1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <linux/sched.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
17 #include <asm/pgtable.h>
18 #include <asm/tlbflush.h>
22 static struct page
*no_page_table(struct vm_area_struct
*vma
,
26 * When core dumping an enormous anonymous area that nobody
27 * has touched so far, we don't want to allocate unnecessary pages or
28 * page tables. Return error instead of NULL to skip handle_mm_fault,
29 * then get_dump_page() will return NULL to leave a hole in the dump.
30 * But we can only make this optimization where a hole would surely
31 * be zero-filled if handle_mm_fault() actually did handle it.
33 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
34 return ERR_PTR(-EFAULT
);
38 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
39 pte_t
*pte
, unsigned int flags
)
41 /* No page to get reference */
45 if (flags
& FOLL_TOUCH
) {
48 if (flags
& FOLL_WRITE
)
49 entry
= pte_mkdirty(entry
);
50 entry
= pte_mkyoung(entry
);
52 if (!pte_same(*pte
, entry
)) {
53 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
54 update_mmu_cache(vma
, address
, pte
);
58 /* Proper page table entry exists, but no corresponding struct page */
62 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
63 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
65 struct mm_struct
*mm
= vma
->vm_mm
;
66 struct dev_pagemap
*pgmap
= NULL
;
72 if (unlikely(pmd_bad(*pmd
)))
73 return no_page_table(vma
, flags
);
75 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
77 if (!pte_present(pte
)) {
80 * KSM's break_ksm() relies upon recognizing a ksm page
81 * even while it is being migrated, so for that case we
82 * need migration_entry_wait().
84 if (likely(!(flags
& FOLL_MIGRATION
)))
88 entry
= pte_to_swp_entry(pte
);
89 if (!is_migration_entry(entry
))
91 pte_unmap_unlock(ptep
, ptl
);
92 migration_entry_wait(mm
, pmd
, address
);
95 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
97 if ((flags
& FOLL_WRITE
) && !pte_write(pte
)) {
98 pte_unmap_unlock(ptep
, ptl
);
102 page
= vm_normal_page(vma
, address
, pte
);
103 if (!page
&& pte_devmap(pte
) && (flags
& FOLL_GET
)) {
105 * Only return device mapping pages in the FOLL_GET case since
106 * they are only valid while holding the pgmap reference.
108 pgmap
= get_dev_pagemap(pte_pfn(pte
), NULL
);
110 page
= pte_page(pte
);
113 } else if (unlikely(!page
)) {
114 if (flags
& FOLL_DUMP
) {
115 /* Avoid special (like zero) pages in core dumps */
116 page
= ERR_PTR(-EFAULT
);
120 if (is_zero_pfn(pte_pfn(pte
))) {
121 page
= pte_page(pte
);
125 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
131 if (flags
& FOLL_SPLIT
&& PageTransCompound(page
)) {
134 pte_unmap_unlock(ptep
, ptl
);
136 ret
= split_huge_page(page
);
144 if (flags
& FOLL_GET
) {
147 /* drop the pgmap reference now that we hold the page */
149 put_dev_pagemap(pgmap
);
153 if (flags
& FOLL_TOUCH
) {
154 if ((flags
& FOLL_WRITE
) &&
155 !pte_dirty(pte
) && !PageDirty(page
))
156 set_page_dirty(page
);
158 * pte_mkyoung() would be more correct here, but atomic care
159 * is needed to avoid losing the dirty bit: it is easier to use
160 * mark_page_accessed().
162 mark_page_accessed(page
);
164 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
165 /* Do not mlock pte-mapped THP */
166 if (PageTransCompound(page
))
170 * The preliminary mapping check is mainly to avoid the
171 * pointless overhead of lock_page on the ZERO_PAGE
172 * which might bounce very badly if there is contention.
174 * If the page is already locked, we don't need to
175 * handle it now - vmscan will handle it later if and
176 * when it attempts to reclaim the page.
178 if (page
->mapping
&& trylock_page(page
)) {
179 lru_add_drain(); /* push cached pages to LRU */
181 * Because we lock page here, and migration is
182 * blocked by the pte's page reference, and we
183 * know the page is still mapped, we don't even
184 * need to check for file-cache page truncation.
