4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
65 * dentry->d_inode->i_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
74 * dentry->d_parent->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
82 int sysctl_vfs_cache_pressure __read_mostly
= 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
108 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
109 hash
= hash
+ (hash
>> d_hash_shift
);
110 return dentry_hashtable
+ (hash
& d_hash_mask
);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat
= {
118 static DEFINE_PER_CPU(long, nr_dentry
);
119 static DEFINE_PER_CPU(long, nr_dentry_unused
);
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
135 static long get_nr_dentry(void)
139 for_each_possible_cpu(i
)
140 sum
+= per_cpu(nr_dentry
, i
);
141 return sum
< 0 ? 0 : sum
;
144 static long get_nr_dentry_unused(void)
148 for_each_possible_cpu(i
)
149 sum
+= per_cpu(nr_dentry_unused
, i
);
150 return sum
< 0 ? 0 : sum
;
153 int proc_nr_dentry(ctl_table
*table
, int write
, void __user
*buffer
,
154 size_t *lenp
, loff_t
*ppos
)
156 dentry_stat
.nr_dentry
= get_nr_dentry();
157 dentry_stat
.nr_unused
= get_nr_dentry_unused();
158 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
166 #ifdef CONFIG_DCACHE_WORD_ACCESS
168 #include <asm/word-at-a-time.h>
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
178 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
180 unsigned long a
,b
,mask
;
183 a
= *(unsigned long *)cs
;
184 b
= load_unaligned_zeropad(ct
);
185 if (tcount
< sizeof(unsigned long))
187 if (unlikely(a
!= b
))
189 cs
+= sizeof(unsigned long);
190 ct
+= sizeof(unsigned long);
191 tcount
-= sizeof(unsigned long);
195 mask
= bytemask_from_count(tcount
);
196 return unlikely(!!((a
^ b
) & mask
));
201 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
215 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
217 const unsigned char *cs
;
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
234 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs
, ct
, tcount
);
239 static void __d_free(struct rcu_head
*head
)
241 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
243 WARN_ON(!hlist_unhashed(&dentry
->d_alias
));
244 if (dname_external(dentry
))
245 kfree(dentry
->d_name
.name
);
246 kmem_cache_free(dentry_cache
, dentry
);
249 static void dentry_free(struct dentry
*dentry
)
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
253 __d_free(&dentry
->d_u
.d_rcu
);
255 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
260 * @dentry: the target dentry
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
265 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
267 assert_spin_locked(&dentry
->d_lock
);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry
->d_seq
);
273 * Release the dentry's inode, using the filesystem
274 * d_iput() operation if defined. Dentry has no refcount
277 static void dentry_iput(struct dentry
* dentry
)
278 __releases(dentry
->d_lock
)
279 __releases(dentry
->d_inode
->i_lock
)
281 struct inode
*inode
= dentry
->d_inode
;
283 dentry
->d_inode
= NULL
;
284 hlist_del_init(&dentry
->d_alias
);
285 spin_unlock(&dentry
->d_lock
);
286 spin_unlock(&inode
->i_lock
);
288 fsnotify_inoderemove(inode
);
289 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
290 dentry
->d_op
->d_iput(dentry
, inode
);
294 spin_unlock(&dentry
->d_lock
);
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
302 static void dentry_unlink_inode(struct dentry
* dentry
)
303 __releases(dentry
->d_lock
)
304 __releases(dentry
->d_inode
->i_lock
)
306 struct inode
*inode
= dentry
->d_inode
;
307 __d_clear_type(dentry
);
308 dentry
->d_inode
= NULL
;
309 hlist_del_init(&dentry
->d_alias
);
310 dentry_rcuwalk_barrier(dentry
);
311 spin_unlock(&dentry
->d_lock
);
312 spin_unlock(&inode
->i_lock
);
314 fsnotify_inoderemove(inode
);
315 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
316 dentry
->d_op
->d_iput(dentry
, inode
);
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
335 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336 static void d_lru_add(struct dentry
*dentry
)
338 D_FLAG_VERIFY(dentry
, 0);
339 dentry
->d_flags
|= DCACHE_LRU_LIST
;
340 this_cpu_inc(nr_dentry_unused
);
341 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
344 static void d_lru_del(struct dentry
*dentry
)
346 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
347 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
348 this_cpu_dec(nr_dentry_unused
);
349 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
352 static void d_shrink_del(struct dentry
*dentry
)
354 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
355 list_del_init(&dentry
->d_lru
);
356 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
357 this_cpu_dec(nr_dentry_unused
);
360 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
362 D_FLAG_VERIFY(dentry
, 0);
363 list_add(&dentry
->d_lru
, list
);
364 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
365 this_cpu_inc(nr_dentry_unused
);
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
374 static void d_lru_isolate(struct dentry
*dentry
)
376 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
377 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
378 this_cpu_dec(nr_dentry_unused
);
379 list_del_init(&dentry
->d_lru
);
382 static void d_lru_shrink_move(struct dentry
*dentry
, struct list_head
*list
)
384 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
385 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
386 list_move_tail(&dentry
->d_lru
, list
);
390 * dentry_lru_(add|del)_list) must be called with d_lock held.
392 static void dentry_lru_add(struct dentry
*dentry
)
394 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
411 * __d_drop requires dentry->d_lock.
413 void __d_drop(struct dentry
*dentry
)
415 if (!d_unhashed(dentry
)) {
416 struct hlist_bl_head
*b
;
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
422 if (unlikely(IS_ROOT(dentry
)))
423 b
= &dentry
->d_sb
->s_anon
;
425 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
428 __hlist_bl_del(&dentry
->d_hash
);
429 dentry
->d_hash
.pprev
= NULL
;
431 dentry_rcuwalk_barrier(dentry
);
434 EXPORT_SYMBOL(__d_drop
);
436 void d_drop(struct dentry
*dentry
)
438 spin_lock(&dentry
->d_lock
);
440 spin_unlock(&dentry
->d_lock
);
442 EXPORT_SYMBOL(d_drop
);
444 static void __dentry_kill(struct dentry
*dentry
)
446 struct dentry
*parent
= NULL
;
447 bool can_free
= true;
448 if (!IS_ROOT(dentry
))
449 parent
= dentry
->d_parent
;
452 * The dentry is now unrecoverably dead to the world.
454 lockref_mark_dead(&dentry
->d_lockref
);
457 * inform the fs via d_prune that this dentry is about to be
458 * unhashed and destroyed.
460 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) && !d_unhashed(dentry
))
461 dentry
->d_op
->d_prune(dentry
);
463 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
464 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
467 /* if it was on the hash then remove it */
469 list_del(&dentry
->d_u
.d_child
);
471 * Inform d_walk() that we are no longer attached to the
474 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
476 spin_unlock(&parent
->d_lock
);
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
482 BUG_ON((int)dentry
->d_lockref
.count
> 0);
483 this_cpu_dec(nr_dentry
);
484 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
485 dentry
->d_op
->d_release(dentry
);
487 spin_lock(&dentry
->d_lock
);
488 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
489 dentry
->d_flags
|= DCACHE_MAY_FREE
;
492 spin_unlock(&dentry
->d_lock
);
493 if (likely(can_free
))
498 * Finish off a dentry we've decided to kill.
499 * dentry->d_lock must be held, returns with it unlocked.
500 * If ref is non-zero, then decrement the refcount too.
501 * Returns dentry requiring refcount drop, or NULL if we're done.
503 static struct dentry
*dentry_kill(struct dentry
*dentry
)
504 __releases(dentry
->d_lock
)
506 struct inode
*inode
= dentry
->d_inode
;
507 struct dentry
*parent
= NULL
;
509 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
512 if (!IS_ROOT(dentry
)) {
513 parent
= dentry
->d_parent
;
514 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
516 spin_unlock(&inode
->i_lock
);
521 __dentry_kill(dentry
);
525 spin_unlock(&dentry
->d_lock
);
527 return dentry
; /* try again with same dentry */
530 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
532 struct dentry
*parent
= dentry
->d_parent
;
535 if (likely(spin_trylock(&parent
->d_lock
)))
537 spin_unlock(&dentry
->d_lock
);
540 parent
= ACCESS_ONCE(dentry
->d_parent
);
541 spin_lock(&parent
->d_lock
);
543 * We can't blindly lock dentry until we are sure
544 * that we won't violate the locking order.
545 * Any changes of dentry->d_parent must have
546 * been done with parent->d_lock held, so
547 * spin_lock() above is enough of a barrier
548 * for checking if it's still our child.
550 if (unlikely(parent
!= dentry
->d_parent
)) {
551 spin_unlock(&parent
->d_lock
);
555 if (parent
!= dentry
)
556 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
565 * This is complicated by the fact that we do not want to put
566 * dentries that are no longer on any hash chain on the unused
567 * list: we'd much rather just get rid of them immediately.
569 * However, that implies that we have to traverse the dentry
570 * tree upwards to the parents which might _also_ now be
571 * scheduled for deletion (it may have been only waiting for
572 * its last child to go away).
574 * This tail recursion is done by hand as we don't want to depend
575 * on the compiler to always get this right (gcc generally doesn't).
576 * Real recursion would eat up our stack space.
580 * dput - release a dentry
581 * @dentry: dentry to release
583 * Release a dentry. This will drop the usage count and if appropriate
584 * call the dentry unlink method as well as removing it from the queues and
585 * releasing its resources. If the parent dentries were scheduled for release
586 * they too may now get deleted.
