2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
36 static struct vfsmount
*shm_mnt
;
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
93 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
94 pgoff_t start
; /* start of range currently being fallocated */
95 pgoff_t next
; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
100 /* Flag allocation requirements to shmem_getpage */
102 SGP_READ
, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE
, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
110 static unsigned long shmem_default_max_blocks(void)
112 return totalram_pages
/ 2;
115 static unsigned long shmem_default_max_inodes(void)
117 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
121 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
122 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
123 struct shmem_inode_info
*info
, pgoff_t index
);
124 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
125 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
127 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
128 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
130 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
131 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
134 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
136 return sb
->s_fs_info
;
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
145 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
147 return (flags
& VM_NORESERVE
) ?
148 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
151 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
153 if (!(flags
& VM_NORESERVE
))
154 vm_unacct_memory(VM_ACCT(size
));
157 static inline int shmem_reacct_size(unsigned long flags
,
158 loff_t oldsize
, loff_t newsize
)
160 if (!(flags
& VM_NORESERVE
)) {
161 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
162 return security_vm_enough_memory_mm(current
->mm
,
163 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
164 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
165 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
176 static inline int shmem_acct_block(unsigned long flags
)
178 return (flags
& VM_NORESERVE
) ?
179 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
182 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
184 if (flags
& VM_NORESERVE
)
185 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
188 static const struct super_operations shmem_ops
;
189 static const struct address_space_operations shmem_aops
;
190 static const struct file_operations shmem_file_operations
;
191 static const struct inode_operations shmem_inode_operations
;
192 static const struct inode_operations shmem_dir_inode_operations
;
193 static const struct inode_operations shmem_special_inode_operations
;
194 static const struct vm_operations_struct shmem_vm_ops
;
196 static LIST_HEAD(shmem_swaplist
);
197 static DEFINE_MUTEX(shmem_swaplist_mutex
);
199 static int shmem_reserve_inode(struct super_block
*sb
)
201 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
202 if (sbinfo
->max_inodes
) {
203 spin_lock(&sbinfo
->stat_lock
);
204 if (!sbinfo
->free_inodes
) {
205 spin_unlock(&sbinfo
->stat_lock
);
208 sbinfo
->free_inodes
--;
209 spin_unlock(&sbinfo
->stat_lock
);
214 static void shmem_free_inode(struct super_block
*sb
)
216 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
217 if (sbinfo
->max_inodes
) {
218 spin_lock(&sbinfo
->stat_lock
);
219 sbinfo
->free_inodes
++;
220 spin_unlock(&sbinfo
->stat_lock
);
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
234 * It has to be called with the spinlock held.
236 static void shmem_recalc_inode(struct inode
*inode
)
238 struct shmem_inode_info
*info
= SHMEM_I(inode
);
241 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
243 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
244 if (sbinfo
->max_blocks
)
245 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
246 info
->alloced
-= freed
;
247 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
248 shmem_unacct_blocks(info
->flags
, freed
);
253 * Replace item expected in radix tree by a new item, while holding tree lock.
255 static int shmem_radix_tree_replace(struct address_space
*mapping
,
256 pgoff_t index
, void *expected
, void *replacement
)
261 VM_BUG_ON(!expected
);
262 VM_BUG_ON(!replacement
);
263 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
266 item
= radix_tree_deref_slot_protected(pslot
, &mapping
->tree_lock
);
267 if (item
!= expected
)
269 radix_tree_replace_slot(pslot
, replacement
);
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
280 static bool shmem_confirm_swap(struct address_space
*mapping
,
281 pgoff_t index
, swp_entry_t swap
)
286 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
288 return item
== swp_to_radix_entry(swap
);
292 * Like add_to_page_cache_locked, but error if expected item has gone.
294 static int shmem_add_to_page_cache(struct page
*page
,
295 struct address_space
*mapping
,
296 pgoff_t index
, void *expected
)
300 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
303 page_cache_get(page
);
304 page
->mapping
= mapping
;
307 spin_lock_irq(&mapping
->tree_lock
);
309 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
311 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
315 __inc_zone_page_state(page
, NR_FILE_PAGES
);
316 __inc_zone_page_state(page
, NR_SHMEM
);
317 spin_unlock_irq(&mapping
->tree_lock
);
319 page
->mapping
= NULL
;
320 spin_unlock_irq(&mapping
->tree_lock
);
321 page_cache_release(page
);
327 * Like delete_from_page_cache, but substitutes swap for page.
329 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
331 struct address_space
*mapping
= page
->mapping
;
334 spin_lock_irq(&mapping
->tree_lock
);
335 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
336 page
->mapping
= NULL
;
338 __dec_zone_page_state(page
, NR_FILE_PAGES
);
339 __dec_zone_page_state(page
, NR_SHMEM
);
340 spin_unlock_irq(&mapping
->tree_lock
);
341 page_cache_release(page
);
346 * Remove swap entry from radix tree, free the swap and its page cache.
348 static int shmem_free_swap(struct address_space
*mapping
,
349 pgoff_t index
, void *radswap
)
353 spin_lock_irq(&mapping
->tree_lock
);
354 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
355 spin_unlock_irq(&mapping
->tree_lock
);
358 free_swap_and_cache(radix_to_swp_entry(radswap
));
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
364 * given offsets are swapped out.
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
369 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
370 pgoff_t start
, pgoff_t end
)
372 struct radix_tree_iter iter
;
375 unsigned long swapped
= 0;
380 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
381 if (iter
.index
>= end
)
384 page
= radix_tree_deref_slot(slot
);
387 * This should only be possible to happen at index 0, so we
388 * don't need to reset the counter, nor do we risk infinite
391 if (radix_tree_deref_retry(page
))
394 if (radix_tree_exceptional_entry(page
))
397 if (need_resched()) {
399 start
= iter
.index
+ 1;
406 return swapped
<< PAGE_SHIFT
;
410 * Determine (in bytes) how many of the shmem object's pages mapped by the
411 * given vma is swapped out.
413 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414 * as long as the inode doesn't go away and racy results are not a problem.
416 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
418 struct inode
*inode
= file_inode(vma
->vm_file
);
419 struct shmem_inode_info
*info
= SHMEM_I(inode
);
420 struct address_space
*mapping
= inode
->i_mapping
;
421 unsigned long swapped
;
423 /* Be careful as we don't hold info->lock */
424 swapped
= READ_ONCE(info
->swapped
);
427 * The easier cases are when the shmem object has nothing in swap, or
428 * the vma maps it whole. Then we can simply use the stats that we
434 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
435 return swapped
<< PAGE_SHIFT
;
437 /* Here comes the more involved part */
438 return shmem_partial_swap_usage(mapping
,
439 linear_page_index(vma
, vma
->vm_start
),
440 linear_page_index(vma
, vma
->vm_end
));
444 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
446 void shmem_unlock_mapping(struct address_space
*mapping
)
449 pgoff_t indices
[PAGEVEC_SIZE
];
452 pagevec_init(&pvec
, 0);
454 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
456 while (!mapping_unevictable(mapping
)) {
458 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
461 pvec
.nr
= find_get_entries(mapping
, index
,
462 PAGEVEC_SIZE
, pvec
.pages
, indices
);
465 index
= indices
[pvec
.nr
- 1] + 1;
466 pagevec_remove_exceptionals(&pvec
);
467 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
468 pagevec_release(&pvec
);
474 * Remove range of pages and swap entries from radix tree, and free them.
