2 * net/sched/sch_tbf.c Token Bucket Filter queue.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
15 #include <linux/module.h>
16 #include <asm/uaccess.h>
17 #include <asm/system.h>
18 #include <linux/bitops.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/jiffies.h>
22 #include <linux/string.h>
24 #include <linux/socket.h>
25 #include <linux/sockios.h>
27 #include <linux/errno.h>
28 #include <linux/interrupt.h>
29 #include <linux/if_ether.h>
30 #include <linux/inet.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/notifier.h>
35 #include <net/route.h>
36 #include <linux/skbuff.h>
38 #include <net/pkt_sched.h>
41 /* Simple Token Bucket Filter.
42 =======================================
52 A data flow obeys TBF with rate R and depth B, if for any
53 time interval t_i...t_f the number of transmitted bits
54 does not exceed B + R*(t_f-t_i).
56 Packetized version of this definition:
57 The sequence of packets of sizes s_i served at moments t_i
58 obeys TBF, if for any i<=k:
60 s_i+....+s_k <= B + R*(t_k - t_i)
65 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
67 N(t+delta) = min{B/R, N(t) + delta}
69 If the first packet in queue has length S, it may be
70 transmitted only at the time t_* when S/R <= N(t_*),
71 and in this case N(t) jumps:
73 N(t_* + 0) = N(t_* - 0) - S/R.
77 Actually, QoS requires two TBF to be applied to a data stream.
78 One of them controls steady state burst size, another
79 one with rate P (peak rate) and depth M (equal to link MTU)
80 limits bursts at a smaller time scale.
82 It is easy to see that P>R, and B>M. If P is infinity, this double
83 TBF is equivalent to a single one.
85 When TBF works in reshaping mode, latency is estimated as:
87 lat = max ((L-B)/R, (L-M)/P)
93 If TBF throttles, it starts a watchdog timer, which will wake it up
94 when it is ready to transmit.
95 Note that the minimal timer resolution is 1/HZ.
96 If no new packets arrive during this period,
97 or if the device is not awaken by EOI for some previous packet,
98 TBF can stop its activity for 1/HZ.
101 This means, that with depth B, the maximal rate is
105 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
107 Note that the peak rate TBF is much more tough: with MTU 1500
108 P_crit = 150Kbytes/sec. So, if you need greater peak
109 rates, use alpha with HZ=1000 :-)
111 With classful TBF, limit is just kept for backwards compatibility.
112 It is passed to the default bfifo qdisc - if the inner qdisc is
113 changed the limit is not effective anymore.
116 struct tbf_sched_data
119 u32 limit
; /* Maximal length of backlog: bytes */
120 u32 buffer
; /* Token bucket depth/rate: MUST BE >= MTU/B */
123 struct qdisc_rate_table
*R_tab
;
124 struct qdisc_rate_table
*P_tab
;
127 long tokens
; /* Current number of B tokens */
128 long ptokens
; /* Current number of P tokens */
129 psched_time_t t_c
; /* Time check-point */
130 struct timer_list wd_timer
; /* Watchdog timer */
131 struct Qdisc
*qdisc
; /* Inner qdisc, default - bfifo queue */
134 #define L2T(q,L) ((q)->R_tab->data[(L)>>(q)->R_tab->rate.cell_log])
135 #define L2T_P(q,L) ((q)->P_tab->data[(L)>>(q)->P_tab->rate.cell_log])
137 static int tbf_enqueue(struct sk_buff
*skb
, struct Qdisc
* sch
)
139 struct tbf_sched_data
*q
= qdisc_priv(sch
);
142 if (skb
->len
> q
->max_size
) {
144 #ifdef CONFIG_NET_CLS_POLICE
145 if (sch
->reshape_fail
== NULL
|| sch
->reshape_fail(skb
, sch
))
149 return NET_XMIT_DROP
;
152 if ((ret
= q
->qdisc
->enqueue(skb
, q
->qdisc
)) != 0) {
158 sch
->bstats
.bytes
+= skb
->len
;
159 sch
->bstats
.packets
++;
163 static int tbf_requeue(struct sk_buff
*skb
, struct Qdisc
* sch
)
165 struct tbf_sched_data
*q
= qdisc_priv(sch
);
168 if ((ret
= q
->qdisc
->ops
->requeue(skb
, q
->qdisc
)) == 0) {
170 sch
->qstats
.requeues
++;
176 static unsigned int tbf_drop(struct Qdisc
* sch
)
178 struct tbf_sched_data
*q
= qdisc_priv(sch
);
179 unsigned int len
= 0;
181 if (q
->qdisc
->ops
->drop
&& (len
= q
->qdisc
->ops
->drop(q
->qdisc
)) != 0) {
188 static void tbf_watchdog(unsigned long arg
)
190 struct Qdisc
*sch
= (struct Qdisc
*)arg
;
192 sch
->flags
&= ~TCQ_F_THROTTLED
;
193 netif_schedule(sch
->dev
);
196 static struct sk_buff
*tbf_dequeue(struct Qdisc
* sch
)
198 struct tbf_sched_data
*q
= qdisc_priv(sch
);
201 skb
= q
->qdisc
->dequeue(q
->qdisc
);
207 unsigned int len
= skb
->len
;
209 PSCHED_GET_TIME(now
);
211 toks
= PSCHED_TDIFF_SAFE(now
, q
->t_c
, q
->buffer
);
214 ptoks
= toks
+ q
->ptokens
;
215 if (ptoks
> (long)q
->mtu
)
217 ptoks
-= L2T_P(q
, len
);
220 if (toks
> (long)q
->buffer
)
224 if ((toks
|ptoks
) >= 0) {
229 sch
->flags
&= ~TCQ_F_THROTTLED
;
233 delay
= PSCHED_US2JIFFIE(max_t(long, -toks
, -ptoks
));
238 mod_timer(&q
->wd_timer
, jiffies
+delay
);
240 /* Maybe we have a shorter packet in the queue,
241 which can be sent now. It sounds cool,
242 but, however, this is wrong in principle.
