseparam *ecmd)
595 struct skge_port *skge = netdev_priv(dev);
596 struct ethtool_pauseparam old;
597 int err = 0;
599 skge_get_pauseparam(dev, &old);
601 if (ecmd->autoneg != old.autoneg)
602 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
603 else {
604 if (ecmd->rx_pause && ecmd->tx_pause)
605 skge->flow_control = FLOW_MODE_SYMMETRIC;
606 else if (ecmd->rx_pause && !ecmd->tx_pause)
607 skge->flow_control = FLOW_MODE_SYM_OR_REM;
608 else if (!ecmd->rx_pause && ecmd->tx_pause)
609 skge->flow_control = FLOW_MODE_LOC_SEND;
610 else
611 skge->flow_control = FLOW_MODE_NONE;
614 if (netif_running(dev)) {
615 skge_down(dev);
616 err = skge_up(dev);
617 if (err) {
618 dev_close(dev);
619 return err;
623 return 0;
626 /* Chip internal frequency for clock calculations */
627 static inline u32 hwkhz(const struct skge_hw *hw)
629 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
632 /* Chip HZ to microseconds */
633 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
635 return (ticks * 1000) / hwkhz(hw);
638 /* Microseconds to chip HZ */
639 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
641 return hwkhz(hw) * usec / 1000;
644 static int skge_get_coalesce(struct net_device *dev,
645 struct ethtool_coalesce *ecmd)
647 struct skge_port *skge = netdev_priv(dev);
648 struct skge_hw *hw = skge->hw;
649 int port = skge->port;
651 ecmd->rx_coalesce_usecs = 0;
652 ecmd->tx_coalesce_usecs = 0;
654 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
655 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
656 u32 msk = skge_read32(hw, B2_IRQM_MSK);
658 if (msk & rxirqmask[port])
659 ecmd->rx_coalesce_usecs = delay;
660 if (msk & txirqmask[port])
661 ecmd->tx_coalesce_usecs = delay;
664 return 0;
667 /* Note: interrupt timer is per board, but can turn on/off per port */
668 static int skge_set_coalesce(struct net_device *dev,
669 struct ethtool_coalesce *ecmd)
671 struct skge_port *skge = netdev_priv(dev);
672 struct skge_hw *hw = skge->hw;
673 int port = skge->port;
674 u32 msk = skge_read32(hw, B2_IRQM_MSK);
675 u32 delay = 25;
677 if (ecmd->rx_coalesce_usecs == 0)
678 msk &= ~rxirqmask[port];
679 else if (ecmd->rx_coalesce_usecs < 25 ||
680 ecmd->rx_coalesce_usecs > 33333)
681 return -EINVAL;
682 else {
683 msk |= rxirqmask[port];
684 delay = ecmd->rx_coalesce_usecs;
687 if (ecmd->tx_coalesce_usecs == 0)
688 msk &= ~txirqmask[port];
689 else if (ecmd->tx_coalesce_usecs < 25 ||
690 ecmd->tx_coalesce_usecs > 33333)
691 return -EINVAL;
692 else {
693 msk |= txirqmask[port];
694 delay = min(delay, ecmd->rx_coalesce_usecs);
697 skge_write32(hw, B2_IRQM_MSK, msk);
698 if (msk == 0)
699 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
700 else {
701 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
702 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
704 return 0;
707 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
708 static void skge_led(struct skge_port *skge, enum led_mode mode)
710 struct skge_hw *hw = skge->hw;
711 int port = skge->port;
713 spin_lock_bh(&hw->phy_lock);
714 if (hw->chip_id == CHIP_ID_GENESIS) {
715 switch (mode) {
716 case LED_MODE_OFF:
717 if (hw->phy_type == SK_PHY_BCOM)
718 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
719 else {
720 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
721 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
723 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
724 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
725 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
726 break;
728 case LED_MODE_ON:
729 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
730 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
732 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
733 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
735 break;
737 case LED_MODE_TST:
738 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
739 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
740 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
742 if (hw->phy_type == SK_PHY_BCOM)
743 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
744 else {
745 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
746 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
747 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
751 } else {
752 switch (mode) {
753 case LED_MODE_OFF:
754 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
755 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
756 PHY_M_LED_MO_DUP(MO_LED_OFF) |
757 PHY_M_LED_MO_10(MO_LED_OFF) |
758 PHY_M_LED_MO_100(MO_LED_OFF) |
759 PHY_M_LED_MO_1000(MO_LED_OFF) |
760 PHY_M_LED_MO_RX(MO_LED_OFF));
761 break;
762 case LED_MODE_ON:
763 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
764 PHY_M_LED_PULS_DUR(PULS_170MS) |
765 PHY_M_LED_BLINK_RT(BLINK_84MS) |
766 PHY_M_LEDC_TX_CTRL |
767 PHY_M_LEDC_DP_CTRL);
769 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
770 PHY_M_LED_MO_RX(MO_LED_OFF) |
771 (skge->speed == SPEED_100 ?
772 PHY_M_LED_MO_100(MO_LED_ON) : 0));
773 break;
774 case LED_MODE_TST:
775 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
776 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
777 PHY_M_LED_MO_DUP(MO_LED_ON) |
778 PHY_M_LED_MO_10(MO_LED_ON) |
779 PHY_M_LED_MO_100(MO_LED_ON) |
780 PHY_M_LED_MO_1000(MO_LED_ON) |
781 PHY_M_LED_MO_RX(MO_LED_ON));
784 spin_unlock_bh(&hw->phy_lock);
787 /* blink LED's for finding board */
788 static int skge_phys_id(struct net_device *dev, u32 data)
790 struct skge_port *skge = netdev_priv(dev);
791 unsigned long ms;
792 enum led_mode mode = LED_MODE_TST;
794 if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
795 ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
796 else
797 ms = data * 1000;
799 while (ms > 0) {
800 skge_led(skge, mode);
801 mode ^= LED_MODE_TST;
803 if (msleep_interruptible(BLINK_MS))
804 break;
805 ms -= BLINK_MS;
808 /* back to regular LED state */
809 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
811 return 0;
814 static int skge_get_eeprom_len(struct net_device *dev)
816 struct skge_port *skge = netdev_priv(dev);
817 u32 reg2;
819 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
820 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
823 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
825 u32 val;
827 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
829 do {
830 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
831 } while (!(offset & PCI_VPD_ADDR_F));
833 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
834 return val;
837 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
839 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
840 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
841 offset | PCI_VPD_ADDR_F);
843 do {
844 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
845 } while (offset & PCI_VPD_ADDR_F);
848 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
849 u8 *data)
851 struct skge_port *skge = netdev_priv(dev);
852 struct pci_dev *pdev = skge->hw->pdev;
853 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
854 int length = eeprom->len;
855 u16 offset = eeprom->offset;
857 if (!cap)
858 return -EINVAL;
860 eeprom->magic = SKGE_EEPROM_MAGIC;
862 while (length > 0) {
863 u32 val = skge_vpd_read(pdev, cap, offset);
864 int n = min_t(int, length, sizeof(val));
866 memcpy(data, &val, n);
867 length -= n;
868 data += n;
869 offset += n;
871 return 0;
874 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
875 u8 *data)
877 struct skge_port *skge = netdev_priv(dev);
878 struct pci_dev *pdev = skge->hw->pdev;
879 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
880 int length = eeprom->len;
881 u16 offset = eeprom->offset;
883 if (!cap)
884 return -EINVAL;
886 if (eeprom->magic != SKGE_EEPROM_MAGIC)
887 return -EINVAL;
889 while (length > 0) {
890 u32 val;
891 int n = min_t(int, length, sizeof(val));
893 if (n < sizeof(val))
894 val = skge_vpd_read(pdev, cap, offset);
895 memcpy(&val, data, n);
897 skge_vpd_write(pdev, cap, offset, val);
899 length -= n;
900 data += n;
901 offset += n;
903 return 0;
906 static const struct ethtool_ops skge_ethtool_ops = {
907 .get_settings = skge_get_settings,
908 .set_settings = skge_set_settings,
909 .get_drvinfo = skge_get_drvinfo,
910 .get_regs_len = skge_get_regs_len,
911 .get_regs = skge_get_regs,
912 .get_wol = skge_get_wol,
913 .set_wol = skge_set_wol,
914 .get_msglevel = skge_get_msglevel,
915 .set_msglevel = skge_set_msglevel,
916 .nway_reset = skge_nway_reset,
917 .get_link = ethtool_op_get_link,
918 .get_eeprom_len = skge_get_eeprom_len,
919 .get_eeprom = skge_get_eeprom,
920 .set_eeprom = skge_set_eeprom,
921 .get_ringparam = skge_get_ring_param,
922 .set_ringparam = skge_set_ring_param,
923 .get_pauseparam = skge_get_pauseparam,
924 .set_pauseparam = skge_set_pauseparam,
925 .get_coalesce = skge_get_coalesce,
926 .set_coalesce = skge_set_coalesce,
927 .set_sg = skge_set_sg,
928 .set_tx_csum = skge_set_tx_csum,
929 .get_rx_csum = skge_get_rx_csum,
930 .set_rx_csum = skge_set_rx_csum,
931 .get_strings = skge_get_strings,
932 .phys_id = skge_phys_id,
933 .get_sset_count = skge_get_sset_count,
934 .get_ethtool_stats = skge_get_ethtool_stats,
938 * Allocate ring elements and chain them together
939 * One-to-one association of board descriptors with ring elements
941 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
943 struct skge_tx_desc *d;
944 struct skge_element *e;
945 int i;
947 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
948 if (!ring->start)
949 return -ENOMEM;
951 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
952 e->desc = d;
953 if (i == ring->count - 1) {
954 e->next = ring->start;
955 d->next_offset = base;
956 } else {
957 e->next = e + 1;
958 d->next_offset = base + (i+1) * sizeof(*d);
961 ring->to_use = ring->to_clean = ring->start;
963 return 0;
966 /* Allocate and setup a new buffer for receiving */
967 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
968 struct sk_buff *skb, unsigned int bufsize)
970 struct skge_rx_desc *rd = e->desc;
971 u64 map;
973 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
974 PCI_DMA_FROMDEVICE);
976 rd->dma_lo = map;
977 rd->dma_hi = map >> 32;
978 e->skb = skb;
979 rd->csum1_start = ETH_HLEN;
980 rd->csum2_start = ETH_HLEN;
981 rd->csum1 = 0;
982 rd->csum2 = 0;
984 wmb();
986 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
987 dma_unmap_addr_set(e, mapaddr, map);
988 dma_unmap_len_set(e, maplen, bufsize);
991 /* Resume receiving using existing skb,
992 * Note: DMA address is not changed by chip.
993 * MTU not changed while receiver active.
995 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
997 struct skge_rx_desc *rd = e->desc;
999 rd->csum2 = 0;
1000 rd->csum2_start = ETH_HLEN;
1002 wmb();
1004 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
1008 /* Free all buffers in receive ring, assumes receiver stopped */
1009 static void skge_rx_clean(struct skge_port *skge)
1011 struct skge_hw *hw = skge->hw;
1012 struct skge_ring *ring = &skge->rx_ring;
1013 struct skge_element *e;
1015 e = ring->start;
1016 do {
1017 struct skge_rx_desc *rd = e->desc;
1018 rd->control = 0;
1019 if (e->skb) {
1020 pci_unmap_single(hw->pdev,
1021 dma_unmap_addr(e, mapaddr),
1022 dma_unmap_len(e, maplen),
1023 PCI_DMA_FROMDEVICE);
1024 dev_kfree_skb(e->skb);
1025 e->skb = NULL;
1027 } while ((e = e->next) != ring->start);
1031 /* Allocate buffers for receive ring
1032 * For receive: to_clean is next received frame.