588 void dput(struct dentry
*dentry
)
590 if (unlikely(!dentry
))
594 if (lockref_put_or_lock(&dentry
->d_lockref
))
597 /* Unreachable? Get rid of it */
598 if (unlikely(d_unhashed(dentry
)))
601 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
602 if (dentry
->d_op
->d_delete(dentry
))
606 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
607 dentry
->d_flags
|= DCACHE_REFERENCED
;
608 dentry_lru_add(dentry
);
610 dentry
->d_lockref
.count
--;
611 spin_unlock(&dentry
->d_lock
);
615 dentry
= dentry_kill(dentry
);
622 * d_invalidate - invalidate a dentry
623 * @dentry: dentry to invalidate
625 * Try to invalidate the dentry if it turns out to be
626 * possible. If there are other dentries that can be
627 * reached through this one we can't delete it and we
628 * return -EBUSY. On success we return 0.
633 int d_invalidate(struct dentry
* dentry
)
636 * If it's already been dropped, return OK.
638 spin_lock(&dentry
->d_lock
);
639 if (d_unhashed(dentry
)) {
640 spin_unlock(&dentry
->d_lock
);
644 * Check whether to do a partial shrink_dcache
645 * to get rid of unused child entries.
647 if (!list_empty(&dentry
->d_subdirs
)) {
648 spin_unlock(&dentry
->d_lock
);
649 shrink_dcache_parent(dentry
);
650 spin_lock(&dentry
->d_lock
);
654 * Somebody else still using it?
656 * If it's a directory, we can't drop it
657 * for fear of somebody re-populating it
658 * with children (even though dropping it
659 * would make it unreachable from the root,
660 * we might still populate it if it was a
661 * working directory or similar).
662 * We also need to leave mountpoints alone,
665 if (dentry
->d_lockref
.count
> 1 && dentry
->d_inode
) {
666 if (S_ISDIR(dentry
->d_inode
->i_mode
) || d_mountpoint(dentry
)) {
667 spin_unlock(&dentry
->d_lock
);
673 spin_unlock(&dentry
->d_lock
);
676 EXPORT_SYMBOL(d_invalidate
);
678 /* This must be called with d_lock held */
679 static inline void __dget_dlock(struct dentry
*dentry
)
681 dentry
->d_lockref
.count
++;
684 static inline void __dget(struct dentry
*dentry
)
686 lockref_get(&dentry
->d_lockref
);
689 struct dentry
*dget_parent(struct dentry
*dentry
)
695 * Do optimistic parent lookup without any
699 ret
= ACCESS_ONCE(dentry
->d_parent
);
700 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
702 if (likely(gotref
)) {
703 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
710 * Don't need rcu_dereference because we re-check it was correct under
714 ret
= dentry
->d_parent
;
715 spin_lock(&ret
->d_lock
);
716 if (unlikely(ret
!= dentry
->d_parent
)) {
717 spin_unlock(&ret
->d_lock
);
722 BUG_ON(!ret
->d_lockref
.count
);
723 ret
->d_lockref
.count
++;
724 spin_unlock(&ret
->d_lock
);
727 EXPORT_SYMBOL(dget_parent
);
730 * d_find_alias - grab a hashed alias of inode
731 * @inode: inode in question
732 * @want_discon: flag, used by d_splice_alias, to request
733 * that only a DISCONNECTED alias be returned.
735 * If inode has a hashed alias, or is a directory and has any alias,
736 * acquire the reference to alias and return it. Otherwise return NULL.
737 * Notice that if inode is a directory there can be only one alias and
738 * it can be unhashed only if it has no children, or if it is the root
741 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
742 * any other hashed alias over that one unless @want_discon is set,
743 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
745 static struct dentry
*__d_find_alias(struct inode
*inode
, int want_discon
)
747 struct dentry
*alias
, *discon_alias
;
751 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
752 spin_lock(&alias
->d_lock
);
753 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
754 if (IS_ROOT(alias
) &&
755 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
756 discon_alias
= alias
;
757 } else if (!want_discon
) {
759 spin_unlock(&alias
->d_lock
);
763 spin_unlock(&alias
->d_lock
);
766 alias
= discon_alias
;
767 spin_lock(&alias
->d_lock
);
768 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
769 if (IS_ROOT(alias
) &&
770 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
772 spin_unlock(&alias
->d_lock
);
776 spin_unlock(&alias
->d_lock
);
782 struct dentry
*d_find_alias(struct inode
*inode
)
784 struct dentry
*de
= NULL
;
786 if (!hlist_empty(&inode
->i_dentry
)) {
787 spin_lock(&inode
->i_lock
);
788 de
= __d_find_alias(inode
, 0);
789 spin_unlock(&inode
->i_lock
);
793 EXPORT_SYMBOL(d_find_alias
);
796 * Try to kill dentries associated with this inode.
797 * WARNING: you must own a reference to inode.
799 void d_prune_aliases(struct inode
*inode
)
801 struct dentry
*dentry
;
803 spin_lock(&inode
->i_lock
);
804 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
805 spin_lock(&dentry
->d_lock
);
806 if (!dentry
->d_lockref
.count
) {
808 * inform the fs via d_prune that this dentry
809 * is about to be unhashed and destroyed.
811 if ((dentry
->d_flags
& DCACHE_OP_PRUNE
) &&
813 dentry
->d_op
->d_prune(dentry
);
815 __dget_dlock(dentry
);
817 spin_unlock(&dentry
->d_lock
);
818 spin_unlock(&inode
->i_lock
);
822 spin_unlock(&dentry
->d_lock
);
824 spin_unlock(&inode
->i_lock
);
826 EXPORT_SYMBOL(d_prune_aliases
);
828 static void shrink_dentry_list(struct list_head
*list
)
830 struct dentry
*dentry
, *parent
;
832 while (!list_empty(list
)) {
834 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
835 spin_lock(&dentry
->d_lock
);
836 parent
= lock_parent(dentry
);
839 * The dispose list is isolated and dentries are not accounted
840 * to the LRU here, so we can simply remove it from the list
841 * here regardless of whether it is referenced or not.
843 d_shrink_del(dentry
);
846 * We found an inuse dentry which was not removed from
847 * the LRU because of laziness during lookup. Do not free it.
849 if ((int)dentry
->d_lockref
.count
> 0) {
850 spin_unlock(&dentry
->d_lock
);
852 spin_unlock(&parent
->d_lock
);
857 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
858 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
859 spin_unlock(&dentry
->d_lock
);
861 spin_unlock(&parent
->d_lock
);
867 inode
= dentry
->d_inode
;
868 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
869 d_shrink_add(dentry
, list
);
870 spin_unlock(&dentry
->d_lock
);
872 spin_unlock(&parent
->d_lock
);
876 __dentry_kill(dentry
);
879 * We need to prune ancestors too. This is necessary to prevent
880 * quadratic behavior of shrink_dcache_parent(), but is also
881 * expected to be beneficial in reducing dentry cache
885 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
886 parent
= lock_parent(dentry
);
887 if (dentry
->d_lockref
.count
!= 1) {
888 dentry
->d_lockref
.count
--;
889 spin_unlock(&dentry
->d_lock
);
891 spin_unlock(&parent
->d_lock
);
894 inode
= dentry
->d_inode
; /* can't be NULL */
895 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
896 spin_unlock(&dentry
->d_lock
);
898 spin_unlock(&parent
->d_lock
);
902 __dentry_kill(dentry
);
908 static enum lru_status
909 dentry_lru_isolate(struct list_head
*item
, spinlock_t
*lru_lock
, void *arg
)
911 struct list_head
*freeable
= arg
;
912 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
916 * we are inverting the lru lock/dentry->d_lock here,
917 * so use a trylock. If we fail to get the lock, just skip
920 if (!spin_trylock(&dentry
->d_lock
))
924 * Referenced dentries are still in use. If they have active
925 * counts, just remove them from the LRU. Otherwise give them
926 * another pass through the LRU.
928 if (dentry
->d_lockref
.count
) {
929 d_lru_isolate(dentry
);
930 spin_unlock(&dentry
->d_lock
);
934 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
935 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
936 spin_unlock(&dentry
->d_lock
);
939 * The list move itself will be made by the common LRU code. At
940 * this point, we've dropped the dentry->d_lock but keep the
941 * lru lock. This is safe to do, since every list movement is
942 * protected by the lru lock even if both locks are held.
944 * This is guaranteed by the fact that all LRU management
945 * functions are intermediated by the LRU API calls like
946 * list_lru_add and list_lru_del. List movement in this file
947 * only ever occur through this functions or through callbacks
948 * like this one, that are called from the LRU API.
950 * The only exceptions to this are functions like
951 * shrink_dentry_list, and code that first checks for the
952 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
953 * operating only with stack provided lists after they are
954 * properly isolated from the main list. It is thus, always a
960 d_lru_shrink_move(dentry
, freeable
);
961 spin_unlock(&dentry
->d_lock
);
967 * prune_dcache_sb - shrink the dcache
969 * @nr_to_scan : number of entries to try to free
970 * @nid: which node to scan for freeable entities
972 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
973 * done when we need more memory an called from the superblock shrinker
976 * This function may fail to free any resources if all the dentries are in
979 long prune_dcache_sb(struct super_block
*sb
, unsigned long nr_to_scan
,
985 freed
= list_lru_walk_node(&sb
->s_dentry_lru
, nid
, dentry_lru_isolate
,
986 &dispose
, &nr_to_scan
);
987 shrink_dentry_list(&dispose
);
991 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
992 spinlock_t
*lru_lock
, void *arg
)
994 struct list_head
*freeable
= arg
;
995 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
998 * we are inverting the lru lock/dentry->d_lock here,
999 * so use a trylock. If we fail to get the lock, just skip
1002 if (!spin_trylock(&dentry
->d_lock
))
1005 d_lru_shrink_move(dentry
, freeable
);
1006 spin_unlock(&dentry
->d_lock
);
1013 * shrink_dcache_sb - shrink dcache for a superblock
1016 * Shrink the dcache for the specified super block. This is used to free
1017 * the dcache before unmounting a file system.