243 We MUST NOT reorder packets under these circumstances.
245 Really, if we split the flow into independent
246 subflows, it would be a very good solution.
247 This is the main idea of all FQ algorithms
248 (cf. CSZ, HPFQ, HFSC)
251 if (q
->qdisc
->ops
->requeue(skb
, q
->qdisc
) != NET_XMIT_SUCCESS
) {
252 /* When requeue fails skb is dropped */
257 sch
->flags
|= TCQ_F_THROTTLED
;
258 sch
->qstats
.overlimits
++;
263 static void tbf_reset(struct Qdisc
* sch
)
265 struct tbf_sched_data
*q
= qdisc_priv(sch
);
267 qdisc_reset(q
->qdisc
);
269 PSCHED_GET_TIME(q
->t_c
);
270 q
->tokens
= q
->buffer
;
272 sch
->flags
&= ~TCQ_F_THROTTLED
;
273 del_timer(&q
->wd_timer
);
276 static struct Qdisc
*tbf_create_dflt_qdisc(struct net_device
*dev
, u32 limit
)
278 struct Qdisc
*q
= qdisc_create_dflt(dev
, &bfifo_qdisc_ops
);
283 rta
= kmalloc(RTA_LENGTH(sizeof(struct tc_fifo_qopt
)), GFP_KERNEL
);
285 rta
->rta_type
= RTM_NEWQDISC
;
286 rta
->rta_len
= RTA_LENGTH(sizeof(struct tc_fifo_qopt
));
287 ((struct tc_fifo_qopt
*)RTA_DATA(rta
))->limit
= limit
;
289 ret
= q
->ops
->change(q
, rta
);
301 static int tbf_change(struct Qdisc
* sch
, struct rtattr
*opt
)
304 struct tbf_sched_data
*q
= qdisc_priv(sch
);
305 struct rtattr
*tb
[TCA_TBF_PTAB
];
306 struct tc_tbf_qopt
*qopt
;
307 struct qdisc_rate_table
*rtab
= NULL
;
308 struct qdisc_rate_table
*ptab
= NULL
;
309 struct Qdisc
*child
= NULL
;
312 if (rtattr_parse_nested(tb
, TCA_TBF_PTAB
, opt
) ||
313 tb
[TCA_TBF_PARMS
-1] == NULL
||
314 RTA_PAYLOAD(tb
[TCA_TBF_PARMS
-1]) < sizeof(*qopt
))
317 qopt
= RTA_DATA(tb
[TCA_TBF_PARMS
-1]);
318 rtab
= qdisc_get_rtab(&qopt
->rate
, tb
[TCA_TBF_RTAB
-1]);
322 if (qopt
->peakrate
.rate
) {
323 if (qopt
->peakrate
.rate
> qopt
->rate
.rate
)
324 ptab
= qdisc_get_rtab(&qopt
->peakrate
, tb
[TCA_TBF_PTAB
-1]);
329 for (n
= 0; n
< 256; n
++)
330 if (rtab
->data
[n
] > qopt
->buffer
) break;
331 max_size
= (n
<< qopt
->rate
.cell_log
)-1;
335 for (n
= 0; n
< 256; n
++)
336 if (ptab
->data
[n
] > qopt
->mtu
) break;
337 size
= (n
<< qopt
->peakrate
.cell_log
)-1;
338 if (size
< max_size
) max_size
= size
;
343 if (qopt
->limit
> 0) {
344 if ((child
= tbf_create_dflt_qdisc(sch
->dev
, qopt
->limit
)) == NULL
)
350 qdisc_destroy(xchg(&q
->qdisc
, child
));
351 q
->limit
= qopt
->limit
;
353 q
->max_size
= max_size
;
354 q
->buffer
= qopt
->buffer
;
355 q
->tokens
= q
->buffer
;
357 rtab
= xchg(&q
->R_tab
, rtab
);
358 ptab
= xchg(&q
->P_tab
, ptab
);
359 sch_tree_unlock(sch
);
363 qdisc_put_rtab(rtab
);
365 qdisc_put_rtab(ptab
);
369 static int tbf_init(struct Qdisc
* sch
, struct rtattr
*opt
)
371 struct tbf_sched_data
*q
= qdisc_priv(sch
);
376 PSCHED_GET_TIME(q
->t_c
);
377 init_timer(&q
->wd_timer
);
378 q
->wd_timer
.function
= tbf_watchdog
;
379 q
->wd_timer
.data
= (unsigned long)sch
;
381 q
->qdisc
= &noop_qdisc
;
383 return tbf_change(sch
, opt
);
386 static void tbf_destroy(struct Qdisc
*sch
)
388 struct tbf_sched_data
*q
= qdisc_priv(sch
);
390 del_timer(&q
->wd_timer
);
393 qdisc_put_rtab(q
->P_tab
);
395 qdisc_put_rtab(q
->R_tab
);
397 qdisc_destroy(q
->qdisc
);
400 static int tbf_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
402 struct tbf_sched_data
*q
= qdisc_priv(sch
);
403 unsigned char *b
= skb
->tail
;
405 struct tc_tbf_qopt opt
;
407 rta
= (struct rtattr
*)b
;
408 RTA_PUT(skb
, TCA_OPTIONS
, 0, NULL
);
410 opt
.limit
= q
->limit
;
411 opt
.rate
= q
->R_tab
->rate
;
413 opt
.peakrate
= q
->P_tab
->rate
;
415 memset(&opt
.peakrate
, 0, sizeof(opt
.peakrate
));
417 opt
.buffer
= q
->buffer
;
418 RTA_PUT(skb
, TCA_TBF_PARMS
, sizeof(opt
), &opt
);
419 rta
->rta_len
= skb
->tail
- b
;
424 skb_trim(skb
, b
- skb
->data
);
428 static int tbf_dump_class(struct Qdisc
*sch
, unsigned long cl
,
429 struct sk_buff
*skb
, struct tcmsg
*tcm
)
431 struct tbf_sched_data
*q
= qdisc_priv(sch
);
433 if (cl
!= 1) /* only one class */
436 tcm
->tcm_handle
|= TC_H_MIN(1);
437 tcm
->tcm_info
= q
->qdisc
->handle
;
442 static int tbf_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
445 struct tbf_sched_data
*q
= qdisc_priv(sch
);
451 *old
= xchg(&q
->qdisc
, new);
454 sch_tree_unlock(sch
);
459 static struct Qdisc
*tbf_leaf(struct Qdisc
*sch
, unsigned long arg
)
461 struct tbf_sched_data
*q
= qdisc_priv(sch
);
465 static unsigned long tbf_get(struct Qdisc
*sch
, u32 classid
)
470 static void tbf_put(struct Qdisc
*sch
, unsigned long arg
)
474 static int tbf_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
475 struct rtattr
**tca
, unsigned long *arg
)
480 static int tbf_delete(struct Qdisc
*sch
, unsigned long arg
)
485 static void tbf_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
488 if (walker
->count
>= walker
->skip
)
489 if (walker
->fn(sch
, 1, walker
) < 0) {
497 static struct tcf_proto
**tbf_find_tcf(struct Qdisc
*sch
, unsigned long cl
)
502 static struct Qdisc_class_ops tbf_class_ops
=
508 .change
= tbf_change_class
,
509 .delete = tbf_delete
,
511 .tcf_chain
= tbf_find_tcf
,
512 .dump
= tbf_dump_class
,
515 static struct Qdisc_ops tbf_qdisc_ops
= {
517 .cl_ops
= &tbf_class_ops
,
519 .priv_size
= sizeof(struct tbf_sched_data
),
520 .enqueue
= tbf_enqueue
,
521 .dequeue
= tbf_dequeue
,
522 .requeue
= tbf_requeue
,
526 .destroy
= tbf_destroy
,
527 .change
= tbf_change
,
529 .owner
= THIS_MODULE
,
532 static int __init
tbf_module_init(void)
534 return register_qdisc(&tbf_qdisc_ops
);
537 static void __exit
tbf_module_exit(void)
539 unregister_qdisc(&tbf_qdisc_ops
);
541 module_init(tbf_module_init
)
542 module_exit(tbf_module_exit
)
543 MODULE_LICENSE("GPL");