1034 static int skge_rx_fill(struct net_device *dev)
1036 struct skge_port *skge = netdev_priv(dev);
1037 struct skge_ring *ring = &skge->rx_ring;
1038 struct skge_element *e;
1040 e = ring->start;
1041 do {
1042 struct sk_buff *skb;
1044 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1045 GFP_KERNEL);
1046 if (!skb)
1047 return -ENOMEM;
1049 skb_reserve(skb, NET_IP_ALIGN);
1050 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1051 } while ((e = e->next) != ring->start);
1053 ring->to_clean = ring->start;
1054 return 0;
1057 static const char *skge_pause(enum pause_status status)
1059 switch (status) {
1060 case FLOW_STAT_NONE:
1061 return "none";
1062 case FLOW_STAT_REM_SEND:
1063 return "rx only";
1064 case FLOW_STAT_LOC_SEND:
1065 return "tx_only";
1066 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1067 return "both";
1068 default:
1069 return "indeterminated";
1074 static void skge_link_up(struct skge_port *skge)
1076 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1077 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1079 netif_carrier_on(skge->netdev);
1080 netif_wake_queue(skge->netdev);
1082 netif_info(skge, link, skge->netdev,
1083 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1084 skge->speed,
1085 skge->duplex == DUPLEX_FULL ? "full" : "half",
1086 skge_pause(skge->flow_status));
1089 static void skge_link_down(struct skge_port *skge)
1091 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1092 netif_carrier_off(skge->netdev);
1093 netif_stop_queue(skge->netdev);
1095 netif_info(skge, link, skge->netdev, "Link is down\n");
1099 static void xm_link_down(struct skge_hw *hw, int port)
1101 struct net_device *dev = hw->dev[port];
1102 struct skge_port *skge = netdev_priv(dev);
1104 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1106 if (netif_carrier_ok(dev))
1107 skge_link_down(skge);
1110 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1112 int i;
1114 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1115 *val = xm_read16(hw, port, XM_PHY_DATA);
1117 if (hw->phy_type == SK_PHY_XMAC)
1118 goto ready;
1120 for (i = 0; i < PHY_RETRIES; i++) {
1121 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1122 goto ready;
1123 udelay(1);
1126 return -ETIMEDOUT;
1127 ready:
1128 *val = xm_read16(hw, port, XM_PHY_DATA);
1130 return 0;
1133 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1135 u16 v = 0;
1136 if (__xm_phy_read(hw, port, reg, &v))
1137 pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
1138 return v;
1141 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1143 int i;
1145 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1146 for (i = 0; i < PHY_RETRIES; i++) {
1147 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1148 goto ready;
1149 udelay(1);
1151 return -EIO;
1153 ready:
1154 xm_write16(hw, port, XM_PHY_DATA, val);
1155 for (i = 0; i < PHY_RETRIES; i++) {
1156 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1157 return 0;
1158 udelay(1);
1160 return -ETIMEDOUT;
1163 static void genesis_init(struct skge_hw *hw)
1165 /* set blink source counter */
1166 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1167 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1169 /* configure mac arbiter */
1170 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1172 /* configure mac arbiter timeout values */
1173 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1174 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1175 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1176 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1178 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1179 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1180 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1181 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1183 /* configure packet arbiter timeout */
1184 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1185 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1186 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1187 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1188 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1191 static void genesis_reset(struct skge_hw *hw, int port)
1193 const u8 zero[8] = { 0 };
1194 u32 reg;
1196 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1198 /* reset the statistics module */
1199 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1200 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1201 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1202 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1203 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1205 /* disable Broadcom PHY IRQ */
1206 if (hw->phy_type == SK_PHY_BCOM)
1207 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1209 xm_outhash(hw, port, XM_HSM, zero);
1211 /* Flush TX and RX fifo */
1212 reg = xm_read32(hw, port, XM_MODE);
1213 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1214 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1218 /* Convert mode to MII values */
1219 static const u16 phy_pause_map[] = {
1220 [FLOW_MODE_NONE] = 0,
1221 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1222 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1223 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1226 /* special defines for FIBER (88E1011S only) */
1227 static const u16 fiber_pause_map[] = {
1228 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1229 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1230 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1231 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1235 /* Check status of Broadcom phy link */
1236 static void bcom_check_link(struct skge_hw *hw, int port)
1238 struct net_device *dev = hw->dev[port];
1239 struct skge_port *skge = netdev_priv(dev);
1240 u16 status;
1242 /* read twice because of latch */
1243 xm_phy_read(hw, port, PHY_BCOM_STAT);
1244 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1246 if ((status & PHY_ST_LSYNC) == 0) {
1247 xm_link_down(hw, port);
1248 return;
1251 if (skge->autoneg == AUTONEG_ENABLE) {
1252 u16 lpa, aux;
1254 if (!(status & PHY_ST_AN_OVER))
1255 return;
1257 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1258 if (lpa & PHY_B_AN_RF) {
1259 netdev_notice(dev, "remote fault\n");
1260 return;
1263 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1265 /* Check Duplex mismatch */
1266 switch (aux & PHY_B_AS_AN_RES_MSK) {
1267 case PHY_B_RES_1000FD:
1268 skge->duplex = DUPLEX_FULL;
1269 break;
1270 case PHY_B_RES_1000HD:
1271 skge->duplex = DUPLEX_HALF;
1272 break;
1273 default:
1274 netdev_notice(dev, "duplex mismatch\n");
1275 return;
1278 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1279 switch (aux & PHY_B_AS_PAUSE_MSK) {
1280 case PHY_B_AS_PAUSE_MSK:
1281 skge->flow_status = FLOW_STAT_SYMMETRIC;
1282 break;
1283 case PHY_B_AS_PRR:
1284 skge->flow_status = FLOW_STAT_REM_SEND;
1285 break;
1286 case PHY_B_AS_PRT:
1287 skge->flow_status = FLOW_STAT_LOC_SEND;
1288 break;
1289 default:
1290 skge->flow_status = FLOW_STAT_NONE;
1292 skge->speed = SPEED_1000;
1295 if (!netif_carrier_ok(dev))
1296 genesis_link_up(skge);
1299 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1300 * Phy on for 100 or 10Mbit operation
1302 static void bcom_phy_init(struct skge_port *skge)
1304 struct skge_hw *hw = skge->hw;
1305 int port = skge->port;
1306 int i;
1307 u16 id1, r, ext, ctl;
1309 /* magic workaround patterns for Broadcom */
1310 static const struct {
1311 u16 reg;
1312 u16 val;
1313 } A1hack[] = {
1314 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1315 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1316 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1317 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1318 }, C0hack[] = {
1319 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1320 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1323 /* read Id from external PHY (all have the same address) */
1324 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1326 /* Optimize MDIO transfer by suppressing preamble. */
1327 r = xm_read16(hw, port, XM_MMU_CMD);
1328 r |= XM_MMU_NO_PRE;
1329 xm_write16(hw, port, XM_MMU_CMD, r);
1331 switch (id1) {
1332 case PHY_BCOM_ID1_C0:
1334 * Workaround BCOM Errata for the C0 type.
1335 * Write magic patterns to reserved registers.
1337 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1338 xm_phy_write(hw, port,
1339 C0hack[i].reg, C0hack[i].val);
1341 break;
1342 case PHY_BCOM_ID1_A1:
1344 * Workaround BCOM Errata for the A1 type.
1345 * Write magic patterns to reserved registers.
1347 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1348 xm_phy_write(hw, port,
1349 A1hack[i].reg, A1hack[i].val);
1350 break;
1354 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1355 * Disable Power Management after reset.
1357 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1358 r |= PHY_B_AC_DIS_PM;
1359 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1361 /* Dummy read */
1362 xm_read16(hw, port, XM_ISRC);
1364 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1365 ctl = PHY_CT_SP1000; /* always 1000mbit */
1367 if (skge->autoneg == AUTONEG_ENABLE) {
1369 * Workaround BCOM Errata #1 for the C5 type.
1370 * 1000Base-T Link Acquisition Failure in Slave Mode
1371 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1373 u16 adv = PHY_B_1000C_RD;
1374 if (skge->advertising & ADVERTISED_1000baseT_Half)
1375 adv |= PHY_B_1000C_AHD;
1376 if (skge->advertising & ADVERTISED_1000baseT_Full)
1377 adv |= PHY_B_1000C_AFD;
1378 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1380 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1381 } else {
1382 if (skge->duplex == DUPLEX_FULL)
1383 ctl |= PHY_CT_DUP_MD;
1384 /* Force to slave */
1385 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1388 /* Set autonegotiation pause parameters */
1389 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1390 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1392 /* Handle Jumbo frames */
1393 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1394 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1395 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1397 ext |= PHY_B_PEC_HIGH_LA;
1401 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1402 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1404 /* Use link status change interrupt */
1405 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1408 static void xm_phy_init(struct skge_port *skge)
1410 struct skge_hw *hw = skge->hw;
1411 int port = skge->port;
1412 u16 ctrl = 0;
1414 if (skge->autoneg == AUTONEG_ENABLE) {
1415 if (skge->advertising & ADVERTISED_1000baseT_Half)
1416 ctrl |= PHY_X_AN_HD;
1417 if (skge->advertising & ADVERTISED_1000baseT_Full)
1418 ctrl |= PHY_X_AN_FD;
1420 ctrl |= fiber_pause_map[skge->flow_control];
1422 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1424 /* Restart Auto-negotiation */
1425 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1426 } else {
1427 /* Set DuplexMode in Config register */
1428 if (skge->duplex == DUPLEX_FULL)
1429 ctrl |= PHY_CT_DUP_MD;
1431 * Do NOT enable Auto-negotiation here. This would hold
1432 * the link down because no IDLEs are transmitted
1436 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1438 /* Poll PHY for status changes */
1439 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1442 static int xm_check_link(struct net_device *dev)
1444 struct skge_port *skge = netdev_priv(dev);
1445 struct skge_hw *hw = skge->hw;
1446 int port = skge->port;
1447 u16 status;
1449 /* read twice because of latch */
1450 xm_phy_read(hw, port, PHY_XMAC_STAT);
1451 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1453 if ((status & PHY_ST_LSYNC) == 0) {
1454 xm_link_down(hw, port);
1455 return 0;
1458 if (skge->autoneg == AUTONEG_ENABLE) {
1459 u16 lpa, res;
1461 if (!(status & PHY_ST_AN_OVER))
1462 return 0;
1464 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1465 if (lpa & PHY_B_AN_RF) {
1466 netdev_notice(dev, "remote fault\n");
1467 return 0;
1470 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1472 /* Check Duplex mismatch */
1473 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1474 case PHY_X_RS_FD:
1475 skge->duplex = DUPLEX_FULL;
1476 break;
1477 case PHY_X_RS_HD:
1478 skge->duplex = DUPLEX_HALF;
1479 break;
1480 default:
1481 netdev_notice(dev, "duplex mismatch\n");
1482 return 0;
1485 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1486 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1487 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1488 (lpa & PHY_X_P_SYM_MD))
1489 skge->flow_status = FLOW_STAT_SYMMETRIC;
1490 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1491 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1492 /* Enable PAUSE receive, disable PAUSE transmit */
1493 skge->flow_status = FLOW_STAT_REM_SEND;
1494 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1495 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1496 /* Disable PAUSE receive, enable PAUSE transmit */
1497 skge->flow_status = FLOW_STAT_LOC_SEND;
1498 else
1499 skge->flow_status = FLOW_STAT_NONE;
1501 skge->speed = SPEED_1000;
1504 if (!netif_carrier_ok(dev))
1505 genesis_link_up(skge);
1506 return 1;
1509 /* Poll to check for link coming up.