1019 void shrink_dcache_sb(struct super_block
*sb
)
1026 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1027 dentry_lru_isolate_shrink
, &dispose
, UINT_MAX
);
1029 this_cpu_sub(nr_dentry_unused
, freed
);
1030 shrink_dentry_list(&dispose
);
1031 } while (freed
> 0);
1033 EXPORT_SYMBOL(shrink_dcache_sb
);
1036 * enum d_walk_ret - action to talke during tree walk
1037 * @D_WALK_CONTINUE: contrinue walk
1038 * @D_WALK_QUIT: quit walk
1039 * @D_WALK_NORETRY: quit when retry is needed
1040 * @D_WALK_SKIP: skip this dentry and its children
1050 * d_walk - walk the dentry tree
1051 * @parent: start of walk
1052 * @data: data passed to @enter() and @finish()
1053 * @enter: callback when first entering the dentry
1054 * @finish: callback when successfully finished the walk
1056 * The @enter() and @finish() callbacks are called with d_lock held.
1058 static void d_walk(struct dentry
*parent
, void *data
,
1059 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1060 void (*finish
)(void *))
1062 struct dentry
*this_parent
;
1063 struct list_head
*next
;
1065 enum d_walk_ret ret
;
1069 read_seqbegin_or_lock(&rename_lock
, &seq
);
1070 this_parent
= parent
;
1071 spin_lock(&this_parent
->d_lock
);
1073 ret
= enter(data
, this_parent
);
1075 case D_WALK_CONTINUE
:
1080 case D_WALK_NORETRY
:
1085 next
= this_parent
->d_subdirs
.next
;
1087 while (next
!= &this_parent
->d_subdirs
) {
1088 struct list_head
*tmp
= next
;
1089 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
1092 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1094 ret
= enter(data
, dentry
);
1096 case D_WALK_CONTINUE
:
1099 spin_unlock(&dentry
->d_lock
);
1101 case D_WALK_NORETRY
:
1105 spin_unlock(&dentry
->d_lock
);
1109 if (!list_empty(&dentry
->d_subdirs
)) {
1110 spin_unlock(&this_parent
->d_lock
);
1111 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1112 this_parent
= dentry
;
1113 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1116 spin_unlock(&dentry
->d_lock
);
1119 * All done at this level ... ascend and resume the search.
1121 if (this_parent
!= parent
) {
1122 struct dentry
*child
= this_parent
;
1123 this_parent
= child
->d_parent
;
1126 spin_unlock(&child
->d_lock
);
1127 spin_lock(&this_parent
->d_lock
);
1130 * might go back up the wrong parent if we have had a rename
1133 if (this_parent
!= child
->d_parent
||
1134 (child
->d_flags
& DCACHE_DENTRY_KILLED
) ||
1135 need_seqretry(&rename_lock
, seq
)) {
1136 spin_unlock(&this_parent
->d_lock
);
1141 next
= child
->d_u
.d_child
.next
;
1144 if (need_seqretry(&rename_lock
, seq
)) {
1145 spin_unlock(&this_parent
->d_lock
);
1152 spin_unlock(&this_parent
->d_lock
);
1153 done_seqretry(&rename_lock
, seq
);
1164 * Search for at least 1 mount point in the dentry's subdirs.
1165 * We descend to the next level whenever the d_subdirs
1166 * list is non-empty and continue searching.
1169 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1172 if (d_mountpoint(dentry
)) {
1176 return D_WALK_CONTINUE
;
1180 * have_submounts - check for mounts over a dentry
1181 * @parent: dentry to check.
1183 * Return true if the parent or its subdirectories contain
1186 int have_submounts(struct dentry
*parent
)
1190 d_walk(parent
, &ret
, check_mount
, NULL
);
1194 EXPORT_SYMBOL(have_submounts
);
1197 * Called by mount code to set a mountpoint and check if the mountpoint is
1198 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1199 * subtree can become unreachable).
1201 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1202 * this reason take rename_lock and d_lock on dentry and ancestors.
1204 int d_set_mounted(struct dentry
*dentry
)
1208 write_seqlock(&rename_lock
);
1209 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1210 /* Need exclusion wrt. check_submounts_and_drop() */
1211 spin_lock(&p
->d_lock
);
1212 if (unlikely(d_unhashed(p
))) {
1213 spin_unlock(&p
->d_lock
);
1216 spin_unlock(&p
->d_lock
);
1218 spin_lock(&dentry
->d_lock
);
1219 if (!d_unlinked(dentry
)) {
1220 dentry
->d_flags
|= DCACHE_MOUNTED
;
1223 spin_unlock(&dentry
->d_lock
);
1225 write_sequnlock(&rename_lock
);
1230 * Search the dentry child list of the specified parent,
1231 * and move any unused dentries to the end of the unused
1232 * list for prune_dcache(). We descend to the next level
1233 * whenever the d_subdirs list is non-empty and continue
1236 * It returns zero iff there are no unused children,
1237 * otherwise it returns the number of children moved to
1238 * the end of the unused list. This may not be the total
1239 * number of unused children, because select_parent can
1240 * drop the lock and return early due to latency
1244 struct select_data
{
1245 struct dentry
*start
;
1246 struct list_head dispose
;
1250 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1252 struct select_data
*data
= _data
;
1253 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1255 if (data
->start
== dentry
)
1258 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1261 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1263 if (!dentry
->d_lockref
.count
) {
1264 d_shrink_add(dentry
, &data
->dispose
);
1269 * We can return to the caller if we have found some (this
1270 * ensures forward progress). We'll be coming back to find
1273 if (!list_empty(&data
->dispose
))
1274 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1280 * shrink_dcache_parent - prune dcache
1281 * @parent: parent of entries to prune
1283 * Prune the dcache to remove unused children of the parent dentry.
1285 void shrink_dcache_parent(struct dentry
*parent
)
1288 struct select_data data
;
1290 INIT_LIST_HEAD(&data
.dispose
);
1291 data
.start
= parent
;
1294 d_walk(parent
, &data
, select_collect
, NULL
);
1298 shrink_dentry_list(&data
.dispose
);
1302 EXPORT_SYMBOL(shrink_dcache_parent
);
1304 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1306 /* it has busy descendents; complain about those instead */
1307 if (!list_empty(&dentry
->d_subdirs
))
1308 return D_WALK_CONTINUE
;
1310 /* root with refcount 1 is fine */
1311 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1312 return D_WALK_CONTINUE
;
1314 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1315 " still in use (%d) [unmount of %s %s]\n",
1318 dentry
->d_inode
->i_ino
: 0UL,
1320 dentry
->d_lockref
.count
,
1321 dentry
->d_sb
->s_type
->name
,
1322 dentry
->d_sb
->s_id
);
1324 return D_WALK_CONTINUE
;
1327 static void do_one_tree(struct dentry
*dentry
)
1329 shrink_dcache_parent(dentry
);
1330 d_walk(dentry
, dentry
, umount_check
, NULL
);
1336 * destroy the dentries attached to a superblock on unmounting
1338 void shrink_dcache_for_umount(struct super_block
*sb
)
1340 struct dentry
*dentry
;
1342 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1344 dentry
= sb
->s_root
;
1346 do_one_tree(dentry
);
1348 while (!hlist_bl_empty(&sb
->s_anon
)) {
1349 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1350 do_one_tree(dentry
);
1354 static enum d_walk_ret
check_and_collect(void *_data
, struct dentry
*dentry
)
1356 struct select_data
*data
= _data
;
1358 if (d_mountpoint(dentry
)) {
1359 data
->found
= -EBUSY
;
1363 return select_collect(_data
, dentry
);
1366 static void check_and_drop(void *_data
)
1368 struct select_data
*data
= _data
;
1370 if (d_mountpoint(data
->start
))
1371 data
->found
= -EBUSY
;
1373 __d_drop(data
->start
);
1377 * check_submounts_and_drop - prune dcache, check for submounts and drop
1379 * All done as a single atomic operation relative to has_unlinked_ancestor().
1380 * Returns 0 if successfully unhashed @parent. If there were submounts then
1383 * @dentry: dentry to prune and drop
1385 int check_submounts_and_drop(struct dentry
*dentry
)
1389 /* Negative dentries can be dropped without further checks */
1390 if (!dentry
->d_inode
) {
1396 struct select_data data
;
1398 INIT_LIST_HEAD(&data
.dispose
);
1399 data
.start
= dentry
;
1402 d_walk(dentry
, &data
, check_and_collect
, check_and_drop
);
1405 if (!list_empty(&data
.dispose
))
1406 shrink_dentry_list(&data
.dispose
);
1417 EXPORT_SYMBOL(check_submounts_and_drop
);
1420 * __d_alloc - allocate a dcache entry
1421 * @sb: filesystem it will belong to
1422 * @name: qstr of the name
1424 * Allocates a dentry. It returns %NULL if there is insufficient memory
1425 * available. On a success the dentry is returned. The name passed in is
1426 * copied and the copy passed in may be reused after this call.