186 mlock_vma_page(page
);
191 pte_unmap_unlock(ptep
, ptl
);
194 pte_unmap_unlock(ptep
, ptl
);
197 return no_page_table(vma
, flags
);
201 * follow_page_mask - look up a page descriptor from a user-virtual address
202 * @vma: vm_area_struct mapping @address
203 * @address: virtual address to look up
204 * @flags: flags modifying lookup behaviour
205 * @page_mask: on output, *page_mask is set according to the size of the page
207 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
209 * Returns the mapped (struct page *), %NULL if no mapping exists, or
210 * an error pointer if there is a mapping to something not represented
211 * by a page descriptor (see also vm_normal_page()).
213 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
214 unsigned long address
, unsigned int flags
,
215 unsigned int *page_mask
)
222 struct mm_struct
*mm
= vma
->vm_mm
;
226 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
228 BUG_ON(flags
& FOLL_GET
);
232 pgd
= pgd_offset(mm
, address
);
233 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
234 return no_page_table(vma
, flags
);
236 pud
= pud_offset(pgd
, address
);
238 return no_page_table(vma
, flags
);
239 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
240 page
= follow_huge_pud(mm
, address
, pud
, flags
);
243 return no_page_table(vma
, flags
);
245 if (unlikely(pud_bad(*pud
)))
246 return no_page_table(vma
, flags
);
248 pmd
= pmd_offset(pud
, address
);
250 return no_page_table(vma
, flags
);
251 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
252 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
255 return no_page_table(vma
, flags
);
257 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
258 return no_page_table(vma
, flags
);
259 if (pmd_devmap(*pmd
)) {
260 ptl
= pmd_lock(mm
, pmd
);
261 page
= follow_devmap_pmd(vma
, address
, pmd
, flags
);
266 if (likely(!pmd_trans_huge(*pmd
)))
267 return follow_page_pte(vma
, address
, pmd
, flags
);
269 ptl
= pmd_lock(mm
, pmd
);
270 if (unlikely(!pmd_trans_huge(*pmd
))) {
272 return follow_page_pte(vma
, address
, pmd
, flags
);
274 if (flags
& FOLL_SPLIT
) {
276 page
= pmd_page(*pmd
);
277 if (is_huge_zero_page(page
)) {
280 split_huge_pmd(vma
, pmd
, address
);
285 ret
= split_huge_page(page
);
290 return ret
? ERR_PTR(ret
) :
291 follow_page_pte(vma
, address
, pmd
, flags
);
294 page
= follow_trans_huge_pmd(vma
, address
, pmd
, flags
);
296 *page_mask
= HPAGE_PMD_NR
- 1;
300 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
301 unsigned int gup_flags
, struct vm_area_struct
**vma
,
310 /* user gate pages are read-only */
311 if (gup_flags
& FOLL_WRITE
)
313 if (address
> TASK_SIZE
)
314 pgd
= pgd_offset_k(address
);
316 pgd
= pgd_offset_gate(mm
, address
);
317 BUG_ON(pgd_none(*pgd
));
318 pud
= pud_offset(pgd
, address
);
319 BUG_ON(pud_none(*pud
));
320 pmd
= pmd_offset(pud
, address
);
323 VM_BUG_ON(pmd_trans_huge(*pmd
));
324 pte
= pte_offset_map(pmd
, address
);
327 *vma
= get_gate_vma(mm
);
330 *page
= vm_normal_page(*vma
, address
, *pte
);
332 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
334 *page
= pte_page(*pte
);
345 * mmap_sem must be held on entry. If @nonblocking != NULL and
346 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
347 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
349 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
350 unsigned long address
, unsigned int *flags
, int *nonblocking
)
352 struct mm_struct
*mm
= vma
->vm_mm
;
353 unsigned int fault_flags
= 0;
356 /* mlock all present pages, but do not fault in new pages */
357 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
359 /* For mm_populate(), just skip the stack guard page. */
360 if ((*flags
& FOLL_POPULATE
) &&
361 (stack_guard_page_start(vma
, address
) ||
362 stack_guard_page_end(vma
, address
+ PAGE_SIZE
)))
364 if (*flags
& FOLL_WRITE
)
365 fault_flags
|= FAULT_FLAG_WRITE
;
367 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
368 if (*flags
& FOLL_NOWAIT
)
369 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
370 if (*flags
& FOLL_TRIED
) {
371 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
372 fault_flags
|= FAULT_FLAG_TRIED
;
375 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
376 if (ret
& VM_FAULT_ERROR
) {
377 if (ret
& VM_FAULT_OOM
)
379 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
380 return *flags
& FOLL_HWPOISON
? -EHWPOISON
: -EFAULT
;
381 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
387 if (ret
& VM_FAULT_MAJOR
)
393 if (ret
& VM_FAULT_RETRY
) {
400 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
401 * necessary, even if maybe_mkwrite decided not to set pte_write. We
402 * can thus safely do subsequent page lookups as if they were reads.
