2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
61 #include "tests/btrfs-tests.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/btrfs.h>
68 static const struct super_operations btrfs_super_ops
;
69 static struct file_system_type btrfs_fs_type
;
71 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
);
73 const char *btrfs_decode_error(int errno
)
75 char *errstr
= "unknown";
79 errstr
= "IO failure";
82 errstr
= "Out of memory";
85 errstr
= "Readonly filesystem";
88 errstr
= "Object already exists";
91 errstr
= "No space left";
94 errstr
= "No such entry";
101 /* btrfs handle error by forcing the filesystem readonly */
102 static void btrfs_handle_error(struct btrfs_fs_info
*fs_info
)
104 struct super_block
*sb
= fs_info
->sb
;
106 if (sb
->s_flags
& MS_RDONLY
)
109 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
110 sb
->s_flags
|= MS_RDONLY
;
111 btrfs_info(fs_info
, "forced readonly");
113 * Note that a running device replace operation is not
114 * canceled here although there is no way to update
115 * the progress. It would add the risk of a deadlock,
116 * therefore the canceling is omitted. The only penalty
117 * is that some I/O remains active until the procedure
118 * completes. The next time when the filesystem is
119 * mounted writeable again, the device replace
120 * operation continues.
126 * __btrfs_handle_fs_error decodes expected errors from the caller and
127 * invokes the approciate error response.
130 void __btrfs_handle_fs_error(struct btrfs_fs_info
*fs_info
, const char *function
,
131 unsigned int line
, int errno
, const char *fmt
, ...)
133 struct super_block
*sb
= fs_info
->sb
;
139 * Special case: if the error is EROFS, and we're already
140 * under MS_RDONLY, then it is safe here.
142 if (errno
== -EROFS
&& (sb
->s_flags
& MS_RDONLY
))
146 errstr
= btrfs_decode_error(errno
);
148 struct va_format vaf
;
155 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 sb
->s_id
, function
, line
, errno
, errstr
, &vaf
);
159 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
160 sb
->s_id
, function
, line
, errno
, errstr
);
165 * Today we only save the error info to memory. Long term we'll
166 * also send it down to the disk
168 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
170 /* Don't go through full error handling during mount */
171 if (sb
->s_flags
& MS_BORN
)
172 btrfs_handle_error(fs_info
);
176 static const char * const logtypes
[] = {
189 * Use one ratelimit state per log level so that a flood of less important
190 * messages doesn't cause more important ones to be dropped.
192 static struct ratelimit_state printk_limits
[] = {
193 RATELIMIT_STATE_INIT(printk_limits
[0], DEFAULT_RATELIMIT_INTERVAL
, 100),
194 RATELIMIT_STATE_INIT(printk_limits
[1], DEFAULT_RATELIMIT_INTERVAL
, 100),
195 RATELIMIT_STATE_INIT(printk_limits
[2], DEFAULT_RATELIMIT_INTERVAL
, 100),
196 RATELIMIT_STATE_INIT(printk_limits
[3], DEFAULT_RATELIMIT_INTERVAL
, 100),
197 RATELIMIT_STATE_INIT(printk_limits
[4], DEFAULT_RATELIMIT_INTERVAL
, 100),
198 RATELIMIT_STATE_INIT(printk_limits
[5], DEFAULT_RATELIMIT_INTERVAL
, 100),
199 RATELIMIT_STATE_INIT(printk_limits
[6], DEFAULT_RATELIMIT_INTERVAL
, 100),
200 RATELIMIT_STATE_INIT(printk_limits
[7], DEFAULT_RATELIMIT_INTERVAL
, 100),
203 void btrfs_printk(const struct btrfs_fs_info
*fs_info
, const char *fmt
, ...)
205 struct super_block
*sb
= fs_info
->sb
;
206 char lvl
[PRINTK_MAX_SINGLE_HEADER_LEN
+ 1] = "\0";
207 struct va_format vaf
;
210 const char *type
= logtypes
[4];
211 struct ratelimit_state
*ratelimit
= &printk_limits
[4];
215 while ((kern_level
= printk_get_level(fmt
)) != 0) {
216 size_t size
= printk_skip_level(fmt
) - fmt
;
218 if (kern_level
>= '0' && kern_level
<= '7') {
219 memcpy(lvl
, fmt
, size
);
221 type
= logtypes
[kern_level
- '0'];
222 ratelimit
= &printk_limits
[kern_level
- '0'];
230 if (__ratelimit(ratelimit
))
231 printk("%sBTRFS %s (device %s): %pV\n", lvl
, type
, sb
->s_id
, &vaf
);
238 * We only mark the transaction aborted and then set the file system read-only.
239 * This will prevent new transactions from starting or trying to join this
242 * This means that error recovery at the call site is limited to freeing
243 * any local memory allocations and passing the error code up without
244 * further cleanup. The transaction should complete as it normally would
245 * in the call path but will return -EIO.
247 * We'll complete the cleanup in btrfs_end_transaction and
248 * btrfs_commit_transaction.
251 void __btrfs_abort_transaction(struct btrfs_trans_handle
*trans
,
252 const char *function
,
253 unsigned int line
, int errno
)
255 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
257 trans
->aborted
= errno
;
258 /* Nothing used. The other threads that have joined this
259 * transaction may be able to continue. */
260 if (!trans
->dirty
&& list_empty(&trans
->new_bgs
)) {
263 errstr
= btrfs_decode_error(errno
);
265 "%s:%d: Aborting unused transaction(%s).",
266 function
, line
, errstr
);
269 WRITE_ONCE(trans
->transaction
->aborted
, errno
);
270 /* Wake up anybody who may be waiting on this transaction */
271 wake_up(&fs_info
->transaction_wait
);
272 wake_up(&fs_info
->transaction_blocked_wait
);
273 __btrfs_handle_fs_error(fs_info
, function
, line
, errno
, NULL
);
276 * __btrfs_panic decodes unexpected, fatal errors from the caller,
277 * issues an alert, and either panics or BUGs, depending on mount options.
280 void __btrfs_panic(struct btrfs_fs_info
*fs_info
, const char *function
,
281 unsigned int line
, int errno
, const char *fmt
, ...)
