1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
76 EXPORT_SYMBOL(memory_cgrp_subsys
);
78 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket
;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem
;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly
;
92 #define do_swap_account 0
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
101 static const char * const mem_cgroup_stat_names
[] = {
111 static const char * const mem_cgroup_events_names
[] = {
118 static const char * const mem_cgroup_lru_names
[] = {
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
135 struct mem_cgroup_tree_per_zone
{
136 struct rb_root rb_root
;
140 struct mem_cgroup_tree_per_node
{
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
144 struct mem_cgroup_tree
{
145 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
151 struct mem_cgroup_eventfd_list
{
152 struct list_head list
;
153 struct eventfd_ctx
*eventfd
;
157 * cgroup_event represents events which userspace want to receive.
159 struct mem_cgroup_event
{
161 * memcg which the event belongs to.
163 struct mem_cgroup
*memcg
;
165 * eventfd to signal userspace about the event.
167 struct eventfd_ctx
*eventfd
;
169 * Each of these stored in a list by the cgroup.
171 struct list_head list
;
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
177 int (*register_event
)(struct mem_cgroup
*memcg
,
178 struct eventfd_ctx
*eventfd
, const char *args
);
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
184 void (*unregister_event
)(struct mem_cgroup
*memcg
,
185 struct eventfd_ctx
*eventfd
);
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
191 wait_queue_head_t
*wqh
;
193 struct work_struct remove
;
196 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
197 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
199 /* Stuffs for move charges at task migration. */
201 * Types of charges to be moved.
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct
{
209 spinlock_t lock
; /* for from, to */
210 struct mem_cgroup
*from
;
211 struct mem_cgroup
*to
;
213 unsigned long precharge
;
214 unsigned long moved_charge
;
215 unsigned long moved_swap
;
216 struct task_struct
*moving_task
; /* a task moving charges */
217 wait_queue_head_t waitq
; /* a waitq for other context */
219 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
220 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
227 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
228 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
231 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
232 MEM_CGROUP_CHARGE_TYPE_ANON
,
233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
234 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
238 /* for encoding cft->private value on file */
247 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
249 #define MEMFILE_ATTR(val) ((val) & 0xffff)
250 /* Used for OOM nofiier */
251 #define OOM_CONTROL (0)
253 /* Some nice accessors for the vmpressure. */
254 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
257 memcg
= root_mem_cgroup
;
258 return &memcg
->vmpressure
;
261 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
263 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
266 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
268 return (memcg
== root_mem_cgroup
);
272 * We restrict the id in the range of [1, 65535], so it can fit into
275 #define MEM_CGROUP_ID_MAX USHRT_MAX
277 static inline unsigned short mem_cgroup_id(struct mem_cgroup
*memcg
)
279 return memcg
->css
.id
;
283 * A helper function to get mem_cgroup from ID. must be called under
284 * rcu_read_lock(). The caller is responsible for calling
285 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
286 * refcnt from swap can be called against removed memcg.)
288 static inline struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
290 struct cgroup_subsys_state
*css
;
292 css
= css_from_id(id
, &memory_cgrp_subsys
);
293 return mem_cgroup_from_css(css
);
298 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
299 * The main reason for not using cgroup id for this:
300 * this works better in sparse environments, where we have a lot of memcgs,
301 * but only a few kmem-limited. Or also, if we have, for instance, 200
302 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
303 * 200 entry array for that.
305 * The current size of the caches array is stored in memcg_nr_cache_ids. It
306 * will double each time we have to increase it.
308 static DEFINE_IDA(memcg_cache_ida
);
309 int memcg_nr_cache_ids
;
311 /* Protects memcg_nr_cache_ids */
312 static DECLARE_RWSEM(memcg_cache_ids_sem
);
314 void memcg_get_cache_ids(void)
316 down_read(&memcg_cache_ids_sem
);
319 void memcg_put_cache_ids(void)
321 up_read(&memcg_cache_ids_sem
);
325 * MIN_SIZE is different than 1, because we would like to avoid going through
326 * the alloc/free process all the time. In a small machine, 4 kmem-limited
327 * cgroups is a reasonable guess. In the future, it could be a parameter or
328 * tunable, but that is strictly not necessary.
330 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
331 * this constant directly from cgroup, but it is understandable that this is
332 * better kept as an internal representation in cgroup.c. In any case, the
333 * cgrp_id space is not getting any smaller, and we don't have to necessarily
334 * increase ours as well if it increases.
336 #define MEMCG_CACHES_MIN_SIZE 4
337 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
340 * A lot of the calls to the cache allocation functions are expected to be
341 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
342 * conditional to this static branch, we'll have to allow modules that does
343 * kmem_cache_alloc and the such to see this symbol as well
345 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
346 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
348 #endif /* !CONFIG_SLOB */
350 static struct mem_cgroup_per_zone
*
351 mem_cgroup_zone_zoneinfo(struct mem_cgroup
*memcg
, struct zone
*zone
)
353 int nid
= zone_to_nid(zone
);
354 int zid
= zone_idx(zone
);
356 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
360 * mem_cgroup_css_from_page - css of the memcg associated with a page
361 * @page: page of interest
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @page is returned. The returned css remains associated with @page
365 * until it is released.
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
370 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
372 struct mem_cgroup
*memcg
;
374 memcg
= page
->mem_cgroup
;
376 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
377 memcg
= root_mem_cgroup
;
383 * page_cgroup_ino - return inode number of the memcg a page is charged to
386 * Look up the closest online ancestor of the memory cgroup @page is charged to
387 * and return its inode number or 0 if @page is not charged to any cgroup. It
388 * is safe to call this function without holding a reference to @page.
390 * Note, this function is inherently racy, because there is nothing to prevent
391 * the cgroup inode from getting torn down and potentially reallocated a moment
392 * after page_cgroup_ino() returns, so it only should be used by callers that
393 * do not care (such as procfs interfaces).
395 ino_t
page_cgroup_ino(struct page
*page
)
397 struct mem_cgroup
*memcg
;
398 unsigned long ino
= 0;
401 memcg
= READ_ONCE(page
->mem_cgroup
);
402 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
403 memcg
= parent_mem_cgroup(memcg
);
405 ino
= cgroup_ino(memcg
->css
.cgroup
);
410 static struct mem_cgroup_per_zone
*
411 mem_cgroup_page_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
413 int nid
= page_to_nid(page
);
414 int zid
= page_zonenum(page
);
416 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
419 static struct mem_cgroup_tree_per_zone
*
420 soft_limit_tree_node_zone(int nid
, int zid
)
422 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
425 static struct mem_cgroup_tree_per_zone
*
426 soft_limit_tree_from_page(struct page
*page
)
428 int nid
= page_to_nid(page
);
429 int zid
= page_zonenum(page
);
431 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
434 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone
*mz
,
435 struct mem_cgroup_tree_per_zone
*mctz
,
436 unsigned long new_usage_in_excess
)
438 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
439 struct rb_node
*parent
= NULL
;
440 struct mem_cgroup_per_zone
*mz_node
;
445 mz
->usage_in_excess
= new_usage_in_excess
;
446 if (!mz
->usage_in_excess
)
450 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
452 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
455 * We can't avoid mem cgroups that are over their soft
456 * limit by the same amount
458 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
461 rb_link_node(&mz
->tree_node
, parent
, p
);
462 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
466 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
467 struct mem_cgroup_tree_per_zone
*mctz
)
471 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
475 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
476 struct mem_cgroup_tree_per_zone
*mctz
)
480 spin_lock_irqsave(&mctz
->lock
, flags
);
481 __mem_cgroup_remove_exceeded(mz
, mctz
);
482 spin_unlock_irqrestore(&mctz
->lock
, flags
);
485 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
487 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
488 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
489 unsigned long excess
= 0;
491 if (nr_pages
> soft_limit
)
492 excess
= nr_pages
- soft_limit
;
497 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
499 unsigned long excess
;
500 struct mem_cgroup_per_zone
*mz
;
501 struct mem_cgroup_tree_per_zone
*mctz
;
503 mctz
= soft_limit_tree_from_page(page
);
505 * Necessary to update all ancestors when hierarchy is used.
506 * because their event counter is not touched.
508 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
509 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
510 excess
= soft_limit_excess(memcg
);
512 * We have to update the tree if mz is on RB-tree or
513 * mem is over its softlimit.
515 if (excess
|| mz
->on_tree
) {
518 spin_lock_irqsave(&mctz
->lock
, flags
);
519 /* if on-tree, remove it */
521 __mem_cgroup_remove_exceeded(mz
, mctz
);
523 * Insert again. mz->usage_in_excess will be updated.
524 * If excess is 0, no tree ops.
526 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
527 spin_unlock_irqrestore(&mctz
->lock
, flags
);
532 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
534 struct mem_cgroup_tree_per_zone
*mctz
;
535 struct mem_cgroup_per_zone
*mz
;
539 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
540 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
541 mctz
= soft_limit_tree_node_zone(nid
, zid
);
542 mem_cgroup_remove_exceeded(mz
, mctz
);
547 static struct mem_cgroup_per_zone
*
548 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
550 struct rb_node
*rightmost
= NULL
;
551 struct mem_cgroup_per_zone
*mz
;
555 rightmost
= rb_last(&mctz
->rb_root
);
557 goto done
; /* Nothing to reclaim from */
559 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
561 * Remove the node now but someone else can add it back,
562 * we will to add it back at the end of reclaim to its correct
563 * position in the tree.
565 __mem_cgroup_remove_exceeded(mz
, mctz
);
566 if (!soft_limit_excess(mz
->memcg
) ||
567 !css_tryget_online(&mz
->memcg
->css
))
573 static struct mem_cgroup_per_zone
*
574 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
576 struct mem_cgroup_per_zone
*mz
;
578 spin_lock_irq(&mctz
->lock
);
579 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
580 spin_unlock_irq(&mctz
->lock
);
585 * Return page count for single (non recursive) @memcg.
587 * Implementation Note: reading percpu statistics for memcg.
589 * Both of vmstat[] and percpu_counter has threshold and do periodic
590 * synchronization to implement "quick" read. There are trade-off between
591 * reading cost and precision of value. Then, we may have a chance to implement
592 * a periodic synchronization of counter in memcg's counter.
594 * But this _read() function is used for user interface now. The user accounts
595 * memory usage by memory cgroup and he _always_ requires exact value because
596 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
597 * have to visit all online cpus and make sum. So, for now, unnecessary
598 * synchronization is not implemented. (just implemented for cpu hotplug)
600 * If there are kernel internal actions which can make use of some not-exact
601 * value, and reading all cpu value can be performance bottleneck in some
602 * common workload, threshold and synchronization as vmstat[] should be
606 mem_cgroup_read_stat(struct mem_cgroup
*memcg
, enum mem_cgroup_stat_index idx
)
611 /* Per-cpu values can be negative, use a signed accumulator */
612 for_each_possible_cpu(cpu
)
613 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
615 * Summing races with updates, so val may be negative. Avoid exposing
616 * transient negative values.
623 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
624 enum mem_cgroup_events_index idx
)
626 unsigned long val
= 0;
629 for_each_possible_cpu(cpu
)
630 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
634 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
636 bool compound
, int nr_pages
)
639 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
640 * counted as CACHE even if it's on ANON LRU.
643 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
646 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
650 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
651 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
655 /* pagein of a big page is an event. So, ignore page size */
657 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
659 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
660 nr_pages
= -nr_pages
; /* for event */
663 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
666 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
668 unsigned int lru_mask
)
670 unsigned long nr
= 0;
673 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
675 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
676 struct mem_cgroup_per_zone
*mz
;
680 if (!(BIT(lru
) & lru_mask
))
682 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
683 nr
+= mz
->lru_size
[lru
];
689 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
690 unsigned int lru_mask
)
692 unsigned long nr
= 0;
695 for_each_node_state(nid
, N_MEMORY
)
696 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
700 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
701 enum mem_cgroup_events_target target
)
703 unsigned long val
, next
;
705 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
706 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
707 /* from time_after() in jiffies.h */
708 if ((long)next
- (long)val
< 0) {
710 case MEM_CGROUP_TARGET_THRESH
:
711 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
713 case MEM_CGROUP_TARGET_SOFTLIMIT
:
714 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
716 case MEM_CGROUP_TARGET_NUMAINFO
:
717 next
= val
+ NUMAINFO_EVENTS_TARGET
;
722 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
729 * Check events in order.
732 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
734 /* threshold event is triggered in finer grain than soft limit */
735 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
736 MEM_CGROUP_TARGET_THRESH
))) {
738 bool do_numainfo __maybe_unused
;
740 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
741 MEM_CGROUP_TARGET_SOFTLIMIT
);
743 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
744 MEM_CGROUP_TARGET_NUMAINFO
);
746 mem_cgroup_threshold(memcg
);
747 if (unlikely(do_softlimit
))
748 mem_cgroup_update_tree(memcg
, page
);
750 if (unlikely(do_numainfo
))
751 atomic_inc(&memcg
->numainfo_events
);
756 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
759 * mm_update_next_owner() may clear mm->owner to NULL
760 * if it races with swapoff, page migration, etc.
761 * So this can be called with p == NULL.
766 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
768 EXPORT_SYMBOL(mem_cgroup_from_task
);
770 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
772 struct mem_cgroup
*memcg
= NULL
;
777 * Page cache insertions can happen withou an
778 * actual mm context, e.g. during disk probing
779 * on boot, loopback IO, acct() writes etc.
782 memcg
= root_mem_cgroup
;
784 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
785 if (unlikely(!memcg
))
786 memcg
= root_mem_cgroup
;
788 } while (!css_tryget_online(&memcg
->css
));
794 * mem_cgroup_iter - iterate over memory cgroup hierarchy
795 * @root: hierarchy root
796 * @prev: previously returned memcg, NULL on first invocation
797 * @reclaim: cookie for shared reclaim walks, NULL for full walks
799 * Returns references to children of the hierarchy below @root, or
800 * @root itself, or %NULL after a full round-trip.
802 * Caller must pass the return value in @prev on subsequent
803 * invocations for reference counting, or use mem_cgroup_iter_break()
804 * to cancel a hierarchy walk before the round-trip is complete.
806 * Reclaimers can specify a zone and a priority level in @reclaim to
807 * divide up the memcgs in the hierarchy among all concurrent
808 * reclaimers operating on the same zone and priority.
810 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
811 struct mem_cgroup
*prev
,
812 struct mem_cgroup_reclaim_cookie
*reclaim
)
814 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
815 struct cgroup_subsys_state
*css
= NULL
;
816 struct mem_cgroup
*memcg
= NULL
;
817 struct mem_cgroup
*pos
= NULL
;
819 if (mem_cgroup_disabled())
823 root
= root_mem_cgroup
;
825 if (prev
&& !reclaim
)
828 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
837 struct mem_cgroup_per_zone
*mz
;
839 mz
= mem_cgroup_zone_zoneinfo(root
, reclaim
->zone
);
840 iter
= &mz
->iter
[reclaim
->priority
];
842 if (prev
&& reclaim
->generation
!= iter
->generation
)
846 pos
= READ_ONCE(iter
->position
);
847 if (!pos
|| css_tryget(&pos
->css
))
850 * css reference reached zero, so iter->position will
851 * be cleared by ->css_released. However, we should not
852 * rely on this happening soon, because ->css_released
853 * is called from a work queue, and by busy-waiting we
854 * might block it. So we clear iter->position right
857 (void)cmpxchg(&iter
->position
, pos
, NULL
);
865 css
= css_next_descendant_pre(css
, &root
->css
);
868 * Reclaimers share the hierarchy walk, and a
869 * new one might jump in right at the end of
870 * the hierarchy - make sure they see at least
871 * one group and restart from the beginning.
879 * Verify the css and acquire a reference. The root
880 * is provided by the caller, so we know it's alive
881 * and kicking, and don't take an extra reference.