403 * But only do so when looping for pte_write is futile: in some cases
404 * userspace may also be wanting to write to the gotten user page,
405 * which a read fault here might prevent (a readonly page might get
406 * reCOWed by userspace write).
408 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
409 *flags
&= ~FOLL_WRITE
;
413 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
415 vm_flags_t vm_flags
= vma
->vm_flags
;
417 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
420 if (gup_flags
& FOLL_WRITE
) {
421 if (!(vm_flags
& VM_WRITE
)) {
422 if (!(gup_flags
& FOLL_FORCE
))
425 * We used to let the write,force case do COW in a
426 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
427 * set a breakpoint in a read-only mapping of an
428 * executable, without corrupting the file (yet only
429 * when that file had been opened for writing!).
430 * Anon pages in shared mappings are surprising: now
433 if (!is_cow_mapping(vm_flags
)) {
434 WARN_ON_ONCE(vm_flags
& VM_MAYWRITE
);
438 } else if (!(vm_flags
& VM_READ
)) {
439 if (!(gup_flags
& FOLL_FORCE
))
442 * Is there actually any vma we can reach here which does not
443 * have VM_MAYREAD set?
445 if (!(vm_flags
& VM_MAYREAD
))
452 * __get_user_pages() - pin user pages in memory
453 * @tsk: task_struct of target task
454 * @mm: mm_struct of target mm
455 * @start: starting user address
456 * @nr_pages: number of pages from start to pin
457 * @gup_flags: flags modifying pin behaviour
458 * @pages: array that receives pointers to the pages pinned.
459 * Should be at least nr_pages long. Or NULL, if caller
460 * only intends to ensure the pages are faulted in.
461 * @vmas: array of pointers to vmas corresponding to each page.
462 * Or NULL if the caller does not require them.
463 * @nonblocking: whether waiting for disk IO or mmap_sem contention
465 * Returns number of pages pinned. This may be fewer than the number
466 * requested. If nr_pages is 0 or negative, returns 0. If no pages
467 * were pinned, returns -errno. Each page returned must be released
468 * with a put_page() call when it is finished with. vmas will only
469 * remain valid while mmap_sem is held.
471 * Must be called with mmap_sem held. It may be released. See below.
473 * __get_user_pages walks a process's page tables and takes a reference to
474 * each struct page that each user address corresponds to at a given
475 * instant. That is, it takes the page that would be accessed if a user
476 * thread accesses the given user virtual address at that instant.
478 * This does not guarantee that the page exists in the user mappings when
479 * __get_user_pages returns, and there may even be a completely different
480 * page there in some cases (eg. if mmapped pagecache has been invalidated
481 * and subsequently re faulted). However it does guarantee that the page
482 * won't be freed completely. And mostly callers simply care that the page
483 * contains data that was valid *at some point in time*. Typically, an IO
484 * or similar operation cannot guarantee anything stronger anyway because
485 * locks can't be held over the syscall boundary.
487 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
488 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
489 * appropriate) must be called after the page is finished with, and
490 * before put_page is called.
492 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
493 * or mmap_sem contention, and if waiting is needed to pin all pages,
494 * *@nonblocking will be set to 0. Further, if @gup_flags does not
495 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
498 * A caller using such a combination of @nonblocking and @gup_flags
499 * must therefore hold the mmap_sem for reading only, and recognize
500 * when it's been released. Otherwise, it must be held for either
501 * reading or writing and will not be released.
503 * In most cases, get_user_pages or get_user_pages_fast should be used
504 * instead of __get_user_pages. __get_user_pages should be used only if
505 * you need some special @gup_flags.