1511 * Since internal PHY is wired to a level triggered pin, can't
1512 * get an interrupt when carrier is detected, need to poll for
1513 * link coming up.
1515 static void xm_link_timer(unsigned long arg)
1517 struct skge_port *skge = (struct skge_port *) arg;
1518 struct net_device *dev = skge->netdev;
1519 struct skge_hw *hw = skge->hw;
1520 int port = skge->port;
1521 int i;
1522 unsigned long flags;
1524 if (!netif_running(dev))
1525 return;
1527 spin_lock_irqsave(&hw->phy_lock, flags);
1530 * Verify that the link by checking GPIO register three times.
1531 * This pin has the signal from the link_sync pin connected to it.
1533 for (i = 0; i < 3; i++) {
1534 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1535 goto link_down;
1538 /* Re-enable interrupt to detect link down */
1539 if (xm_check_link(dev)) {
1540 u16 msk = xm_read16(hw, port, XM_IMSK);
1541 msk &= ~XM_IS_INP_ASS;
1542 xm_write16(hw, port, XM_IMSK, msk);
1543 xm_read16(hw, port, XM_ISRC);
1544 } else {
1545 link_down:
1546 mod_timer(&skge->link_timer,
1547 round_jiffies(jiffies + LINK_HZ));
1549 spin_unlock_irqrestore(&hw->phy_lock, flags);
1552 static void genesis_mac_init(struct skge_hw *hw, int port)
1554 struct net_device *dev = hw->dev[port];
1555 struct skge_port *skge = netdev_priv(dev);
1556 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1557 int i;
1558 u32 r;
1559 const u8 zero[6] = { 0 };
1561 for (i = 0; i < 10; i++) {
1562 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1563 MFF_SET_MAC_RST);
1564 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1565 goto reset_ok;
1566 udelay(1);
1569 netdev_warn(dev, "genesis reset failed\n");
1571 reset_ok:
1572 /* Unreset the XMAC. */
1573 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1576 * Perform additional initialization for external PHYs,
1577 * namely for the 1000baseTX cards that use the XMAC's
1578 * GMII mode.
1580 if (hw->phy_type != SK_PHY_XMAC) {
1581 /* Take external Phy out of reset */
1582 r = skge_read32(hw, B2_GP_IO);
1583 if (port == 0)
1584 r |= GP_DIR_0|GP_IO_0;
1585 else
1586 r |= GP_DIR_2|GP_IO_2;
1588 skge_write32(hw, B2_GP_IO, r);
1590 /* Enable GMII interface */
1591 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1595 switch (hw->phy_type) {
1596 case SK_PHY_XMAC:
1597 xm_phy_init(skge);
1598 break;
1599 case SK_PHY_BCOM:
1600 bcom_phy_init(skge);
1601 bcom_check_link(hw, port);
1604 /* Set Station Address */
1605 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1607 /* We don't use match addresses so clear */
1608 for (i = 1; i < 16; i++)
1609 xm_outaddr(hw, port, XM_EXM(i), zero);
1611 /* Clear MIB counters */
1612 xm_write16(hw, port, XM_STAT_CMD,
1613 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1614 /* Clear two times according to Errata #3 */
1615 xm_write16(hw, port, XM_STAT_CMD,
1616 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1618 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1619 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1621 /* We don't need the FCS appended to the packet. */
1622 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1623 if (jumbo)
1624 r |= XM_RX_BIG_PK_OK;
1626 if (skge->duplex == DUPLEX_HALF) {
1628 * If in manual half duplex mode the other side might be in
1629 * full duplex mode, so ignore if a carrier extension is not seen
1630 * on frames received
1632 r |= XM_RX_DIS_CEXT;
1634 xm_write16(hw, port, XM_RX_CMD, r);
1636 /* We want short frames padded to 60 bytes. */
1637 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1639 /* Increase threshold for jumbo frames on dual port */
1640 if (hw->ports > 1 && jumbo)
1641 xm_write16(hw, port, XM_TX_THR, 1020);
1642 else
1643 xm_write16(hw, port, XM_TX_THR, 512);
1646 * Enable the reception of all error frames. This is is
1647 * a necessary evil due to the design of the XMAC. The
1648 * XMAC's receive FIFO is only 8K in size, however jumbo
1649 * frames can be up to 9000 bytes in length. When bad
1650 * frame filtering is enabled, the XMAC's RX FIFO operates
1651 * in 'store and forward' mode. For this to work, the
1652 * entire frame has to fit into the FIFO, but that means
1653 * that jumbo frames larger than 8192 bytes will be
1654 * truncated. Disabling all bad frame filtering causes
1655 * the RX FIFO to operate in streaming mode, in which
1656 * case the XMAC will start transferring frames out of the
1657 * RX FIFO as soon as the FIFO threshold is reached.
1659 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1663 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1664 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1665 * and 'Octets Rx OK Hi Cnt Ov'.
1667 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1670 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1671 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1672 * and 'Octets Tx OK Hi Cnt Ov'.
1674 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1676 /* Configure MAC arbiter */
1677 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1679 /* configure timeout values */
1680 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1681 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1682 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1683 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1685 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1686 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1687 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1688 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1690 /* Configure Rx MAC FIFO */
1691 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1692 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1693 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1695 /* Configure Tx MAC FIFO */
1696 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1697 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1698 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1700 if (jumbo) {
1701 /* Enable frame flushing if jumbo frames used */
1702 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1703 } else {
1704 /* enable timeout timers if normal frames */
1705 skge_write16(hw, B3_PA_CTRL,
1706 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1710 static void genesis_stop(struct skge_port *skge)
1712 struct skge_hw *hw = skge->hw;
1713 int port = skge->port;
1714 unsigned retries = 1000;
1715 u16 cmd;
1717 /* Disable Tx and Rx */
1718 cmd = xm_read16(hw, port, XM_MMU_CMD);
1719 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1720 xm_write16(hw, port, XM_MMU_CMD, cmd);
1722 genesis_reset(hw, port);
1724 /* Clear Tx packet arbiter timeout IRQ */
1725 skge_write16(hw, B3_PA_CTRL,
1726 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1728 /* Reset the MAC */
1729 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1730 do {
1731 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1732 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1733 break;
1734 } while (--retries > 0);
1736 /* For external PHYs there must be special handling */
1737 if (hw->phy_type != SK_PHY_XMAC) {
1738 u32 reg = skge_read32(hw, B2_GP_IO);
1739 if (port == 0) {
1740 reg |= GP_DIR_0;
1741 reg &= ~GP_IO_0;
1742 } else {
1743 reg |= GP_DIR_2;
1744 reg &= ~GP_IO_2;
1746 skge_write32(hw, B2_GP_IO, reg);
1747 skge_read32(hw, B2_GP_IO);
1750 xm_write16(hw, port, XM_MMU_CMD,
1751 xm_read16(hw, port, XM_MMU_CMD)
1752 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1754 xm_read16(hw, port, XM_MMU_CMD);
1758 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1760 struct skge_hw *hw = skge->hw;
1761 int port = skge->port;
1762 int i;
1763 unsigned long timeout = jiffies + HZ;
1765 xm_write16(hw, port,
1766 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1768 /* wait for update to complete */
1769 while (xm_read16(hw, port, XM_STAT_CMD)
1770 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1771 if (time_after(jiffies, timeout))
1772 break;
1773 udelay(10);
1776 /* special case for 64 bit octet counter */
1777 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1778 | xm_read32(hw, port, XM_TXO_OK_LO);
1779 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1780 | xm_read32(hw, port, XM_RXO_OK_LO);
1782 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1783 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1786 static void genesis_mac_intr(struct skge_hw *hw, int port)
1788 struct net_device *dev = hw->dev[port];
1789 struct skge_port *skge = netdev_priv(dev);
1790 u16 status = xm_read16(hw, port, XM_ISRC);
1792 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1793 "mac interrupt status 0x%x\n", status);
1795 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1796 xm_link_down(hw, port);
1797 mod_timer(&skge->link_timer, jiffies + 1);
1800 if (status & XM_IS_TXF_UR) {
1801 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1802 ++dev->stats.tx_fifo_errors;
1806 static void genesis_link_up(struct skge_port *skge)
1808 struct skge_hw *hw = skge->hw;
1809 int port = skge->port;
1810 u16 cmd, msk;
1811 u32 mode;
1813 cmd = xm_read16(hw, port, XM_MMU_CMD);
1816 * enabling pause frame reception is required for 1000BT
1817 * because the XMAC is not reset if the link is going down
1819 if (skge->flow_status == FLOW_STAT_NONE ||
1820 skge->flow_status == FLOW_STAT_LOC_SEND)
1821 /* Disable Pause Frame Reception */
1822 cmd |= XM_MMU_IGN_PF;
1823 else
1824 /* Enable Pause Frame Reception */
1825 cmd &= ~XM_MMU_IGN_PF;
1827 xm_write16(hw, port, XM_MMU_CMD, cmd);
1829 mode = xm_read32(hw, port, XM_MODE);
1830 if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1831 skge->flow_status == FLOW_STAT_LOC_SEND) {
1833 * Configure Pause Frame Generation
1834 * Use internal and external Pause Frame Generation.
1835 * Sending pause frames is edge triggered.
1836 * Send a Pause frame with the maximum pause time if
1837 * internal oder external FIFO full condition occurs.
1838 * Send a zero pause time frame to re-start transmission.
1840 /* XM_PAUSE_DA = '010000C28001' (default) */
1841 /* XM_MAC_PTIME = 0xffff (maximum) */
1842 /* remember this value is defined in big endian (!) */
1843 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1845 mode |= XM_PAUSE_MODE;
1846 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1847 } else {
1849 * disable pause frame generation is required for 1000BT
1850 * because the XMAC is not reset if the link is going down
1852 /* Disable Pause Mode in Mode Register */
1853 mode &= ~XM_PAUSE_MODE;
1855 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1858 xm_write32(hw, port, XM_MODE, mode);
1860 /* Turn on detection of Tx underrun */
1861 msk = xm_read16(hw, port, XM_IMSK);
1862 msk &= ~XM_IS_TXF_UR;
1863 xm_write16(hw, port, XM_IMSK, msk);
1865 xm_read16(hw, port, XM_ISRC);
1867 /* get MMU Command Reg. */
1868 cmd = xm_read16(hw, port, XM_MMU_CMD);
1869 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1870 cmd |= XM_MMU_GMII_FD;
1873 * Workaround BCOM Errata (#10523) for all BCom Phys
1874 * Enable Power Management after link up
1876 if (hw->phy_type == SK_PHY_BCOM) {
1877 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1878 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1879 & ~PHY_B_AC_DIS_PM);
1880 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1883 /* enable Rx/Tx */
1884 xm_write16(hw, port, XM_MMU_CMD,
1885 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1886 skge_link_up(skge);
1890 static inline void bcom_phy_intr(struct skge_port *skge)
1892 struct skge_hw *hw = skge->hw;
1893 int port = skge->port;
1894 u16 isrc;
1896 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1897 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1898 "phy interrupt status 0x%x\n", isrc);
1900 if (isrc & PHY_B_IS_PSE)
1901 pr_err("%s: uncorrectable pair swap error\n",
1902 hw->dev[port]->name);
1904 /* Workaround BCom Errata:
1905 * enable and disable loopback mode if "NO HCD" occurs.