1429 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1431 struct dentry
*dentry
;
1434 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1439 * We guarantee that the inline name is always NUL-terminated.
1440 * This way the memcpy() done by the name switching in rename
1441 * will still always have a NUL at the end, even if we might
1442 * be overwriting an internal NUL character
1444 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1445 if (name
->len
> DNAME_INLINE_LEN
-1) {
1446 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
1448 kmem_cache_free(dentry_cache
, dentry
);
1452 dname
= dentry
->d_iname
;
1455 dentry
->d_name
.len
= name
->len
;
1456 dentry
->d_name
.hash
= name
->hash
;
1457 memcpy(dname
, name
->name
, name
->len
);
1458 dname
[name
->len
] = 0;
1460 /* Make sure we always see the terminating NUL character */
1462 dentry
->d_name
.name
= dname
;
1464 dentry
->d_lockref
.count
= 1;
1465 dentry
->d_flags
= 0;
1466 spin_lock_init(&dentry
->d_lock
);
1467 seqcount_init(&dentry
->d_seq
);
1468 dentry
->d_inode
= NULL
;
1469 dentry
->d_parent
= dentry
;
1471 dentry
->d_op
= NULL
;
1472 dentry
->d_fsdata
= NULL
;
1473 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1474 INIT_LIST_HEAD(&dentry
->d_lru
);
1475 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1476 INIT_HLIST_NODE(&dentry
->d_alias
);
1477 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1478 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1480 this_cpu_inc(nr_dentry
);
1486 * d_alloc - allocate a dcache entry
1487 * @parent: parent of entry to allocate
1488 * @name: qstr of the name
1490 * Allocates a dentry. It returns %NULL if there is insufficient memory
1491 * available. On a success the dentry is returned. The name passed in is
1492 * copied and the copy passed in may be reused after this call.
1494 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1496 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1500 spin_lock(&parent
->d_lock
);
1502 * don't need child lock because it is not subject
1503 * to concurrency here
1505 __dget_dlock(parent
);
1506 dentry
->d_parent
= parent
;
1507 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
1508 spin_unlock(&parent
->d_lock
);
1512 EXPORT_SYMBOL(d_alloc
);
1515 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1516 * @sb: the superblock
1517 * @name: qstr of the name
1519 * For a filesystem that just pins its dentries in memory and never
1520 * performs lookups at all, return an unhashed IS_ROOT dentry.
1522 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1524 return __d_alloc(sb
, name
);
1526 EXPORT_SYMBOL(d_alloc_pseudo
);
1528 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1533 q
.len
= strlen(name
);
1534 q
.hash
= full_name_hash(q
.name
, q
.len
);
1535 return d_alloc(parent
, &q
);
1537 EXPORT_SYMBOL(d_alloc_name
);
1539 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1541 WARN_ON_ONCE(dentry
->d_op
);
1542 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1544 DCACHE_OP_REVALIDATE
|
1545 DCACHE_OP_WEAK_REVALIDATE
|
1546 DCACHE_OP_DELETE
));
1551 dentry
->d_flags
|= DCACHE_OP_HASH
;
1553 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1554 if (op
->d_revalidate
)
1555 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1556 if (op
->d_weak_revalidate
)
1557 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1559 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1561 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1564 EXPORT_SYMBOL(d_set_d_op
);
1566 static unsigned d_flags_for_inode(struct inode
*inode
)
1568 unsigned add_flags
= DCACHE_FILE_TYPE
;
1571 return DCACHE_MISS_TYPE
;
1573 if (S_ISDIR(inode
->i_mode
)) {
1574 add_flags
= DCACHE_DIRECTORY_TYPE
;
1575 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1576 if (unlikely(!inode
->i_op
->lookup
))
1577 add_flags
= DCACHE_AUTODIR_TYPE
;
1579 inode
->i_opflags
|= IOP_LOOKUP
;
1581 } else if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1582 if (unlikely(inode
->i_op
->follow_link
))
1583 add_flags
= DCACHE_SYMLINK_TYPE
;
1585 inode
->i_opflags
|= IOP_NOFOLLOW
;
1588 if (unlikely(IS_AUTOMOUNT(inode
)))
1589 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1593 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1595 unsigned add_flags
= d_flags_for_inode(inode
);
1597 spin_lock(&dentry
->d_lock
);
1598 __d_set_type(dentry
, add_flags
);
1600 hlist_add_head(&dentry
->d_alias
, &inode
->i_dentry
);
1601 dentry
->d_inode
= inode
;
1602 dentry_rcuwalk_barrier(dentry
);
1603 spin_unlock(&dentry
->d_lock
);
1604 fsnotify_d_instantiate(dentry
, inode
);
1608 * d_instantiate - fill in inode information for a dentry
1609 * @entry: dentry to complete
1610 * @inode: inode to attach to this dentry
1612 * Fill in inode information in the entry.
1614 * This turns negative dentries into productive full members
1617 * NOTE! This assumes that the inode count has been incremented
1618 * (or otherwise set) by the caller to indicate that it is now
1619 * in use by the dcache.
1622 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1624 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1626 spin_lock(&inode
->i_lock
);
1627 __d_instantiate(entry
, inode
);
1629 spin_unlock(&inode
->i_lock
);
1630 security_d_instantiate(entry
, inode
);
1632 EXPORT_SYMBOL(d_instantiate
);
1635 * d_instantiate_unique - instantiate a non-aliased dentry
1636 * @entry: dentry to instantiate
1637 * @inode: inode to attach to this dentry
1639 * Fill in inode information in the entry. On success, it returns NULL.
1640 * If an unhashed alias of "entry" already exists, then we return the
1641 * aliased dentry instead and drop one reference to inode.
1643 * Note that in order to avoid conflicts with rename() etc, the caller
1644 * had better be holding the parent directory semaphore.
1646 * This also assumes that the inode count has been incremented
1647 * (or otherwise set) by the caller to indicate that it is now
1648 * in use by the dcache.
1650 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1651 struct inode
*inode
)
1653 struct dentry
*alias
;
1654 int len
= entry
->d_name
.len
;
1655 const char *name
= entry
->d_name
.name
;
1656 unsigned int hash
= entry
->d_name
.hash
;
1659 __d_instantiate(entry
, NULL
);
1663 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1665 * Don't need alias->d_lock here, because aliases with
1666 * d_parent == entry->d_parent are not subject to name or
1667 * parent changes, because the parent inode i_mutex is held.
1669 if (alias
->d_name
.hash
!= hash
)
1671 if (alias
->d_parent
!= entry
->d_parent
)
1673 if (alias
->d_name
.len
!= len
)
1675 if (dentry_cmp(alias
, name
, len
))
1681 __d_instantiate(entry
, inode
);
1685 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1687 struct dentry
*result
;
1689 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1692 spin_lock(&inode
->i_lock
);
1693 result
= __d_instantiate_unique(entry
, inode
);
1695 spin_unlock(&inode
->i_lock
);
1698 security_d_instantiate(entry
, inode
);
1702 BUG_ON(!d_unhashed(result
));
1707 EXPORT_SYMBOL(d_instantiate_unique
);
1710 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1711 * @entry: dentry to complete
1712 * @inode: inode to attach to this dentry
1714 * Fill in inode information in the entry. If a directory alias is found, then
1715 * return an error (and drop inode). Together with d_materialise_unique() this
1716 * guarantees that a directory inode may never have more than one alias.
1718 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1720 BUG_ON(!hlist_unhashed(&entry
->d_alias
));
1722 spin_lock(&inode
->i_lock
);
1723 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1724 spin_unlock(&inode
->i_lock
);
1728 __d_instantiate(entry
, inode
);
1729 spin_unlock(&inode
->i_lock
);
1730 security_d_instantiate(entry
, inode
);
1734 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1736 struct dentry
*d_make_root(struct inode
*root_inode
)
1738 struct dentry
*res
= NULL
;
1741 static const struct qstr name
= QSTR_INIT("/", 1);
1743 res
= __d_alloc(root_inode
->i_sb
, &name
);
1745 d_instantiate(res
, root_inode
);
1751 EXPORT_SYMBOL(d_make_root
);
1753 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1755 struct dentry
*alias
;
1757 if (hlist_empty(&inode
->i_dentry
))
1759 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_alias
);
1765 * d_find_any_alias - find any alias for a given inode
1766 * @inode: inode to find an alias for
1768 * If any aliases exist for the given inode, take and return a
1769 * reference for one of them. If no aliases exist, return %NULL.
1771 struct dentry
*d_find_any_alias(struct inode
*inode
)
1775 spin_lock(&inode
->i_lock
);
1776 de
= __d_find_any_alias(inode
);
1777 spin_unlock(&inode
->i_lock
);
1780 EXPORT_SYMBOL(d_find_any_alias
);
1783 * d_obtain_alias - find or allocate a dentry for a given inode
1784 * @inode: inode to allocate the dentry for
1786 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1787 * similar open by handle operations. The returned dentry may be anonymous,
1788 * or may have a full name (if the inode was already in the cache).
1790 * When called on a directory inode, we must ensure that the inode only ever
1791 * has one dentry. If a dentry is found, that is returned instead of
1792 * allocating a new one.
1794 * On successful return, the reference to the inode has been transferred
1795 * to the dentry. In case of an error the reference on the inode is released.