507 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
508 unsigned long start
, unsigned long nr_pages
,
509 unsigned int gup_flags
, struct page
**pages
,
510 struct vm_area_struct
**vmas
, int *nonblocking
)
513 unsigned int page_mask
;
514 struct vm_area_struct
*vma
= NULL
;
519 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
522 * If FOLL_FORCE is set then do not force a full fault as the hinting
523 * fault information is unrelated to the reference behaviour of a task
524 * using the address space
526 if (!(gup_flags
& FOLL_FORCE
))
527 gup_flags
|= FOLL_NUMA
;
531 unsigned int foll_flags
= gup_flags
;
532 unsigned int page_increm
;
534 /* first iteration or cross vma bound */
535 if (!vma
|| start
>= vma
->vm_end
) {
536 vma
= find_extend_vma(mm
, start
);
537 if (!vma
&& in_gate_area(mm
, start
)) {
539 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
541 pages
? &pages
[i
] : NULL
);
548 if (!vma
|| check_vma_flags(vma
, gup_flags
))
549 return i
? : -EFAULT
;
550 if (is_vm_hugetlb_page(vma
)) {
551 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
552 &start
, &nr_pages
, i
,
559 * If we have a pending SIGKILL, don't keep faulting pages and
560 * potentially allocating memory.
562 if (unlikely(fatal_signal_pending(current
)))
563 return i
? i
: -ERESTARTSYS
;
565 page
= follow_page_mask(vma
, start
, foll_flags
, &page_mask
);
568 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
583 } else if (PTR_ERR(page
) == -EEXIST
) {
585 * Proper page table entry exists, but no corresponding
589 } else if (IS_ERR(page
)) {
590 return i
? i
: PTR_ERR(page
);
594 flush_anon_page(vma
, page
, start
);
595 flush_dcache_page(page
);
603 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
604 if (page_increm
> nr_pages
)
605 page_increm
= nr_pages
;
607 start
+= page_increm
* PAGE_SIZE
;
608 nr_pages
-= page_increm
;
612 EXPORT_SYMBOL(__get_user_pages
);
615 * fixup_user_fault() - manually resolve a user page fault
616 * @tsk: the task_struct to use for page fault accounting, or
617 * NULL if faults are not to be recorded.
618 * @mm: mm_struct of target mm
619 * @address: user address
620 * @fault_flags:flags to pass down to handle_mm_fault()
621 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
622 * does not allow retry
624 * This is meant to be called in the specific scenario where for locking reasons
625 * we try to access user memory in atomic context (within a pagefault_disable()
626 * section), this returns -EFAULT, and we want to resolve the user fault before
629 * Typically this is meant to be used by the futex code.
631 * The main difference with get_user_pages() is that this function will
632 * unconditionally call handle_mm_fault() which will in turn perform all the
633 * necessary SW fixup of the dirty and young bits in the PTE, while
634 * get_user_pages() only guarantees to update these in the struct page.
636 * This is important for some architectures where those bits also gate the
637 * access permission to the page because they are maintained in software. On
638 * such architectures, gup() will not be enough to make a subsequent access
641 * This function will not return with an unlocked mmap_sem. So it has not the
642 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
644 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
645 unsigned long address
, unsigned int fault_flags
,
648 struct vm_area_struct
*vma
;
653 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
656 vma
= find_extend_vma(mm
, address
);
657 if (!vma
|| address
< vma
->vm_start
)
660 vm_flags
= (fault_flags
& FAULT_FLAG_WRITE
) ? VM_WRITE
: VM_READ
;
661 if (!(vm_flags
& vma
->vm_flags
))
664 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
665 major
|= ret
& VM_FAULT_MAJOR
;
666 if (ret
& VM_FAULT_ERROR
) {
667 if (ret
& VM_FAULT_OOM
)
669 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
671 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
676 if (ret
& VM_FAULT_RETRY
) {
677 down_read(&mm
->mmap_sem
);
678 if (!(fault_flags
& FAULT_FLAG_TRIED
)) {
680 fault_flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
681 fault_flags
|= FAULT_FLAG_TRIED
;
695 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
696 struct mm_struct
*mm
,
698 unsigned long nr_pages
,
699 int write
, int force
,
701 struct vm_area_struct
**vmas
,
702 int *locked
, bool notify_drop
,
705 long ret
, pages_done
;
709 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
711 /* check caller initialized locked */
712 BUG_ON(*locked
!= 1);
723 lock_dropped
= false;
725 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
728 /* VM_FAULT_RETRY couldn't trigger, bypass */
731 /* VM_FAULT_RETRY cannot return errors */
734 BUG_ON(ret
>= nr_pages
);
738 /* If it's a prefault don't insist harder */
748 /* VM_FAULT_RETRY didn't trigger */
753 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
755 start
+= ret
<< PAGE_SHIFT
;
758 * Repeat on the address that fired VM_FAULT_RETRY
759 * without FAULT_FLAG_ALLOW_RETRY but with
764 down_read(&mm
->mmap_sem
);
765 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
780 if (notify_drop
&& lock_dropped
&& *locked
) {
782 * We must let the caller know we temporarily dropped the lock
783 * and so the critical section protected by it was lost.