1907 if (isrc & PHY_B_IS_NO_HDCL) {
1908 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1909 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1910 ctrl | PHY_CT_LOOP);
1911 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1912 ctrl & ~PHY_CT_LOOP);
1915 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1916 bcom_check_link(hw, port);
1920 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1922 int i;
1924 gma_write16(hw, port, GM_SMI_DATA, val);
1925 gma_write16(hw, port, GM_SMI_CTRL,
1926 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1927 for (i = 0; i < PHY_RETRIES; i++) {
1928 udelay(1);
1930 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1931 return 0;
1934 pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
1935 return -EIO;
1938 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1940 int i;
1942 gma_write16(hw, port, GM_SMI_CTRL,
1943 GM_SMI_CT_PHY_AD(hw->phy_addr)
1944 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1946 for (i = 0; i < PHY_RETRIES; i++) {
1947 udelay(1);
1948 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1949 goto ready;
1952 return -ETIMEDOUT;
1953 ready:
1954 *val = gma_read16(hw, port, GM_SMI_DATA);
1955 return 0;
1958 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1960 u16 v = 0;
1961 if (__gm_phy_read(hw, port, reg, &v))
1962 pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
1963 return v;
1966 /* Marvell Phy Initialization */
1967 static void yukon_init(struct skge_hw *hw, int port)
1969 struct skge_port *skge = netdev_priv(hw->dev[port]);
1970 u16 ctrl, ct1000, adv;
1972 if (skge->autoneg == AUTONEG_ENABLE) {
1973 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1975 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1976 PHY_M_EC_MAC_S_MSK);
1977 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1979 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1981 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1984 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1985 if (skge->autoneg == AUTONEG_DISABLE)
1986 ctrl &= ~PHY_CT_ANE;
1988 ctrl |= PHY_CT_RESET;
1989 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1991 ctrl = 0;
1992 ct1000 = 0;
1993 adv = PHY_AN_CSMA;
1995 if (skge->autoneg == AUTONEG_ENABLE) {
1996 if (hw->copper) {
1997 if (skge->advertising & ADVERTISED_1000baseT_Full)
1998 ct1000 |= PHY_M_1000C_AFD;
1999 if (skge->advertising & ADVERTISED_1000baseT_Half)
2000 ct1000 |= PHY_M_1000C_AHD;
2001 if (skge->advertising & ADVERTISED_100baseT_Full)
2002 adv |= PHY_M_AN_100_FD;
2003 if (skge->advertising & ADVERTISED_100baseT_Half)
2004 adv |= PHY_M_AN_100_HD;
2005 if (skge->advertising & ADVERTISED_10baseT_Full)
2006 adv |= PHY_M_AN_10_FD;
2007 if (skge->advertising & ADVERTISED_10baseT_Half)
2008 adv |= PHY_M_AN_10_HD;
2010 /* Set Flow-control capabilities */
2011 adv |= phy_pause_map[skge->flow_control];
2012 } else {
2013 if (skge->advertising & ADVERTISED_1000baseT_Full)
2014 adv |= PHY_M_AN_1000X_AFD;
2015 if (skge->advertising & ADVERTISED_1000baseT_Half)
2016 adv |= PHY_M_AN_1000X_AHD;
2018 adv |= fiber_pause_map[skge->flow_control];
2021 /* Restart Auto-negotiation */
2022 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2023 } else {
2024 /* forced speed/duplex settings */
2025 ct1000 = PHY_M_1000C_MSE;
2027 if (skge->duplex == DUPLEX_FULL)
2028 ctrl |= PHY_CT_DUP_MD;
2030 switch (skge->speed) {
2031 case SPEED_1000:
2032 ctrl |= PHY_CT_SP1000;
2033 break;
2034 case SPEED_100:
2035 ctrl |= PHY_CT_SP100;
2036 break;
2039 ctrl |= PHY_CT_RESET;
2042 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2044 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2045 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2047 /* Enable phy interrupt on autonegotiation complete (or link up) */
2048 if (skge->autoneg == AUTONEG_ENABLE)
2049 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2050 else
2051 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2054 static void yukon_reset(struct skge_hw *hw, int port)
2056 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2057 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2058 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2059 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2060 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2062 gma_write16(hw, port, GM_RX_CTRL,
2063 gma_read16(hw, port, GM_RX_CTRL)
2064 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2067 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2068 static int is_yukon_lite_a0(struct skge_hw *hw)
2070 u32 reg;
2071 int ret;
2073 if (hw->chip_id != CHIP_ID_YUKON)
2074 return 0;
2076 reg = skge_read32(hw, B2_FAR);
2077 skge_write8(hw, B2_FAR + 3, 0xff);
2078 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2079 skge_write32(hw, B2_FAR, reg);
2080 return ret;
2083 static void yukon_mac_init(struct skge_hw *hw, int port)
2085 struct skge_port *skge = netdev_priv(hw->dev[port]);
2086 int i;
2087 u32 reg;
2088 const u8 *addr = hw->dev[port]->dev_addr;
2090 /* WA code for COMA mode -- set PHY reset */
2091 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2092 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2093 reg = skge_read32(hw, B2_GP_IO);
2094 reg |= GP_DIR_9 | GP_IO_9;
2095 skge_write32(hw, B2_GP_IO, reg);
2098 /* hard reset */
2099 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2100 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2102 /* WA code for COMA mode -- clear PHY reset */
2103 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2104 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2105 reg = skge_read32(hw, B2_GP_IO);
2106 reg |= GP_DIR_9;
2107 reg &= ~GP_IO_9;
2108 skge_write32(hw, B2_GP_IO, reg);
2111 /* Set hardware config mode */
2112 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2113 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2114 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2116 /* Clear GMC reset */
2117 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2118 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2119 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2121 if (skge->autoneg == AUTONEG_DISABLE) {
2122 reg = GM_GPCR_AU_ALL_DIS;
2123 gma_write16(hw, port, GM_GP_CTRL,
2124 gma_read16(hw, port, GM_GP_CTRL) | reg);
2126 switch (skge->speed) {
2127 case SPEED_1000:
2128 reg &= ~GM_GPCR_SPEED_100;
2129 reg |= GM_GPCR_SPEED_1000;
2130 break;
2131 case SPEED_100:
2132 reg &= ~GM_GPCR_SPEED_1000;
2133 reg |= GM_GPCR_SPEED_100;
2134 break;
2135 case SPEED_10:
2136 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2137 break;
2140 if (skge->duplex == DUPLEX_FULL)
2141 reg |= GM_GPCR_DUP_FULL;
2142 } else
2143 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2145 switch (skge->flow_control) {
2146 case FLOW_MODE_NONE:
2147 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2148 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2149 break;
2150 case FLOW_MODE_LOC_SEND:
2151 /* disable Rx flow-control */
2152 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2153 break;
2154 case FLOW_MODE_SYMMETRIC:
2155 case FLOW_MODE_SYM_OR_REM:
2156 /* enable Tx & Rx flow-control */
2157 break;
2160 gma_write16(hw, port, GM_GP_CTRL, reg);
2161 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2163 yukon_init(hw, port);
2165 /* MIB clear */
2166 reg = gma_read16(hw, port, GM_PHY_ADDR);
2167 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2169 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2170 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2171 gma_write16(hw, port, GM_PHY_ADDR, reg);
2173 /* transmit control */
2174 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2176 /* receive control reg: unicast + multicast + no FCS */
2177 gma_write16(hw, port, GM_RX_CTRL,
2178 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2180 /* transmit flow control */
2181 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2183 /* transmit parameter */
2184 gma_write16(hw, port, GM_TX_PARAM,
2185 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2186 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2187 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2189 /* configure the Serial Mode Register */
2190 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2191 | GM_SMOD_VLAN_ENA
2192 | IPG_DATA_VAL(IPG_DATA_DEF);
2194 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2195 reg |= GM_SMOD_JUMBO_ENA;
2197 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2199 /* physical address: used for pause frames */
2200 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2201 /* virtual address for data */
2202 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2204 /* enable interrupt mask for counter overflows */
2205 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2206 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2207 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2209 /* Initialize Mac Fifo */
2211 /* Configure Rx MAC FIFO */
2212 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2213 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2215 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2216 if (is_yukon_lite_a0(hw))
2217 reg &= ~GMF_RX_F_FL_ON;
2219 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2220 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2222 * because Pause Packet Truncation in GMAC is not working
2223 * we have to increase the Flush Threshold to 64 bytes
2224 * in order to flush pause packets in Rx FIFO on Yukon-1
2226 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2228 /* Configure Tx MAC FIFO */
2229 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2230 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2233 /* Go into power down mode */
2234 static void yukon_suspend(struct skge_hw *hw, int port)
2236 u16 ctrl;
2238 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2239 ctrl |= PHY_M_PC_POL_R_DIS;
2240 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2242 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2243 ctrl |= PHY_CT_RESET;
2244 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2246 /* switch IEEE compatible power down mode on */
2247 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2248 ctrl |= PHY_CT_PDOWN;
2249 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2252 static void yukon_stop(struct skge_port *skge)
2254 struct skge_hw *hw = skge->hw;
2255 int port = skge->port;
2257 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2258 yukon_reset(hw, port);
2260 gma_write16(hw, port, GM_GP_CTRL,
2261 gma_read16(hw, port, GM_GP_CTRL)
2262 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2263 gma_read16(hw, port, GM_GP_CTRL);
2265 yukon_suspend(hw, port);
2267 /* set GPHY Control reset */
2268 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2269 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2272 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2274 struct skge_hw *hw = skge->hw;
2275 int port = skge->port;
2276 int i;
2278 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2279 | gma_read32(hw, port, GM_TXO_OK_LO);
2280 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2281 | gma_read32(hw, port, GM_RXO_OK_LO);
2283 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2284 data[i] = gma_read32(hw, port,
2285 skge_stats[i].gma_offset);
2288 static void yukon_mac_intr(struct skge_hw *hw, int port)
2290 struct net_device *dev = hw->dev[port];
2291 struct skge_port *skge = netdev_priv(dev);
2292 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2294 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2295 "mac interrupt status 0x%x\n", status);
2297 if (status & GM_IS_RX_FF_OR) {
2298 ++dev->stats.rx_fifo_errors;
2299 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2302 if (status & GM_IS_TX_FF_UR) {
2303 ++dev->stats.tx_fifo_errors;
2304 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2309 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2311 switch (aux & PHY_M_PS_SPEED_MSK) {
2312 case PHY_M_PS_SPEED_1000:
2313 return SPEED_1000;
2314 case PHY_M_PS_SPEED_100:
2315 return SPEED_100;
2316 default:
2317 return SPEED_10;
2321 static void yukon_link_up(struct skge_port *skge)
2323 struct skge_hw *hw = skge->hw;
2324 int port = skge->port;
2325 u16 reg;