883 memcg
= mem_cgroup_from_css(css
);
885 if (css
== &root
->css
)
896 * The position could have already been updated by a competing
897 * thread, so check that the value hasn't changed since we read
898 * it to avoid reclaiming from the same cgroup twice.
900 (void)cmpxchg(&iter
->position
, pos
, memcg
);
908 reclaim
->generation
= iter
->generation
;
914 if (prev
&& prev
!= root
)
921 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
922 * @root: hierarchy root
923 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
925 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
926 struct mem_cgroup
*prev
)
929 root
= root_mem_cgroup
;
930 if (prev
&& prev
!= root
)
934 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
936 struct mem_cgroup
*memcg
= dead_memcg
;
937 struct mem_cgroup_reclaim_iter
*iter
;
938 struct mem_cgroup_per_zone
*mz
;
942 while ((memcg
= parent_mem_cgroup(memcg
))) {
944 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
945 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
946 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
948 cmpxchg(&iter
->position
,
957 * Iteration constructs for visiting all cgroups (under a tree). If
958 * loops are exited prematurely (break), mem_cgroup_iter_break() must
959 * be used for reference counting.
961 #define for_each_mem_cgroup_tree(iter, root) \
962 for (iter = mem_cgroup_iter(root, NULL, NULL); \
964 iter = mem_cgroup_iter(root, iter, NULL))
966 #define for_each_mem_cgroup(iter) \
967 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
969 iter = mem_cgroup_iter(NULL, iter, NULL))
972 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
973 * @zone: zone of the wanted lruvec
974 * @memcg: memcg of the wanted lruvec
976 * Returns the lru list vector holding pages for the given @zone and
977 * @mem. This can be the global zone lruvec, if the memory controller
980 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
981 struct mem_cgroup
*memcg
)
983 struct mem_cgroup_per_zone
*mz
;
984 struct lruvec
*lruvec
;
986 if (mem_cgroup_disabled()) {
987 lruvec
= &zone
->lruvec
;
991 mz
= mem_cgroup_zone_zoneinfo(memcg
, zone
);
992 lruvec
= &mz
->lruvec
;
995 * Since a node can be onlined after the mem_cgroup was created,
996 * we have to be prepared to initialize lruvec->zone here;
997 * and if offlined then reonlined, we need to reinitialize it.
999 if (unlikely(lruvec
->zone
!= zone
))
1000 lruvec
->zone
= zone
;
1005 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1007 * @zone: zone of the page
1009 * This function is only safe when following the LRU page isolation
1010 * and putback protocol: the LRU lock must be held, and the page must
1011 * either be PageLRU() or the caller must have isolated/allocated it.
1013 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1015 struct mem_cgroup_per_zone
*mz
;
1016 struct mem_cgroup
*memcg
;
1017 struct lruvec
*lruvec
;
1019 if (mem_cgroup_disabled()) {
1020 lruvec
= &zone
->lruvec
;
1024 memcg
= page
->mem_cgroup
;
1026 * Swapcache readahead pages are added to the LRU - and
1027 * possibly migrated - before they are charged.
1030 memcg
= root_mem_cgroup
;
1032 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
1033 lruvec
= &mz
->lruvec
;
1036 * Since a node can be onlined after the mem_cgroup was created,
1037 * we have to be prepared to initialize lruvec->zone here;
1038 * and if offlined then reonlined, we need to reinitialize it.
1040 if (unlikely(lruvec
->zone
!= zone
))
1041 lruvec
->zone
= zone
;
1046 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1047 * @lruvec: mem_cgroup per zone lru vector
1048 * @lru: index of lru list the page is sitting on
1049 * @nr_pages: positive when adding or negative when removing
1051 * This function must be called when a page is added to or removed from an
1054 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1057 struct mem_cgroup_per_zone
*mz
;
1058 unsigned long *lru_size
;
1060 if (mem_cgroup_disabled())
1063 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1064 lru_size
= mz
->lru_size
+ lru
;
1065 *lru_size
+= nr_pages
;
1066 VM_BUG_ON((long)(*lru_size
) < 0);
1069 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1071 struct mem_cgroup
*task_memcg
;
1072 struct task_struct
*p
;
1075 p
= find_lock_task_mm(task
);
1077 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1081 * All threads may have already detached their mm's, but the oom
1082 * killer still needs to detect if they have already been oom
1083 * killed to prevent needlessly killing additional tasks.
1086 task_memcg
= mem_cgroup_from_task(task
);
1087 css_get(&task_memcg
->css
);
1090 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1091 css_put(&task_memcg
->css
);
1096 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1097 * @memcg: the memory cgroup
1099 * Returns the maximum amount of memory @mem can be charged with, in
1102 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1104 unsigned long margin
= 0;
1105 unsigned long count
;
1106 unsigned long limit
;
1108 count
= page_counter_read(&memcg
->memory
);
1109 limit
= READ_ONCE(memcg
->memory
.limit
);
1111 margin
= limit
- count
;
1113 if (do_memsw_account()) {
1114 count
= page_counter_read(&memcg
->memsw
);
1115 limit
= READ_ONCE(memcg
->memsw
.limit
);
1117 margin
= min(margin
, limit
- count
);
1124 * A routine for checking "mem" is under move_account() or not.
1126 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1127 * moving cgroups. This is for waiting at high-memory pressure
1130 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1132 struct mem_cgroup
*from
;
1133 struct mem_cgroup
*to
;
1136 * Unlike task_move routines, we access mc.to, mc.from not under
1137 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1139 spin_lock(&mc
.lock
);
1145 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1146 mem_cgroup_is_descendant(to
, memcg
);
1148 spin_unlock(&mc
.lock
);
1152 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1154 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1155 if (mem_cgroup_under_move(memcg
)) {
1157 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1158 /* moving charge context might have finished. */
1161 finish_wait(&mc
.waitq
, &wait
);
1168 #define K(x) ((x) << (PAGE_SHIFT-10))
1170 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1171 * @memcg: The memory cgroup that went over limit
1172 * @p: Task that is going to be killed
1174 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1177 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1179 /* oom_info_lock ensures that parallel ooms do not interleave */
1180 static DEFINE_MUTEX(oom_info_lock
);
1181 struct mem_cgroup
*iter
;
1184 mutex_lock(&oom_info_lock
);
1188 pr_info("Task in ");
1189 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1190 pr_cont(" killed as a result of limit of ");
1192 pr_info("Memory limit reached of cgroup ");
1195 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1200 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1201 K((u64
)page_counter_read(&memcg
->memory
)),
1202 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1203 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1204 K((u64
)page_counter_read(&memcg
->memsw
)),
1205 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1206 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1207 K((u64
)page_counter_read(&memcg
->kmem
)),
1208 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1210 for_each_mem_cgroup_tree(iter
, memcg
) {
1211 pr_info("Memory cgroup stats for ");
1212 pr_cont_cgroup_path(iter
->css
.cgroup
);
1215 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1216 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1218 pr_cont(" %s:%luKB", mem_cgroup_stat_names
[i
],
1219 K(mem_cgroup_read_stat(iter
, i
)));
1222 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1223 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1224 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1228 mutex_unlock(&oom_info_lock
);
1232 * This function returns the number of memcg under hierarchy tree. Returns
1233 * 1(self count) if no children.
1235 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1238 struct mem_cgroup
*iter
;
1240 for_each_mem_cgroup_tree(iter
, memcg
)
1246 * Return the memory (and swap, if configured) limit for a memcg.
1248 static unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1250 unsigned long limit
;
1252 limit
= memcg
->memory
.limit
;
1253 if (mem_cgroup_swappiness(memcg
)) {
1254 unsigned long memsw_limit
;
1255 unsigned long swap_limit
;
1257 memsw_limit
= memcg
->memsw
.limit
;
1258 swap_limit
= memcg
->swap
.limit
;
1259 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1260 limit
= min(limit
+ swap_limit
, memsw_limit
);
1265 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1268 struct oom_control oc
= {
1271 .gfp_mask
= gfp_mask
,
1274 struct mem_cgroup
*iter
;
1275 unsigned long chosen_points
= 0;
1276 unsigned long totalpages
;
1277 unsigned int points
= 0;
1278 struct task_struct
*chosen
= NULL
;
1280 mutex_lock(&oom_lock
);
1283 * If current has a pending SIGKILL or is exiting, then automatically
1284 * select it. The goal is to allow it to allocate so that it may
1285 * quickly exit and free its memory.
1287 if (fatal_signal_pending(current
) || task_will_free_mem(current
)) {
1288 mark_oom_victim(current
);
1292 check_panic_on_oom(&oc
, CONSTRAINT_MEMCG
, memcg
);
1293 totalpages
= mem_cgroup_get_limit(memcg
) ? : 1;
1294 for_each_mem_cgroup_tree(iter
, memcg
) {
1295 struct css_task_iter it
;
1296 struct task_struct
*task
;
1298 css_task_iter_start(&iter
->css
, &it
);
1299 while ((task
= css_task_iter_next(&it
))) {
1300 switch (oom_scan_process_thread(&oc
, task
, totalpages
)) {
1301 case OOM_SCAN_SELECT
:
1303 put_task_struct(chosen
);
1305 chosen_points
= ULONG_MAX
;
1306 get_task_struct(chosen
);
1308 case OOM_SCAN_CONTINUE
:
1310 case OOM_SCAN_ABORT
:
1311 css_task_iter_end(&it
);
1312 mem_cgroup_iter_break(memcg
, iter
);
1314 put_task_struct(chosen
);
1319 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1320 if (!points
|| points
< chosen_points
)
1322 /* Prefer thread group leaders for display purposes */
1323 if (points
== chosen_points
&&
1324 thread_group_leader(chosen
))
1328 put_task_struct(chosen
);
1330 chosen_points
= points
;
1331 get_task_struct(chosen
);
1333 css_task_iter_end(&it
);
1337 points
= chosen_points
* 1000 / totalpages
;
1338 oom_kill_process(&oc
, chosen
, points
, totalpages
, memcg
,
1339 "Memory cgroup out of memory");
1342 mutex_unlock(&oom_lock
);
1345 #if MAX_NUMNODES > 1
1348 * test_mem_cgroup_node_reclaimable
1349 * @memcg: the target memcg
1350 * @nid: the node ID to be checked.
1351 * @noswap : specify true here if the user wants flle only information.
1353 * This function returns whether the specified memcg contains any
1354 * reclaimable pages on a node. Returns true if there are any reclaimable
1355 * pages in the node.
1357 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1358 int nid
, bool noswap
)
1360 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1362 if (noswap
|| !total_swap_pages
)
1364 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1371 * Always updating the nodemask is not very good - even if we have an empty
1372 * list or the wrong list here, we can start from some node and traverse all
1373 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1376 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1380 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1381 * pagein/pageout changes since the last update.
1383 if (!atomic_read(&memcg
->numainfo_events
))
1385 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1388 /* make a nodemask where this memcg uses memory from */
1389 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1391 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1393 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1394 node_clear(nid
, memcg
->scan_nodes
);
1397 atomic_set(&memcg
->numainfo_events
, 0);
1398 atomic_set(&memcg
->numainfo_updating
, 0);
1402 * Selecting a node where we start reclaim from. Because what we need is just
1403 * reducing usage counter, start from anywhere is O,K. Considering
1404 * memory reclaim from current node, there are pros. and cons.
1406 * Freeing memory from current node means freeing memory from a node which
1407 * we'll use or we've used. So, it may make LRU bad. And if several threads
1408 * hit limits, it will see a contention on a node. But freeing from remote
1409 * node means more costs for memory reclaim because of memory latency.
1411 * Now, we use round-robin. Better algorithm is welcomed.
1413 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1417 mem_cgroup_may_update_nodemask(memcg
);
1418 node
= memcg
->last_scanned_node
;
1420 node
= next_node(node
, memcg
->scan_nodes
);
1421 if (node
== MAX_NUMNODES
)
1422 node
= first_node(memcg
->scan_nodes
);
1424 * We call this when we hit limit, not when pages are added to LRU.
1425 * No LRU may hold pages because all pages are UNEVICTABLE or
1426 * memcg is too small and all pages are not on LRU. In that case,
1427 * we use curret node.
1429 if (unlikely(node
== MAX_NUMNODES
))
1430 node
= numa_node_id();
1432 memcg
->last_scanned_node
= node
;
1436 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1442 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1445 unsigned long *total_scanned
)
1447 struct mem_cgroup
*victim
= NULL
;
1450 unsigned long excess
;
1451 unsigned long nr_scanned
;
1452 struct mem_cgroup_reclaim_cookie reclaim
= {
1457 excess
= soft_limit_excess(root_memcg
);
1460 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1465 * If we have not been able to reclaim
1466 * anything, it might because there are
1467 * no reclaimable pages under this hierarchy
1472 * We want to do more targeted reclaim.
1473 * excess >> 2 is not to excessive so as to
1474 * reclaim too much, nor too less that we keep
1475 * coming back to reclaim from this cgroup
1477 if (total
>= (excess
>> 2) ||
1478 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1483 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1485 *total_scanned
+= nr_scanned
;
1486 if (!soft_limit_excess(root_memcg
))
1489 mem_cgroup_iter_break(root_memcg
, victim
);
1493 #ifdef CONFIG_LOCKDEP
1494 static struct lockdep_map memcg_oom_lock_dep_map
= {
1495 .name
= "memcg_oom_lock",
1499 static DEFINE_SPINLOCK(memcg_oom_lock
);
1502 * Check OOM-Killer is already running under our hierarchy.
1503 * If someone is running, return false.
1505 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1507 struct mem_cgroup
*iter
, *failed
= NULL
;
1509 spin_lock(&memcg_oom_lock
);
1511 for_each_mem_cgroup_tree(iter
, memcg
) {
1512 if (iter
->oom_lock
) {
1514 * this subtree of our hierarchy is already locked
1515 * so we cannot give a lock.
1518 mem_cgroup_iter_break(memcg
, iter
);
1521 iter
->oom_lock
= true;
1526 * OK, we failed to lock the whole subtree so we have
1527 * to clean up what we set up to the failing subtree
1529 for_each_mem_cgroup_tree(iter
, memcg
) {
1530 if (iter
== failed
) {
1531 mem_cgroup_iter_break(memcg
, iter
);
1534 iter
->oom_lock
= false;
1537 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1539 spin_unlock(&memcg_oom_lock
);
1544 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1546 struct mem_cgroup
*iter
;
1548 spin_lock(&memcg_oom_lock
);
1549 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1550 for_each_mem_cgroup_tree(iter
, memcg
)
1551 iter
->oom_lock
= false;
1552 spin_unlock(&memcg_oom_lock
);
1555 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1557 struct mem_cgroup
*iter
;
1559 spin_lock(&memcg_oom_lock
);
1560 for_each_mem_cgroup_tree(iter
, memcg
)
1562 spin_unlock(&memcg_oom_lock
);
1565 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1567 struct mem_cgroup
*iter
;
1570 * When a new child is created while the hierarchy is under oom,
1571 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1573 spin_lock(&memcg_oom_lock
);
1574 for_each_mem_cgroup_tree(iter
, memcg
)
1575 if (iter
->under_oom
> 0)
1577 spin_unlock(&memcg_oom_lock
);
1580 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1582 struct oom_wait_info
{
1583 struct mem_cgroup
*memcg
;
1587 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1588 unsigned mode
, int sync
, void *arg
)
1590 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1591 struct mem_cgroup
*oom_wait_memcg
;
1592 struct oom_wait_info
*oom_wait_info
;
1594 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1595 oom_wait_memcg
= oom_wait_info
->memcg
;
1597 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1598 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1600 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1603 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1606 * For the following lockless ->under_oom test, the only required
1607 * guarantee is that it must see the state asserted by an OOM when
1608 * this function is called as a result of userland actions
1609 * triggered by the notification of the OOM. This is trivially
1610 * achieved by invoking mem_cgroup_mark_under_oom() before
1611 * triggering notification.