475 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
477 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
480 struct address_space
*mapping
= inode
->i_mapping
;
481 struct shmem_inode_info
*info
= SHMEM_I(inode
);
482 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
483 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
484 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
485 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
487 pgoff_t indices
[PAGEVEC_SIZE
];
488 long nr_swaps_freed
= 0;
493 end
= -1; /* unsigned, so actually very big */
495 pagevec_init(&pvec
, 0);
497 while (index
< end
) {
498 pvec
.nr
= find_get_entries(mapping
, index
,
499 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
500 pvec
.pages
, indices
);
503 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
504 struct page
*page
= pvec
.pages
[i
];
510 if (radix_tree_exceptional_entry(page
)) {
513 nr_swaps_freed
+= !shmem_free_swap(mapping
,
518 if (!trylock_page(page
))
520 if (!unfalloc
|| !PageUptodate(page
)) {
521 if (page
->mapping
== mapping
) {
522 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
523 truncate_inode_page(mapping
, page
);
528 pagevec_remove_exceptionals(&pvec
);
529 pagevec_release(&pvec
);
535 struct page
*page
= NULL
;
536 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
538 unsigned int top
= PAGE_CACHE_SIZE
;
543 zero_user_segment(page
, partial_start
, top
);
544 set_page_dirty(page
);
546 page_cache_release(page
);
550 struct page
*page
= NULL
;
551 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
553 zero_user_segment(page
, 0, partial_end
);
554 set_page_dirty(page
);
556 page_cache_release(page
);
563 while (index
< end
) {
566 pvec
.nr
= find_get_entries(mapping
, index
,
567 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
568 pvec
.pages
, indices
);
570 /* If all gone or hole-punch or unfalloc, we're done */
571 if (index
== start
|| end
!= -1)
573 /* But if truncating, restart to make sure all gone */
577 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
578 struct page
*page
= pvec
.pages
[i
];
584 if (radix_tree_exceptional_entry(page
)) {
587 if (shmem_free_swap(mapping
, index
, page
)) {
588 /* Swap was replaced by page: retry */
597 if (!unfalloc
|| !PageUptodate(page
)) {
598 if (page
->mapping
== mapping
) {
599 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
600 truncate_inode_page(mapping
, page
);
602 /* Page was replaced by swap: retry */
610 pagevec_remove_exceptionals(&pvec
);
611 pagevec_release(&pvec
);
615 spin_lock(&info
->lock
);
616 info
->swapped
-= nr_swaps_freed
;
617 shmem_recalc_inode(inode
);
618 spin_unlock(&info
->lock
);
621 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
623 shmem_undo_range(inode
, lstart
, lend
, false);
624 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
626 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
628 static int shmem_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
631 struct inode
*inode
= dentry
->d_inode
;
632 struct shmem_inode_info
*info
= SHMEM_I(inode
);
634 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
635 spin_lock(&info
->lock
);
636 shmem_recalc_inode(inode
);
637 spin_unlock(&info
->lock
);
639 generic_fillattr(inode
, stat
);
643 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
645 struct inode
*inode
= d_inode(dentry
);
646 struct shmem_inode_info
*info
= SHMEM_I(inode
);
649 error
= inode_change_ok(inode
, attr
);
653 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
654 loff_t oldsize
= inode
->i_size
;
655 loff_t newsize
= attr
->ia_size
;
657 /* protected by i_mutex */
658 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
659 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
662 if (newsize
!= oldsize
) {
663 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
667 i_size_write(inode
, newsize
);
668 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
670 if (newsize
<= oldsize
) {
671 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
672 if (oldsize
> holebegin
)
673 unmap_mapping_range(inode
->i_mapping
,
676 shmem_truncate_range(inode
,
677 newsize
, (loff_t
)-1);
678 /* unmap again to remove racily COWed private pages */
679 if (oldsize
> holebegin
)
680 unmap_mapping_range(inode
->i_mapping
,
685 setattr_copy(inode
, attr
);
686 if (attr
->ia_valid
& ATTR_MODE
)
687 error
= posix_acl_chmod(inode
, inode
->i_mode
);
691 static void shmem_evict_inode(struct inode
*inode
)
693 struct shmem_inode_info
*info
= SHMEM_I(inode
);
695 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
696 shmem_unacct_size(info
->flags
, inode
->i_size
);
698 shmem_truncate_range(inode
, 0, (loff_t
)-1);
699 if (!list_empty(&info
->swaplist
)) {
700 mutex_lock(&shmem_swaplist_mutex
);
701 list_del_init(&info
->swaplist
);
702 mutex_unlock(&shmem_swaplist_mutex
);
706 simple_xattrs_free(&info
->xattrs
);
707 WARN_ON(inode
->i_blocks
);
708 shmem_free_inode(inode
->i_sb
);
713 * If swap found in inode, free it and move page from swapcache to filecache.
715 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
716 swp_entry_t swap
, struct page
**pagep
)
718 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
724 radswap
= swp_to_radix_entry(swap
);
725 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
727 return -EAGAIN
; /* tell shmem_unuse we found nothing */
730 * Move _head_ to start search for next from here.
731 * But be careful: shmem_evict_inode checks list_empty without taking
732 * mutex, and there's an instant in list_move_tail when info->swaplist
733 * would appear empty, if it were the only one on shmem_swaplist.
735 if (shmem_swaplist
.next
!= &info
->swaplist
)
736 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
738 gfp
= mapping_gfp_mask(mapping
);
739 if (shmem_should_replace_page(*pagep
, gfp
)) {
740 mutex_unlock(&shmem_swaplist_mutex
);
741 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
742 mutex_lock(&shmem_swaplist_mutex
);
744 * We needed to drop mutex to make that restrictive page
745 * allocation, but the inode might have been freed while we
746 * dropped it: although a racing shmem_evict_inode() cannot
747 * complete without emptying the radix_tree, our page lock
748 * on this swapcache page is not enough to prevent that -
749 * free_swap_and_cache() of our swap entry will only
750 * trylock_page(), removing swap from radix_tree whatever.
752 * We must not proceed to shmem_add_to_page_cache() if the
753 * inode has been freed, but of course we cannot rely on
754 * inode or mapping or info to check that. However, we can
755 * safely check if our swap entry is still in use (and here
756 * it can't have got reused for another page): if it's still
757 * in use, then the inode cannot have been freed yet, and we
758 * can safely proceed (if it's no longer in use, that tells
759 * nothing about the inode, but we don't need to unuse swap).
761 if (!page_swapcount(*pagep
))
766 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
767 * but also to hold up shmem_evict_inode(): so inode cannot be freed
768 * beneath us (pagelock doesn't help until the page is in pagecache).
771 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
773 if (error
!= -ENOMEM
) {
775 * Truncation and eviction use free_swap_and_cache(), which
776 * only does trylock page: if we raced, best clean up here.
778 delete_from_swap_cache(*pagep
);
779 set_page_dirty(*pagep
);
781 spin_lock(&info
->lock
);
783 spin_unlock(&info
->lock
);
791 * Search through swapped inodes to find and replace swap by page.
793 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
795 struct list_head
*this, *next
;
796 struct shmem_inode_info
*info
;
797 struct mem_cgroup
*memcg
;
801 * There's a faint possibility that swap page was replaced before
802 * caller locked it: caller will come back later with the right page.
804 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
808 * Charge page using GFP_KERNEL while we can wait, before taking
809 * the shmem_swaplist_mutex which might hold up shmem_writepage().
810 * Charged back to the user (not to caller) when swap account is used.
812 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
816 /* No radix_tree_preload: swap entry keeps a place for page in tree */
819 mutex_lock(&shmem_swaplist_mutex
);
820 list_for_each_safe(this, next
, &shmem_swaplist
) {
821 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
823 error
= shmem_unuse_inode(info
, swap
, &page
);
825 list_del_init(&info
->swaplist
);
827 if (error
!= -EAGAIN
)
829 /* found nothing in this: move on to search the next */
831 mutex_unlock(&shmem_swaplist_mutex
);
834 if (error
!= -ENOMEM
)
836 mem_cgroup_cancel_charge(page
, memcg
, false);
838 mem_cgroup_commit_charge(page
, memcg
, true, false);
841 page_cache_release(page
);
846 * Move the page from the page cache to the swap cache.
848 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
850 struct shmem_inode_info
*info
;
851 struct address_space
*mapping
;
856 BUG_ON(!PageLocked(page
));
857 mapping
= page
->mapping
;
859 inode
= mapping
->host
;
860 info
= SHMEM_I(inode
);
861 if (info
->flags
& VM_LOCKED
)
863 if (!total_swap_pages
)
867 * Our capabilities prevent regular writeback or sync from ever calling
868 * shmem_writepage; but a stacking filesystem might use ->writepage of
869 * its underlying filesystem, in which case tmpfs should write out to
870 * swap only in response to memory pressure, and not for the writeback
873 if (!wbc
->for_reclaim
) {
874 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
879 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
880 * value into swapfile.c, the only way we can correctly account for a
881 * fallocated page arriving here is now to initialize it and write it.
883 * That's okay for a page already fallocated earlier, but if we have
884 * not yet completed the fallocation, then (a) we want to keep track
885 * of this page in case we have to undo it, and (b) it may not be a
886 * good idea to continue anyway, once we're pushing into swap. So
887 * reactivate the page, and let shmem_fallocate() quit when too many.
889 if (!PageUptodate(page
)) {
890 if (inode
->i_private
) {
891 struct shmem_falloc
*shmem_falloc
;
892 spin_lock(&inode
->i_lock
);
893 shmem_falloc
= inode
->i_private
;
895 !shmem_falloc
->waitq
&&
896 index
>= shmem_falloc
->start
&&
897 index
< shmem_falloc
->next
)
898 shmem_falloc
->nr_unswapped
++;
901 spin_unlock(&inode
->i_lock
);
905 clear_highpage(page
);
906 flush_dcache_page(page
);
907 SetPageUptodate(page
);
910 swap
= get_swap_page();
914 if (mem_cgroup_try_charge_swap(page
, swap
))
918 * Add inode to shmem_unuse()'s list of swapped-out inodes,
919 * if it's not already there. Do it now before the page is
920 * moved to swap cache, when its pagelock no longer protects
921 * the inode from eviction. But don't unlock the mutex until
922 * we've incremented swapped, because shmem_unuse_inode() will
923 * prune a !swapped inode from the swaplist under this mutex.