1796 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1797 * be passed in and will be the error will be propagate to the return value,
1798 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1800 struct dentry
*d_obtain_alias(struct inode
*inode
)
1802 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1808 return ERR_PTR(-ESTALE
);
1810 return ERR_CAST(inode
);
1812 res
= d_find_any_alias(inode
);
1816 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1818 res
= ERR_PTR(-ENOMEM
);
1822 spin_lock(&inode
->i_lock
);
1823 res
= __d_find_any_alias(inode
);
1825 spin_unlock(&inode
->i_lock
);
1830 /* attach a disconnected dentry */
1831 add_flags
= d_flags_for_inode(inode
) | DCACHE_DISCONNECTED
;
1833 spin_lock(&tmp
->d_lock
);
1834 tmp
->d_inode
= inode
;
1835 tmp
->d_flags
|= add_flags
;
1836 hlist_add_head(&tmp
->d_alias
, &inode
->i_dentry
);
1837 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1838 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1839 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1840 spin_unlock(&tmp
->d_lock
);
1841 spin_unlock(&inode
->i_lock
);
1842 security_d_instantiate(tmp
, inode
);
1847 if (res
&& !IS_ERR(res
))
1848 security_d_instantiate(res
, inode
);
1852 EXPORT_SYMBOL(d_obtain_alias
);
1855 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1856 * @inode: the inode which may have a disconnected dentry
1857 * @dentry: a negative dentry which we want to point to the inode.
1859 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1860 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1861 * and return it, else simply d_add the inode to the dentry and return NULL.
1863 * This is needed in the lookup routine of any filesystem that is exportable
1864 * (via knfsd) so that we can build dcache paths to directories effectively.
1866 * If a dentry was found and moved, then it is returned. Otherwise NULL
1867 * is returned. This matches the expected return value of ->lookup.
1869 * Cluster filesystems may call this function with a negative, hashed dentry.
1870 * In that case, we know that the inode will be a regular file, and also this
1871 * will only occur during atomic_open. So we need to check for the dentry
1872 * being already hashed only in the final case.
1874 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1876 struct dentry
*new = NULL
;
1879 return ERR_CAST(inode
);
1881 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1882 spin_lock(&inode
->i_lock
);
1883 new = __d_find_alias(inode
, 1);
1885 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1886 spin_unlock(&inode
->i_lock
);
1887 security_d_instantiate(new, inode
);
1888 d_move(new, dentry
);
1891 /* already taking inode->i_lock, so d_add() by hand */
1892 __d_instantiate(dentry
, inode
);
1893 spin_unlock(&inode
->i_lock
);
1894 security_d_instantiate(dentry
, inode
);
1898 d_instantiate(dentry
, inode
);
1899 if (d_unhashed(dentry
))
1904 EXPORT_SYMBOL(d_splice_alias
);
1907 * d_add_ci - lookup or allocate new dentry with case-exact name
1908 * @inode: the inode case-insensitive lookup has found
1909 * @dentry: the negative dentry that was passed to the parent's lookup func
1910 * @name: the case-exact name to be associated with the returned dentry
1912 * This is to avoid filling the dcache with case-insensitive names to the
1913 * same inode, only the actual correct case is stored in the dcache for
1914 * case-insensitive filesystems.
1916 * For a case-insensitive lookup match and if the the case-exact dentry
1917 * already exists in in the dcache, use it and return it.
1919 * If no entry exists with the exact case name, allocate new dentry with
1920 * the exact case, and return the spliced entry.
1922 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1925 struct dentry
*found
;
1929 * First check if a dentry matching the name already exists,
1930 * if not go ahead and create it now.
1932 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1933 if (unlikely(IS_ERR(found
)))
1936 new = d_alloc(dentry
->d_parent
, name
);
1938 found
= ERR_PTR(-ENOMEM
);
1942 found
= d_splice_alias(inode
, new);
1951 * If a matching dentry exists, and it's not negative use it.
1953 * Decrement the reference count to balance the iget() done
1956 if (found
->d_inode
) {
1957 if (unlikely(found
->d_inode
!= inode
)) {
1958 /* This can't happen because bad inodes are unhashed. */
1959 BUG_ON(!is_bad_inode(inode
));
1960 BUG_ON(!is_bad_inode(found
->d_inode
));
1967 * Negative dentry: instantiate it unless the inode is a directory and
1968 * already has a dentry.
1970 new = d_splice_alias(inode
, found
);
1981 EXPORT_SYMBOL(d_add_ci
);
1984 * Do the slow-case of the dentry name compare.
1986 * Unlike the dentry_cmp() function, we need to atomically
1987 * load the name and length information, so that the
1988 * filesystem can rely on them, and can use the 'name' and
1989 * 'len' information without worrying about walking off the
1990 * end of memory etc.
1992 * Thus the read_seqcount_retry() and the "duplicate" info
1993 * in arguments (the low-level filesystem should not look
1994 * at the dentry inode or name contents directly, since
1995 * rename can change them while we're in RCU mode).
1997 enum slow_d_compare
{
2003 static noinline
enum slow_d_compare
slow_dentry_cmp(
2004 const struct dentry
*parent
,
2005 struct dentry
*dentry
,
2007 const struct qstr
*name
)
2009 int tlen
= dentry
->d_name
.len
;
2010 const char *tname
= dentry
->d_name
.name
;
2012 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2014 return D_COMP_SEQRETRY
;
2016 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2017 return D_COMP_NOMATCH
;
2022 * __d_lookup_rcu - search for a dentry (racy, store-free)
2023 * @parent: parent dentry
2024 * @name: qstr of name we wish to find
2025 * @seqp: returns d_seq value at the point where the dentry was found
2026 * Returns: dentry, or NULL
2028 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2029 * resolution (store-free path walking) design described in
2030 * Documentation/filesystems/path-lookup.txt.
2032 * This is not to be used outside core vfs.
2034 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2035 * held, and rcu_read_lock held. The returned dentry must not be stored into
2036 * without taking d_lock and checking d_seq sequence count against @seq
2039 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2042 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2043 * the returned dentry, so long as its parent's seqlock is checked after the
2044 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2045 * is formed, giving integrity down the path walk.
2047 * NOTE! The caller *has* to check the resulting dentry against the sequence
2048 * number we've returned before using any of the resulting dentry state!
2050 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2051 const struct qstr
*name
,
2054 u64 hashlen
= name
->hash_len
;
2055 const unsigned char *str
= name
->name
;
2056 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
2057 struct hlist_bl_node
*node
;
2058 struct dentry
*dentry
;
2061 * Note: There is significant duplication with __d_lookup_rcu which is
2062 * required to prevent single threaded performance regressions
2063 * especially on architectures where smp_rmb (in seqcounts) are costly.
2064 * Keep the two functions in sync.
2068 * The hash list is protected using RCU.
2070 * Carefully use d_seq when comparing a candidate dentry, to avoid
2071 * races with d_move().
2073 * It is possible that concurrent renames can mess up our list
2074 * walk here and result in missing our dentry, resulting in the
2075 * false-negative result. d_lookup() protects against concurrent
2076 * renames using rename_lock seqlock.
2078 * See Documentation/filesystems/path-lookup.txt for more details.
2080 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2085 * The dentry sequence count protects us from concurrent
2086 * renames, and thus protects parent and name fields.
2088 * The caller must perform a seqcount check in order
2089 * to do anything useful with the returned dentry.
2091 * NOTE! We do a "raw" seqcount_begin here. That means that
2092 * we don't wait for the sequence count to stabilize if it
2093 * is in the middle of a sequence change. If we do the slow
2094 * dentry compare, we will do seqretries until it is stable,
2095 * and if we end up with a successful lookup, we actually
2096 * want to exit RCU lookup anyway.
2098 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2099 if (dentry
->d_parent
!= parent
)
2101 if (d_unhashed(dentry
))
2104 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2105 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2108 switch (slow_dentry_cmp(parent
, dentry
, seq
, name
)) {
2111 case D_COMP_NOMATCH
:
2118 if (dentry
->d_name
.hash_len
!= hashlen
)
2121 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
2128 * d_lookup - search for a dentry
2129 * @parent: parent dentry
2130 * @name: qstr of name we wish to find
2131 * Returns: dentry, or NULL
2133 * d_lookup searches the children of the parent dentry for the name in
2134 * question. If the dentry is found its reference count is incremented and the
2135 * dentry is returned. The caller must use dput to free the entry when it has
2136 * finished using it. %NULL is returned if the dentry does not exist.
2138 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2140 struct dentry
*dentry
;
2144 seq
= read_seqbegin(&rename_lock
);
2145 dentry
= __d_lookup(parent
, name
);
2148 } while (read_seqretry(&rename_lock
, seq
));
2151 EXPORT_SYMBOL(d_lookup
);
2154 * __d_lookup - search for a dentry (racy)
2155 * @parent: parent dentry
2156 * @name: qstr of name we wish to find
2157 * Returns: dentry, or NULL
2159 * __d_lookup is like d_lookup, however it may (rarely) return a
2160 * false-negative result due to unrelated rename activity.
2162 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2163 * however it must be used carefully, eg. with a following d_lookup in
2164 * the case of failure.
2166 * __d_lookup callers must be commented.