2327 /* Enable Transmit FIFO Underrun */
2328 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2330 reg = gma_read16(hw, port, GM_GP_CTRL);
2331 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2332 reg |= GM_GPCR_DUP_FULL;
2334 /* enable Rx/Tx */
2335 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2336 gma_write16(hw, port, GM_GP_CTRL, reg);
2338 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2339 skge_link_up(skge);
2342 static void yukon_link_down(struct skge_port *skge)
2344 struct skge_hw *hw = skge->hw;
2345 int port = skge->port;
2346 u16 ctrl;
2348 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2349 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2350 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2352 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2353 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2354 ctrl |= PHY_M_AN_ASP;
2355 /* restore Asymmetric Pause bit */
2356 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2359 skge_link_down(skge);
2361 yukon_init(hw, port);
2364 static void yukon_phy_intr(struct skge_port *skge)
2366 struct skge_hw *hw = skge->hw;
2367 int port = skge->port;
2368 const char *reason = NULL;
2369 u16 istatus, phystat;
2371 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2372 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2374 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2375 "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2377 if (istatus & PHY_M_IS_AN_COMPL) {
2378 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2379 & PHY_M_AN_RF) {
2380 reason = "remote fault";
2381 goto failed;
2384 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2385 reason = "master/slave fault";
2386 goto failed;
2389 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2390 reason = "speed/duplex";
2391 goto failed;
2394 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2395 ? DUPLEX_FULL : DUPLEX_HALF;
2396 skge->speed = yukon_speed(hw, phystat);
2398 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2399 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2400 case PHY_M_PS_PAUSE_MSK:
2401 skge->flow_status = FLOW_STAT_SYMMETRIC;
2402 break;
2403 case PHY_M_PS_RX_P_EN:
2404 skge->flow_status = FLOW_STAT_REM_SEND;
2405 break;
2406 case PHY_M_PS_TX_P_EN:
2407 skge->flow_status = FLOW_STAT_LOC_SEND;
2408 break;
2409 default:
2410 skge->flow_status = FLOW_STAT_NONE;
2413 if (skge->flow_status == FLOW_STAT_NONE ||
2414 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2415 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2416 else
2417 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2418 yukon_link_up(skge);
2419 return;
2422 if (istatus & PHY_M_IS_LSP_CHANGE)
2423 skge->speed = yukon_speed(hw, phystat);
2425 if (istatus & PHY_M_IS_DUP_CHANGE)
2426 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2427 if (istatus & PHY_M_IS_LST_CHANGE) {
2428 if (phystat & PHY_M_PS_LINK_UP)
2429 yukon_link_up(skge);
2430 else
2431 yukon_link_down(skge);
2433 return;
2434 failed:
2435 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2437 /* XXX restart autonegotiation? */
2440 static void skge_phy_reset(struct skge_port *skge)
2442 struct skge_hw *hw = skge->hw;
2443 int port = skge->port;
2444 struct net_device *dev = hw->dev[port];
2446 netif_stop_queue(skge->netdev);
2447 netif_carrier_off(skge->netdev);
2449 spin_lock_bh(&hw->phy_lock);
2450 if (hw->chip_id == CHIP_ID_GENESIS) {
2451 genesis_reset(hw, port);
2452 genesis_mac_init(hw, port);
2453 } else {
2454 yukon_reset(hw, port);
2455 yukon_init(hw, port);
2457 spin_unlock_bh(&hw->phy_lock);
2459 skge_set_multicast(dev);
2462 /* Basic MII support */
2463 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2465 struct mii_ioctl_data *data = if_mii(ifr);
2466 struct skge_port *skge = netdev_priv(dev);
2467 struct skge_hw *hw = skge->hw;
2468 int err = -EOPNOTSUPP;
2470 if (!netif_running(dev))
2471 return -ENODEV; /* Phy still in reset */
2473 switch (cmd) {
2474 case SIOCGMIIPHY:
2475 data->phy_id = hw->phy_addr;
2477 /* fallthru */
2478 case SIOCGMIIREG: {
2479 u16 val = 0;
2480 spin_lock_bh(&hw->phy_lock);
2481 if (hw->chip_id == CHIP_ID_GENESIS)
2482 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2483 else
2484 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2485 spin_unlock_bh(&hw->phy_lock);
2486 data->val_out = val;
2487 break;
2490 case SIOCSMIIREG:
2491 spin_lock_bh(&hw->phy_lock);
2492 if (hw->chip_id == CHIP_ID_GENESIS)
2493 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2494 data->val_in);
2495 else
2496 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2497 data->val_in);
2498 spin_unlock_bh(&hw->phy_lock);
2499 break;
2501 return err;
2504 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2506 u32 end;
2508 start /= 8;
2509 len /= 8;
2510 end = start + len - 1;
2512 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2513 skge_write32(hw, RB_ADDR(q, RB_START), start);
2514 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2515 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2516 skge_write32(hw, RB_ADDR(q, RB_END), end);
2518 if (q == Q_R1 || q == Q_R2) {
2519 /* Set thresholds on receive queue's */
2520 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2521 start + (2*len)/3);
2522 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2523 start + (len/3));
2524 } else {
2525 /* Enable store & forward on Tx queue's because
2526 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2528 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2531 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2534 /* Setup Bus Memory Interface */
2535 static void skge_qset(struct skge_port *skge, u16 q,
2536 const struct skge_element *e)
2538 struct skge_hw *hw = skge->hw;
2539 u32 watermark = 0x600;
2540 u64 base = skge->dma + (e->desc - skge->mem);
2542 /* optimization to reduce window on 32bit/33mhz */
2543 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2544 watermark /= 2;
2546 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2547 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2548 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2549 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2552 static int skge_up(struct net_device *dev)
2554 struct skge_port *skge = netdev_priv(dev);
2555 struct skge_hw *hw = skge->hw;
2556 int port = skge->port;
2557 u32 chunk, ram_addr;
2558 size_t rx_size, tx_size;
2559 int err;
2561 if (!is_valid_ether_addr(dev->dev_addr))
2562 return -EINVAL;
2564 netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2566 if (dev->mtu > RX_BUF_SIZE)
2567 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2568 else
2569 skge->rx_buf_size = RX_BUF_SIZE;
2572 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2573 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2574 skge->mem_size = tx_size + rx_size;
2575 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2576 if (!skge->mem)
2577 return -ENOMEM;
2579 BUG_ON(skge->dma & 7);
2581 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2582 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2583 err = -EINVAL;
2584 goto free_pci_mem;
2587 memset(skge->mem, 0, skge->mem_size);
2589 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2590 if (err)
2591 goto free_pci_mem;
2593 err = skge_rx_fill(dev);
2594 if (err)
2595 goto free_rx_ring;
2597 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2598 skge->dma + rx_size);
2599 if (err)
2600 goto free_rx_ring;
2602 /* Initialize MAC */
2603 spin_lock_bh(&hw->phy_lock);
2604 if (hw->chip_id == CHIP_ID_GENESIS)
2605 genesis_mac_init(hw, port);
2606 else
2607 yukon_mac_init(hw, port);
2608 spin_unlock_bh(&hw->phy_lock);
2610 /* Configure RAMbuffers - equally between ports and tx/rx */
2611 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2612 ram_addr = hw->ram_offset + 2 * chunk * port;
2614 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2615 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2617 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2618 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2619 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2621 /* Start receiver BMU */
2622 wmb();
2623 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2624 skge_led(skge, LED_MODE_ON);
2626 spin_lock_irq(&hw->hw_lock);
2627 hw->intr_mask |= portmask[port];
2628 skge_write32(hw, B0_IMSK, hw->intr_mask);
2629 spin_unlock_irq(&hw->hw_lock);
2631 napi_enable(&skge->napi);
2632 return 0;
2634 free_rx_ring:
2635 skge_rx_clean(skge);
2636 kfree(skge->rx_ring.start);
2637 free_pci_mem:
2638 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2639 skge->mem = NULL;
2641 return err;
2644 /* stop receiver */
2645 static void skge_rx_stop(struct skge_hw *hw, int port)
2647 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2648 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2649 RB_RST_SET|RB_DIS_OP_MD);
2650 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2653 static int skge_down(struct net_device *dev)
2655 struct skge_port *skge = netdev_priv(dev);
2656 struct skge_hw *hw = skge->hw;
2657 int port = skge->port;
2659 if (skge->mem == NULL)
2660 return 0;
2662 netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2664 netif_tx_disable(dev);
2666 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2667 del_timer_sync(&skge->link_timer);
2669 napi_disable(&skge->napi);
2670 netif_carrier_off(dev);
2672 spin_lock_irq(&hw->hw_lock);
2673 hw->intr_mask &= ~portmask[port];
2674 skge_write32(hw, B0_IMSK, hw->intr_mask);
2675 spin_unlock_irq(&hw->hw_lock);
2677 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2678 if (hw->chip_id == CHIP_ID_GENESIS)
2679 genesis_stop(skge);
2680 else
2681 yukon_stop(skge);
2683 /* Stop transmitter */
2684 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2685 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2686 RB_RST_SET|RB_DIS_OP_MD);
2689 /* Disable Force Sync bit and Enable Alloc bit */
2690 skge_write8(hw, SK_REG(port, TXA_CTRL),
2691 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2693 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2694 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2695 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2697 /* Reset PCI FIFO */
2698 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2699 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2701 /* Reset the RAM Buffer async Tx queue */
2702 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2704 skge_rx_stop(hw, port);
2706 if (hw->chip_id == CHIP_ID_GENESIS) {
2707 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2708 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2709 } else {
2710 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2711 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2714 skge_led(skge, LED_MODE_OFF);
2716 netif_tx_lock_bh(dev);
2717 skge_tx_clean(dev);
2718 netif_tx_unlock_bh(dev);
2720 skge_rx_clean(skge);
2722 kfree(skge->rx_ring.start);
2723 kfree(skge->tx_ring.start);
2724 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2725 skge->mem = NULL;
2726 return 0;
2729 static inline int skge_avail(const struct skge_ring *ring)
2731 smp_mb();
2732 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2733 + (ring->to_clean - ring->to_use) - 1;
2736 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2737 struct net_device *dev)
2739 struct skge_port *skge = netdev_priv(dev);
2740 struct skge_hw *hw = skge->hw;
2741 struct skge_element *e;
2742 struct skge_tx_desc *td;
2743 int i;
2744 u32 control, len;
2745 u64 map;
2747 if (skb_padto(skb, ETH_ZLEN))
2748 return NETDEV_TX_OK;
2750 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2751 return NETDEV_TX_BUSY;
2753 e = skge->tx_ring.to_use;
2754 td = e->desc;
2755 BUG_ON(td->control & BMU_OWN);
2756 e->skb = skb;
2757 len = skb_headlen(skb);
2758 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2759 dma_unmap_addr_set(e, mapaddr, map);
2760 dma_unmap_len_set(e, maplen, len);
2762 td->dma_lo = map;
2763 td->dma_hi = map >> 32;
2765 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2766 const int offset = skb_transport_offset(skb);
2768 /* This seems backwards, but it is what the sk98lin
2769 * does. Looks like hardware is wrong?