925 mutex_lock(&shmem_swaplist_mutex
);
926 if (list_empty(&info
->swaplist
))
927 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
929 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
930 spin_lock(&info
->lock
);
931 shmem_recalc_inode(inode
);
933 spin_unlock(&info
->lock
);
935 swap_shmem_alloc(swap
);
936 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
938 mutex_unlock(&shmem_swaplist_mutex
);
939 BUG_ON(page_mapped(page
));
940 swap_writepage(page
, wbc
);
944 mutex_unlock(&shmem_swaplist_mutex
);
946 swapcache_free(swap
);
948 set_page_dirty(page
);
949 if (wbc
->for_reclaim
)
950 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
957 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
961 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
962 return; /* show nothing */
964 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
966 seq_printf(seq
, ",mpol=%s", buffer
);
969 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
971 struct mempolicy
*mpol
= NULL
;
973 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
976 spin_unlock(&sbinfo
->stat_lock
);
980 #endif /* CONFIG_TMPFS */
982 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
983 struct shmem_inode_info
*info
, pgoff_t index
)
985 struct vm_area_struct pvma
;
988 /* Create a pseudo vma that just contains the policy */
990 /* Bias interleave by inode number to distribute better across nodes */
991 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
993 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
995 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
997 /* Drop reference taken by mpol_shared_policy_lookup() */
998 mpol_cond_put(pvma
.vm_policy
);
1003 static struct page
*shmem_alloc_page(gfp_t gfp
,
1004 struct shmem_inode_info
*info
, pgoff_t index
)
1006 struct vm_area_struct pvma
;
1009 /* Create a pseudo vma that just contains the policy */
1011 /* Bias interleave by inode number to distribute better across nodes */
1012 pvma
.vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1014 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1016 page
= alloc_page_vma(gfp
, &pvma
, 0);
1018 /* Drop reference taken by mpol_shared_policy_lookup() */
1019 mpol_cond_put(pvma
.vm_policy
);
1023 #else /* !CONFIG_NUMA */
1025 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1028 #endif /* CONFIG_TMPFS */
1030 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1031 struct shmem_inode_info
*info
, pgoff_t index
)
1033 return swapin_readahead(swap
, gfp
, NULL
, 0);
1036 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
1037 struct shmem_inode_info
*info
, pgoff_t index
)
1039 return alloc_page(gfp
);
1041 #endif /* CONFIG_NUMA */
1043 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1044 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1051 * When a page is moved from swapcache to shmem filecache (either by the
1052 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1053 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1054 * ignorance of the mapping it belongs to. If that mapping has special
1055 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1056 * we may need to copy to a suitable page before moving to filecache.
1058 * In a future release, this may well be extended to respect cpuset and
1059 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1060 * but for now it is a simple matter of zone.
1062 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1064 return page_zonenum(page
) > gfp_zone(gfp
);
1067 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1068 struct shmem_inode_info
*info
, pgoff_t index
)
1070 struct page
*oldpage
, *newpage
;
1071 struct address_space
*swap_mapping
;
1076 swap_index
= page_private(oldpage
);
1077 swap_mapping
= page_mapping(oldpage
);
1080 * We have arrived here because our zones are constrained, so don't
1081 * limit chance of success by further cpuset and node constraints.
1083 gfp
&= ~GFP_CONSTRAINT_MASK
;
1084 newpage
= shmem_alloc_page(gfp
, info
, index
);
1088 page_cache_get(newpage
);
1089 copy_highpage(newpage
, oldpage
);
1090 flush_dcache_page(newpage
);
1092 __SetPageLocked(newpage
);
1093 SetPageUptodate(newpage
);
1094 SetPageSwapBacked(newpage
);
1095 set_page_private(newpage
, swap_index
);
1096 SetPageSwapCache(newpage
);
1099 * Our caller will very soon move newpage out of swapcache, but it's
1100 * a nice clean interface for us to replace oldpage by newpage there.
1102 spin_lock_irq(&swap_mapping
->tree_lock
);
1103 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1106 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
1107 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1109 spin_unlock_irq(&swap_mapping
->tree_lock
);
1111 if (unlikely(error
)) {
1113 * Is this possible? I think not, now that our callers check
1114 * both PageSwapCache and page_private after getting page lock;
1115 * but be defensive. Reverse old to newpage for clear and free.
1119 mem_cgroup_replace_page(oldpage
, newpage
);
1120 lru_cache_add_anon(newpage
);
1124 ClearPageSwapCache(oldpage
);
1125 set_page_private(oldpage
, 0);
1127 unlock_page(oldpage
);
1128 page_cache_release(oldpage
);
1129 page_cache_release(oldpage
);
1134 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1136 * If we allocate a new one we do not mark it dirty. That's up to the
1137 * vm. If we swap it in we mark it dirty since we also free the swap
1138 * entry since a page cannot live in both the swap and page cache
1140 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1141 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1143 struct address_space
*mapping
= inode
->i_mapping
;
1144 struct shmem_inode_info
*info
;
1145 struct shmem_sb_info
*sbinfo
;
1146 struct mem_cgroup
*memcg
;
1153 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1157 page
= find_lock_entry(mapping
, index
);
1158 if (radix_tree_exceptional_entry(page
)) {
1159 swap
= radix_to_swp_entry(page
);
1163 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1164 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1169 if (page
&& sgp
== SGP_WRITE
)
1170 mark_page_accessed(page
);
1172 /* fallocated page? */
1173 if (page
&& !PageUptodate(page
)) {
1174 if (sgp
!= SGP_READ
)
1177 page_cache_release(page
);
1180 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1186 * Fast cache lookup did not find it:
1187 * bring it back from swap or allocate.
1189 info
= SHMEM_I(inode
);
1190 sbinfo
= SHMEM_SB(inode
->i_sb
);
1193 /* Look it up and read it in.. */
1194 page
= lookup_swap_cache(swap
);
1196 /* here we actually do the io */
1198 *fault_type
|= VM_FAULT_MAJOR
;
1199 page
= shmem_swapin(swap
, gfp
, info
, index
);
1206 /* We have to do this with page locked to prevent races */
1208 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1209 !shmem_confirm_swap(mapping
, index
, swap
)) {
1210 error
= -EEXIST
; /* try again */
1213 if (!PageUptodate(page
)) {
1217 wait_on_page_writeback(page
);
1219 if (shmem_should_replace_page(page
, gfp
)) {
1220 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1225 error
= mem_cgroup_try_charge(page
, current
->mm
, gfp
, &memcg
,
1228 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1229 swp_to_radix_entry(swap
));
1231 * We already confirmed swap under page lock, and make
1232 * no memory allocation here, so usually no possibility
1233 * of error; but free_swap_and_cache() only trylocks a
1234 * page, so it is just possible that the entry has been
1235 * truncated or holepunched since swap was confirmed.
1236 * shmem_undo_range() will have done some of the
1237 * unaccounting, now delete_from_swap_cache() will do
1239 * Reset swap.val? No, leave it so "failed" goes back to
1240 * "repeat": reading a hole and writing should succeed.
1243 mem_cgroup_cancel_charge(page
, memcg
, false);
1244 delete_from_swap_cache(page
);
1250 mem_cgroup_commit_charge(page
, memcg
, true, false);
1252 spin_lock(&info
->lock
);
1254 shmem_recalc_inode(inode
);
1255 spin_unlock(&info
->lock
);
1257 if (sgp
== SGP_WRITE
)
1258 mark_page_accessed(page
);
1260 delete_from_swap_cache(page
);
1261 set_page_dirty(page
);
1265 if (shmem_acct_block(info
->flags
)) {
1269 if (sbinfo
->max_blocks
) {
1270 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1271 sbinfo
->max_blocks
) >= 0) {
1275 percpu_counter_inc(&sbinfo
->used_blocks
);
1278 page
= shmem_alloc_page(gfp
, info
, index
);
1284 __SetPageSwapBacked(page
);
1285 __SetPageLocked(page
);
1286 if (sgp
== SGP_WRITE
)
1287 __SetPageReferenced(page
);
1289 error
= mem_cgroup_try_charge(page
, current
->mm
, gfp
, &memcg
,
1293 error
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
1295 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1297 radix_tree_preload_end();
1300 mem_cgroup_cancel_charge(page
, memcg
, false);
1303 mem_cgroup_commit_charge(page
, memcg
, false, false);
1304 lru_cache_add_anon(page
);
1306 spin_lock(&info
->lock
);
1308 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1309 shmem_recalc_inode(inode
);
1310 spin_unlock(&info
->lock
);
1314 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1316 if (sgp
== SGP_FALLOC
)
1320 * Let SGP_WRITE caller clear ends if write does not fill page;
1321 * but SGP_FALLOC on a page fallocated earlier must initialize
1322 * it now, lest undo on failure cancel our earlier guarantee.
1324 if (sgp
!= SGP_WRITE
) {
1325 clear_highpage(page
);
1326 flush_dcache_page(page
);
1327 SetPageUptodate(page
);
1329 if (sgp
== SGP_DIRTY
)
1330 set_page_dirty(page
);
1333 /* Perhaps the file has been truncated since we checked */
1334 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1335 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1337 ClearPageDirty(page
);
1338 delete_from_page_cache(page
);
1339 spin_lock(&info
->lock
);
1340 shmem_recalc_inode(inode
);
1341 spin_unlock(&info
->lock
);
1353 if (sbinfo
->max_blocks
)
1354 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1356 shmem_unacct_blocks(info
->flags
, 1);
1358 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1363 page_cache_release(page
);
1365 if (error
== -ENOSPC
&& !once
++) {
1366 info
= SHMEM_I(inode
);
1367 spin_lock(&info
->lock
);
1368 shmem_recalc_inode(inode
);
1369 spin_unlock(&info
->lock
);
1372 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1377 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1379 struct inode
*inode
= file_inode(vma
->vm_file
);
1381 int ret
= VM_FAULT_LOCKED
;
1384 * Trinity finds that probing a hole which tmpfs is punching can
1385 * prevent the hole-punch from ever completing: which in turn
1386 * locks writers out with its hold on i_mutex. So refrain from
1387 * faulting pages into the hole while it's being punched. Although
1388 * shmem_undo_range() does remove the additions, it may be unable to
1389 * keep up, as each new page needs its own unmap_mapping_range() call,
1390 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1392 * It does not matter if we sometimes reach this check just before the
1393 * hole-punch begins, so that one fault then races with the punch:
1394 * we just need to make racing faults a rare case.