2168 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2170 unsigned int len
= name
->len
;
2171 unsigned int hash
= name
->hash
;
2172 const unsigned char *str
= name
->name
;
2173 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
2174 struct hlist_bl_node
*node
;
2175 struct dentry
*found
= NULL
;
2176 struct dentry
*dentry
;
2179 * Note: There is significant duplication with __d_lookup_rcu which is
2180 * required to prevent single threaded performance regressions
2181 * especially on architectures where smp_rmb (in seqcounts) are costly.
2182 * Keep the two functions in sync.
2186 * The hash list is protected using RCU.
2188 * Take d_lock when comparing a candidate dentry, to avoid races
2191 * It is possible that concurrent renames can mess up our list
2192 * walk here and result in missing our dentry, resulting in the
2193 * false-negative result. d_lookup() protects against concurrent
2194 * renames using rename_lock seqlock.
2196 * See Documentation/filesystems/path-lookup.txt for more details.
2200 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2202 if (dentry
->d_name
.hash
!= hash
)
2205 spin_lock(&dentry
->d_lock
);
2206 if (dentry
->d_parent
!= parent
)
2208 if (d_unhashed(dentry
))
2212 * It is safe to compare names since d_move() cannot
2213 * change the qstr (protected by d_lock).
2215 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
2216 int tlen
= dentry
->d_name
.len
;
2217 const char *tname
= dentry
->d_name
.name
;
2218 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2221 if (dentry
->d_name
.len
!= len
)
2223 if (dentry_cmp(dentry
, str
, len
))
2227 dentry
->d_lockref
.count
++;
2229 spin_unlock(&dentry
->d_lock
);
2232 spin_unlock(&dentry
->d_lock
);
2240 * d_hash_and_lookup - hash the qstr then search for a dentry
2241 * @dir: Directory to search in
2242 * @name: qstr of name we wish to find
2244 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2246 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2249 * Check for a fs-specific hash function. Note that we must
2250 * calculate the standard hash first, as the d_op->d_hash()
2251 * routine may choose to leave the hash value unchanged.
2253 name
->hash
= full_name_hash(name
->name
, name
->len
);
2254 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2255 int err
= dir
->d_op
->d_hash(dir
, name
);
2256 if (unlikely(err
< 0))
2257 return ERR_PTR(err
);
2259 return d_lookup(dir
, name
);
2261 EXPORT_SYMBOL(d_hash_and_lookup
);
2264 * d_validate - verify dentry provided from insecure source (deprecated)
2265 * @dentry: The dentry alleged to be valid child of @dparent
2266 * @dparent: The parent dentry (known to be valid)
2268 * An insecure source has sent us a dentry, here we verify it and dget() it.
2269 * This is used by ncpfs in its readdir implementation.
2270 * Zero is returned in the dentry is invalid.
2272 * This function is slow for big directories, and deprecated, do not use it.
2274 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2276 struct dentry
*child
;
2278 spin_lock(&dparent
->d_lock
);
2279 list_for_each_entry(child
, &dparent
->d_subdirs
, d_u
.d_child
) {
2280 if (dentry
== child
) {
2281 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2282 __dget_dlock(dentry
);
2283 spin_unlock(&dentry
->d_lock
);
2284 spin_unlock(&dparent
->d_lock
);
2288 spin_unlock(&dparent
->d_lock
);
2292 EXPORT_SYMBOL(d_validate
);
2295 * When a file is deleted, we have two options:
2296 * - turn this dentry into a negative dentry
2297 * - unhash this dentry and free it.
2299 * Usually, we want to just turn this into
2300 * a negative dentry, but if anybody else is
2301 * currently using the dentry or the inode
2302 * we can't do that and we fall back on removing
2303 * it from the hash queues and waiting for
2304 * it to be deleted later when it has no users
2308 * d_delete - delete a dentry
2309 * @dentry: The dentry to delete
2311 * Turn the dentry into a negative dentry if possible, otherwise
2312 * remove it from the hash queues so it can be deleted later
2315 void d_delete(struct dentry
* dentry
)
2317 struct inode
*inode
;
2320 * Are we the only user?
2323 spin_lock(&dentry
->d_lock
);
2324 inode
= dentry
->d_inode
;
2325 isdir
= S_ISDIR(inode
->i_mode
);
2326 if (dentry
->d_lockref
.count
== 1) {
2327 if (!spin_trylock(&inode
->i_lock
)) {
2328 spin_unlock(&dentry
->d_lock
);
2332 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2333 dentry_unlink_inode(dentry
);
2334 fsnotify_nameremove(dentry
, isdir
);
2338 if (!d_unhashed(dentry
))
2341 spin_unlock(&dentry
->d_lock
);
2343 fsnotify_nameremove(dentry
, isdir
);
2345 EXPORT_SYMBOL(d_delete
);
2347 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2349 BUG_ON(!d_unhashed(entry
));
2351 entry
->d_flags
|= DCACHE_RCUACCESS
;
2352 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2356 static void _d_rehash(struct dentry
* entry
)
2358 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2362 * d_rehash - add an entry back to the hash
2363 * @entry: dentry to add to the hash
2365 * Adds a dentry to the hash according to its name.
2368 void d_rehash(struct dentry
* entry
)
2370 spin_lock(&entry
->d_lock
);
2372 spin_unlock(&entry
->d_lock
);
2374 EXPORT_SYMBOL(d_rehash
);
2377 * dentry_update_name_case - update case insensitive dentry with a new name
2378 * @dentry: dentry to be updated
2381 * Update a case insensitive dentry with new case of name.
2383 * dentry must have been returned by d_lookup with name @name. Old and new
2384 * name lengths must match (ie. no d_compare which allows mismatched name
2387 * Parent inode i_mutex must be held over d_lookup and into this call (to
2388 * keep renames and concurrent inserts, and readdir(2) away).
2390 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2392 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2393 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2395 spin_lock(&dentry
->d_lock
);
2396 write_seqcount_begin(&dentry
->d_seq
);
2397 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2398 write_seqcount_end(&dentry
->d_seq
);
2399 spin_unlock(&dentry
->d_lock
);
2401 EXPORT_SYMBOL(dentry_update_name_case
);
2403 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
2405 if (dname_external(target
)) {
2406 if (dname_external(dentry
)) {
2408 * Both external: swap the pointers
2410 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2413 * dentry:internal, target:external. Steal target's
2414 * storage and make target internal.
2416 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2417 dentry
->d_name
.len
+ 1);
2418 dentry
->d_name
.name
= target
->d_name
.name
;
2419 target
->d_name
.name
= target
->d_iname
;
2422 if (dname_external(dentry
)) {
2424 * dentry:external, target:internal. Give dentry's
2425 * storage to target and make dentry internal
2427 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2428 target
->d_name
.len
+ 1);
2429 target
->d_name
.name
= dentry
->d_name
.name
;
2430 dentry
->d_name
.name
= dentry
->d_iname
;
2433 * Both are internal.
2436 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2437 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2438 swap(((long *) &dentry
->d_iname
)[i
],
2439 ((long *) &target
->d_iname
)[i
]);
2443 swap(dentry
->d_name
.len
, target
->d_name
.len
);
2446 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2449 * XXXX: do we really need to take target->d_lock?
2451 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2452 spin_lock(&target
->d_parent
->d_lock
);
2454 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2455 spin_lock(&dentry
->d_parent
->d_lock
);
2456 spin_lock_nested(&target
->d_parent
->d_lock
,
2457 DENTRY_D_LOCK_NESTED
);
2459 spin_lock(&target
->d_parent
->d_lock
);
2460 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2461 DENTRY_D_LOCK_NESTED
);
2464 if (target
< dentry
) {
2465 spin_lock_nested(&target
->d_lock
, 2);
2466 spin_lock_nested(&dentry
->d_lock
, 3);
2468 spin_lock_nested(&dentry
->d_lock
, 2);
2469 spin_lock_nested(&target
->d_lock
, 3);
2473 static void dentry_unlock_parents_for_move(struct dentry
*dentry
,
2474 struct dentry
*target
)
2476 if (target
->d_parent
!= dentry
->d_parent
)
2477 spin_unlock(&dentry
->d_parent
->d_lock
);
2478 if (target
->d_parent
!= target
)
2479 spin_unlock(&target
->d_parent
->d_lock
);
2483 * When switching names, the actual string doesn't strictly have to
2484 * be preserved in the target - because we're dropping the target
2485 * anyway. As such, we can just do a simple memcpy() to copy over
2486 * the new name before we switch.
2488 * Note that we have to be a lot more careful about getting the hash
2489 * switched - we have to switch the hash value properly even if it
2490 * then no longer matches the actual (corrupted) string of the target.
2491 * The hash value has to match the hash queue that the dentry is on..
2494 * __d_move - move a dentry
2495 * @dentry: entry to move
2496 * @target: new dentry
2497 * @exchange: exchange the two dentries
2499 * Update the dcache to reflect the move of a file name. Negative
2500 * dcache entries should not be moved in this way. Caller must hold
2501 * rename_lock, the i_mutex of the source and target directories,
2502 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2504 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2507 if (!dentry
->d_inode
)
2508 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2510 BUG_ON(d_ancestor(dentry
, target
));
2511 BUG_ON(d_ancestor(target
, dentry
));
2513 dentry_lock_for_move(dentry
, target
);
2515 write_seqcount_begin(&dentry
->d_seq
);
2516 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2518 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2521 * Move the dentry to the target hash queue. Don't bother checking
2522 * for the same hash queue because of how unlikely it is.
2525 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2528 * Unhash the target (d_delete() is not usable here). If exchanging
2529 * the two dentries, then rehash onto the other's hash queue.