785 up_read(&mm
->mmap_sem
);
792 * We can leverage the VM_FAULT_RETRY functionality in the page fault
793 * paths better by using either get_user_pages_locked() or
794 * get_user_pages_unlocked().
796 * get_user_pages_locked() is suitable to replace the form:
798 * down_read(&mm->mmap_sem);
800 * get_user_pages(tsk, mm, ..., pages, NULL);
801 * up_read(&mm->mmap_sem);
806 * down_read(&mm->mmap_sem);
808 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
810 * up_read(&mm->mmap_sem);
812 long get_user_pages_locked(struct task_struct
*tsk
, struct mm_struct
*mm
,
813 unsigned long start
, unsigned long nr_pages
,
814 int write
, int force
, struct page
**pages
,
817 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
818 pages
, NULL
, locked
, true, FOLL_TOUCH
);
820 EXPORT_SYMBOL(get_user_pages_locked
);
823 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
824 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
826 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
827 * caller if required (just like with __get_user_pages). "FOLL_GET",
828 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
829 * according to the parameters "pages", "write", "force"
832 __always_inline
long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
833 unsigned long start
, unsigned long nr_pages
,
834 int write
, int force
, struct page
**pages
,
835 unsigned int gup_flags
)
839 down_read(&mm
->mmap_sem
);
840 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
841 pages
, NULL
, &locked
, false, gup_flags
);
843 up_read(&mm
->mmap_sem
);
846 EXPORT_SYMBOL(__get_user_pages_unlocked
);
849 * get_user_pages_unlocked() is suitable to replace the form:
851 * down_read(&mm->mmap_sem);
852 * get_user_pages(tsk, mm, ..., pages, NULL);
853 * up_read(&mm->mmap_sem);
857 * get_user_pages_unlocked(tsk, mm, ..., pages);
859 * It is functionally equivalent to get_user_pages_fast so
860 * get_user_pages_fast should be used instead, if the two parameters
861 * "tsk" and "mm" are respectively equal to current and current->mm,
862 * or if "force" shall be set to 1 (get_user_pages_fast misses the
863 * "force" parameter).
865 long get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
866 unsigned long start
, unsigned long nr_pages
,
867 int write
, int force
, struct page
**pages
)
869 return __get_user_pages_unlocked(tsk
, mm
, start
, nr_pages
, write
,
870 force
, pages
, FOLL_TOUCH
);
872 EXPORT_SYMBOL(get_user_pages_unlocked
);
875 * get_user_pages() - pin user pages in memory
876 * @tsk: the task_struct to use for page fault accounting, or
877 * NULL if faults are not to be recorded.
878 * @mm: mm_struct of target mm
879 * @start: starting user address
880 * @nr_pages: number of pages from start to pin
881 * @write: whether pages will be written to by the caller
882 * @force: whether to force access even when user mapping is currently
883 * protected (but never forces write access to shared mapping).
884 * @pages: array that receives pointers to the pages pinned.
885 * Should be at least nr_pages long. Or NULL, if caller
886 * only intends to ensure the pages are faulted in.
887 * @vmas: array of pointers to vmas corresponding to each page.
888 * Or NULL if the caller does not require them.