283 char *s_id
= "<unknown>";
285 struct va_format vaf
= { .fmt
= fmt
};
289 s_id
= fs_info
->sb
->s_id
;
294 errstr
= btrfs_decode_error(errno
);
295 if (fs_info
&& (fs_info
->mount_opt
& BTRFS_MOUNT_PANIC_ON_FATAL_ERROR
))
296 panic(KERN_CRIT
"BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
297 s_id
, function
, line
, &vaf
, errno
, errstr
);
299 btrfs_crit(fs_info
, "panic in %s:%d: %pV (errno=%d %s)",
300 function
, line
, &vaf
, errno
, errstr
);
302 /* Caller calls BUG() */
305 static void btrfs_put_super(struct super_block
*sb
)
307 close_ctree(btrfs_sb(sb
));
311 Opt_degraded
, Opt_subvol
, Opt_subvolid
, Opt_device
, Opt_nodatasum
,
312 Opt_nodatacow
, Opt_max_inline
, Opt_alloc_start
, Opt_nobarrier
, Opt_ssd
,
313 Opt_nossd
, Opt_ssd_spread
, Opt_thread_pool
, Opt_noacl
, Opt_compress
,
314 Opt_compress_type
, Opt_compress_force
, Opt_compress_force_type
,
315 Opt_notreelog
, Opt_ratio
, Opt_flushoncommit
, Opt_discard
,
316 Opt_space_cache
, Opt_space_cache_version
, Opt_clear_cache
,
317 Opt_user_subvol_rm_allowed
, Opt_enospc_debug
, Opt_subvolrootid
,
318 Opt_defrag
, Opt_inode_cache
, Opt_no_space_cache
, Opt_recovery
,
319 Opt_skip_balance
, Opt_check_integrity
,
320 Opt_check_integrity_including_extent_data
,
321 Opt_check_integrity_print_mask
, Opt_fatal_errors
, Opt_rescan_uuid_tree
,
322 Opt_commit_interval
, Opt_barrier
, Opt_nodefrag
, Opt_nodiscard
,
323 Opt_noenospc_debug
, Opt_noflushoncommit
, Opt_acl
, Opt_datacow
,
324 Opt_datasum
, Opt_treelog
, Opt_noinode_cache
, Opt_usebackuproot
,
325 Opt_nologreplay
, Opt_norecovery
,
326 #ifdef CONFIG_BTRFS_DEBUG
327 Opt_fragment_data
, Opt_fragment_metadata
, Opt_fragment_all
,
332 static const match_table_t tokens
= {
333 {Opt_degraded
, "degraded"},
334 {Opt_subvol
, "subvol=%s"},
335 {Opt_subvolid
, "subvolid=%s"},
336 {Opt_device
, "device=%s"},
337 {Opt_nodatasum
, "nodatasum"},
338 {Opt_datasum
, "datasum"},
339 {Opt_nodatacow
, "nodatacow"},
340 {Opt_datacow
, "datacow"},
341 {Opt_nobarrier
, "nobarrier"},
342 {Opt_barrier
, "barrier"},
343 {Opt_max_inline
, "max_inline=%s"},
344 {Opt_alloc_start
, "alloc_start=%s"},
345 {Opt_thread_pool
, "thread_pool=%d"},
346 {Opt_compress
, "compress"},
347 {Opt_compress_type
, "compress=%s"},
348 {Opt_compress_force
, "compress-force"},
349 {Opt_compress_force_type
, "compress-force=%s"},
351 {Opt_ssd_spread
, "ssd_spread"},
352 {Opt_nossd
, "nossd"},
354 {Opt_noacl
, "noacl"},
355 {Opt_notreelog
, "notreelog"},
356 {Opt_treelog
, "treelog"},
357 {Opt_nologreplay
, "nologreplay"},
358 {Opt_norecovery
, "norecovery"},
359 {Opt_flushoncommit
, "flushoncommit"},
360 {Opt_noflushoncommit
, "noflushoncommit"},
361 {Opt_ratio
, "metadata_ratio=%d"},
362 {Opt_discard
, "discard"},
363 {Opt_nodiscard
, "nodiscard"},
364 {Opt_space_cache
, "space_cache"},
365 {Opt_space_cache_version
, "space_cache=%s"},
366 {Opt_clear_cache
, "clear_cache"},
367 {Opt_user_subvol_rm_allowed
, "user_subvol_rm_allowed"},
368 {Opt_enospc_debug
, "enospc_debug"},
369 {Opt_noenospc_debug
, "noenospc_debug"},
370 {Opt_subvolrootid
, "subvolrootid=%d"},
371 {Opt_defrag
, "autodefrag"},
372 {Opt_nodefrag
, "noautodefrag"},
373 {Opt_inode_cache
, "inode_cache"},
374 {Opt_noinode_cache
, "noinode_cache"},
375 {Opt_no_space_cache
, "nospace_cache"},
376 {Opt_recovery
, "recovery"}, /* deprecated */
377 {Opt_usebackuproot
, "usebackuproot"},
378 {Opt_skip_balance
, "skip_balance"},
379 {Opt_check_integrity
, "check_int"},
380 {Opt_check_integrity_including_extent_data
, "check_int_data"},
381 {Opt_check_integrity_print_mask
, "check_int_print_mask=%d"},
382 {Opt_rescan_uuid_tree
, "rescan_uuid_tree"},
383 {Opt_fatal_errors
, "fatal_errors=%s"},
384 {Opt_commit_interval
, "commit=%d"},
385 #ifdef CONFIG_BTRFS_DEBUG
386 {Opt_fragment_data
, "fragment=data"},
387 {Opt_fragment_metadata
, "fragment=metadata"},
388 {Opt_fragment_all
, "fragment=all"},
394 * Regular mount options parser. Everything that is needed only when
395 * reading in a new superblock is parsed here.
396 * XXX JDM: This needs to be cleaned up for remount.
398 int btrfs_parse_options(struct btrfs_fs_info
*info
, char *options
,
399 unsigned long new_flags
)
401 substring_t args
[MAX_OPT_ARGS
];
402 char *p
, *num
, *orig
= NULL
;
407 bool compress_force
= false;
408 enum btrfs_compression_type saved_compress_type
;
409 bool saved_compress_force
;
412 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
413 if (btrfs_fs_compat_ro(info
, FREE_SPACE_TREE
))
414 btrfs_set_opt(info
->mount_opt
, FREE_SPACE_TREE
);
416 btrfs_set_opt(info
->mount_opt
, SPACE_CACHE
);
419 * Even the options are empty, we still need to do extra check
426 * strsep changes the string, duplicate it because parse_options
429 options
= kstrdup(options
, GFP_KERNEL
);
435 while ((p
= strsep(&options
, ",")) != NULL
) {
440 token
= match_token(p
, tokens
, args
);
443 btrfs_info(info
, "allowing degraded mounts");
444 btrfs_set_opt(info
->mount_opt
, DEGRADED
);
448 case Opt_subvolrootid
:
451 * These are parsed by btrfs_parse_early_options
452 * and can be happily ignored here.
456 btrfs_set_and_info(info
, NODATASUM
,
457 "setting nodatasum");
460 if (btrfs_test_opt(info
, NODATASUM
)) {
461 if (btrfs_test_opt(info
, NODATACOW
))
463 "setting datasum, datacow enabled");
465 btrfs_info(info
, "setting datasum");
467 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
468 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
471 if (!btrfs_test_opt(info
, NODATACOW
)) {
472 if (!btrfs_test_opt(info
, COMPRESS
) ||
473 !btrfs_test_opt(info
, FORCE_COMPRESS
)) {
475 "setting nodatacow, compression disabled");
477 btrfs_info(info
, "setting nodatacow");
480 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
481 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
482 btrfs_set_opt(info
->mount_opt
, NODATACOW
);
483 btrfs_set_opt(info
->mount_opt
, NODATASUM
);
486 btrfs_clear_and_info(info
, NODATACOW
,
489 case Opt_compress_force
:
490 case Opt_compress_force_type
:
491 compress_force
= true;
494 case Opt_compress_type
:
495 saved_compress_type
= btrfs_test_opt(info
,
497 info
->compress_type
: BTRFS_COMPRESS_NONE
;
498 saved_compress_force
=
499 btrfs_test_opt(info
, FORCE_COMPRESS
);
500 if (token
== Opt_compress
||
501 token
== Opt_compress_force
||
502 strncmp(args
[0].from
, "zlib", 4) == 0) {
503 compress_type
= "zlib";
504 info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
505 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
506 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
507 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
509 } else if (strncmp(args
[0].from
, "lzo", 3) == 0) {
510 compress_type
= "lzo";
511 info
->compress_type
= BTRFS_COMPRESS_LZO
;
512 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
513 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
514 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
515 btrfs_set_fs_incompat(info
, COMPRESS_LZO
);
517 } else if (strcmp(args
[0].from
, "zstd") == 0) {
518 compress_type
= "zstd";
519 info
->compress_type
= BTRFS_COMPRESS_ZSTD
;
520 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
521 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
522 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
523 btrfs_set_fs_incompat(info
, COMPRESS_ZSTD
);
525 } else if (strncmp(args
[0].from
, "no", 2) == 0) {
526 compress_type
= "no";
527 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
528 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
529 compress_force
= false;
536 if (compress_force
) {
537 btrfs_set_opt(info
->mount_opt
, FORCE_COMPRESS
);
540 * If we remount from compress-force=xxx to
541 * compress=xxx, we need clear FORCE_COMPRESS
542 * flag, otherwise, there is no way for users
543 * to disable forcible compression separately.