2771 if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2772 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2773 control = BMU_TCP_CHECK;
2774 else
2775 control = BMU_UDP_CHECK;
2777 td->csum_offs = 0;
2778 td->csum_start = offset;
2779 td->csum_write = offset + skb->csum_offset;
2780 } else
2781 control = BMU_CHECK;
2783 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2784 control |= BMU_EOF | BMU_IRQ_EOF;
2785 else {
2786 struct skge_tx_desc *tf = td;
2788 control |= BMU_STFWD;
2789 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2790 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2792 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2793 frag->size, PCI_DMA_TODEVICE);
2795 e = e->next;
2796 e->skb = skb;
2797 tf = e->desc;
2798 BUG_ON(tf->control & BMU_OWN);
2800 tf->dma_lo = map;
2801 tf->dma_hi = (u64) map >> 32;
2802 dma_unmap_addr_set(e, mapaddr, map);
2803 dma_unmap_len_set(e, maplen, frag->size);
2805 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2807 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2809 /* Make sure all the descriptors written */
2810 wmb();
2811 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2812 wmb();
2814 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2816 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2817 "tx queued, slot %td, len %d\n",
2818 e - skge->tx_ring.start, skb->len);
2820 skge->tx_ring.to_use = e->next;
2821 smp_wmb();
2823 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2824 netdev_dbg(dev, "transmit queue full\n");
2825 netif_stop_queue(dev);
2828 return NETDEV_TX_OK;
2832 /* Free resources associated with this reing element */
2833 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2834 u32 control)
2836 struct pci_dev *pdev = skge->hw->pdev;
2838 /* skb header vs. fragment */
2839 if (control & BMU_STF)
2840 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2841 dma_unmap_len(e, maplen),
2842 PCI_DMA_TODEVICE);
2843 else
2844 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2845 dma_unmap_len(e, maplen),
2846 PCI_DMA_TODEVICE);
2848 if (control & BMU_EOF) {
2849 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
2850 "tx done slot %td\n", e - skge->tx_ring.start);
2852 dev_kfree_skb(e->skb);
2856 /* Free all buffers in transmit ring */
2857 static void skge_tx_clean(struct net_device *dev)
2859 struct skge_port *skge = netdev_priv(dev);
2860 struct skge_element *e;
2862 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2863 struct skge_tx_desc *td = e->desc;
2864 skge_tx_free(skge, e, td->control);
2865 td->control = 0;
2868 skge->tx_ring.to_clean = e;
2871 static void skge_tx_timeout(struct net_device *dev)
2873 struct skge_port *skge = netdev_priv(dev);
2875 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2877 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2878 skge_tx_clean(dev);
2879 netif_wake_queue(dev);
2882 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2884 int err;
2886 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2887 return -EINVAL;
2889 if (!netif_running(dev)) {
2890 dev->mtu = new_mtu;
2891 return 0;
2894 skge_down(dev);
2896 dev->mtu = new_mtu;
2898 err = skge_up(dev);
2899 if (err)
2900 dev_close(dev);
2902 return err;
2905 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2907 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2909 u32 crc, bit;
2911 crc = ether_crc_le(ETH_ALEN, addr);
2912 bit = ~crc & 0x3f;
2913 filter[bit/8] |= 1 << (bit%8);
2916 static void genesis_set_multicast(struct net_device *dev)
2918 struct skge_port *skge = netdev_priv(dev);
2919 struct skge_hw *hw = skge->hw;
2920 int port = skge->port;
2921 struct netdev_hw_addr *ha;
2922 u32 mode;
2923 u8 filter[8];
2925 mode = xm_read32(hw, port, XM_MODE);
2926 mode |= XM_MD_ENA_HASH;
2927 if (dev->flags & IFF_PROMISC)
2928 mode |= XM_MD_ENA_PROM;
2929 else
2930 mode &= ~XM_MD_ENA_PROM;
2932 if (dev->flags & IFF_ALLMULTI)
2933 memset(filter, 0xff, sizeof(filter));
2934 else {
2935 memset(filter, 0, sizeof(filter));
2937 if (skge->flow_status == FLOW_STAT_REM_SEND ||
2938 skge->flow_status == FLOW_STAT_SYMMETRIC)
2939 genesis_add_filter(filter, pause_mc_addr);
2941 netdev_for_each_mc_addr(ha, dev)
2942 genesis_add_filter(filter, ha->addr);
2945 xm_write32(hw, port, XM_MODE, mode);
2946 xm_outhash(hw, port, XM_HSM, filter);
2949 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2951 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2952 filter[bit/8] |= 1 << (bit%8);
2955 static void yukon_set_multicast(struct net_device *dev)
2957 struct skge_port *skge = netdev_priv(dev);
2958 struct skge_hw *hw = skge->hw;
2959 int port = skge->port;
2960 struct netdev_hw_addr *ha;
2961 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2962 skge->flow_status == FLOW_STAT_SYMMETRIC);
2963 u16 reg;
2964 u8 filter[8];
2966 memset(filter, 0, sizeof(filter));
2968 reg = gma_read16(hw, port, GM_RX_CTRL);
2969 reg |= GM_RXCR_UCF_ENA;
2971 if (dev->flags & IFF_PROMISC) /* promiscuous */
2972 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2973 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2974 memset(filter, 0xff, sizeof(filter));
2975 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2976 reg &= ~GM_RXCR_MCF_ENA;
2977 else {
2978 reg |= GM_RXCR_MCF_ENA;
2980 if (rx_pause)
2981 yukon_add_filter(filter, pause_mc_addr);
2983 netdev_for_each_mc_addr(ha, dev)
2984 yukon_add_filter(filter, ha->addr);
2988 gma_write16(hw, port, GM_MC_ADDR_H1,
2989 (u16)filter[0] | ((u16)filter[1] << 8));
2990 gma_write16(hw, port, GM_MC_ADDR_H2,
2991 (u16)filter[2] | ((u16)filter[3] << 8));
2992 gma_write16(hw, port, GM_MC_ADDR_H3,
2993 (u16)filter[4] | ((u16)filter[5] << 8));
2994 gma_write16(hw, port, GM_MC_ADDR_H4,
2995 (u16)filter[6] | ((u16)filter[7] << 8));
2997 gma_write16(hw, port, GM_RX_CTRL, reg);
3000 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3002 if (hw->chip_id == CHIP_ID_GENESIS)
3003 return status >> XMR_FS_LEN_SHIFT;
3004 else
3005 return status >> GMR_FS_LEN_SHIFT;
3008 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3010 if (hw->chip_id == CHIP_ID_GENESIS)
3011 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3012 else
3013 return (status & GMR_FS_ANY_ERR) ||
3014 (status & GMR_FS_RX_OK) == 0;
3017 static void skge_set_multicast(struct net_device *dev)
3019 struct skge_port *skge = netdev_priv(dev);
3020 struct skge_hw *hw = skge->hw;
3022 if (hw->chip_id == CHIP_ID_GENESIS)
3023 genesis_set_multicast(dev);
3024 else
3025 yukon_set_multicast(dev);
3030 /* Get receive buffer from descriptor.
3031 * Handles copy of small buffers and reallocation failures
3033 static struct sk_buff *skge_rx_get(struct net_device *dev,
3034 struct skge_element *e,
3035 u32 control, u32 status, u16 csum)
3037 struct skge_port *skge = netdev_priv(dev);
3038 struct sk_buff *skb;
3039 u16 len = control & BMU_BBC;
3041 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3042 "rx slot %td status 0x%x len %d\n",
3043 e - skge->rx_ring.start, status, len);
3045 if (len > skge->rx_buf_size)
3046 goto error;
3048 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3049 goto error;
3051 if (bad_phy_status(skge->hw, status))
3052 goto error;
3054 if (phy_length(skge->hw, status) != len)
3055 goto error;
3057 if (len < RX_COPY_THRESHOLD) {
3058 skb = netdev_alloc_skb_ip_align(dev, len);
3059 if (!skb)
3060 goto resubmit;
3062 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3063 dma_unmap_addr(e, mapaddr),
3064 len, PCI_DMA_FROMDEVICE);
3065 skb_copy_from_linear_data(e->skb, skb->data, len);
3066 pci_dma_sync_single_for_device(skge->hw->pdev,
3067 dma_unmap_addr(e, mapaddr),
3068 len, PCI_DMA_FROMDEVICE);
3069 skge_rx_reuse(e, skge->rx_buf_size);
3070 } else {
3071 struct sk_buff *nskb;
3073 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3074 if (!nskb)
3075 goto resubmit;
3077 pci_unmap_single(skge->hw->pdev,
3078 dma_unmap_addr(e, mapaddr),
3079 dma_unmap_len(e, maplen),
3080 PCI_DMA_FROMDEVICE);
3081 skb = e->skb;
3082 prefetch(skb->data);
3083 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3086 skb_put(skb, len);
3087 if (skge->rx_csum) {
3088 skb->csum = csum;
3089 skb->ip_summed = CHECKSUM_COMPLETE;
3092 skb->protocol = eth_type_trans(skb, dev);
3094 return skb;
3095 error:
3097 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3098 "rx err, slot %td control 0x%x status 0x%x\n",
3099 e - skge->rx_ring.start, control, status);
3101 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3102 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3103 dev->stats.rx_length_errors++;
3104 if (status & XMR_FS_FRA_ERR)
3105 dev->stats.rx_frame_errors++;
3106 if (status & XMR_FS_FCS_ERR)
3107 dev->stats.rx_crc_errors++;
3108 } else {
3109 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3110 dev->stats.rx_length_errors++;
3111 if (status & GMR_FS_FRAGMENT)
3112 dev->stats.rx_frame_errors++;
3113 if (status & GMR_FS_CRC_ERR)
3114 dev->stats.rx_crc_errors++;
3117 resubmit:
3118 skge_rx_reuse(e, skge->rx_buf_size);
3119 return NULL;
3122 /* Free all buffers in Tx ring which are no longer owned by device */
3123 static void skge_tx_done(struct net_device *dev)
3125 struct skge_port *skge = netdev_priv(dev);
3126 struct skge_ring *ring = &skge->tx_ring;
3127 struct skge_element *e;
3129 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3131 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3132 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3134 if (control & BMU_OWN)
3135 break;
3137 skge_tx_free(skge, e, control);
3139 skge->tx_ring.to_clean = e;
3141 /* Can run lockless until we need to synchronize to restart queue. */
3142 smp_mb();
3144 if (unlikely(netif_queue_stopped(dev) &&
3145 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3146 netif_tx_lock(dev);
3147 if (unlikely(netif_queue_stopped(dev) &&
3148 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3149 netif_wake_queue(dev);
3152 netif_tx_unlock(dev);
3156 static int skge_poll(struct napi_struct *napi, int to_do)
3158 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3159 struct net_device *dev = skge->netdev;
3160 struct skge_hw *hw = skge->hw;
3161 struct skge_ring *ring = &skge->rx_ring;
3162 struct skge_element *e;
3163 int work_done = 0;
3165 skge_tx_done(dev);
3167 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3169 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3170 struct skge_rx_desc *rd = e->desc;
3171 struct sk_buff *skb;
3172 u32 control;
3174 rmb();
3175 control = rd->control;
3176 if (control & BMU_OWN)
3177 break;
3179 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3180 if (likely(skb)) {
3181 netif_receive_skb(skb);
3183 ++work_done;
3186 ring->to_clean = e;
3188 /* restart receiver */
3189 wmb();
3190 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3192 if (work_done < to_do) {
3193 unsigned long flags;
3195 spin_lock_irqsave(&hw->hw_lock, flags);
3196 __napi_complete(napi);
3197 hw->intr_mask |= napimask[skge->port];
3198 skge_write32(hw, B0_IMSK, hw->intr_mask);
3199 skge_read32(hw, B0_IMSK);
3200 spin_unlock_irqrestore(&hw->hw_lock, flags);
3203 return work_done;
3206 /* Parity errors seem to happen when Genesis is connected to a switch
3207 * with no other ports present. Heartbeat error??
3209 static void skge_mac_parity(struct skge_hw *hw, int port)
3211 struct net_device *dev = hw->dev[port];
3213 ++dev->stats.tx_heartbeat_errors;
3215 if (hw->chip_id == CHIP_ID_GENESIS)
3216 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3217 MFF_CLR_PERR);
3218 else
3219 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3220 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3221 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3222 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3225 static void skge_mac_intr(struct skge_hw *hw, int port)
3227 if (hw->chip_id == CHIP_ID_GENESIS)
3228 genesis_mac_intr(hw, port);
3229 else
3230 yukon_mac_intr(hw, port);
3233 /* Handle device specific framing and timeout interrupts */
3234 static void skge_error_irq(struct skge_hw *hw)
3236 struct pci_dev *pdev = hw->pdev;
3237 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3239 if (hw->chip_id == CHIP_ID_GENESIS) {
3240 /* clear xmac errors */
3241 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3242 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3243 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3244 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3245 } else {
3246 /* Timestamp (unused) overflow */
3247 if (hwstatus & IS_IRQ_TIST_OV)
3248 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3251 if (hwstatus & IS_RAM_RD_PAR) {
3252 dev_err(&pdev->dev, "Ram read data parity error\n");
3253 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3256 if (hwstatus & IS_RAM_WR_PAR) {
3257 dev_err(&pdev->dev, "Ram write data parity error\n");
3258 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3261 if (hwstatus & IS_M1_PAR_ERR)
3262 skge_mac_parity(hw, 0);
3264 if (hwstatus & IS_M2_PAR_ERR)
3265 skge_mac_parity(hw, 1);
3267 if (hwstatus & IS_R1_PAR_ERR) {
3268 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3269 hw->dev[0]->name);
3270 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3273 if (hwstatus & IS_R2_PAR_ERR) {
3274 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3275 hw->dev[1]->name);
3276 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3279 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3280 u16 pci_status, pci_cmd;
3282 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3283 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3285 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3286 pci_cmd, pci_status);
3288 /* Write the error bits back to clear them. */
3289 pci_status &= PCI_STATUS_ERROR_BITS;
3290 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3291 pci_write_config_word(pdev, PCI_COMMAND,
3292 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3293 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3294 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3296 /* if error still set then just ignore it */
3297 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3298 if (hwstatus & IS_IRQ_STAT) {
3299 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3300 hw->intr_mask &= ~IS_HW_ERR;
3306 * Interrupt from PHY are handled in tasklet (softirq)
3307 * because accessing phy registers requires spin wait which might
3308 * cause excess interrupt latency.