1396 * The implementation below would be much simpler if we just used a
1397 * standard mutex or completion: but we cannot take i_mutex in fault,
1398 * and bloating every shmem inode for this unlikely case would be sad.
1400 if (unlikely(inode
->i_private
)) {
1401 struct shmem_falloc
*shmem_falloc
;
1403 spin_lock(&inode
->i_lock
);
1404 shmem_falloc
= inode
->i_private
;
1406 shmem_falloc
->waitq
&&
1407 vmf
->pgoff
>= shmem_falloc
->start
&&
1408 vmf
->pgoff
< shmem_falloc
->next
) {
1409 wait_queue_head_t
*shmem_falloc_waitq
;
1410 DEFINE_WAIT(shmem_fault_wait
);
1412 ret
= VM_FAULT_NOPAGE
;
1413 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1414 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1415 /* It's polite to up mmap_sem if we can */
1416 up_read(&vma
->vm_mm
->mmap_sem
);
1417 ret
= VM_FAULT_RETRY
;
1420 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1421 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1422 TASK_UNINTERRUPTIBLE
);
1423 spin_unlock(&inode
->i_lock
);
1427 * shmem_falloc_waitq points into the shmem_fallocate()
1428 * stack of the hole-punching task: shmem_falloc_waitq
1429 * is usually invalid by the time we reach here, but
1430 * finish_wait() does not dereference it in that case;
1431 * though i_lock needed lest racing with wake_up_all().
1433 spin_lock(&inode
->i_lock
);
1434 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1435 spin_unlock(&inode
->i_lock
);
1438 spin_unlock(&inode
->i_lock
);
1441 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1443 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1445 if (ret
& VM_FAULT_MAJOR
) {
1446 count_vm_event(PGMAJFAULT
);
1447 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1453 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1455 struct inode
*inode
= file_inode(vma
->vm_file
);
1456 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1459 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1462 struct inode
*inode
= file_inode(vma
->vm_file
);
1465 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1466 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1470 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1472 struct inode
*inode
= file_inode(file
);
1473 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1474 int retval
= -ENOMEM
;
1476 spin_lock(&info
->lock
);
1477 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1478 if (!user_shm_lock(inode
->i_size
, user
))
1480 info
->flags
|= VM_LOCKED
;
1481 mapping_set_unevictable(file
->f_mapping
);
1483 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1484 user_shm_unlock(inode
->i_size
, user
);
1485 info
->flags
&= ~VM_LOCKED
;
1486 mapping_clear_unevictable(file
->f_mapping
);
1491 spin_unlock(&info
->lock
);
1495 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1497 file_accessed(file
);
1498 vma
->vm_ops
= &shmem_vm_ops
;
1502 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1503 umode_t mode
, dev_t dev
, unsigned long flags
)
1505 struct inode
*inode
;
1506 struct shmem_inode_info
*info
;
1507 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1509 if (shmem_reserve_inode(sb
))
1512 inode
= new_inode(sb
);
1514 inode
->i_ino
= get_next_ino();
1515 inode_init_owner(inode
, dir
, mode
);
1516 inode
->i_blocks
= 0;
1517 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1518 inode
->i_generation
= get_seconds();
1519 info
= SHMEM_I(inode
);
1520 memset(info
, 0, (char *)inode
- (char *)info
);
1521 spin_lock_init(&info
->lock
);
1522 info
->seals
= F_SEAL_SEAL
;
1523 info
->flags
= flags
& VM_NORESERVE
;
1524 INIT_LIST_HEAD(&info
->swaplist
);
1525 simple_xattrs_init(&info
->xattrs
);
1526 cache_no_acl(inode
);
1528 switch (mode
& S_IFMT
) {
1530 inode
->i_op
= &shmem_special_inode_operations
;
1531 init_special_inode(inode
, mode
, dev
);
1534 inode
->i_mapping
->a_ops
= &shmem_aops
;
1535 inode
->i_op
= &shmem_inode_operations
;
1536 inode
->i_fop
= &shmem_file_operations
;
1537 mpol_shared_policy_init(&info
->policy
,
1538 shmem_get_sbmpol(sbinfo
));
1542 /* Some things misbehave if size == 0 on a directory */
1543 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1544 inode
->i_op
= &shmem_dir_inode_operations
;
1545 inode
->i_fop
= &simple_dir_operations
;
1549 * Must not load anything in the rbtree,
1550 * mpol_free_shared_policy will not be called.
1552 mpol_shared_policy_init(&info
->policy
, NULL
);
1556 shmem_free_inode(sb
);
1560 bool shmem_mapping(struct address_space
*mapping
)
1565 return mapping
->host
->i_sb
->s_op
== &shmem_ops
;
1569 static const struct inode_operations shmem_symlink_inode_operations
;
1570 static const struct inode_operations shmem_short_symlink_operations
;
1572 #ifdef CONFIG_TMPFS_XATTR
1573 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1575 #define shmem_initxattrs NULL
1579 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1580 loff_t pos
, unsigned len
, unsigned flags
,
1581 struct page
**pagep
, void **fsdata
)
1583 struct inode
*inode
= mapping
->host
;
1584 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1585 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1587 /* i_mutex is held by caller */
1588 if (unlikely(info
->seals
)) {
1589 if (info
->seals
& F_SEAL_WRITE
)
1591 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
1595 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1599 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1600 loff_t pos
, unsigned len
, unsigned copied
,
1601 struct page
*page
, void *fsdata
)
1603 struct inode
*inode
= mapping
->host
;
1605 if (pos
+ copied
> inode
->i_size
)
1606 i_size_write(inode
, pos
+ copied
);
1608 if (!PageUptodate(page
)) {
1609 if (copied
< PAGE_CACHE_SIZE
) {
1610 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1611 zero_user_segments(page
, 0, from
,
1612 from
+ copied
, PAGE_CACHE_SIZE
);
1614 SetPageUptodate(page
);
1616 set_page_dirty(page
);
1618 page_cache_release(page
);
1623 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
1625 struct file
*file
= iocb
->ki_filp
;
1626 struct inode
*inode
= file_inode(file
);
1627 struct address_space
*mapping
= inode
->i_mapping
;
1629 unsigned long offset
;
1630 enum sgp_type sgp
= SGP_READ
;
1633 loff_t
*ppos
= &iocb
->ki_pos
;
1636 * Might this read be for a stacking filesystem? Then when reading
1637 * holes of a sparse file, we actually need to allocate those pages,
1638 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1640 if (!iter_is_iovec(to
))
1643 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1644 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1647 struct page
*page
= NULL
;
1649 unsigned long nr
, ret
;
1650 loff_t i_size
= i_size_read(inode
);
1652 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1653 if (index
> end_index
)
1655 if (index
== end_index
) {
1656 nr
= i_size
& ~PAGE_CACHE_MASK
;
1661 error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1663 if (error
== -EINVAL
)
1671 * We must evaluate after, since reads (unlike writes)
1672 * are called without i_mutex protection against truncate
1674 nr
= PAGE_CACHE_SIZE
;
1675 i_size
= i_size_read(inode
);
1676 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1677 if (index
== end_index
) {
1678 nr
= i_size
& ~PAGE_CACHE_MASK
;
1681 page_cache_release(page
);
1689 * If users can be writing to this page using arbitrary
1690 * virtual addresses, take care about potential aliasing
1691 * before reading the page on the kernel side.
1693 if (mapping_writably_mapped(mapping
))
1694 flush_dcache_page(page
);
1696 * Mark the page accessed if we read the beginning.
1699 mark_page_accessed(page
);
1701 page
= ZERO_PAGE(0);
1702 page_cache_get(page
);
1706 * Ok, we have the page, and it's up-to-date, so
1707 * now we can copy it to user space...