1613 if (memcg
&& memcg
->under_oom
)
1614 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1617 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1619 if (!current
->memcg_may_oom
)
1622 * We are in the middle of the charge context here, so we
1623 * don't want to block when potentially sitting on a callstack
1624 * that holds all kinds of filesystem and mm locks.
1626 * Also, the caller may handle a failed allocation gracefully
1627 * (like optional page cache readahead) and so an OOM killer
1628 * invocation might not even be necessary.
1630 * That's why we don't do anything here except remember the
1631 * OOM context and then deal with it at the end of the page
1632 * fault when the stack is unwound, the locks are released,
1633 * and when we know whether the fault was overall successful.
1635 css_get(&memcg
->css
);
1636 current
->memcg_in_oom
= memcg
;
1637 current
->memcg_oom_gfp_mask
= mask
;
1638 current
->memcg_oom_order
= order
;
1642 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1643 * @handle: actually kill/wait or just clean up the OOM state
1645 * This has to be called at the end of a page fault if the memcg OOM
1646 * handler was enabled.
1648 * Memcg supports userspace OOM handling where failed allocations must
1649 * sleep on a waitqueue until the userspace task resolves the
1650 * situation. Sleeping directly in the charge context with all kinds
1651 * of locks held is not a good idea, instead we remember an OOM state
1652 * in the task and mem_cgroup_oom_synchronize() has to be called at
1653 * the end of the page fault to complete the OOM handling.
1655 * Returns %true if an ongoing memcg OOM situation was detected and
1656 * completed, %false otherwise.
1658 bool mem_cgroup_oom_synchronize(bool handle
)
1660 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1661 struct oom_wait_info owait
;
1664 /* OOM is global, do not handle */
1668 if (!handle
|| oom_killer_disabled
)
1671 owait
.memcg
= memcg
;
1672 owait
.wait
.flags
= 0;
1673 owait
.wait
.func
= memcg_oom_wake_function
;
1674 owait
.wait
.private = current
;
1675 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1677 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1678 mem_cgroup_mark_under_oom(memcg
);
1680 locked
= mem_cgroup_oom_trylock(memcg
);
1683 mem_cgroup_oom_notify(memcg
);
1685 if (locked
&& !memcg
->oom_kill_disable
) {
1686 mem_cgroup_unmark_under_oom(memcg
);
1687 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1688 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1689 current
->memcg_oom_order
);
1692 mem_cgroup_unmark_under_oom(memcg
);
1693 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1697 mem_cgroup_oom_unlock(memcg
);
1699 * There is no guarantee that an OOM-lock contender
1700 * sees the wakeups triggered by the OOM kill
1701 * uncharges. Wake any sleepers explicitely.
1703 memcg_oom_recover(memcg
);
1706 current
->memcg_in_oom
= NULL
;
1707 css_put(&memcg
->css
);
1712 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1713 * @page: page that is going to change accounted state
1715 * This function must mark the beginning of an accounted page state
1716 * change to prevent double accounting when the page is concurrently
1717 * being moved to another memcg:
1719 * memcg = mem_cgroup_begin_page_stat(page);
1720 * if (TestClearPageState(page))
1721 * mem_cgroup_update_page_stat(memcg, state, -1);
1722 * mem_cgroup_end_page_stat(memcg);
1724 struct mem_cgroup
*mem_cgroup_begin_page_stat(struct page
*page
)
1726 struct mem_cgroup
*memcg
;
1727 unsigned long flags
;
1730 * The RCU lock is held throughout the transaction. The fast
1731 * path can get away without acquiring the memcg->move_lock
1732 * because page moving starts with an RCU grace period.
1734 * The RCU lock also protects the memcg from being freed when
1735 * the page state that is going to change is the only thing
1736 * preventing the page from being uncharged.
1737 * E.g. end-writeback clearing PageWriteback(), which allows
1738 * migration to go ahead and uncharge the page before the
1739 * account transaction might be complete.
1743 if (mem_cgroup_disabled())
1746 memcg
= page
->mem_cgroup
;
1747 if (unlikely(!memcg
))
1750 if (atomic_read(&memcg
->moving_account
) <= 0)
1753 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1754 if (memcg
!= page
->mem_cgroup
) {
1755 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1760 * When charge migration first begins, we can have locked and
1761 * unlocked page stat updates happening concurrently. Track
1762 * the task who has the lock for mem_cgroup_end_page_stat().
1764 memcg
->move_lock_task
= current
;
1765 memcg
->move_lock_flags
= flags
;
1769 EXPORT_SYMBOL(mem_cgroup_begin_page_stat
);
1772 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1773 * @memcg: the memcg that was accounted against
1775 void mem_cgroup_end_page_stat(struct mem_cgroup
*memcg
)
1777 if (memcg
&& memcg
->move_lock_task
== current
) {
1778 unsigned long flags
= memcg
->move_lock_flags
;
1780 memcg
->move_lock_task
= NULL
;
1781 memcg
->move_lock_flags
= 0;
1783 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1788 EXPORT_SYMBOL(mem_cgroup_end_page_stat
);
1791 * size of first charge trial. "32" comes from vmscan.c's magic value.
1792 * TODO: maybe necessary to use big numbers in big irons.
1794 #define CHARGE_BATCH 32U
1795 struct memcg_stock_pcp
{
1796 struct mem_cgroup
*cached
; /* this never be root cgroup */
1797 unsigned int nr_pages
;
1798 struct work_struct work
;
1799 unsigned long flags
;
1800 #define FLUSHING_CACHED_CHARGE 0
1802 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1803 static DEFINE_MUTEX(percpu_charge_mutex
);
1806 * consume_stock: Try to consume stocked charge on this cpu.
1807 * @memcg: memcg to consume from.
1808 * @nr_pages: how many pages to charge.
1810 * The charges will only happen if @memcg matches the current cpu's memcg
1811 * stock, and at least @nr_pages are available in that stock. Failure to
1812 * service an allocation will refill the stock.
1814 * returns true if successful, false otherwise.
1816 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1818 struct memcg_stock_pcp
*stock
;
1821 if (nr_pages
> CHARGE_BATCH
)
1824 stock
= &get_cpu_var(memcg_stock
);
1825 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1826 stock
->nr_pages
-= nr_pages
;
1829 put_cpu_var(memcg_stock
);
1834 * Returns stocks cached in percpu and reset cached information.
1836 static void drain_stock(struct memcg_stock_pcp
*stock
)
1838 struct mem_cgroup
*old
= stock
->cached
;
1840 if (stock
->nr_pages
) {
1841 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1842 if (do_memsw_account())
1843 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1844 css_put_many(&old
->css
, stock
->nr_pages
);
1845 stock
->nr_pages
= 0;
1847 stock
->cached
= NULL
;
1851 * This must be called under preempt disabled or must be called by
1852 * a thread which is pinned to local cpu.
1854 static void drain_local_stock(struct work_struct
*dummy
)
1856 struct memcg_stock_pcp
*stock
= this_cpu_ptr(&memcg_stock
);
1858 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1862 * Cache charges(val) to local per_cpu area.
1863 * This will be consumed by consume_stock() function, later.
1865 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1867 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1869 if (stock
->cached
!= memcg
) { /* reset if necessary */
1871 stock
->cached
= memcg
;
1873 stock
->nr_pages
+= nr_pages
;
1874 put_cpu_var(memcg_stock
);
1878 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1879 * of the hierarchy under it.
1881 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1885 /* If someone's already draining, avoid adding running more workers. */
1886 if (!mutex_trylock(&percpu_charge_mutex
))
1888 /* Notify other cpus that system-wide "drain" is running */
1891 for_each_online_cpu(cpu
) {
1892 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1893 struct mem_cgroup
*memcg
;
1895 memcg
= stock
->cached
;
1896 if (!memcg
|| !stock
->nr_pages
)
1898 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1900 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1902 drain_local_stock(&stock
->work
);
1904 schedule_work_on(cpu
, &stock
->work
);
1909 mutex_unlock(&percpu_charge_mutex
);
1912 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1913 unsigned long action
,
1916 int cpu
= (unsigned long)hcpu
;
1917 struct memcg_stock_pcp
*stock
;
1919 if (action
== CPU_ONLINE
)
1922 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
1925 stock
= &per_cpu(memcg_stock
, cpu
);
1930 static void reclaim_high(struct mem_cgroup
*memcg
,
1931 unsigned int nr_pages
,
1935 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1937 mem_cgroup_events(memcg
, MEMCG_HIGH
, 1);
1938 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1939 } while ((memcg
= parent_mem_cgroup(memcg
)));
1942 static void high_work_func(struct work_struct
*work
)
1944 struct mem_cgroup
*memcg
;
1946 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1947 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1951 * Scheduled by try_charge() to be executed from the userland return path
1952 * and reclaims memory over the high limit.
1954 void mem_cgroup_handle_over_high(void)
1956 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1957 struct mem_cgroup
*memcg
;
1959 if (likely(!nr_pages
))
1962 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1963 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1964 css_put(&memcg
->css
);
1965 current
->memcg_nr_pages_over_high
= 0;
1968 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1969 unsigned int nr_pages
)
1971 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1972 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1973 struct mem_cgroup
*mem_over_limit
;
1974 struct page_counter
*counter
;
1975 unsigned long nr_reclaimed
;
1976 bool may_swap
= true;
1977 bool drained
= false;
1979 if (mem_cgroup_is_root(memcg
))
1982 if (consume_stock(memcg
, nr_pages
))
1985 if (!do_memsw_account() ||
1986 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1987 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1989 if (do_memsw_account())
1990 page_counter_uncharge(&memcg
->memsw
, batch
);
1991 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1993 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1997 if (batch
> nr_pages
) {
2003 * Unlike in global OOM situations, memcg is not in a physical
2004 * memory shortage. Allow dying and OOM-killed tasks to
2005 * bypass the last charges so that they can exit quickly and
2006 * free their memory.
2008 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
2009 fatal_signal_pending(current
) ||
2010 current
->flags
& PF_EXITING
))
2013 if (unlikely(task_in_memcg_oom(current
)))
2016 if (!gfpflags_allow_blocking(gfp_mask
))
2019 mem_cgroup_events(mem_over_limit
, MEMCG_MAX
, 1);
2021 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2022 gfp_mask
, may_swap
);
2024 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2028 drain_all_stock(mem_over_limit
);
2033 if (gfp_mask
& __GFP_NORETRY
)
2036 * Even though the limit is exceeded at this point, reclaim
2037 * may have been able to free some pages. Retry the charge
2038 * before killing the task.
2040 * Only for regular pages, though: huge pages are rather
2041 * unlikely to succeed so close to the limit, and we fall back
2042 * to regular pages anyway in case of failure.
2044 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2047 * At task move, charge accounts can be doubly counted. So, it's
2048 * better to wait until the end of task_move if something is going on.
2050 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2056 if (gfp_mask
& __GFP_NOFAIL
)
2059 if (fatal_signal_pending(current
))
2062 mem_cgroup_events(mem_over_limit
, MEMCG_OOM
, 1);
2064 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2065 get_order(nr_pages
* PAGE_SIZE
));
2067 if (!(gfp_mask
& __GFP_NOFAIL
))
2071 * The allocation either can't fail or will lead to more memory
2072 * being freed very soon. Allow memory usage go over the limit
2073 * temporarily by force charging it.
2075 page_counter_charge(&memcg
->memory
, nr_pages
);
2076 if (do_memsw_account())
2077 page_counter_charge(&memcg
->memsw
, nr_pages
);
2078 css_get_many(&memcg
->css
, nr_pages
);
2083 css_get_many(&memcg
->css
, batch
);
2084 if (batch
> nr_pages
)
2085 refill_stock(memcg
, batch
- nr_pages
);
2088 * If the hierarchy is above the normal consumption range, schedule
2089 * reclaim on returning to userland. We can perform reclaim here
2090 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2091 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2092 * not recorded as it most likely matches current's and won't
2093 * change in the meantime. As high limit is checked again before
2094 * reclaim, the cost of mismatch is negligible.
2097 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2098 /* Don't bother a random interrupted task */
2099 if (in_interrupt()) {
2100 schedule_work(&memcg
->high_work
);
2103 current
->memcg_nr_pages_over_high
+= batch
;
2104 set_notify_resume(current
);
2107 } while ((memcg
= parent_mem_cgroup(memcg
)));
2112 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2114 if (mem_cgroup_is_root(memcg
))
2117 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2118 if (do_memsw_account())
2119 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2121 css_put_many(&memcg
->css
, nr_pages
);
2124 static void lock_page_lru(struct page
*page
, int *isolated
)
2126 struct zone
*zone
= page_zone(page
);
2128 spin_lock_irq(&zone
->lru_lock
);
2129 if (PageLRU(page
)) {
2130 struct lruvec
*lruvec
;
2132 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2134 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2140 static void unlock_page_lru(struct page
*page
, int isolated
)
2142 struct zone
*zone
= page_zone(page
);
2145 struct lruvec
*lruvec
;
2147 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2148 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2150 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2152 spin_unlock_irq(&zone
->lru_lock
);
2155 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2160 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2163 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2164 * may already be on some other mem_cgroup's LRU. Take care of it.
2167 lock_page_lru(page
, &isolated
);
2170 * Nobody should be changing or seriously looking at
2171 * page->mem_cgroup at this point:
2173 * - the page is uncharged
2175 * - the page is off-LRU
2177 * - an anonymous fault has exclusive page access, except for
2178 * a locked page table
2180 * - a page cache insertion, a swapin fault, or a migration
2181 * have the page locked
2183 page
->mem_cgroup
= memcg
;
2186 unlock_page_lru(page
, isolated
);
2190 static int memcg_alloc_cache_id(void)
2195 id
= ida_simple_get(&memcg_cache_ida
,
2196 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2200 if (id
< memcg_nr_cache_ids
)
2204 * There's no space for the new id in memcg_caches arrays,
2205 * so we have to grow them.
2207 down_write(&memcg_cache_ids_sem
);
2209 size
= 2 * (id
+ 1);
2210 if (size
< MEMCG_CACHES_MIN_SIZE
)
2211 size
= MEMCG_CACHES_MIN_SIZE
;
2212 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2213 size
= MEMCG_CACHES_MAX_SIZE
;
2215 err
= memcg_update_all_caches(size
);
2217 err
= memcg_update_all_list_lrus(size
);
2219 memcg_nr_cache_ids
= size
;
2221 up_write(&memcg_cache_ids_sem
);
2224 ida_simple_remove(&memcg_cache_ida
, id
);
2230 static void memcg_free_cache_id(int id
)
2232 ida_simple_remove(&memcg_cache_ida
, id
);
2235 struct memcg_kmem_cache_create_work
{
2236 struct mem_cgroup
*memcg
;
2237 struct kmem_cache
*cachep
;
2238 struct work_struct work
;
2241 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2243 struct memcg_kmem_cache_create_work
*cw
=
2244 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2245 struct mem_cgroup
*memcg
= cw
->memcg
;
2246 struct kmem_cache
*cachep
= cw
->cachep
;
2248 memcg_create_kmem_cache(memcg
, cachep
);
2250 css_put(&memcg
->css
);
2255 * Enqueue the creation of a per-memcg kmem_cache.
2257 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2258 struct kmem_cache
*cachep
)
2260 struct memcg_kmem_cache_create_work
*cw
;
2262 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2266 css_get(&memcg
->css
);
2269 cw
->cachep
= cachep
;
2270 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2272 schedule_work(&cw
->work
);
2275 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2276 struct kmem_cache
*cachep
)
2279 * We need to stop accounting when we kmalloc, because if the
2280 * corresponding kmalloc cache is not yet created, the first allocation
2281 * in __memcg_schedule_kmem_cache_create will recurse.
2283 * However, it is better to enclose the whole function. Depending on
2284 * the debugging options enabled, INIT_WORK(), for instance, can
2285 * trigger an allocation. This too, will make us recurse. Because at
2286 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2287 * the safest choice is to do it like this, wrapping the whole function.