3310 static void skge_extirq(unsigned long arg)
3312 struct skge_hw *hw = (struct skge_hw *) arg;
3313 int port;
3315 for (port = 0; port < hw->ports; port++) {
3316 struct net_device *dev = hw->dev[port];
3318 if (netif_running(dev)) {
3319 struct skge_port *skge = netdev_priv(dev);
3321 spin_lock(&hw->phy_lock);
3322 if (hw->chip_id != CHIP_ID_GENESIS)
3323 yukon_phy_intr(skge);
3324 else if (hw->phy_type == SK_PHY_BCOM)
3325 bcom_phy_intr(skge);
3326 spin_unlock(&hw->phy_lock);
3330 spin_lock_irq(&hw->hw_lock);
3331 hw->intr_mask |= IS_EXT_REG;
3332 skge_write32(hw, B0_IMSK, hw->intr_mask);
3333 skge_read32(hw, B0_IMSK);
3334 spin_unlock_irq(&hw->hw_lock);
3337 static irqreturn_t skge_intr(int irq, void *dev_id)
3339 struct skge_hw *hw = dev_id;
3340 u32 status;
3341 int handled = 0;
3343 spin_lock(&hw->hw_lock);
3344 /* Reading this register masks IRQ */
3345 status = skge_read32(hw, B0_SP_ISRC);
3346 if (status == 0 || status == ~0)
3347 goto out;
3349 handled = 1;
3350 status &= hw->intr_mask;
3351 if (status & IS_EXT_REG) {
3352 hw->intr_mask &= ~IS_EXT_REG;
3353 tasklet_schedule(&hw->phy_task);
3356 if (status & (IS_XA1_F|IS_R1_F)) {
3357 struct skge_port *skge = netdev_priv(hw->dev[0]);
3358 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3359 napi_schedule(&skge->napi);
3362 if (status & IS_PA_TO_TX1)
3363 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3365 if (status & IS_PA_TO_RX1) {
3366 ++hw->dev[0]->stats.rx_over_errors;
3367 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3371 if (status & IS_MAC1)
3372 skge_mac_intr(hw, 0);
3374 if (hw->dev[1]) {
3375 struct skge_port *skge = netdev_priv(hw->dev[1]);
3377 if (status & (IS_XA2_F|IS_R2_F)) {
3378 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3379 napi_schedule(&skge->napi);
3382 if (status & IS_PA_TO_RX2) {
3383 ++hw->dev[1]->stats.rx_over_errors;
3384 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3387 if (status & IS_PA_TO_TX2)
3388 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3390 if (status & IS_MAC2)
3391 skge_mac_intr(hw, 1);
3394 if (status & IS_HW_ERR)
3395 skge_error_irq(hw);
3397 skge_write32(hw, B0_IMSK, hw->intr_mask);
3398 skge_read32(hw, B0_IMSK);
3399 out:
3400 spin_unlock(&hw->hw_lock);
3402 return IRQ_RETVAL(handled);
3405 #ifdef CONFIG_NET_POLL_CONTROLLER
3406 static void skge_netpoll(struct net_device *dev)
3408 struct skge_port *skge = netdev_priv(dev);
3410 disable_irq(dev->irq);
3411 skge_intr(dev->irq, skge->hw);
3412 enable_irq(dev->irq);
3414 #endif
3416 static int skge_set_mac_address(struct net_device *dev, void *p)
3418 struct skge_port *skge = netdev_priv(dev);
3419 struct skge_hw *hw = skge->hw;
3420 unsigned port = skge->port;
3421 const struct sockaddr *addr = p;
3422 u16 ctrl;
3424 if (!is_valid_ether_addr(addr->sa_data))
3425 return -EADDRNOTAVAIL;
3427 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3429 if (!netif_running(dev)) {
3430 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3431 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3432 } else {
3433 /* disable Rx */
3434 spin_lock_bh(&hw->phy_lock);
3435 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3436 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3438 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3439 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3441 if (hw->chip_id == CHIP_ID_GENESIS)
3442 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3443 else {
3444 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3445 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3448 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3449 spin_unlock_bh(&hw->phy_lock);
3452 return 0;
3455 static const struct {
3456 u8 id;
3457 const char *name;
3458 } skge_chips[] = {
3459 { CHIP_ID_GENESIS, "Genesis" },
3460 { CHIP_ID_YUKON, "Yukon" },
3461 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3462 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3465 static const char *skge_board_name(const struct skge_hw *hw)
3467 int i;
3468 static char buf[16];
3470 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3471 if (skge_chips[i].id == hw->chip_id)
3472 return skge_chips[i].name;
3474 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3475 return buf;
3480 * Setup the board data structure, but don't bring up
3481 * the port(s)
3483 static int skge_reset(struct skge_hw *hw)
3485 u32 reg;
3486 u16 ctst, pci_status;
3487 u8 t8, mac_cfg, pmd_type;
3488 int i;
3490 ctst = skge_read16(hw, B0_CTST);
3492 /* do a SW reset */
3493 skge_write8(hw, B0_CTST, CS_RST_SET);
3494 skge_write8(hw, B0_CTST, CS_RST_CLR);
3496 /* clear PCI errors, if any */
3497 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3498 skge_write8(hw, B2_TST_CTRL2, 0);
3500 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3501 pci_write_config_word(hw->pdev, PCI_STATUS,
3502 pci_status | PCI_STATUS_ERROR_BITS);
3503 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3504 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3506 /* restore CLK_RUN bits (for Yukon-Lite) */
3507 skge_write16(hw, B0_CTST,
3508 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3510 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3511 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3512 pmd_type = skge_read8(hw, B2_PMD_TYP);
3513 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3515 switch (hw->chip_id) {
3516 case CHIP_ID_GENESIS:
3517 switch (hw->phy_type) {
3518 case SK_PHY_XMAC:
3519 hw->phy_addr = PHY_ADDR_XMAC;
3520 break;
3521 case SK_PHY_BCOM:
3522 hw->phy_addr = PHY_ADDR_BCOM;
3523 break;
3524 default:
3525 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3526 hw->phy_type);
3527 return -EOPNOTSUPP;
3529 break;
3531 case CHIP_ID_YUKON:
3532 case CHIP_ID_YUKON_LITE:
3533 case CHIP_ID_YUKON_LP:
3534 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3535 hw->copper = 1;
3537 hw->phy_addr = PHY_ADDR_MARV;
3538 break;
3540 default:
3541 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3542 hw->chip_id);
3543 return -EOPNOTSUPP;
3546 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3547 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3548 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3550 /* read the adapters RAM size */
3551 t8 = skge_read8(hw, B2_E_0);
3552 if (hw->chip_id == CHIP_ID_GENESIS) {
3553 if (t8 == 3) {
3554 /* special case: 4 x 64k x 36, offset = 0x80000 */
3555 hw->ram_size = 0x100000;
3556 hw->ram_offset = 0x80000;
3557 } else
3558 hw->ram_size = t8 * 512;
3559 } else if (t8 == 0)
3560 hw->ram_size = 0x20000;
3561 else
3562 hw->ram_size = t8 * 4096;
3564 hw->intr_mask = IS_HW_ERR;
3566 /* Use PHY IRQ for all but fiber based Genesis board */
3567 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3568 hw->intr_mask |= IS_EXT_REG;
3570 if (hw->chip_id == CHIP_ID_GENESIS)
3571 genesis_init(hw);
3572 else {
3573 /* switch power to VCC (WA for VAUX problem) */
3574 skge_write8(hw, B0_POWER_CTRL,
3575 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3577 /* avoid boards with stuck Hardware error bits */
3578 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3579 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3580 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3581 hw->intr_mask &= ~IS_HW_ERR;
3584 /* Clear PHY COMA */
3585 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3586 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3587 reg &= ~PCI_PHY_COMA;
3588 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3589 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3592 for (i = 0; i < hw->ports; i++) {
3593 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3594 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3598 /* turn off hardware timer (unused) */
3599 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3600 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3601 skge_write8(hw, B0_LED, LED_STAT_ON);
3603 /* enable the Tx Arbiters */
3604 for (i = 0; i < hw->ports; i++)
3605 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3607 /* Initialize ram interface */
3608 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3610 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3611 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3612 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3613 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3614 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3615 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3616 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3617 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3618 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3619 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3620 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3621 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3623 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3625 /* Set interrupt moderation for Transmit only
3626 * Receive interrupts avoided by NAPI
3628 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3629 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3630 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3632 skge_write32(hw, B0_IMSK, hw->intr_mask);
3634 for (i = 0; i < hw->ports; i++) {
3635 if (hw->chip_id == CHIP_ID_GENESIS)
3636 genesis_reset(hw, i);
3637 else
3638 yukon_reset(hw, i);
3641 return 0;
3645 #ifdef CONFIG_SKGE_DEBUG
3647 static struct dentry *skge_debug;
3649 static int skge_debug_show(struct seq_file *seq, void *v)
3651 struct net_device *dev = seq->private;
3652 const struct skge_port *skge = netdev_priv(dev);
3653 const struct skge_hw *hw = skge->hw;
3654 const struct skge_element *e;
3656 if (!netif_running(dev))
3657 return -ENETDOWN;
3659 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3660 skge_read32(hw, B0_IMSK));
3662 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3663 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3664 const struct skge_tx_desc *t = e->desc;
3665 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3666 t->control, t->dma_hi, t->dma_lo, t->status,
3667 t->csum_offs, t->csum_write, t->csum_start);
3670 seq_printf(seq, "\nRx Ring:\n");
3671 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3672 const struct skge_rx_desc *r = e->desc;
3674 if (r->control & BMU_OWN)
3675 break;
3677 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3678 r->control, r->dma_hi, r->dma_lo, r->status,
3679 r->timestamp, r->csum1, r->csum1_start);
3682 return 0;
3685 static int skge_debug_open(struct inode *inode, struct file *file)
3687 return single_open(file, skge_debug_show, inode->i_private);
3690 static const struct file_operations skge_debug_fops = {
3691 .owner = THIS_MODULE,
3692 .open = skge_debug_open,
3693 .read = seq_read,
3694 .llseek = seq_lseek,
3695 .release = single_release,