1709 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
1712 index
+= offset
>> PAGE_CACHE_SHIFT
;
1713 offset
&= ~PAGE_CACHE_MASK
;
1715 page_cache_release(page
);
1716 if (!iov_iter_count(to
))
1725 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1726 file_accessed(file
);
1727 return retval
? retval
: error
;
1730 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1731 struct pipe_inode_info
*pipe
, size_t len
,
1734 struct address_space
*mapping
= in
->f_mapping
;
1735 struct inode
*inode
= mapping
->host
;
1736 unsigned int loff
, nr_pages
, req_pages
;
1737 struct page
*pages
[PIPE_DEF_BUFFERS
];
1738 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1740 pgoff_t index
, end_index
;
1743 struct splice_pipe_desc spd
= {
1746 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1748 .ops
= &page_cache_pipe_buf_ops
,
1749 .spd_release
= spd_release_page
,
1752 isize
= i_size_read(inode
);
1753 if (unlikely(*ppos
>= isize
))
1756 left
= isize
- *ppos
;
1757 if (unlikely(left
< len
))
1760 if (splice_grow_spd(pipe
, &spd
))
1763 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1764 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1765 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1766 nr_pages
= min(req_pages
, spd
.nr_pages_max
);
1768 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1769 nr_pages
, spd
.pages
);
1770 index
+= spd
.nr_pages
;
1773 while (spd
.nr_pages
< nr_pages
) {
1774 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1778 spd
.pages
[spd
.nr_pages
++] = page
;
1782 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1783 nr_pages
= spd
.nr_pages
;
1786 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1787 unsigned int this_len
;
1792 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1793 page
= spd
.pages
[page_nr
];
1795 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1796 error
= shmem_getpage(inode
, index
, &page
,
1801 page_cache_release(spd
.pages
[page_nr
]);
1802 spd
.pages
[page_nr
] = page
;
1805 isize
= i_size_read(inode
);
1806 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1807 if (unlikely(!isize
|| index
> end_index
))
1810 if (end_index
== index
) {
1813 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1817 this_len
= min(this_len
, plen
- loff
);
1821 spd
.partial
[page_nr
].offset
= loff
;
1822 spd
.partial
[page_nr
].len
= this_len
;
1829 while (page_nr
< nr_pages
)
1830 page_cache_release(spd
.pages
[page_nr
++]);
1833 error
= splice_to_pipe(pipe
, &spd
);
1835 splice_shrink_spd(&spd
);
1845 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1847 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
1848 pgoff_t index
, pgoff_t end
, int whence
)
1851 struct pagevec pvec
;
1852 pgoff_t indices
[PAGEVEC_SIZE
];
1856 pagevec_init(&pvec
, 0);
1857 pvec
.nr
= 1; /* start small: we may be there already */
1859 pvec
.nr
= find_get_entries(mapping
, index
,
1860 pvec
.nr
, pvec
.pages
, indices
);
1862 if (whence
== SEEK_DATA
)
1866 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
1867 if (index
< indices
[i
]) {
1868 if (whence
== SEEK_HOLE
) {
1874 page
= pvec
.pages
[i
];
1875 if (page
&& !radix_tree_exceptional_entry(page
)) {
1876 if (!PageUptodate(page
))
1880 (page
&& whence
== SEEK_DATA
) ||
1881 (!page
&& whence
== SEEK_HOLE
)) {
1886 pagevec_remove_exceptionals(&pvec
);
1887 pagevec_release(&pvec
);
1888 pvec
.nr
= PAGEVEC_SIZE
;
1894 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
1896 struct address_space
*mapping
= file
->f_mapping
;
1897 struct inode
*inode
= mapping
->host
;
1901 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
1902 return generic_file_llseek_size(file
, offset
, whence
,
1903 MAX_LFS_FILESIZE
, i_size_read(inode
));
1905 /* We're holding i_mutex so we can access i_size directly */
1909 else if (offset
>= inode
->i_size
)
1912 start
= offset
>> PAGE_CACHE_SHIFT
;
1913 end
= (inode
->i_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1914 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
1915 new_offset
<<= PAGE_CACHE_SHIFT
;
1916 if (new_offset
> offset
) {
1917 if (new_offset
< inode
->i_size
)
1918 offset
= new_offset
;
1919 else if (whence
== SEEK_DATA
)
1922 offset
= inode
->i_size
;
1927 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
1928 inode_unlock(inode
);
1933 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1934 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1936 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1937 #define LAST_SCAN 4 /* about 150ms max */
1939 static void shmem_tag_pins(struct address_space
*mapping
)
1941 struct radix_tree_iter iter
;
1951 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1952 page
= radix_tree_deref_slot(slot
);
1953 if (!page
|| radix_tree_exception(page
)) {
1954 if (radix_tree_deref_retry(page
))
1956 } else if (page_count(page
) - page_mapcount(page
) > 1) {
1957 spin_lock_irq(&mapping
->tree_lock
);
1958 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
1960 spin_unlock_irq(&mapping
->tree_lock
);
1963 if (need_resched()) {
1965 start
= iter
.index
+ 1;
1973 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1974 * via get_user_pages(), drivers might have some pending I/O without any active
1975 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1976 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1977 * them to be dropped.
1978 * The caller must guarantee that no new user will acquire writable references
1979 * to those pages to avoid races.
1981 static int shmem_wait_for_pins(struct address_space
*mapping
)
1983 struct radix_tree_iter iter
;
1989 shmem_tag_pins(mapping
);
1992 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
1993 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
1997 lru_add_drain_all();
1998 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2004 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2005 start
, SHMEM_TAG_PINNED
) {
2007 page
= radix_tree_deref_slot(slot
);
2008 if (radix_tree_exception(page
)) {
2009 if (radix_tree_deref_retry(page
))
2016 page_count(page
) - page_mapcount(page
) != 1) {
2017 if (scan
< LAST_SCAN
)
2018 goto continue_resched
;
2021 * On the last scan, we clean up all those tags
2022 * we inserted; but make a note that we still
2023 * found pages pinned.
2028 spin_lock_irq(&mapping
->tree_lock
);
2029 radix_tree_tag_clear(&mapping
->page_tree
,
2030 iter
.index
, SHMEM_TAG_PINNED
);
2031 spin_unlock_irq(&mapping
->tree_lock
);
2033 if (need_resched()) {
2035 start
= iter
.index
+ 1;
2045 #define F_ALL_SEALS (F_SEAL_SEAL | \
2050 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2052 struct inode
*inode
= file_inode(file
);
2053 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2058 * Sealing allows multiple parties to share a shmem-file but restrict
2059 * access to a specific subset of file operations. Seals can only be
2060 * added, but never removed. This way, mutually untrusted parties can
2061 * share common memory regions with a well-defined policy. A malicious
2062 * peer can thus never perform unwanted operations on a shared object.
2064 * Seals are only supported on special shmem-files and always affect
2065 * the whole underlying inode. Once a seal is set, it may prevent some
2066 * kinds of access to the file. Currently, the following seals are
2068 * SEAL_SEAL: Prevent further seals from being set on this file
2069 * SEAL_SHRINK: Prevent the file from shrinking
2070 * SEAL_GROW: Prevent the file from growing
2071 * SEAL_WRITE: Prevent write access to the file
2073 * As we don't require any trust relationship between two parties, we
2074 * must prevent seals from being removed. Therefore, sealing a file
2075 * only adds a given set of seals to the file, it never touches
2076 * existing seals. Furthermore, the "setting seals"-operation can be
2077 * sealed itself, which basically prevents any further seal from being
2080 * Semantics of sealing are only defined on volatile files. Only
2081 * anonymous shmem files support sealing. More importantly, seals are
2082 * never written to disk. Therefore, there's no plan to support it on
2086 if (file
->f_op
!= &shmem_file_operations
)
2088 if (!(file
->f_mode
& FMODE_WRITE
))
2090 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2095 if (info
->seals
& F_SEAL_SEAL
) {
2100 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2101 error
= mapping_deny_writable(file
->f_mapping
);
2105 error
= shmem_wait_for_pins(file
->f_mapping
);
2107 mapping_allow_writable(file
->f_mapping
);
2112 info
->seals
|= seals
;
2116 inode_unlock(inode
);
2119 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2121 int shmem_get_seals(struct file
*file
)
2123 if (file
->f_op
!= &shmem_file_operations
)
2126 return SHMEM_I(file_inode(file
))->seals
;
2128 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2130 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2136 /* disallow upper 32bit */
2140 error
= shmem_add_seals(file
, arg
);
2143 error
= shmem_get_seals(file
);
2153 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2156 struct inode
*inode
= file_inode(file
);
2157 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2158 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2159 struct shmem_falloc shmem_falloc
;
2160 pgoff_t start
, index
, end
;
2163 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2168 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2169 struct address_space
*mapping
= file
->f_mapping
;
2170 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2171 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2172 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2174 /* protected by i_mutex */
2175 if (info
->seals
& F_SEAL_WRITE
) {
2180 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2181 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2182 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2183 spin_lock(&inode
->i_lock
);
2184 inode
->i_private
= &shmem_falloc
;
2185 spin_unlock(&inode
->i_lock
);
2187 if ((u64
)unmap_end
> (u64
)unmap_start
)
2188 unmap_mapping_range(mapping
, unmap_start
,
2189 1 + unmap_end
- unmap_start
, 0);
2190 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2191 /* No need to unmap again: hole-punching leaves COWed pages */
2193 spin_lock(&inode
->i_lock
);
2194 inode
->i_private
= NULL
;
2195 wake_up_all(&shmem_falloc_waitq
);
2196 spin_unlock(&inode
->i_lock
);
2201 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2202 error
= inode_newsize_ok(inode
, offset
+ len
);
2206 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2211 start
= offset
>> PAGE_CACHE_SHIFT
;
2212 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2213 /* Try to avoid a swapstorm if len is impossible to satisfy */
2214 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2219 shmem_falloc
.waitq
= NULL
;
2220 shmem_falloc
.start
= start
;
2221 shmem_falloc
.next
= start
;
2222 shmem_falloc
.nr_falloced
= 0;
2223 shmem_falloc
.nr_unswapped
= 0;
2224 spin_lock(&inode
->i_lock
);
2225 inode
->i_private
= &shmem_falloc
;
2226 spin_unlock(&inode
->i_lock
);
2228 for (index
= start
; index
< end
; index
++) {
2232 * Good, the fallocate(2) manpage permits EINTR: we may have
2233 * been interrupted because we are using up too much memory.