890 * Returns number of pages pinned. This may be fewer than the number
891 * requested. If nr_pages is 0 or negative, returns 0. If no pages
892 * were pinned, returns -errno. Each page returned must be released
893 * with a put_page() call when it is finished with. vmas will only
894 * remain valid while mmap_sem is held.
896 * Must be called with mmap_sem held for read or write.
898 * get_user_pages walks a process's page tables and takes a reference to
899 * each struct page that each user address corresponds to at a given
900 * instant. That is, it takes the page that would be accessed if a user
901 * thread accesses the given user virtual address at that instant.
903 * This does not guarantee that the page exists in the user mappings when
904 * get_user_pages returns, and there may even be a completely different
905 * page there in some cases (eg. if mmapped pagecache has been invalidated
906 * and subsequently re faulted). However it does guarantee that the page
907 * won't be freed completely. And mostly callers simply care that the page
908 * contains data that was valid *at some point in time*. Typically, an IO
909 * or similar operation cannot guarantee anything stronger anyway because
910 * locks can't be held over the syscall boundary.
912 * If write=0, the page must not be written to. If the page is written to,
913 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
914 * after the page is finished with, and before put_page is called.
916 * get_user_pages is typically used for fewer-copy IO operations, to get a
917 * handle on the memory by some means other than accesses via the user virtual
918 * addresses. The pages may be submitted for DMA to devices or accessed via
919 * their kernel linear mapping (via the kmap APIs). Care should be taken to
920 * use the correct cache flushing APIs.
922 * See also get_user_pages_fast, for performance critical applications.
924 * get_user_pages should be phased out in favor of
925 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
926 * should use get_user_pages because it cannot pass
927 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
929 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
930 unsigned long start
, unsigned long nr_pages
, int write
,
931 int force
, struct page
**pages
, struct vm_area_struct
**vmas
)
933 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
934 pages
, vmas
, NULL
, false, FOLL_TOUCH
);
936 EXPORT_SYMBOL(get_user_pages
);
939 * populate_vma_page_range() - populate a range of pages in the vma.
941 * @start: start address
945 * This takes care of mlocking the pages too if VM_LOCKED is set.
947 * return 0 on success, negative error code on error.
949 * vma->vm_mm->mmap_sem must be held.
951 * If @nonblocking is NULL, it may be held for read or write and will
954 * If @nonblocking is non-NULL, it must held for read only and may be
955 * released. If it's released, *@nonblocking will be set to 0.
957 long populate_vma_page_range(struct vm_area_struct
*vma
,
958 unsigned long start
, unsigned long end
, int *nonblocking
)
960 struct mm_struct
*mm
= vma
->vm_mm
;
961 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
964 VM_BUG_ON(start
& ~PAGE_MASK
);
965 VM_BUG_ON(end
& ~PAGE_MASK
);
966 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
967 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
968 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
970 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
971 if (vma
->vm_flags
& VM_LOCKONFAULT
)
972 gup_flags
&= ~FOLL_POPULATE
;
974 * We want to touch writable mappings with a write fault in order
975 * to break COW, except for shared mappings because these don't COW
976 * and we would not want to dirty them for nothing.
978 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
979 gup_flags
|= FOLL_WRITE
;
982 * We want mlock to succeed for regions that have any permissions
983 * other than PROT_NONE.
985 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
986 gup_flags
|= FOLL_FORCE
;
989 * We made sure addr is within a VMA, so the following will
990 * not result in a stack expansion that recurses back here.
992 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
993 NULL
, NULL
, nonblocking
);
997 * __mm_populate - populate and/or mlock pages within a range of address space.
999 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1000 * flags. VMAs must be already marked with the desired vm_flags, and
1001 * mmap_sem must not be held.
1003 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
1005 struct mm_struct
*mm
= current
->mm
;
1006 unsigned long end
, nstart
, nend
;
1007 struct vm_area_struct
*vma
= NULL
;
1011 VM_BUG_ON(start
& ~PAGE_MASK
);
1012 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
1015 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
1017 * We want to fault in pages for [nstart; end) address range.
1018 * Find first corresponding VMA.