3699 * Use network device events to create/remove/rename
3700 * debugfs file entries
3702 static int skge_device_event(struct notifier_block *unused,
3703 unsigned long event, void *ptr)
3705 struct net_device *dev = ptr;
3706 struct skge_port *skge;
3707 struct dentry *d;
3709 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3710 goto done;
3712 skge = netdev_priv(dev);
3713 switch (event) {
3714 case NETDEV_CHANGENAME:
3715 if (skge->debugfs) {
3716 d = debugfs_rename(skge_debug, skge->debugfs,
3717 skge_debug, dev->name);
3718 if (d)
3719 skge->debugfs = d;
3720 else {
3721 netdev_info(dev, "rename failed\n");
3722 debugfs_remove(skge->debugfs);
3725 break;
3727 case NETDEV_GOING_DOWN:
3728 if (skge->debugfs) {
3729 debugfs_remove(skge->debugfs);
3730 skge->debugfs = NULL;
3732 break;
3734 case NETDEV_UP:
3735 d = debugfs_create_file(dev->name, S_IRUGO,
3736 skge_debug, dev,
3737 &skge_debug_fops);
3738 if (!d || IS_ERR(d))
3739 netdev_info(dev, "debugfs create failed\n");
3740 else
3741 skge->debugfs = d;
3742 break;
3745 done:
3746 return NOTIFY_DONE;
3749 static struct notifier_block skge_notifier = {
3750 .notifier_call = skge_device_event,
3754 static __init void skge_debug_init(void)
3756 struct dentry *ent;
3758 ent = debugfs_create_dir("skge", NULL);
3759 if (!ent || IS_ERR(ent)) {
3760 pr_info("debugfs create directory failed\n");
3761 return;
3764 skge_debug = ent;
3765 register_netdevice_notifier(&skge_notifier);
3768 static __exit void skge_debug_cleanup(void)
3770 if (skge_debug) {
3771 unregister_netdevice_notifier(&skge_notifier);
3772 debugfs_remove(skge_debug);
3773 skge_debug = NULL;
3777 #else
3778 #define skge_debug_init()
3779 #define skge_debug_cleanup()
3780 #endif
3782 static const struct net_device_ops skge_netdev_ops = {
3783 .ndo_open = skge_up,
3784 .ndo_stop = skge_down,
3785 .ndo_start_xmit = skge_xmit_frame,
3786 .ndo_do_ioctl = skge_ioctl,
3787 .ndo_get_stats = skge_get_stats,
3788 .ndo_tx_timeout = skge_tx_timeout,
3789 .ndo_change_mtu = skge_change_mtu,
3790 .ndo_validate_addr = eth_validate_addr,
3791 .ndo_set_multicast_list = skge_set_multicast,
3792 .ndo_set_mac_address = skge_set_mac_address,
3793 #ifdef CONFIG_NET_POLL_CONTROLLER
3794 .ndo_poll_controller = skge_netpoll,
3795 #endif
3799 /* Initialize network device */
3800 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3801 int highmem)
3803 struct skge_port *skge;
3804 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3806 if (!dev) {
3807 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3808 return NULL;
3811 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3812 dev->netdev_ops = &skge_netdev_ops;
3813 dev->ethtool_ops = &skge_ethtool_ops;
3814 dev->watchdog_timeo = TX_WATCHDOG;
3815 dev->irq = hw->pdev->irq;
3817 if (highmem)
3818 dev->features |= NETIF_F_HIGHDMA;
3820 skge = netdev_priv(dev);
3821 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3822 skge->netdev = dev;
3823 skge->hw = hw;
3824 skge->msg_enable = netif_msg_init(debug, default_msg);
3826 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3827 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3829 /* Auto speed and flow control */
3830 skge->autoneg = AUTONEG_ENABLE;
3831 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3832 skge->duplex = -1;
3833 skge->speed = -1;
3834 skge->advertising = skge_supported_modes(hw);
3836 if (device_can_wakeup(&hw->pdev->dev)) {
3837 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3838 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3841 hw->dev[port] = dev;
3843 skge->port = port;
3845 /* Only used for Genesis XMAC */
3846 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3848 if (hw->chip_id != CHIP_ID_GENESIS) {
3849 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3850 skge->rx_csum = 1;
3853 /* read the mac address */
3854 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3855 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3857 /* device is off until link detection */
3858 netif_carrier_off(dev);
3859 netif_stop_queue(dev);
3861 return dev;
3864 static void __devinit skge_show_addr(struct net_device *dev)
3866 const struct skge_port *skge = netdev_priv(dev);
3868 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3871 static int __devinit skge_probe(struct pci_dev *pdev,
3872 const struct pci_device_id *ent)
3874 struct net_device *dev, *dev1;
3875 struct skge_hw *hw;
3876 int err, using_dac = 0;
3878 err = pci_enable_device(pdev);
3879 if (err) {
3880 dev_err(&pdev->dev, "cannot enable PCI device\n");
3881 goto err_out;
3884 err = pci_request_regions(pdev, DRV_NAME);
3885 if (err) {
3886 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3887 goto err_out_disable_pdev;
3890 pci_set_master(pdev);
3892 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3893 using_dac = 1;
3894 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3895 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3896 using_dac = 0;
3897 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3900 if (err) {
3901 dev_err(&pdev->dev, "no usable DMA configuration\n");
3902 goto err_out_free_regions;
3905 #ifdef __BIG_ENDIAN
3906 /* byte swap descriptors in hardware */
3908 u32 reg;
3910 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3911 reg |= PCI_REV_DESC;
3912 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3914 #endif
3916 err = -ENOMEM;
3917 /* space for skge@pci:0000:04:00.0 */
3918 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3919 + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3920 if (!hw) {
3921 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3922 goto err_out_free_regions;
3924 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3926 hw->pdev = pdev;
3927 spin_lock_init(&hw->hw_lock);
3928 spin_lock_init(&hw->phy_lock);
3929 tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3931 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3932 if (!hw->regs) {
3933 dev_err(&pdev->dev, "cannot map device registers\n");
3934 goto err_out_free_hw;
3937 err = skge_reset(hw);
3938 if (err)
3939 goto err_out_iounmap;
3941 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3942 DRV_VERSION,
3943 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3944 skge_board_name(hw), hw->chip_rev);
3946 dev = skge_devinit(hw, 0, using_dac);
3947 if (!dev)
3948 goto err_out_led_off;
3950 /* Some motherboards are broken and has zero in ROM. */
3951 if (!is_valid_ether_addr(dev->dev_addr))
3952 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3954 err = register_netdev(dev);
3955 if (err) {
3956 dev_err(&pdev->dev, "cannot register net device\n");
3957 goto err_out_free_netdev;
3960 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
3961 if (err) {
3962 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3963 dev->name, pdev->irq);
3964 goto err_out_unregister;
3966 skge_show_addr(dev);
3968 if (hw->ports > 1) {
3969 dev1 = skge_devinit(hw, 1, using_dac);
3970 if (dev1 && register_netdev(dev1) == 0)
3971 skge_show_addr(dev1);
3972 else {
3973 /* Failure to register second port need not be fatal */
3974 dev_warn(&pdev->dev, "register of second port failed\n");
3975 hw->dev[1] = NULL;
3976 hw->ports = 1;
3977 if (dev1)
3978 free_netdev(dev1);
3981 pci_set_drvdata(pdev, hw);
3983 return 0;
3985 err_out_unregister:
3986 unregister_netdev(dev);
3987 err_out_free_netdev:
3988 free_netdev(dev);
3989 err_out_led_off:
3990 skge_write16(hw, B0_LED, LED_STAT_OFF);
3991 err_out_iounmap:
3992 iounmap(hw->regs);
3993 err_out_free_hw:
3994 kfree(hw);
3995 err_out_free_regions:
3996 pci_release_regions(pdev);
3997 err_out_disable_pdev:
3998 pci_disable_device(pdev);
3999 pci_set_drvdata(pdev, NULL);
4000 err_out:
4001 return err;
4004 static void __devexit skge_remove(struct pci_dev *pdev)
4006 struct skge_hw *hw = pci_get_drvdata(pdev);
4007 struct net_device *dev0, *dev1;
4009 if (!hw)
4010 return;
4012 flush_scheduled_work();
4014 dev1 = hw->dev[1];
4015 if (dev1)
4016 unregister_netdev(dev1);
4017 dev0 = hw->dev[0];
4018 unregister_netdev(dev0);
4020 tasklet_disable(&hw->phy_task);
4022 spin_lock_irq(&hw->hw_lock);
4023 hw->intr_mask = 0;
4024 skge_write32(hw, B0_IMSK, 0);
4025 skge_read32(hw, B0_IMSK);
4026 spin_unlock_irq(&hw->hw_lock);
4028 skge_write16(hw, B0_LED, LED_STAT_OFF);
4029 skge_write8(hw, B0_CTST, CS_RST_SET);
4031 free_irq(pdev->irq, hw);
4032 pci_release_regions(pdev);
4033 pci_disable_device(pdev);
4034 if (dev1)
4035 free_netdev(dev1);
4036 free_netdev(dev0);
4038 iounmap(hw->regs);
4039 kfree(hw);
4040 pci_set_drvdata(pdev, NULL);
4043 #ifdef CONFIG_PM
4044 static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
4046 struct skge_hw *hw = pci_get_drvdata(pdev);
4047 int i, err, wol = 0;
4049 if (!hw)
4050 return 0;
4052 err = pci_save_state(pdev);
4053 if (err)
4054 return err;
4056 for (i = 0; i < hw->ports; i++) {
4057 struct net_device *dev = hw->dev[i];
4058 struct skge_port *skge = netdev_priv(dev);
4060 if (netif_running(dev))
4061 skge_down(dev);
4062 if (skge->wol)
4063 skge_wol_init(skge);
4065 wol |= skge->wol;
4068 skge_write32(hw, B0_IMSK, 0);
4070 pci_prepare_to_sleep(pdev);
4072 return 0;
4075 static int skge_resume(struct pci_dev *pdev)
4077 struct skge_hw *hw = pci_get_drvdata(pdev);
4078 int i, err;
4080 if (!hw)
4081 return 0;
4083 err = pci_back_from_sleep(pdev);
4084 if (err)
4085 goto out;
4087 err = pci_restore_state(pdev);
4088 if (err)
4089 goto out;
4091 err = skge_reset(hw);
4092 if (err)
4093 goto out;
4095 for (i = 0; i < hw->ports; i++) {
4096 struct net_device *dev = hw->dev[i];
4098 if (netif_running(dev)) {
4099 err = skge_up(dev);
4101 if (err) {
4102 netdev_err(dev, "could not up: %d\n", err);
4103 dev_close(dev);
4104 goto out;
4108 out:
4109 return err;
4111 #endif
4113 static void skge_shutdown(struct pci_dev *pdev)
4115 struct skge_hw *hw = pci_get_drvdata(pdev);
4116 int i, wol = 0;
4118 if (!hw)
4119 return;
4121 for (i = 0; i < hw->ports; i++) {
4122 struct net_device *dev = hw->dev[i];
4123 struct skge_port *skge = netdev_priv(dev);
4125 if (skge->wol)
4126 skge_wol_init(skge);
4127 wol |= skge->wol;
4130 if (pci_enable_wake(pdev, PCI_D3cold, wol))
4131 pci_enable_wake(pdev, PCI_D3hot, wol);
4133 pci_disable_device(pdev);
4134 pci_set_power_state(pdev, PCI_D3hot);
4138 static struct pci_driver skge_driver = {
4139 .name = DRV_NAME,
4140 .id_table = skge_id_table,
4141 .probe = skge_probe,
4142 .remove = __devexit_p(skge_remove),
4143 #ifdef CONFIG_PM
4144 .suspend = skge_suspend,
4145 .resume = skge_resume,
4146 #endif
4147 .shutdown = skge_shutdown,
4150 static int __init skge_init_module(void)
4152 skge_debug_init();
4153 return pci_register_driver(&skge_driver);
4156 static void __exit skge_cleanup_module(void)
4158 pci_unregister_driver(&skge_driver);
4159 skge_debug_cleanup();
4162 module_init(skge_init_module);
4163 module_exit(skge_cleanup_module);