545 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
547 if ((btrfs_test_opt(info
, COMPRESS
) &&
548 (info
->compress_type
!= saved_compress_type
||
549 compress_force
!= saved_compress_force
)) ||
550 (!btrfs_test_opt(info
, COMPRESS
) &&
552 btrfs_info(info
, "%s %s compression",
553 (compress_force
) ? "force" : "use",
556 compress_force
= false;
559 btrfs_set_and_info(info
, SSD
,
560 "enabling ssd optimizations");
561 btrfs_clear_opt(info
->mount_opt
, NOSSD
);
564 btrfs_set_and_info(info
, SSD
,
565 "enabling ssd optimizations");
566 btrfs_set_and_info(info
, SSD_SPREAD
,
567 "using spread ssd allocation scheme");
568 btrfs_clear_opt(info
->mount_opt
, NOSSD
);
571 btrfs_set_opt(info
->mount_opt
, NOSSD
);
572 btrfs_clear_and_info(info
, SSD
,
573 "not using ssd optimizations");
574 btrfs_clear_and_info(info
, SSD_SPREAD
,
575 "not using spread ssd allocation scheme");
578 btrfs_clear_and_info(info
, NOBARRIER
,
579 "turning on barriers");
582 btrfs_set_and_info(info
, NOBARRIER
,
583 "turning off barriers");
585 case Opt_thread_pool
:
586 ret
= match_int(&args
[0], &intarg
);
589 } else if (intarg
> 0) {
590 info
->thread_pool_size
= intarg
;
597 num
= match_strdup(&args
[0]);
599 info
->max_inline
= memparse(num
, NULL
);
602 if (info
->max_inline
) {
603 info
->max_inline
= min_t(u64
,
607 btrfs_info(info
, "max_inline at %llu",
614 case Opt_alloc_start
:
616 "option alloc_start is obsolete, ignored");
619 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
620 info
->sb
->s_flags
|= MS_POSIXACL
;
623 btrfs_err(info
, "support for ACL not compiled in!");
628 info
->sb
->s_flags
&= ~MS_POSIXACL
;
631 btrfs_set_and_info(info
, NOTREELOG
,
632 "disabling tree log");
635 btrfs_clear_and_info(info
, NOTREELOG
,
636 "enabling tree log");
639 case Opt_nologreplay
:
640 btrfs_set_and_info(info
, NOLOGREPLAY
,
641 "disabling log replay at mount time");
643 case Opt_flushoncommit
:
644 btrfs_set_and_info(info
, FLUSHONCOMMIT
,
645 "turning on flush-on-commit");
647 case Opt_noflushoncommit
:
648 btrfs_clear_and_info(info
, FLUSHONCOMMIT
,
649 "turning off flush-on-commit");
652 ret
= match_int(&args
[0], &intarg
);
655 } else if (intarg
>= 0) {
656 info
->metadata_ratio
= intarg
;
657 btrfs_info(info
, "metadata ratio %d",
658 info
->metadata_ratio
);
665 btrfs_set_and_info(info
, DISCARD
,
666 "turning on discard");
669 btrfs_clear_and_info(info
, DISCARD
,
670 "turning off discard");
672 case Opt_space_cache
:
673 case Opt_space_cache_version
:
674 if (token
== Opt_space_cache
||
675 strcmp(args
[0].from
, "v1") == 0) {
676 btrfs_clear_opt(info
->mount_opt
,
678 btrfs_set_and_info(info
, SPACE_CACHE
,
679 "enabling disk space caching");
680 } else if (strcmp(args
[0].from
, "v2") == 0) {
681 btrfs_clear_opt(info
->mount_opt
,
683 btrfs_set_and_info(info
, FREE_SPACE_TREE
,
684 "enabling free space tree");
690 case Opt_rescan_uuid_tree
:
691 btrfs_set_opt(info
->mount_opt
, RESCAN_UUID_TREE
);
693 case Opt_no_space_cache
:
694 if (btrfs_test_opt(info
, SPACE_CACHE
)) {
695 btrfs_clear_and_info(info
, SPACE_CACHE
,
696 "disabling disk space caching");
698 if (btrfs_test_opt(info
, FREE_SPACE_TREE
)) {
699 btrfs_clear_and_info(info
, FREE_SPACE_TREE
,
700 "disabling free space tree");
703 case Opt_inode_cache
:
704 btrfs_set_pending_and_info(info
, INODE_MAP_CACHE
,
705 "enabling inode map caching");
707 case Opt_noinode_cache
:
708 btrfs_clear_pending_and_info(info
, INODE_MAP_CACHE
,
709 "disabling inode map caching");
711 case Opt_clear_cache
:
712 btrfs_set_and_info(info
, CLEAR_CACHE
,
713 "force clearing of disk cache");
715 case Opt_user_subvol_rm_allowed
:
716 btrfs_set_opt(info
->mount_opt
, USER_SUBVOL_RM_ALLOWED
);
718 case Opt_enospc_debug
:
719 btrfs_set_opt(info
->mount_opt
, ENOSPC_DEBUG
);
721 case Opt_noenospc_debug
:
722 btrfs_clear_opt(info
->mount_opt
, ENOSPC_DEBUG
);
725 btrfs_set_and_info(info
, AUTO_DEFRAG
,
726 "enabling auto defrag");
729 btrfs_clear_and_info(info
, AUTO_DEFRAG
,
730 "disabling auto defrag");
734 "'recovery' is deprecated, use 'usebackuproot' instead");
735 case Opt_usebackuproot
:
737 "trying to use backup root at mount time");
738 btrfs_set_opt(info
->mount_opt
, USEBACKUPROOT
);
740 case Opt_skip_balance
:
741 btrfs_set_opt(info
->mount_opt
, SKIP_BALANCE
);
743 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
744 case Opt_check_integrity_including_extent_data
:
746 "enabling check integrity including extent data");
747 btrfs_set_opt(info
->mount_opt
,
748 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
);
749 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
751 case Opt_check_integrity
:
752 btrfs_info(info
, "enabling check integrity");
753 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
755 case Opt_check_integrity_print_mask
:
756 ret
= match_int(&args
[0], &intarg
);
759 } else if (intarg
>= 0) {
760 info
->check_integrity_print_mask
= intarg
;
762 "check_integrity_print_mask 0x%x",
763 info
->check_integrity_print_mask
);
770 case Opt_check_integrity_including_extent_data
:
771 case Opt_check_integrity
:
772 case Opt_check_integrity_print_mask
:
774 "support for check_integrity* not compiled in!");
778 case Opt_fatal_errors
:
779 if (strcmp(args
[0].from
, "panic") == 0)
780 btrfs_set_opt(info
->mount_opt
,
781 PANIC_ON_FATAL_ERROR
);
782 else if (strcmp(args
[0].from
, "bug") == 0)
783 btrfs_clear_opt(info
->mount_opt
,
784 PANIC_ON_FATAL_ERROR
);
790 case Opt_commit_interval
:
792 ret
= match_int(&args
[0], &intarg
);
794 btrfs_err(info
, "invalid commit interval");
801 "excessive commit interval %d",
804 info
->commit_interval
= intarg
;
807 "using default commit interval %ds",
808 BTRFS_DEFAULT_COMMIT_INTERVAL
);
809 info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
812 #ifdef CONFIG_BTRFS_DEBUG
813 case Opt_fragment_all
:
814 btrfs_info(info
, "fragmenting all space");
815 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
816 btrfs_set_opt(info
->mount_opt
, FRAGMENT_METADATA
);
818 case Opt_fragment_metadata
:
819 btrfs_info(info
, "fragmenting metadata");
820 btrfs_set_opt(info
->mount_opt
,
823 case Opt_fragment_data
:
824 btrfs_info(info
, "fragmenting data");
825 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
829 btrfs_info(info
, "unrecognized mount option '%s'", p
);
838 * Extra check for current option against current flag
840 if (btrfs_test_opt(info
, NOLOGREPLAY
) && !(new_flags
& MS_RDONLY
)) {
842 "nologreplay must be used with ro mount option");
846 if (btrfs_fs_compat_ro(info
, FREE_SPACE_TREE
) &&
847 !btrfs_test_opt(info
, FREE_SPACE_TREE
) &&
848 !btrfs_test_opt(info
, CLEAR_CACHE
)) {
849 btrfs_err(info
, "cannot disable free space tree");
853 if (!ret
&& btrfs_test_opt(info
, SPACE_CACHE
))
854 btrfs_info(info
, "disk space caching is enabled");
855 if (!ret
&& btrfs_test_opt(info
, FREE_SPACE_TREE
))
856 btrfs_info(info
, "using free space tree");
862 * Parse mount options that are required early in the mount process.
864 * All other options will be parsed on much later in the mount process and
865 * only when we need to allocate a new super block.
867 static int btrfs_parse_early_options(const char *options
, fmode_t flags
,
868 void *holder
, char **subvol_name
, u64
*subvol_objectid
,
869 struct btrfs_fs_devices
**fs_devices
)
871 substring_t args
[MAX_OPT_ARGS
];
872 char *device_name
, *opts
, *orig
, *p
;
880 * strsep changes the string, duplicate it because parse_options
883 opts
= kstrdup(options
, GFP_KERNEL
);
888 while ((p
= strsep(&opts
, ",")) != NULL
) {
893 token
= match_token(p
, tokens
, args
);
897 *subvol_name
= match_strdup(&args
[0]);
904 num
= match_strdup(&args
[0]);
906 *subvol_objectid
= memparse(num
, NULL
);
908 /* we want the original fs_tree */
909 if (!*subvol_objectid
)
911 BTRFS_FS_TREE_OBJECTID
;
917 case Opt_subvolrootid
:
918 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
921 device_name
= match_strdup(&args
[0]);
926 error
= btrfs_scan_one_device(device_name
,
927 flags
, holder
, fs_devices
);
942 static char *get_subvol_name_from_objectid(struct btrfs_fs_info
*fs_info
,
945 struct btrfs_root
*root
= fs_info
->tree_root
;
946 struct btrfs_root
*fs_root
;
947 struct btrfs_root_ref
*root_ref
;
948 struct btrfs_inode_ref
*inode_ref
;
949 struct btrfs_key key
;
950 struct btrfs_path
*path
= NULL
;
951 char *name
= NULL
, *ptr
;
956 path
= btrfs_alloc_path();
961 path
->leave_spinning
= 1;
963 name
= kmalloc(PATH_MAX
, GFP_KERNEL
);
968 ptr
= name
+ PATH_MAX
- 1;
972 * Walk up the subvolume trees in the tree of tree roots by root
973 * backrefs until we hit the top-level subvolume.