2534 d_hash(dentry
->d_parent
, dentry
->d_name
.hash
));
2537 list_del(&dentry
->d_u
.d_child
);
2538 list_del(&target
->d_u
.d_child
);
2540 /* Switch the names.. */
2541 switch_names(dentry
, target
);
2542 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
2544 /* ... and switch the parents */
2545 if (IS_ROOT(dentry
)) {
2546 dentry
->d_parent
= target
->d_parent
;
2547 target
->d_parent
= target
;
2548 INIT_LIST_HEAD(&target
->d_u
.d_child
);
2550 swap(dentry
->d_parent
, target
->d_parent
);
2552 /* And add them back to the (new) parent lists */
2553 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
2556 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
2558 write_seqcount_end(&target
->d_seq
);
2559 write_seqcount_end(&dentry
->d_seq
);
2561 dentry_unlock_parents_for_move(dentry
, target
);
2563 fsnotify_d_move(target
);
2564 spin_unlock(&target
->d_lock
);
2565 fsnotify_d_move(dentry
);
2566 spin_unlock(&dentry
->d_lock
);
2570 * d_move - move a dentry
2571 * @dentry: entry to move
2572 * @target: new dentry
2574 * Update the dcache to reflect the move of a file name. Negative
2575 * dcache entries should not be moved in this way. See the locking
2576 * requirements for __d_move.
2578 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2580 write_seqlock(&rename_lock
);
2581 __d_move(dentry
, target
, false);
2582 write_sequnlock(&rename_lock
);
2584 EXPORT_SYMBOL(d_move
);
2587 * d_exchange - exchange two dentries
2588 * @dentry1: first dentry
2589 * @dentry2: second dentry
2591 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2593 write_seqlock(&rename_lock
);
2595 WARN_ON(!dentry1
->d_inode
);
2596 WARN_ON(!dentry2
->d_inode
);
2597 WARN_ON(IS_ROOT(dentry1
));
2598 WARN_ON(IS_ROOT(dentry2
));
2600 __d_move(dentry1
, dentry2
, true);
2602 write_sequnlock(&rename_lock
);
2606 * d_ancestor - search for an ancestor
2607 * @p1: ancestor dentry
2610 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2611 * an ancestor of p2, else NULL.
2613 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2617 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2618 if (p
->d_parent
== p1
)
2625 * This helper attempts to cope with remotely renamed directories
2627 * It assumes that the caller is already holding
2628 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2630 * Note: If ever the locking in lock_rename() changes, then please
2631 * remember to update this too...
2633 static struct dentry
*__d_unalias(struct inode
*inode
,
2634 struct dentry
*dentry
, struct dentry
*alias
)
2636 struct mutex
*m1
= NULL
, *m2
= NULL
;
2637 struct dentry
*ret
= ERR_PTR(-EBUSY
);
2639 /* If alias and dentry share a parent, then no extra locks required */
2640 if (alias
->d_parent
== dentry
->d_parent
)
2643 /* See lock_rename() */
2644 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2646 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2647 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2649 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2651 if (likely(!d_mountpoint(alias
))) {
2652 __d_move(alias
, dentry
, false);
2656 spin_unlock(&inode
->i_lock
);
2665 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2666 * named dentry in place of the dentry to be replaced.
2667 * returns with anon->d_lock held!
2669 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
2671 struct dentry
*dparent
;
2673 dentry_lock_for_move(anon
, dentry
);
2675 write_seqcount_begin(&dentry
->d_seq
);
2676 write_seqcount_begin_nested(&anon
->d_seq
, DENTRY_D_LOCK_NESTED
);
2678 dparent
= dentry
->d_parent
;
2680 switch_names(dentry
, anon
);
2681 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
2683 dentry
->d_parent
= dentry
;
2684 list_del_init(&dentry
->d_u
.d_child
);
2685 anon
->d_parent
= dparent
;
2686 list_move(&anon
->d_u
.d_child
, &dparent
->d_subdirs
);
2688 write_seqcount_end(&dentry
->d_seq
);
2689 write_seqcount_end(&anon
->d_seq
);
2691 dentry_unlock_parents_for_move(anon
, dentry
);
2692 spin_unlock(&dentry
->d_lock
);
2694 /* anon->d_lock still locked, returns locked */
2698 * d_materialise_unique - introduce an inode into the tree
2699 * @dentry: candidate dentry
2700 * @inode: inode to bind to the dentry, to which aliases may be attached
2702 * Introduces an dentry into the tree, substituting an extant disconnected
2703 * root directory alias in its place if there is one. Caller must hold the
2704 * i_mutex of the parent directory.
2706 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
2708 struct dentry
*actual
;
2710 BUG_ON(!d_unhashed(dentry
));
2714 __d_instantiate(dentry
, NULL
);
2719 spin_lock(&inode
->i_lock
);
2721 if (S_ISDIR(inode
->i_mode
)) {
2722 struct dentry
*alias
;
2724 /* Does an aliased dentry already exist? */
2725 alias
= __d_find_alias(inode
, 0);
2728 write_seqlock(&rename_lock
);
2730 if (d_ancestor(alias
, dentry
)) {
2731 /* Check for loops */
2732 actual
= ERR_PTR(-ELOOP
);
2733 spin_unlock(&inode
->i_lock
);
2734 } else if (IS_ROOT(alias
)) {
2735 /* Is this an anonymous mountpoint that we
2736 * could splice into our tree? */
2737 __d_materialise_dentry(dentry
, alias
);
2738 write_sequnlock(&rename_lock
);
2742 /* Nope, but we must(!) avoid directory
2743 * aliasing. This drops inode->i_lock */
2744 actual
= __d_unalias(inode
, dentry
, alias
);
2746 write_sequnlock(&rename_lock
);
2747 if (IS_ERR(actual
)) {
2748 if (PTR_ERR(actual
) == -ELOOP
)
2749 pr_warn_ratelimited(
2750 "VFS: Lookup of '%s' in %s %s"
2751 " would have caused loop\n",
2752 dentry
->d_name
.name
,
2753 inode
->i_sb
->s_type
->name
,
2761 /* Add a unique reference */
2762 actual
= __d_instantiate_unique(dentry
, inode
);
2766 BUG_ON(!d_unhashed(actual
));
2768 spin_lock(&actual
->d_lock
);
2771 spin_unlock(&actual
->d_lock
);
2772 spin_unlock(&inode
->i_lock
);
2774 if (actual
== dentry
) {
2775 security_d_instantiate(dentry
, inode
);
2782 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2784 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2788 return -ENAMETOOLONG
;
2790 memcpy(*buffer
, str
, namelen
);
2795 * prepend_name - prepend a pathname in front of current buffer pointer
2796 * @buffer: buffer pointer
2797 * @buflen: allocated length of the buffer
2798 * @name: name string and length qstr structure
2800 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2801 * make sure that either the old or the new name pointer and length are
2802 * fetched. However, there may be mismatch between length and pointer.
2803 * The length cannot be trusted, we need to copy it byte-by-byte until
2804 * the length is reached or a null byte is found. It also prepends "/" at
2805 * the beginning of the name. The sequence number check at the caller will
2806 * retry it again when a d_move() does happen. So any garbage in the buffer
2807 * due to mismatched pointer and length will be discarded.
2809 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2811 const char *dname
= ACCESS_ONCE(name
->name
);
2812 u32 dlen
= ACCESS_ONCE(name
->len
);
2815 *buflen
-= dlen
+ 1;
2817 return -ENAMETOOLONG
;
2818 p
= *buffer
-= dlen
+ 1;
2830 * prepend_path - Prepend path string to a buffer
2831 * @path: the dentry/vfsmount to report
2832 * @root: root vfsmnt/dentry
2833 * @buffer: pointer to the end of the buffer
2834 * @buflen: pointer to buffer length
2836 * The function will first try to write out the pathname without taking any
2837 * lock other than the RCU read lock to make sure that dentries won't go away.
2838 * It only checks the sequence number of the global rename_lock as any change
2839 * in the dentry's d_seq will be preceded by changes in the rename_lock
2840 * sequence number. If the sequence number had been changed, it will restart
2841 * the whole pathname back-tracing sequence again by taking the rename_lock.
2842 * In this case, there is no need to take the RCU read lock as the recursive
2843 * parent pointer references will keep the dentry chain alive as long as no
2844 * rename operation is performed.
2846 static int prepend_path(const struct path
*path
,
2847 const struct path
*root
,
2848 char **buffer
, int *buflen
)
2850 struct dentry
*dentry
;
2851 struct vfsmount
*vfsmnt
;
2854 unsigned seq
, m_seq
= 0;
2860 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
2867 dentry
= path
->dentry
;
2869 mnt
= real_mount(vfsmnt
);
2870 read_seqbegin_or_lock(&rename_lock
, &seq
);
2871 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2872 struct dentry
* parent
;
2874 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2875 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
2877 if (mnt
!= parent
) {
2878 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
2884 * Filesystems needing to implement special "root names"
2885 * should do so with ->d_dname()
2887 if (IS_ROOT(dentry
) &&
2888 (dentry
->d_name
.len
!= 1 ||
2889 dentry
->d_name
.name
[0] != '/')) {
2890 WARN(1, "Root dentry has weird name <%.*s>\n",
2891 (int) dentry
->d_name
.len
,
2892 dentry
->d_name
.name
);
2895 error
= is_mounted(vfsmnt
) ? 1 : 2;
2898 parent
= dentry
->d_parent
;
2900 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
2908 if (need_seqretry(&rename_lock
, seq
)) {
2912 done_seqretry(&rename_lock
, seq
);
2916 if (need_seqretry(&mount_lock
, m_seq
)) {
2920 done_seqretry(&mount_lock
, m_seq
);
2922 if (error
>= 0 && bptr
== *buffer
) {
2924 error
= -ENAMETOOLONG
;
2934 * __d_path - return the path of a dentry
2935 * @path: the dentry/vfsmount to report
2936 * @root: root vfsmnt/dentry
2937 * @buf: buffer to return value in
2938 * @buflen: buffer length
2940 * Convert a dentry into an ASCII path name.