2235 if (signal_pending(current
))
2237 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2240 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
2243 /* Remove the !PageUptodate pages we added */
2244 shmem_undo_range(inode
,
2245 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
2246 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
2251 * Inform shmem_writepage() how far we have reached.
2252 * No need for lock or barrier: we have the page lock.
2254 shmem_falloc
.next
++;
2255 if (!PageUptodate(page
))
2256 shmem_falloc
.nr_falloced
++;
2259 * If !PageUptodate, leave it that way so that freeable pages
2260 * can be recognized if we need to rollback on error later.
2261 * But set_page_dirty so that memory pressure will swap rather
2262 * than free the pages we are allocating (and SGP_CACHE pages
2263 * might still be clean: we now need to mark those dirty too).
2265 set_page_dirty(page
);
2267 page_cache_release(page
);
2271 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2272 i_size_write(inode
, offset
+ len
);
2273 inode
->i_ctime
= CURRENT_TIME
;
2275 spin_lock(&inode
->i_lock
);
2276 inode
->i_private
= NULL
;
2277 spin_unlock(&inode
->i_lock
);
2279 inode_unlock(inode
);
2283 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2285 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2287 buf
->f_type
= TMPFS_MAGIC
;
2288 buf
->f_bsize
= PAGE_CACHE_SIZE
;
2289 buf
->f_namelen
= NAME_MAX
;
2290 if (sbinfo
->max_blocks
) {
2291 buf
->f_blocks
= sbinfo
->max_blocks
;
2293 buf
->f_bfree
= sbinfo
->max_blocks
-
2294 percpu_counter_sum(&sbinfo
->used_blocks
);
2296 if (sbinfo
->max_inodes
) {
2297 buf
->f_files
= sbinfo
->max_inodes
;
2298 buf
->f_ffree
= sbinfo
->free_inodes
;
2300 /* else leave those fields 0 like simple_statfs */
2305 * File creation. Allocate an inode, and we're done..
2308 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2310 struct inode
*inode
;
2311 int error
= -ENOSPC
;
2313 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2315 error
= simple_acl_create(dir
, inode
);
2318 error
= security_inode_init_security(inode
, dir
,
2320 shmem_initxattrs
, NULL
);
2321 if (error
&& error
!= -EOPNOTSUPP
)
2325 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2326 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2327 d_instantiate(dentry
, inode
);
2328 dget(dentry
); /* Extra count - pin the dentry in core */
2337 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2339 struct inode
*inode
;
2340 int error
= -ENOSPC
;
2342 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2344 error
= security_inode_init_security(inode
, dir
,
2346 shmem_initxattrs
, NULL
);
2347 if (error
&& error
!= -EOPNOTSUPP
)
2349 error
= simple_acl_create(dir
, inode
);
2352 d_tmpfile(dentry
, inode
);
2360 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2364 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2370 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2373 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2379 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2381 struct inode
*inode
= d_inode(old_dentry
);
2385 * No ordinary (disk based) filesystem counts links as inodes;
2386 * but each new link needs a new dentry, pinning lowmem, and
2387 * tmpfs dentries cannot be pruned until they are unlinked.
2389 ret
= shmem_reserve_inode(inode
->i_sb
);
2393 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2394 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2396 ihold(inode
); /* New dentry reference */
2397 dget(dentry
); /* Extra pinning count for the created dentry */
2398 d_instantiate(dentry
, inode
);
2403 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2405 struct inode
*inode
= d_inode(dentry
);
2407 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2408 shmem_free_inode(inode
->i_sb
);
2410 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2411 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2413 dput(dentry
); /* Undo the count from "create" - this does all the work */
2417 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2419 if (!simple_empty(dentry
))
2422 drop_nlink(d_inode(dentry
));
2424 return shmem_unlink(dir
, dentry
);
2427 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2429 bool old_is_dir
= d_is_dir(old_dentry
);
2430 bool new_is_dir
= d_is_dir(new_dentry
);
2432 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2434 drop_nlink(old_dir
);
2437 drop_nlink(new_dir
);
2441 old_dir
->i_ctime
= old_dir
->i_mtime
=
2442 new_dir
->i_ctime
= new_dir
->i_mtime
=
2443 d_inode(old_dentry
)->i_ctime
=
2444 d_inode(new_dentry
)->i_ctime
= CURRENT_TIME
;
2449 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2451 struct dentry
*whiteout
;
2454 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2458 error
= shmem_mknod(old_dir
, whiteout
,
2459 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2465 * Cheat and hash the whiteout while the old dentry is still in
2466 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2468 * d_lookup() will consistently find one of them at this point,
2469 * not sure which one, but that isn't even important.
2476 * The VFS layer already does all the dentry stuff for rename,
2477 * we just have to decrement the usage count for the target if
2478 * it exists so that the VFS layer correctly free's it when it
2481 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
2483 struct inode
*inode
= d_inode(old_dentry
);
2484 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
2486 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
2489 if (flags
& RENAME_EXCHANGE
)
2490 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
2492 if (!simple_empty(new_dentry
))
2495 if (flags
& RENAME_WHITEOUT
) {
2498 error
= shmem_whiteout(old_dir
, old_dentry
);
2503 if (d_really_is_positive(new_dentry
)) {
2504 (void) shmem_unlink(new_dir
, new_dentry
);
2505 if (they_are_dirs
) {
2506 drop_nlink(d_inode(new_dentry
));
2507 drop_nlink(old_dir
);
2509 } else if (they_are_dirs
) {
2510 drop_nlink(old_dir
);
2514 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
2515 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
2516 old_dir
->i_ctime
= old_dir
->i_mtime
=
2517 new_dir
->i_ctime
= new_dir
->i_mtime
=
2518 inode
->i_ctime
= CURRENT_TIME
;
2522 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
2526 struct inode
*inode
;
2528 struct shmem_inode_info
*info
;
2530 len
= strlen(symname
) + 1;
2531 if (len
> PAGE_CACHE_SIZE
)
2532 return -ENAMETOOLONG
;
2534 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
2538 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
2539 shmem_initxattrs
, NULL
);
2541 if (error
!= -EOPNOTSUPP
) {
2548 info
= SHMEM_I(inode
);
2549 inode
->i_size
= len
-1;
2550 if (len
<= SHORT_SYMLINK_LEN
) {
2551 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
2552 if (!inode
->i_link
) {
2556 inode
->i_op
= &shmem_short_symlink_operations
;
2558 inode_nohighmem(inode
);
2559 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2564 inode
->i_mapping
->a_ops
= &shmem_aops
;
2565 inode
->i_op
= &shmem_symlink_inode_operations
;
2566 memcpy(page_address(page
), symname
, len
);
2567 SetPageUptodate(page
);
2568 set_page_dirty(page
);
2570 page_cache_release(page
);
2572 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2573 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2574 d_instantiate(dentry
, inode
);
2579 static void shmem_put_link(void *arg
)
2581 mark_page_accessed(arg
);
2585 static const char *shmem_get_link(struct dentry
*dentry
,
2586 struct inode
*inode
,
2587 struct delayed_call
*done
)
2589 struct page
*page
= NULL
;
2592 page
= find_get_page(inode
->i_mapping
, 0);
2594 return ERR_PTR(-ECHILD
);
2595 if (!PageUptodate(page
)) {
2597 return ERR_PTR(-ECHILD
);
2600 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
, NULL
);
2602 return ERR_PTR(error
);
2605 set_delayed_call(done
, shmem_put_link
, page
);
2606 return page_address(page
);
2609 #ifdef CONFIG_TMPFS_XATTR
2611 * Superblocks without xattr inode operations may get some security.* xattr
2612 * support from the LSM "for free". As soon as we have any other xattrs
2613 * like ACLs, we also need to implement the security.* handlers at
2614 * filesystem level, though.
2618 * Callback for security_inode_init_security() for acquiring xattrs.
2620 static int shmem_initxattrs(struct inode
*inode
,
2621 const struct xattr
*xattr_array
,
2624 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2625 const struct xattr
*xattr
;
2626 struct simple_xattr
*new_xattr
;
2629 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2630 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
2634 len
= strlen(xattr
->name
) + 1;
2635 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2637 if (!new_xattr
->name
) {
2642 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2643 XATTR_SECURITY_PREFIX_LEN
);
2644 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2647 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
2653 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
2654 struct dentry
*dentry
, const char *name
,
2655 void *buffer
, size_t size
)
2657 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2659 name
= xattr_full_name(handler
, name
);
2660 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
2663 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
2664 struct dentry
*dentry
, const char *name
,
2665 const void *value
, size_t size
, int flags
)
2667 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2669 name
= xattr_full_name(handler
, name
);
2670 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
2673 static const struct xattr_handler shmem_security_xattr_handler
= {
2674 .prefix
= XATTR_SECURITY_PREFIX
,
2675 .get
= shmem_xattr_handler_get
,
2676 .set
= shmem_xattr_handler_set
,
2679 static const struct xattr_handler shmem_trusted_xattr_handler
= {
2680 .prefix
= XATTR_TRUSTED_PREFIX
,
2681 .get
= shmem_xattr_handler_get
,
2682 .set
= shmem_xattr_handler_set
,
2685 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2686 #ifdef CONFIG_TMPFS_POSIX_ACL
2687 &posix_acl_access_xattr_handler
,
2688 &posix_acl_default_xattr_handler
,
2690 &shmem_security_xattr_handler
,
2691 &shmem_trusted_xattr_handler
,
2695 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2697 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
2698 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
2700 #endif /* CONFIG_TMPFS_XATTR */
2702 static const struct inode_operations shmem_short_symlink_operations
= {
2703 .readlink
= generic_readlink
,
2704 .get_link
= simple_get_link
,
2705 #ifdef CONFIG_TMPFS_XATTR
2706 .setxattr
= generic_setxattr
,
2707 .getxattr
= generic_getxattr
,
2708 .listxattr
= shmem_listxattr
,
2709 .removexattr
= generic_removexattr
,
2713 static const struct inode_operations shmem_symlink_inode_operations
= {
2714 .readlink
= generic_readlink
,
2715 .get_link
= shmem_get_link
,
2716 #ifdef CONFIG_TMPFS_XATTR
2717 .setxattr
= generic_setxattr
,
2718 .getxattr
= generic_getxattr
,
2719 .listxattr
= shmem_listxattr
,
2720 .removexattr
= generic_removexattr
,
2724 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2726 return ERR_PTR(-ESTALE
);
2729 static int shmem_match(struct inode
*ino
, void *vfh
)
2733 inum
= (inum
<< 32) | fh
[1];
2734 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2737 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2738 struct fid
*fid
, int fh_len
, int fh_type
)
2740 struct inode
*inode
;
2741 struct dentry
*dentry
= NULL
;
2748 inum
= (inum
<< 32) | fid
->raw
[1];
2750 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2751 shmem_match
, fid
->raw
);
2753 dentry
= d_find_alias(inode
);
2760 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2761 struct inode
*parent
)
2765 return FILEID_INVALID
;
2768 if (inode_unhashed(inode
)) {
2769 /* Unfortunately insert_inode_hash is not idempotent,
2770 * so as we hash inodes here rather than at creation
2771 * time, we need a lock to ensure we only try
2774 static DEFINE_SPINLOCK(lock
);
2776 if (inode_unhashed(inode
))
2777 __insert_inode_hash(inode
,
2778 inode
->i_ino
+ inode
->i_generation
);
2782 fh
[0] = inode
->i_generation
;
2783 fh
[1] = inode
->i_ino
;
2784 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2790 static const struct export_operations shmem_export_ops
= {
2791 .get_parent
= shmem_get_parent
,
2792 .encode_fh
= shmem_encode_fh
,
2793 .fh_to_dentry
= shmem_fh_to_dentry
,
2796 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2799 char *this_char
, *value
, *rest
;
2800 struct mempolicy
*mpol
= NULL
;
2804 while (options
!= NULL
) {
2805 this_char
= options
;
2808 * NUL-terminate this option: unfortunately,
2809 * mount options form a comma-separated list,
2810 * but mpol's nodelist may also contain commas.
2812 options
= strchr(options
, ',');
2813 if (options
== NULL
)
2816 if (!isdigit(*options
)) {
2823 if ((value
= strchr(this_char
,'=')) != NULL
) {
2827 "tmpfs: No value for mount option '%s'\n",
2832 if (!strcmp(this_char
,"size")) {
2833 unsigned long long size
;
2834 size
= memparse(value
,&rest
);
2836 size
<<= PAGE_SHIFT
;
2837 size
*= totalram_pages
;
2843 sbinfo
->max_blocks
=
2844 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2845 } else if (!strcmp(this_char
,"nr_blocks")) {
2846 sbinfo
->max_blocks
= memparse(value
, &rest
);
2849 } else if (!strcmp(this_char
,"nr_inodes")) {
2850 sbinfo
->max_inodes
= memparse(value
, &rest
);
2853 } else if (!strcmp(this_char
,"mode")) {
2856 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2859 } else if (!strcmp(this_char
,"uid")) {
2862 uid
= simple_strtoul(value
, &rest
, 0);
2865 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2866 if (!uid_valid(sbinfo
->uid
))
2868 } else if (!strcmp(this_char
,"gid")) {
2871 gid
= simple_strtoul(value
, &rest
, 0);
2874 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2875 if (!gid_valid(sbinfo
->gid
))
2877 } else if (!strcmp(this_char
,"mpol")) {
2880 if (mpol_parse_str(value
, &mpol
))
2883 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2888 sbinfo
->mpol
= mpol
;
2892 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2900 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2902 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2903 struct shmem_sb_info config
= *sbinfo
;
2904 unsigned long inodes
;
2905 int error
= -EINVAL
;
2908 if (shmem_parse_options(data
, &config
, true))
2911 spin_lock(&sbinfo
->stat_lock
);
2912 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2913 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2915 if (config
.max_inodes
< inodes
)
2918 * Those tests disallow limited->unlimited while any are in use;
2919 * but we must separately disallow unlimited->limited, because
2920 * in that case we have no record of how much is already in use.
2922 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2924 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2928 sbinfo
->max_blocks
= config
.max_blocks
;
2929 sbinfo
->max_inodes
= config
.max_inodes
;
2930 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2933 * Preserve previous mempolicy unless mpol remount option was specified.
2936 mpol_put(sbinfo
->mpol
);
2937 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2940 spin_unlock(&sbinfo
->stat_lock
);
2944 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2946 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2948 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2949 seq_printf(seq
, ",size=%luk",
2950 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2951 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2952 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2953 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2954 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2955 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2956 seq_printf(seq
, ",uid=%u",
2957 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2958 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2959 seq_printf(seq
, ",gid=%u",
2960 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2961 shmem_show_mpol(seq
, sbinfo
->mpol
);
2965 #define MFD_NAME_PREFIX "memfd:"
2966 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2967 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2969 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2971 SYSCALL_DEFINE2(memfd_create
,
2972 const char __user
*, uname
,
2973 unsigned int, flags
)
2975 struct shmem_inode_info
*info
;
2981 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
2984 /* length includes terminating zero */
2985 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
2988 if (len
> MFD_NAME_MAX_LEN
+ 1)
2991 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
2995 strcpy(name
, MFD_NAME_PREFIX
);
2996 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3001 /* terminating-zero may have changed after strnlen_user() returned */
3002 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3007 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3013 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3015 error
= PTR_ERR(file
);
3018 info
= SHMEM_I(file_inode(file
));
3019 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3020 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3021 if (flags
& MFD_ALLOW_SEALING
)
3022 info
->seals
&= ~F_SEAL_SEAL
;
3024 fd_install(fd
, file
);
3035 #endif /* CONFIG_TMPFS */
3037 static void shmem_put_super(struct super_block
*sb
)
3039 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3041 percpu_counter_destroy(&sbinfo
->used_blocks
);
3042 mpol_put(sbinfo
->mpol
);
3044 sb
->s_fs_info
= NULL
;
3047 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3049 struct inode
*inode
;
3050 struct shmem_sb_info
*sbinfo
;
3053 /* Round up to L1_CACHE_BYTES to resist false sharing */
3054 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3055 L1_CACHE_BYTES
), GFP_KERNEL
);
3059 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3060 sbinfo
->uid
= current_fsuid();
3061 sbinfo
->gid
= current_fsgid();
3062 sb
->s_fs_info
= sbinfo
;
3066 * Per default we only allow half of the physical ram per
3067 * tmpfs instance, limiting inodes to one per page of lowmem;
3068 * but the internal instance is left unlimited.
3070 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3071 sbinfo
->max_blocks
= shmem_default_max_blocks();
3072 sbinfo
->max_inodes
= shmem_default_max_inodes();
3073 if (shmem_parse_options(data
, sbinfo
, false)) {
3078 sb
->s_flags
|= MS_NOUSER
;
3080 sb
->s_export_op
= &shmem_export_ops
;
3081 sb
->s_flags
|= MS_NOSEC
;
3083 sb
->s_flags
|= MS_NOUSER
;
3086 spin_lock_init(&sbinfo
->stat_lock
);
3087 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3089 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3091 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3092 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
3093 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
3094 sb
->s_magic
= TMPFS_MAGIC
;
3095 sb
->s_op
= &shmem_ops
;
3096 sb
->s_time_gran
= 1;
3097 #ifdef CONFIG_TMPFS_XATTR
3098 sb
->s_xattr
= shmem_xattr_handlers
;
3100 #ifdef CONFIG_TMPFS_POSIX_ACL
3101 sb
->s_flags
|= MS_POSIXACL
;
3104 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3107 inode
->i_uid
= sbinfo
->uid
;
3108 inode
->i_gid
= sbinfo
->gid
;
3109 sb
->s_root
= d_make_root(inode
);
3115 shmem_put_super(sb
);
3119 static struct kmem_cache
*shmem_inode_cachep
;
3121 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3123 struct shmem_inode_info
*info
;
3124 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3127 return &info
->vfs_inode
;
3130 static void shmem_destroy_callback(struct rcu_head
*head
)
3132 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3133 kfree(inode
->i_link
);
3134 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3137 static void shmem_destroy_inode(struct inode
*inode
)
3139 if (S_ISREG(inode
->i_mode
))
3140 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3141 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3144 static void shmem_init_inode(void *foo
)
3146 struct shmem_inode_info
*info
= foo
;
3147 inode_init_once(&info
->vfs_inode
);
3150 static int shmem_init_inodecache(void)
3152 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3153 sizeof(struct shmem_inode_info
),
3154 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3158 static void shmem_destroy_inodecache(void)
3160 kmem_cache_destroy(shmem_inode_cachep
);
3163 static const struct address_space_operations shmem_aops
= {
3164 .writepage
= shmem_writepage
,
3165 .set_page_dirty
= __set_page_dirty_no_writeback
,
3167 .write_begin
= shmem_write_begin
,
3168 .write_end
= shmem_write_end
,
3170 #ifdef CONFIG_MIGRATION
3171 .migratepage
= migrate_page
,
3173 .error_remove_page
= generic_error_remove_page
,
3176 static const struct file_operations shmem_file_operations
= {
3179 .llseek
= shmem_file_llseek
,
3180 .read_iter
= shmem_file_read_iter
,
3181 .write_iter
= generic_file_write_iter
,
3182 .fsync
= noop_fsync
,
3183 .splice_read
= shmem_file_splice_read
,
3184 .splice_write
= iter_file_splice_write
,
3185 .fallocate
= shmem_fallocate
,
3189 static const struct inode_operations shmem_inode_operations
= {
3190 .getattr
= shmem_getattr
,
3191 .setattr
= shmem_setattr
,
3192 #ifdef CONFIG_TMPFS_XATTR
3193 .setxattr
= generic_setxattr
,
3194 .getxattr
= generic_getxattr
,
3195 .listxattr
= shmem_listxattr
,
3196 .removexattr
= generic_removexattr
,
3197 .set_acl
= simple_set_acl
,
3201 static const struct inode_operations shmem_dir_inode_operations
= {
3203 .create
= shmem_create
,
3204 .lookup
= simple_lookup
,
3206 .unlink
= shmem_unlink
,
3207 .symlink
= shmem_symlink
,
3208 .mkdir
= shmem_mkdir
,
3209 .rmdir
= shmem_rmdir
,
3210 .mknod
= shmem_mknod
,
3211 .rename2
= shmem_rename2
,
3212 .tmpfile
= shmem_tmpfile
,
3214 #ifdef CONFIG_TMPFS_XATTR
3215 .setxattr
= generic_setxattr
,
3216 .getxattr
= generic_getxattr
,
3217 .listxattr
= shmem_listxattr
,
3218 .removexattr
= generic_removexattr
,
3220 #ifdef CONFIG_TMPFS_POSIX_ACL
3221 .setattr
= shmem_setattr
,
3222 .set_acl
= simple_set_acl
,
3226 static const struct inode_operations shmem_special_inode_operations
= {
3227 #ifdef CONFIG_TMPFS_XATTR
3228 .setxattr
= generic_setxattr
,
3229 .getxattr
= generic_getxattr
,
3230 .listxattr
= shmem_listxattr
,
3231 .removexattr
= generic_removexattr
,
3233 #ifdef CONFIG_TMPFS_POSIX_ACL
3234 .setattr
= shmem_setattr
,
3235 .set_acl
= simple_set_acl
,
3239 static const struct super_operations shmem_ops
= {
3240 .alloc_inode
= shmem_alloc_inode
,
3241 .destroy_inode
= shmem_destroy_inode
,
3243 .statfs
= shmem_statfs
,
3244 .remount_fs
= shmem_remount_fs
,
3245 .show_options
= shmem_show_options
,
3247 .evict_inode
= shmem_evict_inode
,
3248 .drop_inode
= generic_delete_inode
,
3249 .put_super
= shmem_put_super
,
3252 static const struct vm_operations_struct shmem_vm_ops
= {
3253 .fault
= shmem_fault
,
3254 .map_pages
= filemap_map_pages
,
3256 .set_policy
= shmem_set_policy
,
3257 .get_policy
= shmem_get_policy
,
3261 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3262 int flags
, const char *dev_name
, void *data
)
3264 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3267 static struct file_system_type shmem_fs_type
= {
3268 .owner
= THIS_MODULE
,
3270 .mount
= shmem_mount
,
3271 .kill_sb
= kill_litter_super
,
3272 .fs_flags
= FS_USERNS_MOUNT
,
3275 int __init
shmem_init(void)
3279 /* If rootfs called this, don't re-init */
3280 if (shmem_inode_cachep
)
3283 error
= shmem_init_inodecache();
3287 error
= register_filesystem(&shmem_fs_type
);
3289 printk(KERN_ERR
"Could not register tmpfs\n");
3293 shm_mnt
= kern_mount(&shmem_fs_type
);
3294 if (IS_ERR(shm_mnt
)) {
3295 error
= PTR_ERR(shm_mnt
);
3296 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
3302 unregister_filesystem(&shmem_fs_type
);
3304 shmem_destroy_inodecache();
3306 shm_mnt
= ERR_PTR(error
);
3310 #else /* !CONFIG_SHMEM */
3313 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3315 * This is intended for small system where the benefits of the full
3316 * shmem code (swap-backed and resource-limited) are outweighed by
3317 * their complexity. On systems without swap this code should be
3318 * effectively equivalent, but much lighter weight.
3321 static struct file_system_type shmem_fs_type
= {
3323 .mount
= ramfs_mount
,
3324 .kill_sb
= kill_litter_super
,
3325 .fs_flags
= FS_USERNS_MOUNT
,
3328 int __init
shmem_init(void)
3330 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3332 shm_mnt
= kern_mount(&shmem_fs_type
);
3333 BUG_ON(IS_ERR(shm_mnt
));
3338 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3343 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3348 void shmem_unlock_mapping(struct address_space
*mapping
)
3352 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3354 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3356 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3358 #define shmem_vm_ops generic_file_vm_ops
3359 #define shmem_file_operations ramfs_file_operations
3360 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3361 #define shmem_acct_size(flags, size) 0
3362 #define shmem_unacct_size(flags, size) do {} while (0)
3364 #endif /* CONFIG_SHMEM */
3368 static struct dentry_operations anon_ops
= {
3369 .d_dname
= simple_dname
3372 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
3373 unsigned long flags
, unsigned int i_flags
)
3376 struct inode
*inode
;
3378 struct super_block
*sb
;
3381 if (IS_ERR(shm_mnt
))
3382 return ERR_CAST(shm_mnt
);
3384 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
3385 return ERR_PTR(-EINVAL
);
3387 if (shmem_acct_size(flags
, size
))
3388 return ERR_PTR(-ENOMEM
);
3390 res
= ERR_PTR(-ENOMEM
);
3392 this.len
= strlen(name
);
3393 this.hash
= 0; /* will go */
3394 sb
= shm_mnt
->mnt_sb
;
3395 path
.mnt
= mntget(shm_mnt
);
3396 path
.dentry
= d_alloc_pseudo(sb
, &this);
3399 d_set_d_op(path
.dentry
, &anon_ops
);
3401 res
= ERR_PTR(-ENOSPC
);
3402 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
3406 inode
->i_flags
|= i_flags
;
3407 d_instantiate(path
.dentry
, inode
);
3408 inode
->i_size
= size
;
3409 clear_nlink(inode
); /* It is unlinked */
3410 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
3414 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
3415 &shmem_file_operations
);
3422 shmem_unacct_size(flags
, size
);
3429 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3430 * kernel internal. There will be NO LSM permission checks against the
3431 * underlying inode. So users of this interface must do LSM checks at a
3432 * higher layer. The users are the big_key and shm implementations. LSM
3433 * checks are provided at the key or shm level rather than the inode.
3434 * @name: name for dentry (to be seen in /proc/<pid>/maps
3435 * @size: size to be set for the file
3436 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3438 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3440 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
3444 * shmem_file_setup - get an unlinked file living in tmpfs
3445 * @name: name for dentry (to be seen in /proc/<pid>/maps
3446 * @size: size to be set for the file
3447 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3449 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
3451 return __shmem_file_setup(name
, size
, flags
, 0);
3453 EXPORT_SYMBOL_GPL(shmem_file_setup
);
3456 * shmem_zero_setup - setup a shared anonymous mapping
3457 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3459 int shmem_zero_setup(struct vm_area_struct
*vma
)
3462 loff_t size
= vma
->vm_end
- vma
->vm_start
;
3465 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3466 * between XFS directory reading and selinux: since this file is only
3467 * accessible to the user through its mapping, use S_PRIVATE flag to
3468 * bypass file security, in the same way as shmem_kernel_file_setup().
3470 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
3472 return PTR_ERR(file
);
3476 vma
->vm_file
= file
;
3477 vma
->vm_ops
= &shmem_vm_ops
;
3482 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3483 * @mapping: the page's address_space
3484 * @index: the page index
3485 * @gfp: the page allocator flags to use if allocating
3487 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3488 * with any new page allocations done using the specified allocation flags.
3489 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3490 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3491 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3493 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3494 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3496 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3497 pgoff_t index
, gfp_t gfp
)
3500 struct inode
*inode
= mapping
->host
;
3504 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
3505 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
3507 page
= ERR_PTR(error
);
3513 * The tiny !SHMEM case uses ramfs without swap
3515 return read_cache_page_gfp(mapping
, index
, gfp
);
3518 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);