2289 current
->memcg_kmem_skip_account
= 1;
2290 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2291 current
->memcg_kmem_skip_account
= 0;
2295 * Return the kmem_cache we're supposed to use for a slab allocation.
2296 * We try to use the current memcg's version of the cache.
2298 * If the cache does not exist yet, if we are the first user of it,
2299 * we either create it immediately, if possible, or create it asynchronously
2301 * In the latter case, we will let the current allocation go through with
2302 * the original cache.
2304 * Can't be called in interrupt context or from kernel threads.
2305 * This function needs to be called with rcu_read_lock() held.
2307 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2309 struct mem_cgroup
*memcg
;
2310 struct kmem_cache
*memcg_cachep
;
2313 VM_BUG_ON(!is_root_cache(cachep
));
2315 if (cachep
->flags
& SLAB_ACCOUNT
)
2316 gfp
|= __GFP_ACCOUNT
;
2318 if (!(gfp
& __GFP_ACCOUNT
))
2321 if (current
->memcg_kmem_skip_account
)
2324 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2325 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2329 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2330 if (likely(memcg_cachep
))
2331 return memcg_cachep
;
2334 * If we are in a safe context (can wait, and not in interrupt
2335 * context), we could be be predictable and return right away.
2336 * This would guarantee that the allocation being performed
2337 * already belongs in the new cache.
2339 * However, there are some clashes that can arrive from locking.
2340 * For instance, because we acquire the slab_mutex while doing
2341 * memcg_create_kmem_cache, this means no further allocation
2342 * could happen with the slab_mutex held. So it's better to
2345 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2347 css_put(&memcg
->css
);
2351 void __memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2353 if (!is_root_cache(cachep
))
2354 css_put(&cachep
->memcg_params
.memcg
->css
);
2357 int __memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2358 struct mem_cgroup
*memcg
)
2360 unsigned int nr_pages
= 1 << order
;
2361 struct page_counter
*counter
;
2364 if (!memcg_kmem_online(memcg
))
2367 ret
= try_charge(memcg
, gfp
, nr_pages
);
2371 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2372 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2373 cancel_charge(memcg
, nr_pages
);
2377 page
->mem_cgroup
= memcg
;
2382 int __memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2384 struct mem_cgroup
*memcg
;
2387 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2388 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2389 css_put(&memcg
->css
);
2393 void __memcg_kmem_uncharge(struct page
*page
, int order
)
2395 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2396 unsigned int nr_pages
= 1 << order
;
2401 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2403 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2404 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2406 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2407 if (do_memsw_account())
2408 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2410 page
->mem_cgroup
= NULL
;
2411 css_put_many(&memcg
->css
, nr_pages
);
2413 #endif /* !CONFIG_SLOB */
2415 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2418 * Because tail pages are not marked as "used", set it. We're under
2419 * zone->lru_lock and migration entries setup in all page mappings.
2421 void mem_cgroup_split_huge_fixup(struct page
*head
)
2425 if (mem_cgroup_disabled())
2428 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2429 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2431 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
2434 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2436 #ifdef CONFIG_MEMCG_SWAP
2437 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2440 int val
= (charge
) ? 1 : -1;
2441 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
2445 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2446 * @entry: swap entry to be moved
2447 * @from: mem_cgroup which the entry is moved from
2448 * @to: mem_cgroup which the entry is moved to
2450 * It succeeds only when the swap_cgroup's record for this entry is the same
2451 * as the mem_cgroup's id of @from.
2453 * Returns 0 on success, -EINVAL on failure.
2455 * The caller must have charged to @to, IOW, called page_counter_charge() about
2456 * both res and memsw, and called css_get().
2458 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2459 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2461 unsigned short old_id
, new_id
;
2463 old_id
= mem_cgroup_id(from
);
2464 new_id
= mem_cgroup_id(to
);
2466 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2467 mem_cgroup_swap_statistics(from
, false);
2468 mem_cgroup_swap_statistics(to
, true);
2474 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2475 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2481 static DEFINE_MUTEX(memcg_limit_mutex
);
2483 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2484 unsigned long limit
)
2486 unsigned long curusage
;
2487 unsigned long oldusage
;
2488 bool enlarge
= false;
2493 * For keeping hierarchical_reclaim simple, how long we should retry
2494 * is depends on callers. We set our retry-count to be function
2495 * of # of children which we should visit in this loop.
2497 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2498 mem_cgroup_count_children(memcg
);
2500 oldusage
= page_counter_read(&memcg
->memory
);
2503 if (signal_pending(current
)) {
2508 mutex_lock(&memcg_limit_mutex
);
2509 if (limit
> memcg
->memsw
.limit
) {
2510 mutex_unlock(&memcg_limit_mutex
);
2514 if (limit
> memcg
->memory
.limit
)
2516 ret
= page_counter_limit(&memcg
->memory
, limit
);
2517 mutex_unlock(&memcg_limit_mutex
);
2522 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2524 curusage
= page_counter_read(&memcg
->memory
);
2525 /* Usage is reduced ? */
2526 if (curusage
>= oldusage
)
2529 oldusage
= curusage
;
2530 } while (retry_count
);
2532 if (!ret
&& enlarge
)
2533 memcg_oom_recover(memcg
);
2538 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2539 unsigned long limit
)
2541 unsigned long curusage
;
2542 unsigned long oldusage
;
2543 bool enlarge
= false;
2547 /* see mem_cgroup_resize_res_limit */
2548 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2549 mem_cgroup_count_children(memcg
);
2551 oldusage
= page_counter_read(&memcg
->memsw
);
2554 if (signal_pending(current
)) {
2559 mutex_lock(&memcg_limit_mutex
);
2560 if (limit
< memcg
->memory
.limit
) {
2561 mutex_unlock(&memcg_limit_mutex
);
2565 if (limit
> memcg
->memsw
.limit
)
2567 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2568 mutex_unlock(&memcg_limit_mutex
);
2573 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2575 curusage
= page_counter_read(&memcg
->memsw
);
2576 /* Usage is reduced ? */
2577 if (curusage
>= oldusage
)
2580 oldusage
= curusage
;
2581 } while (retry_count
);
2583 if (!ret
&& enlarge
)
2584 memcg_oom_recover(memcg
);
2589 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2591 unsigned long *total_scanned
)
2593 unsigned long nr_reclaimed
= 0;
2594 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2595 unsigned long reclaimed
;
2597 struct mem_cgroup_tree_per_zone
*mctz
;
2598 unsigned long excess
;
2599 unsigned long nr_scanned
;
2604 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
2606 * This loop can run a while, specially if mem_cgroup's continuously
2607 * keep exceeding their soft limit and putting the system under
2614 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2619 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
2620 gfp_mask
, &nr_scanned
);
2621 nr_reclaimed
+= reclaimed
;
2622 *total_scanned
+= nr_scanned
;
2623 spin_lock_irq(&mctz
->lock
);
2624 __mem_cgroup_remove_exceeded(mz
, mctz
);
2627 * If we failed to reclaim anything from this memory cgroup
2628 * it is time to move on to the next cgroup
2632 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2634 excess
= soft_limit_excess(mz
->memcg
);
2636 * One school of thought says that we should not add
2637 * back the node to the tree if reclaim returns 0.
2638 * But our reclaim could return 0, simply because due
2639 * to priority we are exposing a smaller subset of
2640 * memory to reclaim from. Consider this as a longer
2643 /* If excess == 0, no tree ops */
2644 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2645 spin_unlock_irq(&mctz
->lock
);
2646 css_put(&mz
->memcg
->css
);
2649 * Could not reclaim anything and there are no more
2650 * mem cgroups to try or we seem to be looping without
2651 * reclaiming anything.
2653 if (!nr_reclaimed
&&
2655 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2657 } while (!nr_reclaimed
);
2659 css_put(&next_mz
->memcg
->css
);
2660 return nr_reclaimed
;
2664 * Test whether @memcg has children, dead or alive. Note that this
2665 * function doesn't care whether @memcg has use_hierarchy enabled and
2666 * returns %true if there are child csses according to the cgroup
2667 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2669 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2674 ret
= css_next_child(NULL
, &memcg
->css
);
2680 * Reclaims as many pages from the given memcg as possible and moves
2681 * the rest to the parent.
2683 * Caller is responsible for holding css reference for memcg.
2685 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2687 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2689 /* we call try-to-free pages for make this cgroup empty */
2690 lru_add_drain_all();
2691 /* try to free all pages in this cgroup */
2692 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2695 if (signal_pending(current
))
2698 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2702 /* maybe some writeback is necessary */
2703 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2711 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2712 char *buf
, size_t nbytes
,
2715 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2717 if (mem_cgroup_is_root(memcg
))
2719 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2722 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2725 return mem_cgroup_from_css(css
)->use_hierarchy
;
2728 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2729 struct cftype
*cft
, u64 val
)
2732 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2733 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2735 if (memcg
->use_hierarchy
== val
)
2739 * If parent's use_hierarchy is set, we can't make any modifications
2740 * in the child subtrees. If it is unset, then the change can
2741 * occur, provided the current cgroup has no children.
2743 * For the root cgroup, parent_mem is NULL, we allow value to be
2744 * set if there are no children.
2746 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2747 (val
== 1 || val
== 0)) {
2748 if (!memcg_has_children(memcg
))
2749 memcg
->use_hierarchy
= val
;
2758 static unsigned long tree_stat(struct mem_cgroup
*memcg
,
2759 enum mem_cgroup_stat_index idx
)
2761 struct mem_cgroup
*iter
;
2762 unsigned long val
= 0;
2764 for_each_mem_cgroup_tree(iter
, memcg
)
2765 val
+= mem_cgroup_read_stat(iter
, idx
);
2770 static unsigned long tree_events(struct mem_cgroup
*memcg
,
2771 enum mem_cgroup_events_index idx
)
2773 struct mem_cgroup
*iter
;
2774 unsigned long val
= 0;
2776 for_each_mem_cgroup_tree(iter
, memcg
)
2777 val
+= mem_cgroup_read_events(iter
, idx
);
2782 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2786 if (mem_cgroup_is_root(memcg
)) {
2787 val
= tree_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
2788 val
+= tree_stat(memcg
, MEM_CGROUP_STAT_RSS
);
2790 val
+= tree_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
2793 val
= page_counter_read(&memcg
->memory
);
2795 val
= page_counter_read(&memcg
->memsw
);
2808 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2811 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2812 struct page_counter
*counter
;
2814 switch (MEMFILE_TYPE(cft
->private)) {
2816 counter
= &memcg
->memory
;
2819 counter
= &memcg
->memsw
;
2822 counter
= &memcg
->kmem
;
2825 counter
= &memcg
->tcpmem
;
2831 switch (MEMFILE_ATTR(cft
->private)) {
2833 if (counter
== &memcg
->memory
)
2834 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2835 if (counter
== &memcg
->memsw
)
2836 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2837 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2839 return (u64
)counter
->limit
* PAGE_SIZE
;
2841 return (u64
)counter
->watermark
* PAGE_SIZE
;
2843 return counter
->failcnt
;
2844 case RES_SOFT_LIMIT
:
2845 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2852 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2856 BUG_ON(memcg
->kmemcg_id
>= 0);
2857 BUG_ON(memcg
->kmem_state
);
2859 memcg_id
= memcg_alloc_cache_id();
2863 static_branch_inc(&memcg_kmem_enabled_key
);
2865 * A memory cgroup is considered kmem-online as soon as it gets
2866 * kmemcg_id. Setting the id after enabling static branching will
2867 * guarantee no one starts accounting before all call sites are
2870 memcg
->kmemcg_id
= memcg_id
;
2871 memcg
->kmem_state
= KMEM_ONLINE
;
2876 static int memcg_propagate_kmem(struct mem_cgroup
*parent
,
2877 struct mem_cgroup
*memcg
)
2881 mutex_lock(&memcg_limit_mutex
);
2883 * If the parent cgroup is not kmem-online now, it cannot be
2884 * onlined after this point, because it has at least one child
2887 if (memcg_kmem_online(parent
) ||
2888 (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nokmem
))
2889 ret
= memcg_online_kmem(memcg
);
2890 mutex_unlock(&memcg_limit_mutex
);
2894 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2896 struct cgroup_subsys_state
*css
;
2897 struct mem_cgroup
*parent
, *child
;
2900 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2903 * Clear the online state before clearing memcg_caches array
2904 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2905 * guarantees that no cache will be created for this cgroup
2906 * after we are done (see memcg_create_kmem_cache()).
2908 memcg
->kmem_state
= KMEM_ALLOCATED
;
2910 memcg_deactivate_kmem_caches(memcg
);
2912 kmemcg_id
= memcg
->kmemcg_id
;
2913 BUG_ON(kmemcg_id
< 0);
2915 parent
= parent_mem_cgroup(memcg
);
2917 parent
= root_mem_cgroup
;
2920 * Change kmemcg_id of this cgroup and all its descendants to the
2921 * parent's id, and then move all entries from this cgroup's list_lrus
2922 * to ones of the parent. After we have finished, all list_lrus
2923 * corresponding to this cgroup are guaranteed to remain empty. The
2924 * ordering is imposed by list_lru_node->lock taken by
2925 * memcg_drain_all_list_lrus().
2927 css_for_each_descendant_pre(css
, &memcg
->css
) {
2928 child
= mem_cgroup_from_css(css
);
2929 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2930 child
->kmemcg_id
= parent
->kmemcg_id
;
2931 if (!memcg
->use_hierarchy
)
2934 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2936 memcg_free_cache_id(kmemcg_id
);
2939 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2941 /* css_alloc() failed, offlining didn't happen */
2942 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2943 memcg_offline_kmem(memcg
);
2945 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2946 memcg_destroy_kmem_caches(memcg
);
2947 static_branch_dec(&memcg_kmem_enabled_key
);
2948 WARN_ON(page_counter_read(&memcg
->kmem
));
2952 static int memcg_propagate_kmem(struct mem_cgroup
*parent
, struct mem_cgroup
*memcg
)
2956 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2960 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2963 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2966 #endif /* !CONFIG_SLOB */
2968 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2969 unsigned long limit
)
2973 mutex_lock(&memcg_limit_mutex
);
2974 /* Top-level cgroup doesn't propagate from root */
2975 if (!memcg_kmem_online(memcg
)) {
2976 if (cgroup_is_populated(memcg
->css
.cgroup
) ||
2977 (memcg
->use_hierarchy
&& memcg_has_children(memcg
)))
2981 ret
= memcg_online_kmem(memcg
);
2985 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2987 mutex_unlock(&memcg_limit_mutex
);
2991 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2995 mutex_lock(&memcg_limit_mutex
);
2997 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
3001 if (!memcg
->tcpmem_active
) {
3003 * The active flag needs to be written after the static_key
3004 * update. This is what guarantees that the socket activation
3005 * function is the last one to run. See sock_update_memcg() for
3006 * details, and note that we don't mark any socket as belonging
3007 * to this memcg until that flag is up.
3009 * We need to do this, because static_keys will span multiple
3010 * sites, but we can't control their order. If we mark a socket
3011 * as accounted, but the accounting functions are not patched in
3012 * yet, we'll lose accounting.
3014 * We never race with the readers in sock_update_memcg(),
3015 * because when this value change, the code to process it is not
3018 static_branch_inc(&memcg_sockets_enabled_key
);
3019 memcg
->tcpmem_active
= true;
3022 mutex_unlock(&memcg_limit_mutex
);
3027 * The user of this function is...
3030 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3031 char *buf
, size_t nbytes
, loff_t off
)
3033 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3034 unsigned long nr_pages
;
3037 buf
= strstrip(buf
);
3038 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3042 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3044 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3048 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3050 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
3053 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3056 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3059 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
3063 case RES_SOFT_LIMIT
:
3064 memcg
->soft_limit
= nr_pages
;
3068 return ret
?: nbytes
;
3071 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3072 size_t nbytes
, loff_t off
)
3074 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3075 struct page_counter
*counter
;
3077 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3079 counter
= &memcg
->memory
;
3082 counter
= &memcg
->memsw
;
3085 counter
= &memcg
->kmem
;
3088 counter
= &memcg
->tcpmem
;
3094 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3096 page_counter_reset_watermark(counter
);
3099 counter
->failcnt
= 0;
3108 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3111 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3115 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3116 struct cftype
*cft
, u64 val
)
3118 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3120 if (val
& ~MOVE_MASK
)
3124 * No kind of locking is needed in here, because ->can_attach() will
3125 * check this value once in the beginning of the process, and then carry
3126 * on with stale data. This means that changes to this value will only
3127 * affect task migrations starting after the change.
3129 memcg
->move_charge_at_immigrate
= val
;
3133 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3134 struct cftype
*cft
, u64 val
)
3141 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3145 unsigned int lru_mask
;
3148 static const struct numa_stat stats
[] = {
3149 { "total", LRU_ALL
},
3150 { "file", LRU_ALL_FILE
},
3151 { "anon", LRU_ALL_ANON
},
3152 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3154 const struct numa_stat
*stat
;
3157 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3159 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3160 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3161 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3162 for_each_node_state(nid
, N_MEMORY
) {
3163 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3165 seq_printf(m
, " N%d=%lu", nid
, nr
);
3170 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3171 struct mem_cgroup
*iter
;
3174 for_each_mem_cgroup_tree(iter
, memcg
)
3175 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3176 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3177 for_each_node_state(nid
, N_MEMORY
) {
3179 for_each_mem_cgroup_tree(iter
, memcg
)
3180 nr
+= mem_cgroup_node_nr_lru_pages(
3181 iter
, nid
, stat
->lru_mask
);
3182 seq_printf(m
, " N%d=%lu", nid
, nr
);
3189 #endif /* CONFIG_NUMA */
3191 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3193 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3194 unsigned long memory
, memsw
;
3195 struct mem_cgroup
*mi
;
3198 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names
) !=
3199 MEM_CGROUP_STAT_NSTATS
);
3200 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names
) !=
3201 MEM_CGROUP_EVENTS_NSTATS
);
3202 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3204 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3205 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3207 seq_printf(m
, "%s %lu\n", mem_cgroup_stat_names
[i
],
3208 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
3211 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
3212 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
3213 mem_cgroup_read_events(memcg
, i
));
3215 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3216 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3217 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3219 /* Hierarchical information */
3220 memory
= memsw
= PAGE_COUNTER_MAX
;
3221 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3222 memory
= min(memory
, mi
->memory
.limit
);
3223 memsw
= min(memsw
, mi
->memsw
.limit
);
3225 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3226 (u64
)memory
* PAGE_SIZE
);
3227 if (do_memsw_account())
3228 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3229 (u64
)memsw
* PAGE_SIZE
);
3231 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3232 unsigned long long val
= 0;
3234 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3236 for_each_mem_cgroup_tree(mi
, memcg
)
3237 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
3238 seq_printf(m
, "total_%s %llu\n", mem_cgroup_stat_names
[i
], val
);
3241 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
3242 unsigned long long val
= 0;
3244 for_each_mem_cgroup_tree(mi
, memcg
)
3245 val
+= mem_cgroup_read_events(mi
, i
);
3246 seq_printf(m
, "total_%s %llu\n",
3247 mem_cgroup_events_names
[i
], val
);
3250 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3251 unsigned long long val
= 0;
3253 for_each_mem_cgroup_tree(mi
, memcg
)
3254 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3255 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3258 #ifdef CONFIG_DEBUG_VM
3261 struct mem_cgroup_per_zone
*mz
;
3262 struct zone_reclaim_stat
*rstat
;
3263 unsigned long recent_rotated
[2] = {0, 0};
3264 unsigned long recent_scanned
[2] = {0, 0};
3266 for_each_online_node(nid
)
3267 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3268 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
3269 rstat
= &mz
->lruvec
.reclaim_stat
;
3271 recent_rotated
[0] += rstat
->recent_rotated
[0];
3272 recent_rotated
[1] += rstat
->recent_rotated
[1];
3273 recent_scanned
[0] += rstat
->recent_scanned
[0];
3274 recent_scanned
[1] += rstat
->recent_scanned
[1];
3276 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3277 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3278 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3279 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3286 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3289 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3291 return mem_cgroup_swappiness(memcg
);
3294 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3295 struct cftype
*cft
, u64 val
)
3297 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3303 memcg
->swappiness
= val
;
3305 vm_swappiness
= val
;
3310 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3312 struct mem_cgroup_threshold_ary
*t
;
3313 unsigned long usage
;
3318 t
= rcu_dereference(memcg
->thresholds
.primary
);
3320 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3325 usage
= mem_cgroup_usage(memcg
, swap
);
3328 * current_threshold points to threshold just below or equal to usage.
3329 * If it's not true, a threshold was crossed after last
3330 * call of __mem_cgroup_threshold().
3332 i
= t
->current_threshold
;
3335 * Iterate backward over array of thresholds starting from
3336 * current_threshold and check if a threshold is crossed.
3337 * If none of thresholds below usage is crossed, we read
3338 * only one element of the array here.
3340 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3341 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3343 /* i = current_threshold + 1 */
3347 * Iterate forward over array of thresholds starting from
3348 * current_threshold+1 and check if a threshold is crossed.
3349 * If none of thresholds above usage is crossed, we read
3350 * only one element of the array here.
3352 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3353 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3355 /* Update current_threshold */
3356 t
->current_threshold
= i
- 1;
3361 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3364 __mem_cgroup_threshold(memcg
, false);
3365 if (do_memsw_account())
3366 __mem_cgroup_threshold(memcg
, true);
3368 memcg
= parent_mem_cgroup(memcg
);
3372 static int compare_thresholds(const void *a
, const void *b
)
3374 const struct mem_cgroup_threshold
*_a
= a
;
3375 const struct mem_cgroup_threshold
*_b
= b
;
3377 if (_a
->threshold
> _b
->threshold
)
3380 if (_a
->threshold
< _b
->threshold
)
3386 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3388 struct mem_cgroup_eventfd_list
*ev
;
3390 spin_lock(&memcg_oom_lock
);
3392 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3393 eventfd_signal(ev
->eventfd
, 1);
3395 spin_unlock(&memcg_oom_lock
);
3399 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3401 struct mem_cgroup
*iter
;
3403 for_each_mem_cgroup_tree(iter
, memcg
)
3404 mem_cgroup_oom_notify_cb(iter
);
3407 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3408 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3410 struct mem_cgroup_thresholds
*thresholds
;
3411 struct mem_cgroup_threshold_ary
*new;
3412 unsigned long threshold
;
3413 unsigned long usage
;
3416 ret
= page_counter_memparse(args
, "-1", &threshold
);
3420 mutex_lock(&memcg
->thresholds_lock
);
3423 thresholds
= &memcg
->thresholds
;
3424 usage
= mem_cgroup_usage(memcg
, false);
3425 } else if (type
== _MEMSWAP
) {
3426 thresholds
= &memcg
->memsw_thresholds
;
3427 usage
= mem_cgroup_usage(memcg
, true);
3431 /* Check if a threshold crossed before adding a new one */
3432 if (thresholds
->primary
)
3433 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3435 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3437 /* Allocate memory for new array of thresholds */
3438 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3446 /* Copy thresholds (if any) to new array */
3447 if (thresholds
->primary
) {
3448 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3449 sizeof(struct mem_cgroup_threshold
));
3452 /* Add new threshold */
3453 new->entries
[size
- 1].eventfd
= eventfd
;
3454 new->entries
[size
- 1].threshold
= threshold
;
3456 /* Sort thresholds. Registering of new threshold isn't time-critical */
3457 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3458 compare_thresholds
, NULL
);
3460 /* Find current threshold */
3461 new->current_threshold
= -1;
3462 for (i
= 0; i
< size
; i
++) {
3463 if (new->entries
[i
].threshold
<= usage
) {
3465 * new->current_threshold will not be used until
3466 * rcu_assign_pointer(), so it's safe to increment
3469 ++new->current_threshold
;
3474 /* Free old spare buffer and save old primary buffer as spare */
3475 kfree(thresholds
->spare
);
3476 thresholds
->spare
= thresholds
->primary
;
3478 rcu_assign_pointer(thresholds
->primary
, new);
3480 /* To be sure that nobody uses thresholds */
3484 mutex_unlock(&memcg
->thresholds_lock
);
3489 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3490 struct eventfd_ctx
*eventfd
, const char *args
)
3492 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3495 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3496 struct eventfd_ctx
*eventfd
, const char *args
)
3498 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3501 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3502 struct eventfd_ctx
*eventfd
, enum res_type type
)
3504 struct mem_cgroup_thresholds
*thresholds
;
3505 struct mem_cgroup_threshold_ary
*new;
3506 unsigned long usage
;
3509 mutex_lock(&memcg
->thresholds_lock
);
3512 thresholds
= &memcg
->thresholds
;
3513 usage
= mem_cgroup_usage(memcg
, false);
3514 } else if (type
== _MEMSWAP
) {
3515 thresholds
= &memcg
->memsw_thresholds
;
3516 usage
= mem_cgroup_usage(memcg
, true);
3520 if (!thresholds
->primary
)
3523 /* Check if a threshold crossed before removing */
3524 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3526 /* Calculate new number of threshold */
3528 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3529 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3533 new = thresholds
->spare
;
3535 /* Set thresholds array to NULL if we don't have thresholds */
3544 /* Copy thresholds and find current threshold */
3545 new->current_threshold
= -1;
3546 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3547 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3550 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3551 if (new->entries
[j
].threshold
<= usage
) {
3553 * new->current_threshold will not be used
3554 * until rcu_assign_pointer(), so it's safe to increment
3557 ++new->current_threshold
;
3563 /* Swap primary and spare array */
3564 thresholds
->spare
= thresholds
->primary
;
3566 rcu_assign_pointer(thresholds
->primary
, new);
3568 /* To be sure that nobody uses thresholds */
3571 /* If all events are unregistered, free the spare array */
3573 kfree(thresholds
->spare
);
3574 thresholds
->spare
= NULL
;
3577 mutex_unlock(&memcg
->thresholds_lock
);
3580 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3581 struct eventfd_ctx
*eventfd
)
3583 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3586 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3587 struct eventfd_ctx
*eventfd
)
3589 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3592 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3593 struct eventfd_ctx
*eventfd
, const char *args
)
3595 struct mem_cgroup_eventfd_list
*event
;
3597 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3601 spin_lock(&memcg_oom_lock
);
3603 event
->eventfd
= eventfd
;
3604 list_add(&event
->list
, &memcg
->oom_notify
);
3606 /* already in OOM ? */
3607 if (memcg
->under_oom
)
3608 eventfd_signal(eventfd
, 1);
3609 spin_unlock(&memcg_oom_lock
);
3614 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3615 struct eventfd_ctx
*eventfd
)
3617 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3619 spin_lock(&memcg_oom_lock
);
3621 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3622 if (ev
->eventfd
== eventfd
) {
3623 list_del(&ev
->list
);
3628 spin_unlock(&memcg_oom_lock
);
3631 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3633 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3635 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3636 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3640 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3641 struct cftype
*cft
, u64 val
)
3643 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3645 /* cannot set to root cgroup and only 0 and 1 are allowed */
3646 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3649 memcg
->oom_kill_disable
= val
;
3651 memcg_oom_recover(memcg
);
3656 #ifdef CONFIG_CGROUP_WRITEBACK
3658 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3660 return &memcg
->cgwb_list
;
3663 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3665 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3668 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3670 wb_domain_exit(&memcg
->cgwb_domain
);
3673 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3675 wb_domain_size_changed(&memcg
->cgwb_domain
);
3678 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3680 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3682 if (!memcg
->css
.parent
)
3685 return &memcg
->cgwb_domain
;
3689 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3690 * @wb: bdi_writeback in question
3691 * @pfilepages: out parameter for number of file pages
3692 * @pheadroom: out parameter for number of allocatable pages according to memcg
3693 * @pdirty: out parameter for number of dirty pages
3694 * @pwriteback: out parameter for number of pages under writeback
3696 * Determine the numbers of file, headroom, dirty, and writeback pages in
3697 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3698 * is a bit more involved.
3700 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3701 * headroom is calculated as the lowest headroom of itself and the
3702 * ancestors. Note that this doesn't consider the actual amount of
3703 * available memory in the system. The caller should further cap
3704 * *@pheadroom accordingly.
3706 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3707 unsigned long *pheadroom
, unsigned long *pdirty
,
3708 unsigned long *pwriteback
)
3710 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3711 struct mem_cgroup
*parent
;
3713 *pdirty
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
3715 /* this should eventually include NR_UNSTABLE_NFS */
3716 *pwriteback
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
3717 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3718 (1 << LRU_ACTIVE_FILE
));
3719 *pheadroom
= PAGE_COUNTER_MAX
;
3721 while ((parent
= parent_mem_cgroup(memcg
))) {
3722 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3723 unsigned long used
= page_counter_read(&memcg
->memory
);
3725 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3730 #else /* CONFIG_CGROUP_WRITEBACK */
3732 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3737 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3741 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3745 #endif /* CONFIG_CGROUP_WRITEBACK */
3748 * DO NOT USE IN NEW FILES.
3750 * "cgroup.event_control" implementation.
3752 * This is way over-engineered. It tries to support fully configurable
3753 * events for each user. Such level of flexibility is completely
3754 * unnecessary especially in the light of the planned unified hierarchy.
3756 * Please deprecate this and replace with something simpler if at all
3761 * Unregister event and free resources.
3763 * Gets called from workqueue.
3765 static void memcg_event_remove(struct work_struct
*work
)
3767 struct mem_cgroup_event
*event
=
3768 container_of(work
, struct mem_cgroup_event
, remove
);
3769 struct mem_cgroup
*memcg
= event
->memcg
;
3771 remove_wait_queue(event
->wqh
, &event
->wait
);
3773 event
->unregister_event(memcg
, event
->eventfd
);
3775 /* Notify userspace the event is going away. */
3776 eventfd_signal(event
->eventfd
, 1);
3778 eventfd_ctx_put(event
->eventfd
);
3780 css_put(&memcg
->css
);
3784 * Gets called on POLLHUP on eventfd when user closes it.
3786 * Called with wqh->lock held and interrupts disabled.
3788 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
3789 int sync
, void *key
)
3791 struct mem_cgroup_event
*event
=
3792 container_of(wait
, struct mem_cgroup_event
, wait
);
3793 struct mem_cgroup
*memcg
= event
->memcg
;
3794 unsigned long flags
= (unsigned long)key
;
3796 if (flags
& POLLHUP
) {
3798 * If the event has been detached at cgroup removal, we
3799 * can simply return knowing the other side will cleanup
3802 * We can't race against event freeing since the other
3803 * side will require wqh->lock via remove_wait_queue(),
3806 spin_lock(&memcg
->event_list_lock
);
3807 if (!list_empty(&event
->list
)) {
3808 list_del_init(&event
->list
);
3810 * We are in atomic context, but cgroup_event_remove()
3811 * may sleep, so we have to call it in workqueue.
3813 schedule_work(&event
->remove
);
3815 spin_unlock(&memcg
->event_list_lock
);
3821 static void memcg_event_ptable_queue_proc(struct file
*file
,
3822 wait_queue_head_t
*wqh
, poll_table
*pt
)
3824 struct mem_cgroup_event
*event
=
3825 container_of(pt
, struct mem_cgroup_event
, pt
);
3828 add_wait_queue(wqh
, &event
->wait
);
3832 * DO NOT USE IN NEW FILES.
3834 * Parse input and register new cgroup event handler.
3836 * Input must be in format '<event_fd> <control_fd> <args>'.
3837 * Interpretation of args is defined by control file implementation.
3839 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3840 char *buf
, size_t nbytes
, loff_t off
)
3842 struct cgroup_subsys_state
*css
= of_css(of
);
3843 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3844 struct mem_cgroup_event
*event
;
3845 struct cgroup_subsys_state
*cfile_css
;
3846 unsigned int efd
, cfd
;
3853 buf
= strstrip(buf
);
3855 efd
= simple_strtoul(buf
, &endp
, 10);
3860 cfd
= simple_strtoul(buf
, &endp
, 10);
3861 if ((*endp
!= ' ') && (*endp
!= '\0'))
3865 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3869 event
->memcg
= memcg
;
3870 INIT_LIST_HEAD(&event
->list
);
3871 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3872 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3873 INIT_WORK(&event
->remove
, memcg_event_remove
);
3881 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3882 if (IS_ERR(event
->eventfd
)) {
3883 ret
= PTR_ERR(event
->eventfd
);
3890 goto out_put_eventfd
;
3893 /* the process need read permission on control file */
3894 /* AV: shouldn't we check that it's been opened for read instead? */
3895 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3900 * Determine the event callbacks and set them in @event. This used
3901 * to be done via struct cftype but cgroup core no longer knows
3902 * about these events. The following is crude but the whole thing
3903 * is for compatibility anyway.
3905 * DO NOT ADD NEW FILES.
3907 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3909 if (!strcmp(name
, "memory.usage_in_bytes")) {
3910 event
->register_event
= mem_cgroup_usage_register_event
;
3911 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3912 } else if (!strcmp(name
, "memory.oom_control")) {
3913 event
->register_event
= mem_cgroup_oom_register_event
;
3914 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3915 } else if (!strcmp(name
, "memory.pressure_level")) {
3916 event
->register_event
= vmpressure_register_event
;
3917 event
->unregister_event
= vmpressure_unregister_event
;
3918 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3919 event
->register_event
= memsw_cgroup_usage_register_event
;
3920 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3927 * Verify @cfile should belong to @css. Also, remaining events are
3928 * automatically removed on cgroup destruction but the removal is
3929 * asynchronous, so take an extra ref on @css.
3931 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3932 &memory_cgrp_subsys
);
3934 if (IS_ERR(cfile_css
))
3936 if (cfile_css
!= css
) {
3941 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3945 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3947 spin_lock(&memcg
->event_list_lock
);
3948 list_add(&event
->list
, &memcg
->event_list
);
3949 spin_unlock(&memcg
->event_list_lock
);
3961 eventfd_ctx_put(event
->eventfd
);
3970 static struct cftype mem_cgroup_legacy_files
[] = {
3972 .name
= "usage_in_bytes",
3973 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3974 .read_u64
= mem_cgroup_read_u64
,
3977 .name
= "max_usage_in_bytes",
3978 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3979 .write
= mem_cgroup_reset
,
3980 .read_u64
= mem_cgroup_read_u64
,
3983 .name
= "limit_in_bytes",
3984 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3985 .write
= mem_cgroup_write
,
3986 .read_u64
= mem_cgroup_read_u64
,
3989 .name
= "soft_limit_in_bytes",
3990 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3991 .write
= mem_cgroup_write
,
3992 .read_u64
= mem_cgroup_read_u64
,
3996 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3997 .write
= mem_cgroup_reset
,
3998 .read_u64
= mem_cgroup_read_u64
,
4002 .seq_show
= memcg_stat_show
,
4005 .name
= "force_empty",
4006 .write
= mem_cgroup_force_empty_write
,
4009 .name
= "use_hierarchy",
4010 .write_u64
= mem_cgroup_hierarchy_write
,
4011 .read_u64
= mem_cgroup_hierarchy_read
,
4014 .name
= "cgroup.event_control", /* XXX: for compat */
4015 .write
= memcg_write_event_control
,
4016 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
4019 .name
= "swappiness",
4020 .read_u64
= mem_cgroup_swappiness_read
,
4021 .write_u64
= mem_cgroup_swappiness_write
,
4024 .name
= "move_charge_at_immigrate",
4025 .read_u64
= mem_cgroup_move_charge_read
,
4026 .write_u64
= mem_cgroup_move_charge_write
,
4029 .name
= "oom_control",
4030 .seq_show
= mem_cgroup_oom_control_read
,
4031 .write_u64
= mem_cgroup_oom_control_write
,
4032 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4035 .name
= "pressure_level",
4039 .name
= "numa_stat",
4040 .seq_show
= memcg_numa_stat_show
,
4044 .name
= "kmem.limit_in_bytes",
4045 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4046 .write
= mem_cgroup_write
,
4047 .read_u64
= mem_cgroup_read_u64
,
4050 .name
= "kmem.usage_in_bytes",
4051 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4052 .read_u64
= mem_cgroup_read_u64
,
4055 .name
= "kmem.failcnt",
4056 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4057 .write
= mem_cgroup_reset
,
4058 .read_u64
= mem_cgroup_read_u64
,
4061 .name
= "kmem.max_usage_in_bytes",
4062 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4063 .write
= mem_cgroup_reset
,
4064 .read_u64
= mem_cgroup_read_u64
,
4066 #ifdef CONFIG_SLABINFO
4068 .name
= "kmem.slabinfo",
4069 .seq_start
= slab_start
,
4070 .seq_next
= slab_next
,
4071 .seq_stop
= slab_stop
,
4072 .seq_show
= memcg_slab_show
,
4076 .name
= "kmem.tcp.limit_in_bytes",
4077 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4078 .write
= mem_cgroup_write
,
4079 .read_u64
= mem_cgroup_read_u64
,
4082 .name
= "kmem.tcp.usage_in_bytes",
4083 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4084 .read_u64
= mem_cgroup_read_u64
,
4087 .name
= "kmem.tcp.failcnt",
4088 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4089 .write
= mem_cgroup_reset
,
4090 .read_u64
= mem_cgroup_read_u64
,
4093 .name
= "kmem.tcp.max_usage_in_bytes",
4094 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4095 .write
= mem_cgroup_reset
,
4096 .read_u64
= mem_cgroup_read_u64
,
4098 { }, /* terminate */
4101 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4103 struct mem_cgroup_per_node
*pn
;
4104 struct mem_cgroup_per_zone
*mz
;
4105 int zone
, tmp
= node
;
4107 * This routine is called against possible nodes.
4108 * But it's BUG to call kmalloc() against offline node.
4110 * TODO: this routine can waste much memory for nodes which will
4111 * never be onlined. It's better to use memory hotplug callback
4114 if (!node_state(node
, N_NORMAL_MEMORY
))
4116 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4120 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4121 mz
= &pn
->zoneinfo
[zone
];
4122 lruvec_init(&mz
->lruvec
);
4123 mz
->usage_in_excess
= 0;
4124 mz
->on_tree
= false;
4127 memcg
->nodeinfo
[node
] = pn
;
4131 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4133 kfree(memcg
->nodeinfo
[node
]);
4136 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4140 memcg_wb_domain_exit(memcg
);
4142 free_mem_cgroup_per_zone_info(memcg
, node
);
4143 free_percpu(memcg
->stat
);
4147 static struct mem_cgroup
*mem_cgroup_alloc(void)
4149 struct mem_cgroup
*memcg
;
4153 size
= sizeof(struct mem_cgroup
);
4154 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4156 memcg
= kzalloc(size
, GFP_KERNEL
);
4160 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4165 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4168 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4171 INIT_WORK(&memcg
->high_work
, high_work_func
);
4172 memcg
->last_scanned_node
= MAX_NUMNODES
;
4173 INIT_LIST_HEAD(&memcg
->oom_notify
);
4174 mutex_init(&memcg
->thresholds_lock
);
4175 spin_lock_init(&memcg
->move_lock
);
4176 vmpressure_init(&memcg
->vmpressure
);
4177 INIT_LIST_HEAD(&memcg
->event_list
);
4178 spin_lock_init(&memcg
->event_list_lock
);
4179 memcg
->socket_pressure
= jiffies
;
4181 memcg
->kmemcg_id
= -1;
4183 #ifdef CONFIG_CGROUP_WRITEBACK
4184 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4188 mem_cgroup_free(memcg
);
4192 static struct cgroup_subsys_state
* __ref
4193 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4195 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4196 struct mem_cgroup
*memcg
;
4197 long error
= -ENOMEM
;
4199 memcg
= mem_cgroup_alloc();
4201 return ERR_PTR(error
);
4203 memcg
->high
= PAGE_COUNTER_MAX
;
4204 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4206 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4207 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4209 if (parent
&& parent
->use_hierarchy
) {
4210 memcg
->use_hierarchy
= true;
4211 page_counter_init(&memcg
->memory
, &parent
->memory
);
4212 page_counter_init(&memcg
->swap
, &parent
->swap
);
4213 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4214 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4215 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4217 page_counter_init(&memcg
->memory
, NULL
);
4218 page_counter_init(&memcg
->swap
, NULL
);
4219 page_counter_init(&memcg
->memsw
, NULL
);
4220 page_counter_init(&memcg
->kmem
, NULL
);
4221 page_counter_init(&memcg
->tcpmem
, NULL
);
4223 * Deeper hierachy with use_hierarchy == false doesn't make
4224 * much sense so let cgroup subsystem know about this
4225 * unfortunate state in our controller.
4227 if (parent
!= root_mem_cgroup
)
4228 memory_cgrp_subsys
.broken_hierarchy
= true;
4231 /* The following stuff does not apply to the root */
4233 root_mem_cgroup
= memcg
;
4237 error
= memcg_propagate_kmem(parent
, memcg
);
4241 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4242 static_branch_inc(&memcg_sockets_enabled_key
);
4246 mem_cgroup_free(memcg
);
4251 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4253 if (css
->id
> MEM_CGROUP_ID_MAX
)
4259 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4261 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4262 struct mem_cgroup_event
*event
, *tmp
;
4265 * Unregister events and notify userspace.
4266 * Notify userspace about cgroup removing only after rmdir of cgroup
4267 * directory to avoid race between userspace and kernelspace.
4269 spin_lock(&memcg
->event_list_lock
);
4270 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4271 list_del_init(&event
->list
);
4272 schedule_work(&event
->remove
);
4274 spin_unlock(&memcg
->event_list_lock
);
4276 memcg_offline_kmem(memcg
);
4277 wb_memcg_offline(memcg
);
4280 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4282 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4284 invalidate_reclaim_iterators(memcg
);
4287 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4289 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4291 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4292 static_branch_dec(&memcg_sockets_enabled_key
);
4294 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4295 static_branch_dec(&memcg_sockets_enabled_key
);
4297 vmpressure_cleanup(&memcg
->vmpressure
);
4298 cancel_work_sync(&memcg
->high_work
);
4299 mem_cgroup_remove_from_trees(memcg
);
4300 memcg_free_kmem(memcg
);
4301 mem_cgroup_free(memcg
);
4305 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4306 * @css: the target css
4308 * Reset the states of the mem_cgroup associated with @css. This is
4309 * invoked when the userland requests disabling on the default hierarchy
4310 * but the memcg is pinned through dependency. The memcg should stop
4311 * applying policies and should revert to the vanilla state as it may be
4312 * made visible again.
4314 * The current implementation only resets the essential configurations.
4315 * This needs to be expanded to cover all the visible parts.
4317 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4319 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4321 mem_cgroup_resize_limit(memcg
, PAGE_COUNTER_MAX
);
4322 mem_cgroup_resize_memsw_limit(memcg
, PAGE_COUNTER_MAX
);
4323 memcg_update_kmem_limit(memcg
, PAGE_COUNTER_MAX
);
4325 memcg
->high
= PAGE_COUNTER_MAX
;
4326 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4327 memcg_wb_domain_size_changed(memcg
);
4331 /* Handlers for move charge at task migration. */
4332 static int mem_cgroup_do_precharge(unsigned long count
)
4336 /* Try a single bulk charge without reclaim first, kswapd may wake */
4337 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4339 mc
.precharge
+= count
;
4343 /* Try charges one by one with reclaim */
4345 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_NORETRY
, 1);
4355 * get_mctgt_type - get target type of moving charge
4356 * @vma: the vma the pte to be checked belongs
4357 * @addr: the address corresponding to the pte to be checked
4358 * @ptent: the pte to be checked
4359 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4362 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4363 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4364 * move charge. if @target is not NULL, the page is stored in target->page
4365 * with extra refcnt got(Callers should handle it).
4366 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4367 * target for charge migration. if @target is not NULL, the entry is stored
4370 * Called with pte lock held.
4377 enum mc_target_type
{
4383 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4384 unsigned long addr
, pte_t ptent
)
4386 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4388 if (!page
|| !page_mapped(page
))
4390 if (PageAnon(page
)) {
4391 if (!(mc
.flags
& MOVE_ANON
))
4394 if (!(mc
.flags
& MOVE_FILE
))
4397 if (!get_page_unless_zero(page
))
4404 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4405 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4407 struct page
*page
= NULL
;
4408 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4410 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4413 * Because lookup_swap_cache() updates some statistics counter,
4414 * we call find_get_page() with swapper_space directly.
4416 page
= find_get_page(swap_address_space(ent
), ent
.val
);
4417 if (do_memsw_account())
4418 entry
->val
= ent
.val
;
4423 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4424 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4430 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4431 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4433 struct page
*page
= NULL
;
4434 struct address_space
*mapping
;
4437 if (!vma
->vm_file
) /* anonymous vma */
4439 if (!(mc
.flags
& MOVE_FILE
))
4442 mapping
= vma
->vm_file
->f_mapping
;
4443 pgoff
= linear_page_index(vma
, addr
);
4445 /* page is moved even if it's not RSS of this task(page-faulted). */
4447 /* shmem/tmpfs may report page out on swap: account for that too. */
4448 if (shmem_mapping(mapping
)) {
4449 page
= find_get_entry(mapping
, pgoff
);
4450 if (radix_tree_exceptional_entry(page
)) {
4451 swp_entry_t swp
= radix_to_swp_entry(page
);
4452 if (do_memsw_account())
4454 page
= find_get_page(swap_address_space(swp
), swp
.val
);
4457 page
= find_get_page(mapping
, pgoff
);
4459 page
= find_get_page(mapping
, pgoff
);
4465 * mem_cgroup_move_account - move account of the page
4467 * @nr_pages: number of regular pages (>1 for huge pages)
4468 * @from: mem_cgroup which the page is moved from.
4469 * @to: mem_cgroup which the page is moved to. @from != @to.
4471 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4473 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4476 static int mem_cgroup_move_account(struct page
*page
,
4478 struct mem_cgroup
*from
,
4479 struct mem_cgroup
*to
)
4481 unsigned long flags
;
4482 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4486 VM_BUG_ON(from
== to
);
4487 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4488 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4491 * Prevent mem_cgroup_replace_page() from looking at
4492 * page->mem_cgroup of its source page while we change it.
4495 if (!trylock_page(page
))
4499 if (page
->mem_cgroup
!= from
)
4502 anon
= PageAnon(page
);
4504 spin_lock_irqsave(&from
->move_lock
, flags
);
4506 if (!anon
&& page_mapped(page
)) {
4507 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4509 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4514 * move_lock grabbed above and caller set from->moving_account, so
4515 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4516 * So mapping should be stable for dirty pages.
4518 if (!anon
&& PageDirty(page
)) {
4519 struct address_space
*mapping
= page_mapping(page
);
4521 if (mapping_cap_account_dirty(mapping
)) {
4522 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4524 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4529 if (PageWriteback(page
)) {
4530 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4532 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4537 * It is safe to change page->mem_cgroup here because the page
4538 * is referenced, charged, and isolated - we can't race with
4539 * uncharging, charging, migration, or LRU putback.
4542 /* caller should have done css_get */
4543 page
->mem_cgroup
= to
;
4544 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4548 local_irq_disable();
4549 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4550 memcg_check_events(to
, page
);
4551 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4552 memcg_check_events(from
, page
);
4560 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4561 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4563 struct page
*page
= NULL
;
4564 enum mc_target_type ret
= MC_TARGET_NONE
;
4565 swp_entry_t ent
= { .val
= 0 };
4567 if (pte_present(ptent
))
4568 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4569 else if (is_swap_pte(ptent
))
4570 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4571 else if (pte_none(ptent
))
4572 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4574 if (!page
&& !ent
.val
)
4578 * Do only loose check w/o serialization.
4579 * mem_cgroup_move_account() checks the page is valid or
4580 * not under LRU exclusion.
4582 if (page
->mem_cgroup
== mc
.from
) {
4583 ret
= MC_TARGET_PAGE
;
4585 target
->page
= page
;
4587 if (!ret
|| !target
)
4590 /* There is a swap entry and a page doesn't exist or isn't charged */
4591 if (ent
.val
&& !ret
&&
4592 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4593 ret
= MC_TARGET_SWAP
;
4600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4602 * We don't consider swapping or file mapped pages because THP does not
4603 * support them for now.
4604 * Caller should make sure that pmd_trans_huge(pmd) is true.
4606 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4607 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4609 struct page
*page
= NULL
;
4610 enum mc_target_type ret
= MC_TARGET_NONE
;
4612 page
= pmd_page(pmd
);
4613 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4614 if (!(mc
.flags
& MOVE_ANON
))
4616 if (page
->mem_cgroup
== mc
.from
) {
4617 ret
= MC_TARGET_PAGE
;
4620 target
->page
= page
;
4626 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4627 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4629 return MC_TARGET_NONE
;
4633 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4634 unsigned long addr
, unsigned long end
,
4635 struct mm_walk
*walk
)
4637 struct vm_area_struct
*vma
= walk
->vma
;
4641 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4643 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4644 mc
.precharge
+= HPAGE_PMD_NR
;
4649 if (pmd_trans_unstable(pmd
))
4651 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4652 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4653 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4654 mc
.precharge
++; /* increment precharge temporarily */
4655 pte_unmap_unlock(pte
- 1, ptl
);
4661 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4663 unsigned long precharge
;
4665 struct mm_walk mem_cgroup_count_precharge_walk
= {
4666 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4669 down_read(&mm
->mmap_sem
);
4670 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk
);
4671 up_read(&mm
->mmap_sem
);
4673 precharge
= mc
.precharge
;
4679 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4681 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4683 VM_BUG_ON(mc
.moving_task
);
4684 mc
.moving_task
= current
;
4685 return mem_cgroup_do_precharge(precharge
);
4688 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4689 static void __mem_cgroup_clear_mc(void)
4691 struct mem_cgroup
*from
= mc
.from
;
4692 struct mem_cgroup
*to
= mc
.to
;
4694 /* we must uncharge all the leftover precharges from mc.to */
4696 cancel_charge(mc
.to
, mc
.precharge
);
4700 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4701 * we must uncharge here.
4703 if (mc
.moved_charge
) {
4704 cancel_charge(mc
.from
, mc
.moved_charge
);
4705 mc
.moved_charge
= 0;
4707 /* we must fixup refcnts and charges */
4708 if (mc
.moved_swap
) {
4709 /* uncharge swap account from the old cgroup */
4710 if (!mem_cgroup_is_root(mc
.from
))
4711 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4714 * we charged both to->memory and to->memsw, so we
4715 * should uncharge to->memory.
4717 if (!mem_cgroup_is_root(mc
.to
))
4718 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4720 css_put_many(&mc
.from
->css
, mc
.moved_swap
);
4722 /* we've already done css_get(mc.to) */
4725 memcg_oom_recover(from
);
4726 memcg_oom_recover(to
);
4727 wake_up_all(&mc
.waitq
);
4730 static void mem_cgroup_clear_mc(void)
4733 * we must clear moving_task before waking up waiters at the end of
4736 mc
.moving_task
= NULL
;
4737 __mem_cgroup_clear_mc();
4738 spin_lock(&mc
.lock
);
4741 spin_unlock(&mc
.lock
);
4744 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4746 struct cgroup_subsys_state
*css
;
4747 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4748 struct mem_cgroup
*from
;
4749 struct task_struct
*leader
, *p
;
4750 struct mm_struct
*mm
;
4751 unsigned long move_flags
;
4754 /* charge immigration isn't supported on the default hierarchy */
4755 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4759 * Multi-process migrations only happen on the default hierarchy
4760 * where charge immigration is not used. Perform charge
4761 * immigration if @tset contains a leader and whine if there are
4765 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4768 memcg
= mem_cgroup_from_css(css
);
4774 * We are now commited to this value whatever it is. Changes in this
4775 * tunable will only affect upcoming migrations, not the current one.
4776 * So we need to save it, and keep it going.
4778 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4782 from
= mem_cgroup_from_task(p
);
4784 VM_BUG_ON(from
== memcg
);
4786 mm
= get_task_mm(p
);
4789 /* We move charges only when we move a owner of the mm */
4790 if (mm
->owner
== p
) {
4793 VM_BUG_ON(mc
.precharge
);
4794 VM_BUG_ON(mc
.moved_charge
);
4795 VM_BUG_ON(mc
.moved_swap
);
4797 spin_lock(&mc
.lock
);
4800 mc
.flags
= move_flags
;
4801 spin_unlock(&mc
.lock
);
4802 /* We set mc.moving_task later */
4804 ret
= mem_cgroup_precharge_mc(mm
);
4806 mem_cgroup_clear_mc();
4812 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4815 mem_cgroup_clear_mc();
4818 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4819 unsigned long addr
, unsigned long end
,
4820 struct mm_walk
*walk
)
4823 struct vm_area_struct
*vma
= walk
->vma
;
4826 enum mc_target_type target_type
;
4827 union mc_target target
;
4830 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4832 if (mc
.precharge
< HPAGE_PMD_NR
) {
4836 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4837 if (target_type
== MC_TARGET_PAGE
) {
4839 if (!isolate_lru_page(page
)) {
4840 if (!mem_cgroup_move_account(page
, true,
4842 mc
.precharge
-= HPAGE_PMD_NR
;
4843 mc
.moved_charge
+= HPAGE_PMD_NR
;
4845 putback_lru_page(page
);
4853 if (pmd_trans_unstable(pmd
))
4856 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4857 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4858 pte_t ptent
= *(pte
++);
4864 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
4865 case MC_TARGET_PAGE
:
4868 * We can have a part of the split pmd here. Moving it
4869 * can be done but it would be too convoluted so simply
4870 * ignore such a partial THP and keep it in original
4871 * memcg. There should be somebody mapping the head.
4873 if (PageTransCompound(page
))
4875 if (isolate_lru_page(page
))
4877 if (!mem_cgroup_move_account(page
, false,
4880 /* we uncharge from mc.from later. */
4883 putback_lru_page(page
);
4884 put
: /* get_mctgt_type() gets the page */
4887 case MC_TARGET_SWAP
:
4889 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
4891 /* we fixup refcnts and charges later. */
4899 pte_unmap_unlock(pte
- 1, ptl
);
4904 * We have consumed all precharges we got in can_attach().
4905 * We try charge one by one, but don't do any additional
4906 * charges to mc.to if we have failed in charge once in attach()
4909 ret
= mem_cgroup_do_precharge(1);
4917 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
4919 struct mm_walk mem_cgroup_move_charge_walk
= {
4920 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4924 lru_add_drain_all();
4926 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4927 * move_lock while we're moving its pages to another memcg.
4928 * Then wait for already started RCU-only updates to finish.
4930 atomic_inc(&mc
.from
->moving_account
);
4933 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
4935 * Someone who are holding the mmap_sem might be waiting in
4936 * waitq. So we cancel all extra charges, wake up all waiters,
4937 * and retry. Because we cancel precharges, we might not be able
4938 * to move enough charges, but moving charge is a best-effort
4939 * feature anyway, so it wouldn't be a big problem.
4941 __mem_cgroup_clear_mc();
4946 * When we have consumed all precharges and failed in doing
4947 * additional charge, the page walk just aborts.
4949 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk
);
4950 up_read(&mm
->mmap_sem
);
4951 atomic_dec(&mc
.from
->moving_account
);
4954 static void mem_cgroup_move_task(struct cgroup_taskset
*tset
)
4956 struct cgroup_subsys_state
*css
;
4957 struct task_struct
*p
= cgroup_taskset_first(tset
, &css
);
4958 struct mm_struct
*mm
= get_task_mm(p
);
4962 mem_cgroup_move_charge(mm
);
4966 mem_cgroup_clear_mc();
4968 #else /* !CONFIG_MMU */
4969 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4973 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4976 static void mem_cgroup_move_task(struct cgroup_taskset
*tset
)
4982 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4983 * to verify whether we're attached to the default hierarchy on each mount
4986 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
4989 * use_hierarchy is forced on the default hierarchy. cgroup core
4990 * guarantees that @root doesn't have any children, so turning it
4991 * on for the root memcg is enough.
4993 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4994 root_mem_cgroup
->use_hierarchy
= true;
4996 root_mem_cgroup
->use_hierarchy
= false;
4999 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5002 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5004 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5007 static int memory_low_show(struct seq_file
*m
, void *v
)
5009 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5010 unsigned long low
= READ_ONCE(memcg
->low
);
5012 if (low
== PAGE_COUNTER_MAX
)
5013 seq_puts(m
, "max\n");
5015 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5020 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5021 char *buf
, size_t nbytes
, loff_t off
)
5023 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5027 buf
= strstrip(buf
);
5028 err
= page_counter_memparse(buf
, "max", &low
);
5037 static int memory_high_show(struct seq_file
*m
, void *v
)
5039 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5040 unsigned long high
= READ_ONCE(memcg
->high
);
5042 if (high
== PAGE_COUNTER_MAX
)
5043 seq_puts(m
, "max\n");
5045 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5050 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5051 char *buf
, size_t nbytes
, loff_t off
)
5053 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5057 buf
= strstrip(buf
);
5058 err
= page_counter_memparse(buf
, "max", &high
);
5064 memcg_wb_domain_size_changed(memcg
);
5068 static int memory_max_show(struct seq_file
*m
, void *v
)
5070 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5071 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5073 if (max
== PAGE_COUNTER_MAX
)
5074 seq_puts(m
, "max\n");
5076 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5081 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5082 char *buf
, size_t nbytes
, loff_t off
)
5084 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5088 buf
= strstrip(buf
);
5089 err
= page_counter_memparse(buf
, "max", &max
);
5093 err
= mem_cgroup_resize_limit(memcg
, max
);
5097 memcg_wb_domain_size_changed(memcg
);
5101 static int memory_events_show(struct seq_file
*m
, void *v
)
5103 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5105 seq_printf(m
, "low %lu\n", mem_cgroup_read_events(memcg
, MEMCG_LOW
));
5106 seq_printf(m
, "high %lu\n", mem_cgroup_read_events(memcg
, MEMCG_HIGH
));
5107 seq_printf(m
, "max %lu\n", mem_cgroup_read_events(memcg
, MEMCG_MAX
));
5108 seq_printf(m
, "oom %lu\n", mem_cgroup_read_events(memcg
, MEMCG_OOM
));
5113 static int memory_stat_show(struct seq_file
*m
, void *v
)
5115 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5119 * Provide statistics on the state of the memory subsystem as
5120 * well as cumulative event counters that show past behavior.
5122 * This list is ordered following a combination of these gradients:
5123 * 1) generic big picture -> specifics and details
5124 * 2) reflecting userspace activity -> reflecting kernel heuristics
5126 * Current memory state:
5129 seq_printf(m
, "anon %llu\n",
5130 (u64
)tree_stat(memcg
, MEM_CGROUP_STAT_RSS
) * PAGE_SIZE
);
5131 seq_printf(m
, "file %llu\n",
5132 (u64
)tree_stat(memcg
, MEM_CGROUP_STAT_CACHE
) * PAGE_SIZE
);
5133 seq_printf(m
, "sock %llu\n",
5134 (u64
)tree_stat(memcg
, MEMCG_SOCK
) * PAGE_SIZE
);
5136 seq_printf(m
, "file_mapped %llu\n",
5137 (u64
)tree_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
) *
5139 seq_printf(m
, "file_dirty %llu\n",
5140 (u64
)tree_stat(memcg
, MEM_CGROUP_STAT_DIRTY
) *
5142 seq_printf(m
, "file_writeback %llu\n",
5143 (u64
)tree_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
) *
5146 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5147 struct mem_cgroup
*mi
;
5148 unsigned long val
= 0;
5150 for_each_mem_cgroup_tree(mi
, memcg
)
5151 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5152 seq_printf(m
, "%s %llu\n",
5153 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5156 /* Accumulated memory events */
5158 seq_printf(m
, "pgfault %lu\n",
5159 tree_events(memcg
, MEM_CGROUP_EVENTS_PGFAULT
));
5160 seq_printf(m
, "pgmajfault %lu\n",
5161 tree_events(memcg
, MEM_CGROUP_EVENTS_PGMAJFAULT
));
5166 static struct cftype memory_files
[] = {
5169 .flags
= CFTYPE_NOT_ON_ROOT
,
5170 .read_u64
= memory_current_read
,
5174 .flags
= CFTYPE_NOT_ON_ROOT
,
5175 .seq_show
= memory_low_show
,
5176 .write
= memory_low_write
,
5180 .flags
= CFTYPE_NOT_ON_ROOT
,
5181 .seq_show
= memory_high_show
,
5182 .write
= memory_high_write
,
5186 .flags
= CFTYPE_NOT_ON_ROOT
,
5187 .seq_show
= memory_max_show
,
5188 .write
= memory_max_write
,
5192 .flags
= CFTYPE_NOT_ON_ROOT
,
5193 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5194 .seq_show
= memory_events_show
,
5198 .flags
= CFTYPE_NOT_ON_ROOT
,
5199 .seq_show
= memory_stat_show
,
5204 struct cgroup_subsys memory_cgrp_subsys
= {
5205 .css_alloc
= mem_cgroup_css_alloc
,
5206 .css_online
= mem_cgroup_css_online
,
5207 .css_offline
= mem_cgroup_css_offline
,
5208 .css_released
= mem_cgroup_css_released
,
5209 .css_free
= mem_cgroup_css_free
,
5210 .css_reset
= mem_cgroup_css_reset
,
5211 .can_attach
= mem_cgroup_can_attach
,
5212 .cancel_attach
= mem_cgroup_cancel_attach
,
5213 .attach
= mem_cgroup_move_task
,
5214 .bind
= mem_cgroup_bind
,
5215 .dfl_cftypes
= memory_files
,
5216 .legacy_cftypes
= mem_cgroup_legacy_files
,
5221 * mem_cgroup_low - check if memory consumption is below the normal range
5222 * @root: the highest ancestor to consider
5223 * @memcg: the memory cgroup to check
5225 * Returns %true if memory consumption of @memcg, and that of all
5226 * configurable ancestors up to @root, is below the normal range.
5228 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5230 if (mem_cgroup_disabled())
5234 * The toplevel group doesn't have a configurable range, so
5235 * it's never low when looked at directly, and it is not
5236 * considered an ancestor when assessing the hierarchy.
5239 if (memcg
== root_mem_cgroup
)
5242 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5245 while (memcg
!= root
) {
5246 memcg
= parent_mem_cgroup(memcg
);
5248 if (memcg
== root_mem_cgroup
)
5251 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5258 * mem_cgroup_try_charge - try charging a page
5259 * @page: page to charge
5260 * @mm: mm context of the victim
5261 * @gfp_mask: reclaim mode
5262 * @memcgp: charged memcg return
5264 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5265 * pages according to @gfp_mask if necessary.
5267 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5268 * Otherwise, an error code is returned.
5270 * After page->mapping has been set up, the caller must finalize the
5271 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5272 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5274 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5275 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5278 struct mem_cgroup
*memcg
= NULL
;
5279 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5282 if (mem_cgroup_disabled())
5285 if (PageSwapCache(page
)) {
5287 * Every swap fault against a single page tries to charge the
5288 * page, bail as early as possible. shmem_unuse() encounters
5289 * already charged pages, too. The USED bit is protected by
5290 * the page lock, which serializes swap cache removal, which
5291 * in turn serializes uncharging.
5293 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5294 if (page
->mem_cgroup
)
5297 if (do_swap_account
) {
5298 swp_entry_t ent
= { .val
= page_private(page
), };
5299 unsigned short id
= lookup_swap_cgroup_id(ent
);
5302 memcg
= mem_cgroup_from_id(id
);
5303 if (memcg
&& !css_tryget_online(&memcg
->css
))
5310 memcg
= get_mem_cgroup_from_mm(mm
);
5312 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5314 css_put(&memcg
->css
);
5321 * mem_cgroup_commit_charge - commit a page charge
5322 * @page: page to charge
5323 * @memcg: memcg to charge the page to
5324 * @lrucare: page might be on LRU already
5326 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5327 * after page->mapping has been set up. This must happen atomically
5328 * as part of the page instantiation, i.e. under the page table lock
5329 * for anonymous pages, under the page lock for page and swap cache.
5331 * In addition, the page must not be on the LRU during the commit, to
5332 * prevent racing with task migration. If it might be, use @lrucare.
5334 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5336 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5337 bool lrucare
, bool compound
)
5339 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5341 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5342 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5344 if (mem_cgroup_disabled())
5347 * Swap faults will attempt to charge the same page multiple
5348 * times. But reuse_swap_page() might have removed the page
5349 * from swapcache already, so we can't check PageSwapCache().
5354 commit_charge(page
, memcg
, lrucare
);
5356 local_irq_disable();
5357 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5358 memcg_check_events(memcg
, page
);
5361 if (do_memsw_account() && PageSwapCache(page
)) {
5362 swp_entry_t entry
= { .val
= page_private(page
) };
5364 * The swap entry might not get freed for a long time,
5365 * let's not wait for it. The page already received a
5366 * memory+swap charge, drop the swap entry duplicate.
5368 mem_cgroup_uncharge_swap(entry
);
5373 * mem_cgroup_cancel_charge - cancel a page charge
5374 * @page: page to charge
5375 * @memcg: memcg to charge the page to
5377 * Cancel a charge transaction started by mem_cgroup_try_charge().
5379 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5382 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5384 if (mem_cgroup_disabled())
5387 * Swap faults will attempt to charge the same page multiple
5388 * times. But reuse_swap_page() might have removed the page
5389 * from swapcache already, so we can't check PageSwapCache().
5394 cancel_charge(memcg
, nr_pages
);
5397 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5398 unsigned long nr_anon
, unsigned long nr_file
,
5399 unsigned long nr_huge
, struct page
*dummy_page
)
5401 unsigned long nr_pages
= nr_anon
+ nr_file
;
5402 unsigned long flags
;
5404 if (!mem_cgroup_is_root(memcg
)) {
5405 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5406 if (do_memsw_account())
5407 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5408 memcg_oom_recover(memcg
);
5411 local_irq_save(flags
);
5412 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
5413 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
5414 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
5415 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
5416 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5417 memcg_check_events(memcg
, dummy_page
);
5418 local_irq_restore(flags
);
5420 if (!mem_cgroup_is_root(memcg
))
5421 css_put_many(&memcg
->css
, nr_pages
);
5424 static void uncharge_list(struct list_head
*page_list
)
5426 struct mem_cgroup
*memcg
= NULL
;
5427 unsigned long nr_anon
= 0;
5428 unsigned long nr_file
= 0;
5429 unsigned long nr_huge
= 0;
5430 unsigned long pgpgout
= 0;
5431 struct list_head
*next
;
5434 next
= page_list
->next
;
5436 unsigned int nr_pages
= 1;
5438 page
= list_entry(next
, struct page
, lru
);
5439 next
= page
->lru
.next
;
5441 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5442 VM_BUG_ON_PAGE(page_count(page
), page
);
5444 if (!page
->mem_cgroup
)
5448 * Nobody should be changing or seriously looking at
5449 * page->mem_cgroup at this point, we have fully
5450 * exclusive access to the page.
5453 if (memcg
!= page
->mem_cgroup
) {
5455 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5457 pgpgout
= nr_anon
= nr_file
= nr_huge
= 0;
5459 memcg
= page
->mem_cgroup
;
5462 if (PageTransHuge(page
)) {
5463 nr_pages
<<= compound_order(page
);
5464 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5465 nr_huge
+= nr_pages
;
5469 nr_anon
+= nr_pages
;
5471 nr_file
+= nr_pages
;
5473 page
->mem_cgroup
= NULL
;
5476 } while (next
!= page_list
);
5479 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5484 * mem_cgroup_uncharge - uncharge a page
5485 * @page: page to uncharge
5487 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5488 * mem_cgroup_commit_charge().
5490 void mem_cgroup_uncharge(struct page
*page
)
5492 if (mem_cgroup_disabled())
5495 /* Don't touch page->lru of any random page, pre-check: */
5496 if (!page
->mem_cgroup
)
5499 INIT_LIST_HEAD(&page
->lru
);
5500 uncharge_list(&page
->lru
);
5504 * mem_cgroup_uncharge_list - uncharge a list of page
5505 * @page_list: list of pages to uncharge
5507 * Uncharge a list of pages previously charged with
5508 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5510 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5512 if (mem_cgroup_disabled())
5515 if (!list_empty(page_list
))
5516 uncharge_list(page_list
);
5520 * mem_cgroup_replace_page - migrate a charge to another page
5521 * @oldpage: currently charged page
5522 * @newpage: page to transfer the charge to
5524 * Migrate the charge from @oldpage to @newpage.
5526 * Both pages must be locked, @newpage->mapping must be set up.
5527 * Either or both pages might be on the LRU already.
5529 void mem_cgroup_replace_page(struct page
*oldpage
, struct page
*newpage
)
5531 struct mem_cgroup
*memcg
;
5532 unsigned int nr_pages
;
5535 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5536 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5537 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5538 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5541 if (mem_cgroup_disabled())
5544 /* Page cache replacement: new page already charged? */
5545 if (newpage
->mem_cgroup
)
5548 /* Swapcache readahead pages can get replaced before being charged */
5549 memcg
= oldpage
->mem_cgroup
;
5553 /* Force-charge the new page. The old one will be freed soon */
5554 compound
= PageTransHuge(newpage
);
5555 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5557 page_counter_charge(&memcg
->memory
, nr_pages
);
5558 if (do_memsw_account())
5559 page_counter_charge(&memcg
->memsw
, nr_pages
);
5560 css_get_many(&memcg
->css
, nr_pages
);
5562 commit_charge(newpage
, memcg
, true);
5564 local_irq_disable();
5565 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5566 memcg_check_events(memcg
, newpage
);
5570 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5571 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5573 void sock_update_memcg(struct sock
*sk
)
5575 struct mem_cgroup
*memcg
;
5577 /* Socket cloning can throw us here with sk_cgrp already
5578 * filled. It won't however, necessarily happen from
5579 * process context. So the test for root memcg given
5580 * the current task's memcg won't help us in this case.
5582 * Respecting the original socket's memcg is a better
5583 * decision in this case.
5586 BUG_ON(mem_cgroup_is_root(sk
->sk_memcg
));
5587 css_get(&sk
->sk_memcg
->css
);
5592 memcg
= mem_cgroup_from_task(current
);
5593 if (memcg
== root_mem_cgroup
)
5595 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5597 if (css_tryget_online(&memcg
->css
))
5598 sk
->sk_memcg
= memcg
;
5602 EXPORT_SYMBOL(sock_update_memcg
);
5604 void sock_release_memcg(struct sock
*sk
)
5606 WARN_ON(!sk
->sk_memcg
);
5607 css_put(&sk
->sk_memcg
->css
);
5611 * mem_cgroup_charge_skmem - charge socket memory
5612 * @memcg: memcg to charge
5613 * @nr_pages: number of pages to charge
5615 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5616 * @memcg's configured limit, %false if the charge had to be forced.
5618 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5620 gfp_t gfp_mask
= GFP_KERNEL
;
5622 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5623 struct page_counter
*fail
;
5625 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5626 memcg
->tcpmem_pressure
= 0;
5629 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5630 memcg
->tcpmem_pressure
= 1;
5634 /* Don't block in the packet receive path */
5636 gfp_mask
= GFP_NOWAIT
;
5638 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5640 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5643 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5648 * mem_cgroup_uncharge_skmem - uncharge socket memory
5649 * @memcg - memcg to uncharge
5650 * @nr_pages - number of pages to uncharge
5652 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5654 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5655 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5659 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5661 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5662 css_put_many(&memcg
->css
, nr_pages
);
5665 static int __init
cgroup_memory(char *s
)
5669 while ((token
= strsep(&s
, ",")) != NULL
) {
5672 if (!strcmp(token
, "nosocket"))
5673 cgroup_memory_nosocket
= true;
5674 if (!strcmp(token
, "nokmem"))
5675 cgroup_memory_nokmem
= true;
5679 __setup("cgroup.memory=", cgroup_memory
);
5682 * subsys_initcall() for memory controller.
5684 * Some parts like hotcpu_notifier() have to be initialized from this context
5685 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5686 * everything that doesn't depend on a specific mem_cgroup structure should
5687 * be initialized from here.
5689 static int __init
mem_cgroup_init(void)
5693 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5695 for_each_possible_cpu(cpu
)
5696 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5699 for_each_node(node
) {
5700 struct mem_cgroup_tree_per_node
*rtpn
;
5703 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5704 node_online(node
) ? node
: NUMA_NO_NODE
);
5706 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5707 struct mem_cgroup_tree_per_zone
*rtpz
;
5709 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
5710 rtpz
->rb_root
= RB_ROOT
;
5711 spin_lock_init(&rtpz
->lock
);
5713 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5718 subsys_initcall(mem_cgroup_init
);
5720 #ifdef CONFIG_MEMCG_SWAP
5722 * mem_cgroup_swapout - transfer a memsw charge to swap
5723 * @page: page whose memsw charge to transfer
5724 * @entry: swap entry to move the charge to
5726 * Transfer the memsw charge of @page to @entry.
5728 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5730 struct mem_cgroup
*memcg
;
5731 unsigned short oldid
;
5733 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5734 VM_BUG_ON_PAGE(page_count(page
), page
);
5736 if (!do_memsw_account())
5739 memcg
= page
->mem_cgroup
;
5741 /* Readahead page, never charged */
5745 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5746 VM_BUG_ON_PAGE(oldid
, page
);
5747 mem_cgroup_swap_statistics(memcg
, true);
5749 page
->mem_cgroup
= NULL
;
5751 if (!mem_cgroup_is_root(memcg
))
5752 page_counter_uncharge(&memcg
->memory
, 1);
5755 * Interrupts should be disabled here because the caller holds the
5756 * mapping->tree_lock lock which is taken with interrupts-off. It is
5757 * important here to have the interrupts disabled because it is the
5758 * only synchronisation we have for udpating the per-CPU variables.
5760 VM_BUG_ON(!irqs_disabled());
5761 mem_cgroup_charge_statistics(memcg
, page
, false, -1);
5762 memcg_check_events(memcg
, page
);
5766 * mem_cgroup_try_charge_swap - try charging a swap entry
5767 * @page: page being added to swap
5768 * @entry: swap entry to charge
5770 * Try to charge @entry to the memcg that @page belongs to.
5772 * Returns 0 on success, -ENOMEM on failure.
5774 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
5776 struct mem_cgroup
*memcg
;
5777 struct page_counter
*counter
;
5778 unsigned short oldid
;
5780 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
5783 memcg
= page
->mem_cgroup
;
5785 /* Readahead page, never charged */
5789 if (!mem_cgroup_is_root(memcg
) &&
5790 !page_counter_try_charge(&memcg
->swap
, 1, &counter
))
5793 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5794 VM_BUG_ON_PAGE(oldid
, page
);
5795 mem_cgroup_swap_statistics(memcg
, true);
5797 css_get(&memcg
->css
);
5802 * mem_cgroup_uncharge_swap - uncharge a swap entry
5803 * @entry: swap entry to uncharge
5805 * Drop the swap charge associated with @entry.
5807 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
5809 struct mem_cgroup
*memcg
;
5812 if (!do_swap_account
)
5815 id
= swap_cgroup_record(entry
, 0);
5817 memcg
= mem_cgroup_from_id(id
);
5819 if (!mem_cgroup_is_root(memcg
)) {
5820 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5821 page_counter_uncharge(&memcg
->swap
, 1);
5823 page_counter_uncharge(&memcg
->memsw
, 1);
5825 mem_cgroup_swap_statistics(memcg
, false);
5826 css_put(&memcg
->css
);
5831 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
5833 long nr_swap_pages
= get_nr_swap_pages();
5835 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5836 return nr_swap_pages
;
5837 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5838 nr_swap_pages
= min_t(long, nr_swap_pages
,
5839 READ_ONCE(memcg
->swap
.limit
) -
5840 page_counter_read(&memcg
->swap
));
5841 return nr_swap_pages
;
5844 bool mem_cgroup_swap_full(struct page
*page
)
5846 struct mem_cgroup
*memcg
;
5848 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5852 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5855 memcg
= page
->mem_cgroup
;
5859 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5860 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
5866 /* for remember boot option*/
5867 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5868 static int really_do_swap_account __initdata
= 1;
5870 static int really_do_swap_account __initdata
;
5873 static int __init
enable_swap_account(char *s
)
5875 if (!strcmp(s
, "1"))
5876 really_do_swap_account
= 1;
5877 else if (!strcmp(s
, "0"))
5878 really_do_swap_account
= 0;
5881 __setup("swapaccount=", enable_swap_account
);
5883 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
5886 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5888 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
5891 static int swap_max_show(struct seq_file
*m
, void *v
)
5893 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5894 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
5896 if (max
== PAGE_COUNTER_MAX
)
5897 seq_puts(m
, "max\n");
5899 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5904 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
5905 char *buf
, size_t nbytes
, loff_t off
)
5907 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5911 buf
= strstrip(buf
);
5912 err
= page_counter_memparse(buf
, "max", &max
);
5916 mutex_lock(&memcg_limit_mutex
);
5917 err
= page_counter_limit(&memcg
->swap
, max
);
5918 mutex_unlock(&memcg_limit_mutex
);
5925 static struct cftype swap_files
[] = {
5927 .name
= "swap.current",
5928 .flags
= CFTYPE_NOT_ON_ROOT
,
5929 .read_u64
= swap_current_read
,
5933 .flags
= CFTYPE_NOT_ON_ROOT
,
5934 .seq_show
= swap_max_show
,
5935 .write
= swap_max_write
,
5940 static struct cftype memsw_cgroup_files
[] = {
5942 .name
= "memsw.usage_in_bytes",
5943 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
5944 .read_u64
= mem_cgroup_read_u64
,
5947 .name
= "memsw.max_usage_in_bytes",
5948 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
5949 .write
= mem_cgroup_reset
,
5950 .read_u64
= mem_cgroup_read_u64
,
5953 .name
= "memsw.limit_in_bytes",
5954 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
5955 .write
= mem_cgroup_write
,
5956 .read_u64
= mem_cgroup_read_u64
,
5959 .name
= "memsw.failcnt",
5960 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
5961 .write
= mem_cgroup_reset
,
5962 .read_u64
= mem_cgroup_read_u64
,
5964 { }, /* terminate */
5967 static int __init
mem_cgroup_swap_init(void)
5969 if (!mem_cgroup_disabled() && really_do_swap_account
) {
5970 do_swap_account
= 1;
5971 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
5973 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
5974 memsw_cgroup_files
));
5978 subsys_initcall(mem_cgroup_swap_init
);
5980 #endif /* CONFIG_MEMCG_SWAP */