2942 * Returns a pointer into the buffer or an error code if the
2943 * path was too long.
2945 * "buflen" should be positive.
2947 * If the path is not reachable from the supplied root, return %NULL.
2949 char *__d_path(const struct path
*path
,
2950 const struct path
*root
,
2951 char *buf
, int buflen
)
2953 char *res
= buf
+ buflen
;
2956 prepend(&res
, &buflen
, "\0", 1);
2957 error
= prepend_path(path
, root
, &res
, &buflen
);
2960 return ERR_PTR(error
);
2966 char *d_absolute_path(const struct path
*path
,
2967 char *buf
, int buflen
)
2969 struct path root
= {};
2970 char *res
= buf
+ buflen
;
2973 prepend(&res
, &buflen
, "\0", 1);
2974 error
= prepend_path(path
, &root
, &res
, &buflen
);
2979 return ERR_PTR(error
);
2984 * same as __d_path but appends "(deleted)" for unlinked files.
2986 static int path_with_deleted(const struct path
*path
,
2987 const struct path
*root
,
2988 char **buf
, int *buflen
)
2990 prepend(buf
, buflen
, "\0", 1);
2991 if (d_unlinked(path
->dentry
)) {
2992 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2997 return prepend_path(path
, root
, buf
, buflen
);
3000 static int prepend_unreachable(char **buffer
, int *buflen
)
3002 return prepend(buffer
, buflen
, "(unreachable)", 13);
3005 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3010 seq
= read_seqcount_begin(&fs
->seq
);
3012 } while (read_seqcount_retry(&fs
->seq
, seq
));
3016 * d_path - return the path of a dentry
3017 * @path: path to report
3018 * @buf: buffer to return value in
3019 * @buflen: buffer length
3021 * Convert a dentry into an ASCII path name. If the entry has been deleted
3022 * the string " (deleted)" is appended. Note that this is ambiguous.
3024 * Returns a pointer into the buffer or an error code if the path was
3025 * too long. Note: Callers should use the returned pointer, not the passed
3026 * in buffer, to use the name! The implementation often starts at an offset
3027 * into the buffer, and may leave 0 bytes at the start.
3029 * "buflen" should be positive.
3031 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3033 char *res
= buf
+ buflen
;
3038 * We have various synthetic filesystems that never get mounted. On
3039 * these filesystems dentries are never used for lookup purposes, and
3040 * thus don't need to be hashed. They also don't need a name until a
3041 * user wants to identify the object in /proc/pid/fd/. The little hack
3042 * below allows us to generate a name for these objects on demand:
3044 * Some pseudo inodes are mountable. When they are mounted
3045 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3046 * and instead have d_path return the mounted path.
3048 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3049 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3050 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3053 get_fs_root_rcu(current
->fs
, &root
);
3054 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3058 res
= ERR_PTR(error
);
3061 EXPORT_SYMBOL(d_path
);
3064 * Helper function for dentry_operations.d_dname() members
3066 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3067 const char *fmt
, ...)
3073 va_start(args
, fmt
);
3074 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3077 if (sz
> sizeof(temp
) || sz
> buflen
)
3078 return ERR_PTR(-ENAMETOOLONG
);
3080 buffer
+= buflen
- sz
;
3081 return memcpy(buffer
, temp
, sz
);
3084 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3086 char *end
= buffer
+ buflen
;
3087 /* these dentries are never renamed, so d_lock is not needed */
3088 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3089 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3090 prepend(&end
, &buflen
, "/", 1))
3091 end
= ERR_PTR(-ENAMETOOLONG
);
3094 EXPORT_SYMBOL(simple_dname
);
3097 * Write full pathname from the root of the filesystem into the buffer.
3099 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3101 struct dentry
*dentry
;
3114 prepend(&end
, &len
, "\0", 1);
3118 read_seqbegin_or_lock(&rename_lock
, &seq
);
3119 while (!IS_ROOT(dentry
)) {
3120 struct dentry
*parent
= dentry
->d_parent
;
3123 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3132 if (need_seqretry(&rename_lock
, seq
)) {
3136 done_seqretry(&rename_lock
, seq
);
3141 return ERR_PTR(-ENAMETOOLONG
);
3144 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3146 return __dentry_path(dentry
, buf
, buflen
);
3148 EXPORT_SYMBOL(dentry_path_raw
);
3150 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3155 if (d_unlinked(dentry
)) {
3157 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3161 retval
= __dentry_path(dentry
, buf
, buflen
);
3162 if (!IS_ERR(retval
) && p
)
3163 *p
= '/'; /* restore '/' overriden with '\0' */
3166 return ERR_PTR(-ENAMETOOLONG
);
3169 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3175 seq
= read_seqcount_begin(&fs
->seq
);
3178 } while (read_seqcount_retry(&fs
->seq
, seq
));
3182 * NOTE! The user-level library version returns a
3183 * character pointer. The kernel system call just
3184 * returns the length of the buffer filled (which
3185 * includes the ending '\0' character), or a negative
3186 * error value. So libc would do something like
3188 * char *getcwd(char * buf, size_t size)
3192 * retval = sys_getcwd(buf, size);
3199 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3202 struct path pwd
, root
;
3203 char *page
= __getname();
3209 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3212 if (!d_unlinked(pwd
.dentry
)) {
3214 char *cwd
= page
+ PATH_MAX
;
3215 int buflen
= PATH_MAX
;
3217 prepend(&cwd
, &buflen
, "\0", 1);
3218 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3224 /* Unreachable from current root */
3226 error
= prepend_unreachable(&cwd
, &buflen
);
3232 len
= PATH_MAX
+ page
- cwd
;
3235 if (copy_to_user(buf
, cwd
, len
))
3248 * Test whether new_dentry is a subdirectory of old_dentry.
3250 * Trivially implemented using the dcache structure
3254 * is_subdir - is new dentry a subdirectory of old_dentry
3255 * @new_dentry: new dentry
3256 * @old_dentry: old dentry
3258 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3259 * Returns 0 otherwise.
3260 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3263 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3268 if (new_dentry
== old_dentry
)
3272 /* for restarting inner loop in case of seq retry */
3273 seq
= read_seqbegin(&rename_lock
);
3275 * Need rcu_readlock to protect against the d_parent trashing
3279 if (d_ancestor(old_dentry
, new_dentry
))
3284 } while (read_seqretry(&rename_lock
, seq
));
3289 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3291 struct dentry
*root
= data
;
3292 if (dentry
!= root
) {
3293 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3296 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3297 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3298 dentry
->d_lockref
.count
--;
3301 return D_WALK_CONTINUE
;
3304 void d_genocide(struct dentry
*parent
)
3306 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3309 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3311 inode_dec_link_count(inode
);
3312 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3313 !hlist_unhashed(&dentry
->d_alias
) ||
3314 !d_unlinked(dentry
));
3315 spin_lock(&dentry
->d_parent
->d_lock
);
3316 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3317 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3318 (unsigned long long)inode
->i_ino
);
3319 spin_unlock(&dentry
->d_lock
);
3320 spin_unlock(&dentry
->d_parent
->d_lock
);
3321 d_instantiate(dentry
, inode
);
3323 EXPORT_SYMBOL(d_tmpfile
);
3325 static __initdata
unsigned long dhash_entries
;
3326 static int __init
set_dhash_entries(char *str
)
3330 dhash_entries
= simple_strtoul(str
, &str
, 0);
3333 __setup("dhash_entries=", set_dhash_entries
);
3335 static void __init
dcache_init_early(void)
3339 /* If hashes are distributed across NUMA nodes, defer
3340 * hash allocation until vmalloc space is available.
3346 alloc_large_system_hash("Dentry cache",
3347 sizeof(struct hlist_bl_head
),
3356 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3357 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3360 static void __init
dcache_init(void)
3365 * A constructor could be added for stable state like the lists,
3366 * but it is probably not worth it because of the cache nature
3369 dentry_cache
= KMEM_CACHE(dentry
,
3370 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3372 /* Hash may have been set up in dcache_init_early */
3377 alloc_large_system_hash("Dentry cache",
3378 sizeof(struct hlist_bl_head
),
3387 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3388 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3391 /* SLAB cache for __getname() consumers */
3392 struct kmem_cache
*names_cachep __read_mostly
;
3393 EXPORT_SYMBOL(names_cachep
);
3395 EXPORT_SYMBOL(d_genocide
);
3397 void __init
vfs_caches_init_early(void)
3399 dcache_init_early();
3403 void __init
vfs_caches_init(unsigned long mempages
)
3405 unsigned long reserve
;
3407 /* Base hash sizes on available memory, with a reserve equal to
3408 150% of current kernel size */
3410 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3411 mempages
-= reserve
;
3413 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3414 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3418 files_init(mempages
);