1022 down_read(&mm
->mmap_sem
);
1023 vma
= find_vma(mm
, nstart
);
1024 } else if (nstart
>= vma
->vm_end
)
1026 if (!vma
|| vma
->vm_start
>= end
)
1029 * Set [nstart; nend) to intersection of desired address
1030 * range with the first VMA. Also, skip undesirable VMA types.
1032 nend
= min(end
, vma
->vm_end
);
1033 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
1035 if (nstart
< vma
->vm_start
)
1036 nstart
= vma
->vm_start
;
1038 * Now fault in a range of pages. populate_vma_page_range()
1039 * double checks the vma flags, so that it won't mlock pages
1040 * if the vma was already munlocked.
1042 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
1044 if (ignore_errors
) {
1046 continue; /* continue at next VMA */
1050 nend
= nstart
+ ret
* PAGE_SIZE
;
1054 up_read(&mm
->mmap_sem
);
1055 return ret
; /* 0 or negative error code */
1059 * get_dump_page() - pin user page in memory while writing it to core dump
1060 * @addr: user address
1062 * Returns struct page pointer of user page pinned for dump,
1063 * to be freed afterwards by page_cache_release() or put_page().
1065 * Returns NULL on any kind of failure - a hole must then be inserted into
1066 * the corefile, to preserve alignment with its headers; and also returns
1067 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1068 * allowing a hole to be left in the corefile to save diskspace.
1070 * Called without mmap_sem, but after all other threads have been killed.
1072 #ifdef CONFIG_ELF_CORE
1073 struct page
*get_dump_page(unsigned long addr
)
1075 struct vm_area_struct
*vma
;
1078 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1079 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1082 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1085 #endif /* CONFIG_ELF_CORE */
1088 * Generic RCU Fast GUP
1090 * get_user_pages_fast attempts to pin user pages by walking the page
1091 * tables directly and avoids taking locks. Thus the walker needs to be
1092 * protected from page table pages being freed from under it, and should
1093 * block any THP splits.
1095 * One way to achieve this is to have the walker disable interrupts, and
1096 * rely on IPIs from the TLB flushing code blocking before the page table
1097 * pages are freed. This is unsuitable for architectures that do not need
1098 * to broadcast an IPI when invalidating TLBs.
1100 * Another way to achieve this is to batch up page table containing pages
1101 * belonging to more than one mm_user, then rcu_sched a callback to free those
1102 * pages. Disabling interrupts will allow the fast_gup walker to both block
1103 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1104 * (which is a relatively rare event). The code below adopts this strategy.
1106 * Before activating this code, please be aware that the following assumptions
1107 * are currently made:
1109 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1110 * pages containing page tables.
1112 * *) ptes can be read atomically by the architecture.
1114 * *) access_ok is sufficient to validate userspace address ranges.
1116 * The last two assumptions can be relaxed by the addition of helper functions.
1118 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1120 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1122 #ifdef __HAVE_ARCH_PTE_SPECIAL
1123 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1124 int write
, struct page
**pages
, int *nr
)
1129 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1132 * In the line below we are assuming that the pte can be read
1133 * atomically. If this is not the case for your architecture,
1134 * please wrap this in a helper function!
1136 * for an example see gup_get_pte in arch/x86/mm/gup.c
1138 pte_t pte
= READ_ONCE(*ptep
);
1139 struct page
*head
, *page
;
1142 * Similar to the PMD case below, NUMA hinting must take slow
1143 * path using the pte_protnone check.
1145 if (!pte_present(pte
) || pte_special(pte
) ||
1146 pte_protnone(pte
) || (write
&& !pte_write(pte
)))
1149 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1150 page
= pte_page(pte
);
1151 head
= compound_head(page
);
1153 if (!page_cache_get_speculative(head
))
1156 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1161 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1165 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1176 * If we can't determine whether or not a pte is special, then fail immediately
1177 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1180 * For a futex to be placed on a THP tail page, get_futex_key requires a
1181 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1182 * useful to have gup_huge_pmd even if we can't operate on ptes.