975 while (subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
976 key
.objectid
= subvol_objectid
;
977 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
978 key
.offset
= (u64
)-1;
980 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
983 } else if (ret
> 0) {
984 ret
= btrfs_previous_item(root
, path
, subvol_objectid
,
985 BTRFS_ROOT_BACKREF_KEY
);
988 } else if (ret
> 0) {
994 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
995 subvol_objectid
= key
.offset
;
997 root_ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
998 struct btrfs_root_ref
);
999 len
= btrfs_root_ref_name_len(path
->nodes
[0], root_ref
);
1002 ret
= -ENAMETOOLONG
;
1005 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1006 (unsigned long)(root_ref
+ 1), len
);
1008 dirid
= btrfs_root_ref_dirid(path
->nodes
[0], root_ref
);
1009 btrfs_release_path(path
);
1011 key
.objectid
= subvol_objectid
;
1012 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1013 key
.offset
= (u64
)-1;
1014 fs_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
1015 if (IS_ERR(fs_root
)) {
1016 ret
= PTR_ERR(fs_root
);
1021 * Walk up the filesystem tree by inode refs until we hit the
1024 while (dirid
!= BTRFS_FIRST_FREE_OBJECTID
) {
1025 key
.objectid
= dirid
;
1026 key
.type
= BTRFS_INODE_REF_KEY
;
1027 key
.offset
= (u64
)-1;
1029 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
1032 } else if (ret
> 0) {
1033 ret
= btrfs_previous_item(fs_root
, path
, dirid
,
1034 BTRFS_INODE_REF_KEY
);
1037 } else if (ret
> 0) {
1043 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1046 inode_ref
= btrfs_item_ptr(path
->nodes
[0],
1048 struct btrfs_inode_ref
);
1049 len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1053 ret
= -ENAMETOOLONG
;
1056 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1057 (unsigned long)(inode_ref
+ 1), len
);
1059 btrfs_release_path(path
);
1063 btrfs_free_path(path
);
1064 if (ptr
== name
+ PATH_MAX
- 1) {
1068 memmove(name
, ptr
, name
+ PATH_MAX
- ptr
);
1073 btrfs_free_path(path
);
1075 return ERR_PTR(ret
);
1078 static int get_default_subvol_objectid(struct btrfs_fs_info
*fs_info
, u64
*objectid
)
1080 struct btrfs_root
*root
= fs_info
->tree_root
;
1081 struct btrfs_dir_item
*di
;
1082 struct btrfs_path
*path
;
1083 struct btrfs_key location
;
1086 path
= btrfs_alloc_path();
1089 path
->leave_spinning
= 1;
1092 * Find the "default" dir item which points to the root item that we
1093 * will mount by default if we haven't been given a specific subvolume
1096 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1097 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir_id
, "default", 7, 0);
1099 btrfs_free_path(path
);
1104 * Ok the default dir item isn't there. This is weird since
1105 * it's always been there, but don't freak out, just try and
1106 * mount the top-level subvolume.
1108 btrfs_free_path(path
);
1109 *objectid
= BTRFS_FS_TREE_OBJECTID
;
1113 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
1114 btrfs_free_path(path
);
1115 *objectid
= location
.objectid
;
1119 static int btrfs_fill_super(struct super_block
*sb
,
1120 struct btrfs_fs_devices
*fs_devices
,
1123 struct inode
*inode
;
1124 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1125 struct btrfs_key key
;
1128 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1129 sb
->s_magic
= BTRFS_SUPER_MAGIC
;
1130 sb
->s_op
= &btrfs_super_ops
;
1131 sb
->s_d_op
= &btrfs_dentry_operations
;
1132 sb
->s_export_op
= &btrfs_export_ops
;
1133 sb
->s_xattr
= btrfs_xattr_handlers
;
1134 sb
->s_time_gran
= 1;
1135 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1136 sb
->s_flags
|= MS_POSIXACL
;
1138 sb
->s_flags
|= MS_I_VERSION
;
1139 sb
->s_iflags
|= SB_I_CGROUPWB
;
1141 err
= super_setup_bdi(sb
);
1143 btrfs_err(fs_info
, "super_setup_bdi failed");
1147 err
= open_ctree(sb
, fs_devices
, (char *)data
);
1149 btrfs_err(fs_info
, "open_ctree failed");
1153 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
1154 key
.type
= BTRFS_INODE_ITEM_KEY
;
1156 inode
= btrfs_iget(sb
, &key
, fs_info
->fs_root
, NULL
);
1157 if (IS_ERR(inode
)) {
1158 err
= PTR_ERR(inode
);
1162 sb
->s_root
= d_make_root(inode
);
1168 cleancache_init_fs(sb
);
1169 sb
->s_flags
|= MS_ACTIVE
;
1173 close_ctree(fs_info
);
1177 int btrfs_sync_fs(struct super_block
*sb
, int wait
)
1179 struct btrfs_trans_handle
*trans
;
1180 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1181 struct btrfs_root
*root
= fs_info
->tree_root
;
1183 trace_btrfs_sync_fs(fs_info
, wait
);
1186 filemap_flush(fs_info
->btree_inode
->i_mapping
);
1190 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
1192 trans
= btrfs_attach_transaction_barrier(root
);
1193 if (IS_ERR(trans
)) {
1194 /* no transaction, don't bother */
1195 if (PTR_ERR(trans
) == -ENOENT
) {
1197 * Exit unless we have some pending changes
1198 * that need to go through commit
1200 if (fs_info
->pending_changes
== 0)
1203 * A non-blocking test if the fs is frozen. We must not
1204 * start a new transaction here otherwise a deadlock
1205 * happens. The pending operations are delayed to the
1206 * next commit after thawing.
1208 if (__sb_start_write(sb
, SB_FREEZE_WRITE
, false))
1209 __sb_end_write(sb
, SB_FREEZE_WRITE
);
1212 trans
= btrfs_start_transaction(root
, 0);
1215 return PTR_ERR(trans
);
1217 return btrfs_commit_transaction(trans
);
1220 static int btrfs_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1222 struct btrfs_fs_info
*info
= btrfs_sb(dentry
->d_sb
);
1223 char *compress_type
;
1225 if (btrfs_test_opt(info
, DEGRADED
))
1226 seq_puts(seq
, ",degraded");
1227 if (btrfs_test_opt(info
, NODATASUM
))
1228 seq_puts(seq
, ",nodatasum");
1229 if (btrfs_test_opt(info
, NODATACOW
))
1230 seq_puts(seq
, ",nodatacow");
1231 if (btrfs_test_opt(info
, NOBARRIER
))
1232 seq_puts(seq
, ",nobarrier");
1233 if (info
->max_inline
!= BTRFS_DEFAULT_MAX_INLINE
)
1234 seq_printf(seq
, ",max_inline=%llu", info
->max_inline
);
1235 if (info
->thread_pool_size
!= min_t(unsigned long,
1236 num_online_cpus() + 2, 8))
1237 seq_printf(seq
, ",thread_pool=%d", info
->thread_pool_size
);
1238 if (btrfs_test_opt(info
, COMPRESS
)) {
1239 if (info
->compress_type
== BTRFS_COMPRESS_ZLIB
)
1240 compress_type
= "zlib";
1241 else if (info
->compress_type
== BTRFS_COMPRESS_LZO
)
1242 compress_type
= "lzo";
1244 compress_type
= "zstd";
1245 if (btrfs_test_opt(info
, FORCE_COMPRESS
))
1246 seq_printf(seq
, ",compress-force=%s", compress_type
);
1248 seq_printf(seq
, ",compress=%s", compress_type
);
1250 if (btrfs_test_opt(info
, NOSSD
))
1251 seq_puts(seq
, ",nossd");
1252 if (btrfs_test_opt(info
, SSD_SPREAD
))
1253 seq_puts(seq
, ",ssd_spread");
1254 else if (btrfs_test_opt(info
, SSD
))
1255 seq_puts(seq
, ",ssd");
1256 if (btrfs_test_opt(info
, NOTREELOG
))
1257 seq_puts(seq
, ",notreelog");
1258 if (btrfs_test_opt(info
, NOLOGREPLAY
))
1259 seq_puts(seq
, ",nologreplay");
1260 if (btrfs_test_opt(info
, FLUSHONCOMMIT
))
1261 seq_puts(seq
, ",flushoncommit");
1262 if (btrfs_test_opt(info
, DISCARD
))
1263 seq_puts(seq
, ",discard");
1264 if (!(info
->sb
->s_flags
& MS_POSIXACL
))
1265 seq_puts(seq
, ",noacl");
1266 if (btrfs_test_opt(info
, SPACE_CACHE
))
1267 seq_puts(seq
, ",space_cache");
1268 else if (btrfs_test_opt(info
, FREE_SPACE_TREE
))
1269 seq_puts(seq
, ",space_cache=v2");
1271 seq_puts(seq
, ",nospace_cache");
1272 if (btrfs_test_opt(info
, RESCAN_UUID_TREE
))
1273 seq_puts(seq
, ",rescan_uuid_tree");
1274 if (btrfs_test_opt(info
, CLEAR_CACHE
))
1275 seq_puts(seq
, ",clear_cache");
1276 if (btrfs_test_opt(info
, USER_SUBVOL_RM_ALLOWED
))
1277 seq_puts(seq
, ",user_subvol_rm_allowed");
1278 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
1279 seq_puts(seq
, ",enospc_debug");
1280 if (btrfs_test_opt(info
, AUTO_DEFRAG
))
1281 seq_puts(seq
, ",autodefrag");
1282 if (btrfs_test_opt(info
, INODE_MAP_CACHE
))
1283 seq_puts(seq
, ",inode_cache");
1284 if (btrfs_test_opt(info
, SKIP_BALANCE
))
1285 seq_puts(seq
, ",skip_balance");
1286 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1287 if (btrfs_test_opt(info
, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
))
1288 seq_puts(seq
, ",check_int_data");
1289 else if (btrfs_test_opt(info
, CHECK_INTEGRITY
))
1290 seq_puts(seq
, ",check_int");
1291 if (info
->check_integrity_print_mask
)
1292 seq_printf(seq
, ",check_int_print_mask=%d",
1293 info
->check_integrity_print_mask
);
1295 if (info
->metadata_ratio
)
1296 seq_printf(seq
, ",metadata_ratio=%d",
1297 info
->metadata_ratio
);
1298 if (btrfs_test_opt(info
, PANIC_ON_FATAL_ERROR
))
1299 seq_puts(seq
, ",fatal_errors=panic");
1300 if (info
->commit_interval
!= BTRFS_DEFAULT_COMMIT_INTERVAL
)
1301 seq_printf(seq
, ",commit=%d", info
->commit_interval
);
1302 #ifdef CONFIG_BTRFS_DEBUG
1303 if (btrfs_test_opt(info
, FRAGMENT_DATA
))
1304 seq_puts(seq
, ",fragment=data");
1305 if (btrfs_test_opt(info
, FRAGMENT_METADATA
))
1306 seq_puts(seq
, ",fragment=metadata");
1308 seq_printf(seq
, ",subvolid=%llu",
1309 BTRFS_I(d_inode(dentry
))->root
->root_key
.objectid
);
1310 seq_puts(seq
, ",subvol=");
1311 seq_dentry(seq
, dentry
, " \t\n\\");
1315 static int btrfs_test_super(struct super_block
*s
, void *data
)
1317 struct btrfs_fs_info
*p
= data
;
1318 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1320 return fs_info
->fs_devices
== p
->fs_devices
;
1323 static int btrfs_set_super(struct super_block
*s
, void *data
)
1325 int err
= set_anon_super(s
, data
);
1327 s
->s_fs_info
= data
;
1332 * subvolumes are identified by ino 256
1334 static inline int is_subvolume_inode(struct inode
*inode
)
1336 if (inode
&& inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
1342 * This will add subvolid=0 to the argument string while removing any subvol=
1343 * and subvolid= arguments to make sure we get the top-level root for path
1344 * walking to the subvol we want.
1346 static char *setup_root_args(char *args
)
1348 char *buf
, *dst
, *sep
;
1351 return kstrdup("subvolid=0", GFP_KERNEL
);
1353 /* The worst case is that we add ",subvolid=0" to the end. */
1354 buf
= dst
= kmalloc(strlen(args
) + strlen(",subvolid=0") + 1,
1360 sep
= strchrnul(args
, ',');
1361 if (!strstarts(args
, "subvol=") &&
1362 !strstarts(args
, "subvolid=")) {
1363 memcpy(dst
, args
, sep
- args
);
1372 strcpy(dst
, "subvolid=0");
1377 static struct dentry
*mount_subvol(const char *subvol_name
, u64 subvol_objectid
,
1378 int flags
, const char *device_name
,
1381 struct dentry
*root
;
1382 struct vfsmount
*mnt
= NULL
;
1386 newargs
= setup_root_args(data
);
1388 root
= ERR_PTR(-ENOMEM
);
1392 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
, device_name
, newargs
);
1393 if (PTR_ERR_OR_ZERO(mnt
) == -EBUSY
) {
1394 if (flags
& MS_RDONLY
) {
1395 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
& ~MS_RDONLY
,
1396 device_name
, newargs
);
1398 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
| MS_RDONLY
,
1399 device_name
, newargs
);
1401 root
= ERR_CAST(mnt
);
1406 down_write(&mnt
->mnt_sb
->s_umount
);
1407 ret
= btrfs_remount(mnt
->mnt_sb
, &flags
, NULL
);
1408 up_write(&mnt
->mnt_sb
->s_umount
);
1410 root
= ERR_PTR(ret
);
1416 root
= ERR_CAST(mnt
);
1422 if (!subvol_objectid
) {
1423 ret
= get_default_subvol_objectid(btrfs_sb(mnt
->mnt_sb
),
1426 root
= ERR_PTR(ret
);
1430 subvol_name
= get_subvol_name_from_objectid(btrfs_sb(mnt
->mnt_sb
),
1432 if (IS_ERR(subvol_name
)) {
1433 root
= ERR_CAST(subvol_name
);
1440 root
= mount_subtree(mnt
, subvol_name
);
1441 /* mount_subtree() drops our reference on the vfsmount. */
1444 if (!IS_ERR(root
)) {
1445 struct super_block
*s
= root
->d_sb
;
1446 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1447 struct inode
*root_inode
= d_inode(root
);
1448 u64 root_objectid
= BTRFS_I(root_inode
)->root
->root_key
.objectid
;
1451 if (!is_subvolume_inode(root_inode
)) {
1452 btrfs_err(fs_info
, "'%s' is not a valid subvolume",
1456 if (subvol_objectid
&& root_objectid
!= subvol_objectid
) {
1458 * This will also catch a race condition where a
1459 * subvolume which was passed by ID is renamed and
1460 * another subvolume is renamed over the old location.
1463 "subvol '%s' does not match subvolid %llu",
1464 subvol_name
, subvol_objectid
);
1469 root
= ERR_PTR(ret
);
1470 deactivate_locked_super(s
);
1481 static int parse_security_options(char *orig_opts
,
1482 struct security_mnt_opts
*sec_opts
)
1484 char *secdata
= NULL
;
1487 secdata
= alloc_secdata();
1490 ret
= security_sb_copy_data(orig_opts
, secdata
);
1492 free_secdata(secdata
);
1495 ret
= security_sb_parse_opts_str(secdata
, sec_opts
);
1496 free_secdata(secdata
);
1500 static int setup_security_options(struct btrfs_fs_info
*fs_info
,
1501 struct super_block
*sb
,
1502 struct security_mnt_opts
*sec_opts
)
1507 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1510 ret
= security_sb_set_mnt_opts(sb
, sec_opts
, 0, NULL
);
1514 #ifdef CONFIG_SECURITY
1515 if (!fs_info
->security_opts
.num_mnt_opts
) {
1516 /* first time security setup, copy sec_opts to fs_info */
1517 memcpy(&fs_info
->security_opts
, sec_opts
, sizeof(*sec_opts
));
1520 * Since SELinux (the only one supporting security_mnt_opts)
1521 * does NOT support changing context during remount/mount of
1522 * the same sb, this must be the same or part of the same
1523 * security options, just free it.
1525 security_free_mnt_opts(sec_opts
);
1532 * Find a superblock for the given device / mount point.
1534 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1535 * for multiple device setup. Make sure to keep it in sync.
1537 static struct dentry
*btrfs_mount(struct file_system_type
*fs_type
, int flags
,
1538 const char *device_name
, void *data
)
1540 struct block_device
*bdev
= NULL
;
1541 struct super_block
*s
;
1542 struct btrfs_fs_devices
*fs_devices
= NULL
;
1543 struct btrfs_fs_info
*fs_info
= NULL
;
1544 struct security_mnt_opts new_sec_opts
;
1545 fmode_t mode
= FMODE_READ
;
1546 char *subvol_name
= NULL
;
1547 u64 subvol_objectid
= 0;
1550 if (!(flags
& MS_RDONLY
))
1551 mode
|= FMODE_WRITE
;
1553 error
= btrfs_parse_early_options(data
, mode
, fs_type
,
1554 &subvol_name
, &subvol_objectid
,
1558 return ERR_PTR(error
);
1561 if (subvol_name
|| subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
1562 /* mount_subvol() will free subvol_name. */
1563 return mount_subvol(subvol_name
, subvol_objectid
, flags
,
1567 security_init_mnt_opts(&new_sec_opts
);
1569 error
= parse_security_options(data
, &new_sec_opts
);
1571 return ERR_PTR(error
);
1574 error
= btrfs_scan_one_device(device_name
, mode
, fs_type
, &fs_devices
);
1576 goto error_sec_opts
;
1579 * Setup a dummy root and fs_info for test/set super. This is because
1580 * we don't actually fill this stuff out until open_ctree, but we need
1581 * it for searching for existing supers, so this lets us do that and
1582 * then open_ctree will properly initialize everything later.
1584 fs_info
= kzalloc(sizeof(struct btrfs_fs_info
), GFP_KERNEL
);
1587 goto error_sec_opts
;
1590 fs_info
->fs_devices
= fs_devices
;
1592 fs_info
->super_copy
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_KERNEL
);
1593 fs_info
->super_for_commit
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_KERNEL
);
1594 security_init_mnt_opts(&fs_info
->security_opts
);
1595 if (!fs_info
->super_copy
|| !fs_info
->super_for_commit
) {
1600 error
= btrfs_open_devices(fs_devices
, mode
, fs_type
);
1604 if (!(flags
& MS_RDONLY
) && fs_devices
->rw_devices
== 0) {
1606 goto error_close_devices
;
1609 bdev
= fs_devices
->latest_bdev
;
1610 s
= sget(fs_type
, btrfs_test_super
, btrfs_set_super
, flags
| MS_NOSEC
,
1614 goto error_close_devices
;
1618 btrfs_close_devices(fs_devices
);
1619 free_fs_info(fs_info
);
1620 if ((flags
^ s
->s_flags
) & MS_RDONLY
)
1623 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1624 btrfs_sb(s
)->bdev_holder
= fs_type
;
1625 error
= btrfs_fill_super(s
, fs_devices
, data
);
1628 deactivate_locked_super(s
);
1629 goto error_sec_opts
;
1632 fs_info
= btrfs_sb(s
);
1633 error
= setup_security_options(fs_info
, s
, &new_sec_opts
);
1635 deactivate_locked_super(s
);
1636 goto error_sec_opts
;
1639 return dget(s
->s_root
);
1641 error_close_devices
:
1642 btrfs_close_devices(fs_devices
);
1644 free_fs_info(fs_info
);
1646 security_free_mnt_opts(&new_sec_opts
);
1647 return ERR_PTR(error
);
1650 static void btrfs_resize_thread_pool(struct btrfs_fs_info
*fs_info
,
1651 int new_pool_size
, int old_pool_size
)
1653 if (new_pool_size
== old_pool_size
)
1656 fs_info
->thread_pool_size
= new_pool_size
;
1658 btrfs_info(fs_info
, "resize thread pool %d -> %d",
1659 old_pool_size
, new_pool_size
);
1661 btrfs_workqueue_set_max(fs_info
->workers
, new_pool_size
);
1662 btrfs_workqueue_set_max(fs_info
->delalloc_workers
, new_pool_size
);
1663 btrfs_workqueue_set_max(fs_info
->submit_workers
, new_pool_size
);
1664 btrfs_workqueue_set_max(fs_info
->caching_workers
, new_pool_size
);
1665 btrfs_workqueue_set_max(fs_info
->endio_workers
, new_pool_size
);
1666 btrfs_workqueue_set_max(fs_info
->endio_meta_workers
, new_pool_size
);
1667 btrfs_workqueue_set_max(fs_info
->endio_meta_write_workers
,
1669 btrfs_workqueue_set_max(fs_info
->endio_write_workers
, new_pool_size
);
1670 btrfs_workqueue_set_max(fs_info
->endio_freespace_worker
, new_pool_size
);
1671 btrfs_workqueue_set_max(fs_info
->delayed_workers
, new_pool_size
);
1672 btrfs_workqueue_set_max(fs_info
->readahead_workers
, new_pool_size
);
1673 btrfs_workqueue_set_max(fs_info
->scrub_wr_completion_workers
,
1677 static inline void btrfs_remount_prepare(struct btrfs_fs_info
*fs_info
)
1679 set_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1682 static inline void btrfs_remount_begin(struct btrfs_fs_info
*fs_info
,
1683 unsigned long old_opts
, int flags
)
1685 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1686 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1687 (flags
& MS_RDONLY
))) {
1688 /* wait for any defraggers to finish */
1689 wait_event(fs_info
->transaction_wait
,
1690 (atomic_read(&fs_info
->defrag_running
) == 0));
1691 if (flags
& MS_RDONLY
)
1692 sync_filesystem(fs_info
->sb
);
1696 static inline void btrfs_remount_cleanup(struct btrfs_fs_info
*fs_info
,
1697 unsigned long old_opts
)
1700 * We need to cleanup all defragable inodes if the autodefragment is
1701 * close or the filesystem is read only.
1703 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1704 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1705 (fs_info
->sb
->s_flags
& MS_RDONLY
))) {
1706 btrfs_cleanup_defrag_inodes(fs_info
);
1709 clear_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1712 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
)
1714 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1715 struct btrfs_root
*root
= fs_info
->tree_root
;
1716 unsigned old_flags
= sb
->s_flags
;
1717 unsigned long old_opts
= fs_info
->mount_opt
;
1718 unsigned long old_compress_type
= fs_info
->compress_type
;
1719 u64 old_max_inline
= fs_info
->max_inline
;
1720 int old_thread_pool_size
= fs_info
->thread_pool_size
;
1721 unsigned int old_metadata_ratio
= fs_info
->metadata_ratio
;
1724 sync_filesystem(sb
);
1725 btrfs_remount_prepare(fs_info
);
1728 struct security_mnt_opts new_sec_opts
;
1730 security_init_mnt_opts(&new_sec_opts
);
1731 ret
= parse_security_options(data
, &new_sec_opts
);
1734 ret
= setup_security_options(fs_info
, sb
,
1737 security_free_mnt_opts(&new_sec_opts
);
1742 ret
= btrfs_parse_options(fs_info
, data
, *flags
);
1748 btrfs_remount_begin(fs_info
, old_opts
, *flags
);
1749 btrfs_resize_thread_pool(fs_info
,
1750 fs_info
->thread_pool_size
, old_thread_pool_size
);
1752 if ((*flags
& MS_RDONLY
) == (sb
->s_flags
& MS_RDONLY
))
1755 if (*flags
& MS_RDONLY
) {
1757 * this also happens on 'umount -rf' or on shutdown, when
1758 * the filesystem is busy.
1760 cancel_work_sync(&fs_info
->async_reclaim_work
);
1762 /* wait for the uuid_scan task to finish */
1763 down(&fs_info
->uuid_tree_rescan_sem
);
1764 /* avoid complains from lockdep et al. */
1765 up(&fs_info
->uuid_tree_rescan_sem
);
1767 sb
->s_flags
|= MS_RDONLY
;
1770 * Setting MS_RDONLY will put the cleaner thread to
1771 * sleep at the next loop if it's already active.
1772 * If it's already asleep, we'll leave unused block
1773 * groups on disk until we're mounted read-write again
1774 * unless we clean them up here.
1776 btrfs_delete_unused_bgs(fs_info
);
1778 btrfs_dev_replace_suspend_for_unmount(fs_info
);
1779 btrfs_scrub_cancel(fs_info
);
1780 btrfs_pause_balance(fs_info
);
1782 ret
= btrfs_commit_super(fs_info
);
1786 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
1788 "Remounting read-write after error is not allowed");
1792 if (fs_info
->fs_devices
->rw_devices
== 0) {
1797 if (!btrfs_check_rw_degradable(fs_info
)) {
1799 "too many missing devices, writeable remount is not allowed");
1804 if (btrfs_super_log_root(fs_info
->super_copy
) != 0) {
1809 ret
= btrfs_cleanup_fs_roots(fs_info
);
1813 /* recover relocation */
1814 mutex_lock(&fs_info
->cleaner_mutex
);
1815 ret
= btrfs_recover_relocation(root
);
1816 mutex_unlock(&fs_info
->cleaner_mutex
);
1820 ret
= btrfs_resume_balance_async(fs_info
);
1824 ret
= btrfs_resume_dev_replace_async(fs_info
);
1826 btrfs_warn(fs_info
, "failed to resume dev_replace");
1830 btrfs_qgroup_rescan_resume(fs_info
);
1832 if (!fs_info
->uuid_root
) {
1833 btrfs_info(fs_info
, "creating UUID tree");
1834 ret
= btrfs_create_uuid_tree(fs_info
);
1837 "failed to create the UUID tree %d",
1842 sb
->s_flags
&= ~MS_RDONLY
;
1844 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
1847 wake_up_process(fs_info
->transaction_kthread
);
1848 btrfs_remount_cleanup(fs_info
, old_opts
);
1852 /* We've hit an error - don't reset MS_RDONLY */
1853 if (sb
->s_flags
& MS_RDONLY
)
1854 old_flags
|= MS_RDONLY
;
1855 sb
->s_flags
= old_flags
;
1856 fs_info
->mount_opt
= old_opts
;
1857 fs_info
->compress_type
= old_compress_type
;
1858 fs_info
->max_inline
= old_max_inline
;
1859 btrfs_resize_thread_pool(fs_info
,
1860 old_thread_pool_size
, fs_info
->thread_pool_size
);
1861 fs_info
->metadata_ratio
= old_metadata_ratio
;
1862 btrfs_remount_cleanup(fs_info
, old_opts
);
1866 /* Used to sort the devices by max_avail(descending sort) */
1867 static int btrfs_cmp_device_free_bytes(const void *dev_info1
,
1868 const void *dev_info2
)
1870 if (((struct btrfs_device_info
*)dev_info1
)->max_avail
>
1871 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1873 else if (((struct btrfs_device_info
*)dev_info1
)->max_avail
<
1874 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1881 * sort the devices by max_avail, in which max free extent size of each device
1882 * is stored.(Descending Sort)
1884 static inline void btrfs_descending_sort_devices(
1885 struct btrfs_device_info
*devices
,
1888 sort(devices
, nr_devices
, sizeof(struct btrfs_device_info
),
1889 btrfs_cmp_device_free_bytes
, NULL
);
1893 * The helper to calc the free space on the devices that can be used to store
1896 static int btrfs_calc_avail_data_space(struct btrfs_fs_info
*fs_info
,
1899 struct btrfs_device_info
*devices_info
;
1900 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
1901 struct btrfs_device
*device
;
1905 u64 min_stripe_size
;
1906 int min_stripes
= 1, num_stripes
= 1;
1907 int i
= 0, nr_devices
;
1910 * We aren't under the device list lock, so this is racy-ish, but good
1911 * enough for our purposes.
1913 nr_devices
= fs_info
->fs_devices
->open_devices
;
1916 nr_devices
= fs_info
->fs_devices
->open_devices
;
1924 devices_info
= kmalloc_array(nr_devices
, sizeof(*devices_info
),
1929 /* calc min stripe number for data space allocation */
1930 type
= btrfs_data_alloc_profile(fs_info
);
1931 if (type
& BTRFS_BLOCK_GROUP_RAID0
) {
1933 num_stripes
= nr_devices
;
1934 } else if (type
& BTRFS_BLOCK_GROUP_RAID1
) {
1937 } else if (type
& BTRFS_BLOCK_GROUP_RAID10
) {
1942 if (type
& BTRFS_BLOCK_GROUP_DUP
)
1943 min_stripe_size
= 2 * BTRFS_STRIPE_LEN
;
1945 min_stripe_size
= BTRFS_STRIPE_LEN
;
1948 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
1949 if (!device
->in_fs_metadata
|| !device
->bdev
||
1950 device
->is_tgtdev_for_dev_replace
)
1953 if (i
>= nr_devices
)
1956 avail_space
= device
->total_bytes
- device
->bytes_used
;
1958 /* align with stripe_len */
1959 avail_space
= div_u64(avail_space
, BTRFS_STRIPE_LEN
);
1960 avail_space
*= BTRFS_STRIPE_LEN
;
1963 * In order to avoid overwriting the superblock on the drive,
1964 * btrfs starts at an offset of at least 1MB when doing chunk
1970 * we can use the free space in [0, skip_space - 1], subtract
1971 * it from the total.
1973 if (avail_space
&& avail_space
>= skip_space
)
1974 avail_space
-= skip_space
;
1978 if (avail_space
< min_stripe_size
)
1981 devices_info
[i
].dev
= device
;
1982 devices_info
[i
].max_avail
= avail_space
;
1990 btrfs_descending_sort_devices(devices_info
, nr_devices
);
1994 while (nr_devices
>= min_stripes
) {
1995 if (num_stripes
> nr_devices
)
1996 num_stripes
= nr_devices
;
1998 if (devices_info
[i
].max_avail
>= min_stripe_size
) {
2002 avail_space
+= devices_info
[i
].max_avail
* num_stripes
;
2003 alloc_size
= devices_info
[i
].max_avail
;
2004 for (j
= i
+ 1 - num_stripes
; j
<= i
; j
++)
2005 devices_info
[j
].max_avail
-= alloc_size
;
2011 kfree(devices_info
);
2012 *free_bytes
= avail_space
;
2017 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2019 * If there's a redundant raid level at DATA block groups, use the respective
2020 * multiplier to scale the sizes.
2022 * Unused device space usage is based on simulating the chunk allocator
2023 * algorithm that respects the device sizes and order of allocations. This is
2024 * a close approximation of the actual use but there are other factors that may
2025 * change the result (like a new metadata chunk).
2027 * If metadata is exhausted, f_bavail will be 0.
2029 static int btrfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2031 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
2032 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2033 struct list_head
*head
= &fs_info
->space_info
;
2034 struct btrfs_space_info
*found
;
2036 u64 total_free_data
= 0;
2037 u64 total_free_meta
= 0;
2038 int bits
= dentry
->d_sb
->s_blocksize_bits
;
2039 __be32
*fsid
= (__be32
*)fs_info
->fsid
;
2040 unsigned factor
= 1;
2041 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
2047 list_for_each_entry_rcu(found
, head
, list
) {
2048 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
) {
2051 total_free_data
+= found
->disk_total
- found
->disk_used
;
2053 btrfs_account_ro_block_groups_free_space(found
);
2055 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
2056 if (!list_empty(&found
->block_groups
[i
])) {
2058 case BTRFS_RAID_DUP
:
2059 case BTRFS_RAID_RAID1
:
2060 case BTRFS_RAID_RAID10
:
2068 * Metadata in mixed block goup profiles are accounted in data
2070 if (!mixed
&& found
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2071 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
)
2074 total_free_meta
+= found
->disk_total
-
2078 total_used
+= found
->disk_used
;
2083 buf
->f_blocks
= div_u64(btrfs_super_total_bytes(disk_super
), factor
);
2084 buf
->f_blocks
>>= bits
;
2085 buf
->f_bfree
= buf
->f_blocks
- (div_u64(total_used
, factor
) >> bits
);
2087 /* Account global block reserve as used, it's in logical size already */
2088 spin_lock(&block_rsv
->lock
);
2089 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2090 if (buf
->f_bfree
>= block_rsv
->size
>> bits
)
2091 buf
->f_bfree
-= block_rsv
->size
>> bits
;
2094 spin_unlock(&block_rsv
->lock
);
2096 buf
->f_bavail
= div_u64(total_free_data
, factor
);
2097 ret
= btrfs_calc_avail_data_space(fs_info
, &total_free_data
);
2100 buf
->f_bavail
+= div_u64(total_free_data
, factor
);
2101 buf
->f_bavail
= buf
->f_bavail
>> bits
;
2104 * We calculate the remaining metadata space minus global reserve. If
2105 * this is (supposedly) smaller than zero, there's no space. But this
2106 * does not hold in practice, the exhausted state happens where's still
2107 * some positive delta. So we apply some guesswork and compare the
2108 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2110 * We probably cannot calculate the exact threshold value because this
2111 * depends on the internal reservations requested by various
2112 * operations, so some operations that consume a few metadata will
2113 * succeed even if the Avail is zero. But this is better than the other
2116 thresh
= 4 * 1024 * 1024;
2118 if (!mixed
&& total_free_meta
- thresh
< block_rsv
->size
)
2121 buf
->f_type
= BTRFS_SUPER_MAGIC
;
2122 buf
->f_bsize
= dentry
->d_sb
->s_blocksize
;
2123 buf
->f_namelen
= BTRFS_NAME_LEN
;
2125 /* We treat it as constant endianness (it doesn't matter _which_)
2126 because we want the fsid to come out the same whether mounted
2127 on a big-endian or little-endian host */
2128 buf
->f_fsid
.val
[0] = be32_to_cpu(fsid
[0]) ^ be32_to_cpu(fsid
[2]);
2129 buf
->f_fsid
.val
[1] = be32_to_cpu(fsid
[1]) ^ be32_to_cpu(fsid
[3]);
2130 /* Mask in the root object ID too, to disambiguate subvols */
2131 buf
->f_fsid
.val
[0] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
>> 32;
2132 buf
->f_fsid
.val
[1] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
;
2137 static void btrfs_kill_super(struct super_block
*sb
)
2139 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2140 kill_anon_super(sb
);
2141 free_fs_info(fs_info
);
2144 static struct file_system_type btrfs_fs_type
= {
2145 .owner
= THIS_MODULE
,
2147 .mount
= btrfs_mount
,
2148 .kill_sb
= btrfs_kill_super
,
2149 .fs_flags
= FS_REQUIRES_DEV
| FS_BINARY_MOUNTDATA
,
2151 MODULE_ALIAS_FS("btrfs");
2153 static int btrfs_control_open(struct inode
*inode
, struct file
*file
)
2156 * The control file's private_data is used to hold the
2157 * transaction when it is started and is used to keep
2158 * track of whether a transaction is already in progress.
2160 file
->private_data
= NULL
;
2165 * used by btrfsctl to scan devices when no FS is mounted
2167 static long btrfs_control_ioctl(struct file
*file
, unsigned int cmd
,
2170 struct btrfs_ioctl_vol_args
*vol
;
2171 struct btrfs_fs_devices
*fs_devices
;
2174 if (!capable(CAP_SYS_ADMIN
))
2177 vol
= memdup_user((void __user
*)arg
, sizeof(*vol
));
2179 return PTR_ERR(vol
);
2182 case BTRFS_IOC_SCAN_DEV
:
2183 ret
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2184 &btrfs_fs_type
, &fs_devices
);
2186 case BTRFS_IOC_DEVICES_READY
:
2187 ret
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2188 &btrfs_fs_type
, &fs_devices
);
2191 ret
= !(fs_devices
->num_devices
== fs_devices
->total_devices
);
2193 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
2194 ret
= btrfs_ioctl_get_supported_features((void __user
*)arg
);
2202 static int btrfs_freeze(struct super_block
*sb
)
2204 struct btrfs_trans_handle
*trans
;
2205 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2206 struct btrfs_root
*root
= fs_info
->tree_root
;
2208 set_bit(BTRFS_FS_FROZEN
, &fs_info
->flags
);
2210 * We don't need a barrier here, we'll wait for any transaction that
2211 * could be in progress on other threads (and do delayed iputs that
2212 * we want to avoid on a frozen filesystem), or do the commit
2215 trans
= btrfs_attach_transaction_barrier(root
);
2216 if (IS_ERR(trans
)) {
2217 /* no transaction, don't bother */
2218 if (PTR_ERR(trans
) == -ENOENT
)
2220 return PTR_ERR(trans
);
2222 return btrfs_commit_transaction(trans
);
2225 static int btrfs_unfreeze(struct super_block
*sb
)
2227 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2229 clear_bit(BTRFS_FS_FROZEN
, &fs_info
->flags
);
2233 static int btrfs_show_devname(struct seq_file
*m
, struct dentry
*root
)
2235 struct btrfs_fs_info
*fs_info
= btrfs_sb(root
->d_sb
);
2236 struct btrfs_fs_devices
*cur_devices
;
2237 struct btrfs_device
*dev
, *first_dev
= NULL
;
2238 struct list_head
*head
;
2239 struct rcu_string
*name
;
2241 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2242 cur_devices
= fs_info
->fs_devices
;
2243 while (cur_devices
) {
2244 head
= &cur_devices
->devices
;
2245 list_for_each_entry(dev
, head
, dev_list
) {
2250 if (!first_dev
|| dev
->devid
< first_dev
->devid
)
2253 cur_devices
= cur_devices
->seed
;
2258 name
= rcu_dereference(first_dev
->name
);
2259 seq_escape(m
, name
->str
, " \t\n\\");
2264 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2268 static const struct super_operations btrfs_super_ops
= {
2269 .drop_inode
= btrfs_drop_inode
,
2270 .evict_inode
= btrfs_evict_inode
,
2271 .put_super
= btrfs_put_super
,
2272 .sync_fs
= btrfs_sync_fs
,
2273 .show_options
= btrfs_show_options
,
2274 .show_devname
= btrfs_show_devname
,
2275 .write_inode
= btrfs_write_inode
,
2276 .alloc_inode
= btrfs_alloc_inode
,
2277 .destroy_inode
= btrfs_destroy_inode
,
2278 .statfs
= btrfs_statfs
,
2279 .remount_fs
= btrfs_remount
,
2280 .freeze_fs
= btrfs_freeze
,
2281 .unfreeze_fs
= btrfs_unfreeze
,
2284 static const struct file_operations btrfs_ctl_fops
= {
2285 .open
= btrfs_control_open
,
2286 .unlocked_ioctl
= btrfs_control_ioctl
,
2287 .compat_ioctl
= btrfs_control_ioctl
,
2288 .owner
= THIS_MODULE
,
2289 .llseek
= noop_llseek
,
2292 static struct miscdevice btrfs_misc
= {
2293 .minor
= BTRFS_MINOR
,
2294 .name
= "btrfs-control",
2295 .fops
= &btrfs_ctl_fops
2298 MODULE_ALIAS_MISCDEV(BTRFS_MINOR
);
2299 MODULE_ALIAS("devname:btrfs-control");
2301 static int btrfs_interface_init(void)
2303 return misc_register(&btrfs_misc
);
2306 static void btrfs_interface_exit(void)
2308 misc_deregister(&btrfs_misc
);
2311 static void btrfs_print_mod_info(void)
2313 pr_info("Btrfs loaded, crc32c=%s"
2314 #ifdef CONFIG_BTRFS_DEBUG
2317 #ifdef CONFIG_BTRFS_ASSERT
2320 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2321 ", integrity-checker=on"
2324 btrfs_crc32c_impl());
2327 static int __init
init_btrfs_fs(void)
2331 err
= btrfs_hash_init();
2337 err
= btrfs_init_sysfs();
2341 btrfs_init_compress();
2343 err
= btrfs_init_cachep();
2347 err
= extent_io_init();
2351 err
= extent_map_init();
2353 goto free_extent_io
;
2355 err
= ordered_data_init();
2357 goto free_extent_map
;
2359 err
= btrfs_delayed_inode_init();
2361 goto free_ordered_data
;
2363 err
= btrfs_auto_defrag_init();
2365 goto free_delayed_inode
;
2367 err
= btrfs_delayed_ref_init();
2369 goto free_auto_defrag
;
2371 err
= btrfs_prelim_ref_init();
2373 goto free_delayed_ref
;
2375 err
= btrfs_end_io_wq_init();
2377 goto free_prelim_ref
;
2379 err
= btrfs_interface_init();
2381 goto free_end_io_wq
;
2383 btrfs_init_lockdep();
2385 btrfs_print_mod_info();
2387 err
= btrfs_run_sanity_tests();
2389 goto unregister_ioctl
;
2391 err
= register_filesystem(&btrfs_fs_type
);
2393 goto unregister_ioctl
;
2398 btrfs_interface_exit();
2400 btrfs_end_io_wq_exit();
2402 btrfs_prelim_ref_exit();
2404 btrfs_delayed_ref_exit();
2406 btrfs_auto_defrag_exit();
2408 btrfs_delayed_inode_exit();
2410 ordered_data_exit();
2416 btrfs_destroy_cachep();
2418 btrfs_exit_compress();
2425 static void __exit
exit_btrfs_fs(void)
2427 btrfs_destroy_cachep();
2428 btrfs_delayed_ref_exit();
2429 btrfs_auto_defrag_exit();
2430 btrfs_delayed_inode_exit();
2431 btrfs_prelim_ref_exit();
2432 ordered_data_exit();
2435 btrfs_interface_exit();
2436 btrfs_end_io_wq_exit();
2437 unregister_filesystem(&btrfs_fs_type
);
2439 btrfs_cleanup_fs_uuids();
2440 btrfs_exit_compress();
2444 late_initcall(init_btrfs_fs
);
2445 module_exit(exit_btrfs_fs
)
2447 MODULE_LICENSE("GPL");