1184 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1185 int write
, struct page
**pages
, int *nr
)
1189 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1191 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1192 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1194 struct page
*head
, *page
;
1197 if (write
&& !pmd_write(orig
))
1201 head
= pmd_page(orig
);
1202 page
= head
+ ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1204 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1209 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1211 if (!page_cache_add_speculative(head
, refs
)) {
1216 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1226 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1227 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1229 struct page
*head
, *page
;
1232 if (write
&& !pud_write(orig
))
1236 head
= pud_page(orig
);
1237 page
= head
+ ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1239 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1244 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1246 if (!page_cache_add_speculative(head
, refs
)) {
1251 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1261 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1262 unsigned long end
, int write
,
1263 struct page
**pages
, int *nr
)
1266 struct page
*head
, *page
;
1268 if (write
&& !pgd_write(orig
))
1272 head
= pgd_page(orig
);
1273 page
= head
+ ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1275 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1280 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1282 if (!page_cache_add_speculative(head
, refs
)) {
1287 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1297 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1298 int write
, struct page
**pages
, int *nr
)
1303 pmdp
= pmd_offset(&pud
, addr
);
1305 pmd_t pmd
= READ_ONCE(*pmdp
);
1307 next
= pmd_addr_end(addr
, end
);
1311 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
))) {
1313 * NUMA hinting faults need to be handled in the GUP
1314 * slowpath for accounting purposes and so that they
1315 * can be serialised against THP migration.
1317 if (pmd_protnone(pmd
))
1320 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1324 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1326 * architecture have different format for hugetlbfs
1327 * pmd format and THP pmd format
1329 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1330 PMD_SHIFT
, next
, write
, pages
, nr
))
1332 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1334 } while (pmdp
++, addr
= next
, addr
!= end
);
1339 static int gup_pud_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1340 int write
, struct page
**pages
, int *nr
)
1345 pudp
= pud_offset(&pgd
, addr
);
1347 pud_t pud
= READ_ONCE(*pudp
);
1349 next
= pud_addr_end(addr
, end
);
1352 if (unlikely(pud_huge(pud
))) {
1353 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1356 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1357 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1358 PUD_SHIFT
, next
, write
, pages
, nr
))
1360 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1362 } while (pudp
++, addr
= next
, addr
!= end
);
1368 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1369 * the regular GUP. It will only return non-negative values.
1371 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1372 struct page
**pages
)
1374 struct mm_struct
*mm
= current
->mm
;
1375 unsigned long addr
, len
, end
;
1376 unsigned long next
, flags
;
1382 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1385 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1390 * Disable interrupts. We use the nested form as we can already have
1391 * interrupts disabled by get_futex_key.
1393 * With interrupts disabled, we block page table pages from being
1394 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1397 * We do not adopt an rcu_read_lock(.) here as we also want to
1398 * block IPIs that come from THPs splitting.
1401 local_irq_save(flags
);
1402 pgdp
= pgd_offset(mm
, addr
);
1404 pgd_t pgd
= READ_ONCE(*pgdp
);
1406 next
= pgd_addr_end(addr
, end
);
1409 if (unlikely(pgd_huge(pgd
))) {
1410 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1413 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1414 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1415 PGDIR_SHIFT
, next
, write
, pages
, &nr
))
1417 } else if (!gup_pud_range(pgd
, addr
, next
, write
, pages
, &nr
))
1419 } while (pgdp
++, addr
= next
, addr
!= end
);
1420 local_irq_restore(flags
);
1426 * get_user_pages_fast() - pin user pages in memory
1427 * @start: starting user address
1428 * @nr_pages: number of pages from start to pin
1429 * @write: whether pages will be written to
1430 * @pages: array that receives pointers to the pages pinned.
1431 * Should be at least nr_pages long.
1433 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1434 * If not successful, it will fall back to taking the lock and
1435 * calling get_user_pages().
1437 * Returns number of pages pinned. This may be fewer than the number
1438 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1439 * were pinned, returns -errno.
1441 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1442 struct page
**pages
)
1444 struct mm_struct
*mm
= current
->mm
;
1448 nr
= __get_user_pages_fast(start
, nr_pages
, write
, pages
);
1451 if (nr
< nr_pages
) {
1452 /* Try to get the remaining pages with get_user_pages */
1453 start
+= nr
<< PAGE_SHIFT
;
1456 ret
= get_user_pages_unlocked(current
, mm
, start
,
1457 nr_pages
- nr
, write
, 0, pages
);
1459 /* Have to be a bit careful with return values */
1471 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */