Merge branch 'acpi-thermal'
[linux/fpc-iii.git] / fs / dcache.c
blobbe2bea834bf459563e2d03e1e0fa8dec97b49c70
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
45 * Usage:
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
58 * - d_count
59 * - d_unhashed()
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_alias, d_inode
64 * Ordering:
65 * dentry->d_inode->i_lock
66 * dentry->d_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
69 * s_anon lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
87 EXPORT_SYMBOL(rename_lock);
89 static struct kmem_cache *dentry_cache __read_mostly;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
106 unsigned int hash)
108 hash += (unsigned long) parent / L1_CACHE_BYTES;
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
118 static DEFINE_PER_CPU(long, nr_dentry);
119 static DEFINE_PER_CPU(long, nr_dentry_unused);
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
135 static long get_nr_dentry(void)
137 int i;
138 long sum = 0;
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
144 static long get_nr_dentry_unused(void)
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
153 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
156 dentry_stat.nr_dentry = get_nr_dentry();
157 dentry_stat.nr_unused = get_nr_dentry_unused();
158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
160 #endif
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
166 #ifdef CONFIG_DCACHE_WORD_ACCESS
168 #include <asm/word-at-a-time.h>
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
178 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 unsigned long a,b,mask;
182 for (;;) {
183 a = *(unsigned long *)cs;
184 b = load_unaligned_zeropad(ct);
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
195 mask = bytemask_from_count(tcount);
196 return unlikely(!!((a ^ b) & mask));
199 #else
201 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
213 #endif
215 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
217 const unsigned char *cs;
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
239 static void __d_free(struct rcu_head *head)
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
249 static void dentry_free(struct dentry *dentry)
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
260 * @dentry: the target dentry
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
265 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
273 * Release the dentry's inode, using the filesystem
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
277 static void dentry_iput(struct dentry * dentry)
278 __releases(dentry->d_lock)
279 __releases(dentry->d_inode->i_lock)
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
284 hlist_del_init(&dentry->d_alias);
285 spin_unlock(&dentry->d_lock);
286 spin_unlock(&inode->i_lock);
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
302 static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
304 __releases(dentry->d_inode->i_lock)
306 struct inode *inode = dentry->d_inode;
307 __d_clear_type(dentry);
308 dentry->d_inode = NULL;
309 hlist_del_init(&dentry->d_alias);
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
312 spin_unlock(&inode->i_lock);
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
335 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336 static void d_lru_add(struct dentry *dentry)
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
344 static void d_lru_del(struct dentry *dentry)
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
352 static void d_shrink_del(struct dentry *dentry)
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
360 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
374 static void d_lru_isolate(struct dentry *dentry)
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
382 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
390 * dentry_lru_(add|del)_list) must be called with d_lock held.
392 static void dentry_lru_add(struct dentry *dentry)
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
399 * d_drop - drop a dentry
400 * @dentry: dentry to drop
402 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
403 * be found through a VFS lookup any more. Note that this is different from
404 * deleting the dentry - d_delete will try to mark the dentry negative if
405 * possible, giving a successful _negative_ lookup, while d_drop will
406 * just make the cache lookup fail.
408 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
409 * reason (NFS timeouts or autofs deletes).
411 * __d_drop requires dentry->d_lock.
413 void __d_drop(struct dentry *dentry)
415 if (!d_unhashed(dentry)) {
416 struct hlist_bl_head *b;
418 * Hashed dentries are normally on the dentry hashtable,
419 * with the exception of those newly allocated by
420 * d_obtain_alias, which are always IS_ROOT:
422 if (unlikely(IS_ROOT(dentry)))
423 b = &dentry->d_sb->s_anon;
424 else
425 b = d_hash(dentry->d_parent, dentry->d_name.hash);
427 hlist_bl_lock(b);
428 __hlist_bl_del(&dentry->d_hash);
429 dentry->d_hash.pprev = NULL;
430 hlist_bl_unlock(b);
431 dentry_rcuwalk_barrier(dentry);
434 EXPORT_SYMBOL(__d_drop);
436 void d_drop(struct dentry *dentry)
438 spin_lock(&dentry->d_lock);
439 __d_drop(dentry);
440 spin_unlock(&dentry->d_lock);
442 EXPORT_SYMBOL(d_drop);
444 static void __dentry_kill(struct dentry *dentry)
446 struct dentry *parent = NULL;
447 bool can_free = true;
448 if (!IS_ROOT(dentry))
449 parent = dentry->d_parent;
452 * The dentry is now unrecoverably dead to the world.
454 lockref_mark_dead(&dentry->d_lockref);
457 * inform the fs via d_prune that this dentry is about to be
458 * unhashed and destroyed.
460 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
461 dentry->d_op->d_prune(dentry);
463 if (dentry->d_flags & DCACHE_LRU_LIST) {
464 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
465 d_lru_del(dentry);
467 /* if it was on the hash then remove it */
468 __d_drop(dentry);
469 list_del(&dentry->d_u.d_child);
471 * Inform d_walk() that we are no longer attached to the
472 * dentry tree
474 dentry->d_flags |= DCACHE_DENTRY_KILLED;
475 if (parent)
476 spin_unlock(&parent->d_lock);
477 dentry_iput(dentry);
479 * dentry_iput drops the locks, at which point nobody (except
480 * transient RCU lookups) can reach this dentry.
482 BUG_ON((int)dentry->d_lockref.count > 0);
483 this_cpu_dec(nr_dentry);
484 if (dentry->d_op && dentry->d_op->d_release)
485 dentry->d_op->d_release(dentry);
487 spin_lock(&dentry->d_lock);
488 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
489 dentry->d_flags |= DCACHE_MAY_FREE;
490 can_free = false;
492 spin_unlock(&dentry->d_lock);
493 if (likely(can_free))
494 dentry_free(dentry);
498 * Finish off a dentry we've decided to kill.
499 * dentry->d_lock must be held, returns with it unlocked.
500 * If ref is non-zero, then decrement the refcount too.
501 * Returns dentry requiring refcount drop, or NULL if we're done.
503 static struct dentry *dentry_kill(struct dentry *dentry)
504 __releases(dentry->d_lock)
506 struct inode *inode = dentry->d_inode;
507 struct dentry *parent = NULL;
509 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
510 goto failed;
512 if (!IS_ROOT(dentry)) {
513 parent = dentry->d_parent;
514 if (unlikely(!spin_trylock(&parent->d_lock))) {
515 if (inode)
516 spin_unlock(&inode->i_lock);
517 goto failed;
521 __dentry_kill(dentry);
522 return parent;
524 failed:
525 spin_unlock(&dentry->d_lock);
526 cpu_relax();
527 return dentry; /* try again with same dentry */
530 static inline struct dentry *lock_parent(struct dentry *dentry)
532 struct dentry *parent = dentry->d_parent;
533 if (IS_ROOT(dentry))
534 return NULL;
535 if (likely(spin_trylock(&parent->d_lock)))
536 return parent;
537 spin_unlock(&dentry->d_lock);
538 rcu_read_lock();
539 again:
540 parent = ACCESS_ONCE(dentry->d_parent);
541 spin_lock(&parent->d_lock);
543 * We can't blindly lock dentry until we are sure
544 * that we won't violate the locking order.
545 * Any changes of dentry->d_parent must have
546 * been done with parent->d_lock held, so
547 * spin_lock() above is enough of a barrier
548 * for checking if it's still our child.
550 if (unlikely(parent != dentry->d_parent)) {
551 spin_unlock(&parent->d_lock);
552 goto again;
554 rcu_read_unlock();
555 if (parent != dentry)
556 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
557 else
558 parent = NULL;
559 return parent;
563 * This is dput
565 * This is complicated by the fact that we do not want to put
566 * dentries that are no longer on any hash chain on the unused
567 * list: we'd much rather just get rid of them immediately.
569 * However, that implies that we have to traverse the dentry
570 * tree upwards to the parents which might _also_ now be
571 * scheduled for deletion (it may have been only waiting for
572 * its last child to go away).
574 * This tail recursion is done by hand as we don't want to depend
575 * on the compiler to always get this right (gcc generally doesn't).
576 * Real recursion would eat up our stack space.
580 * dput - release a dentry
581 * @dentry: dentry to release
583 * Release a dentry. This will drop the usage count and if appropriate
584 * call the dentry unlink method as well as removing it from the queues and
585 * releasing its resources. If the parent dentries were scheduled for release
586 * they too may now get deleted.
588 void dput(struct dentry *dentry)
590 if (unlikely(!dentry))
591 return;
593 repeat:
594 if (lockref_put_or_lock(&dentry->d_lockref))
595 return;
597 /* Unreachable? Get rid of it */
598 if (unlikely(d_unhashed(dentry)))
599 goto kill_it;
601 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
602 if (dentry->d_op->d_delete(dentry))
603 goto kill_it;
606 if (!(dentry->d_flags & DCACHE_REFERENCED))
607 dentry->d_flags |= DCACHE_REFERENCED;
608 dentry_lru_add(dentry);
610 dentry->d_lockref.count--;
611 spin_unlock(&dentry->d_lock);
612 return;
614 kill_it:
615 dentry = dentry_kill(dentry);
616 if (dentry)
617 goto repeat;
619 EXPORT_SYMBOL(dput);
622 * d_invalidate - invalidate a dentry
623 * @dentry: dentry to invalidate
625 * Try to invalidate the dentry if it turns out to be
626 * possible. If there are other dentries that can be
627 * reached through this one we can't delete it and we
628 * return -EBUSY. On success we return 0.
630 * no dcache lock.
633 int d_invalidate(struct dentry * dentry)
636 * If it's already been dropped, return OK.
638 spin_lock(&dentry->d_lock);
639 if (d_unhashed(dentry)) {
640 spin_unlock(&dentry->d_lock);
641 return 0;
644 * Check whether to do a partial shrink_dcache
645 * to get rid of unused child entries.
647 if (!list_empty(&dentry->d_subdirs)) {
648 spin_unlock(&dentry->d_lock);
649 shrink_dcache_parent(dentry);
650 spin_lock(&dentry->d_lock);
654 * Somebody else still using it?
656 * If it's a directory, we can't drop it
657 * for fear of somebody re-populating it
658 * with children (even though dropping it
659 * would make it unreachable from the root,
660 * we might still populate it if it was a
661 * working directory or similar).
662 * We also need to leave mountpoints alone,
663 * directory or not.
665 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
666 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
667 spin_unlock(&dentry->d_lock);
668 return -EBUSY;
672 __d_drop(dentry);
673 spin_unlock(&dentry->d_lock);
674 return 0;
676 EXPORT_SYMBOL(d_invalidate);
678 /* This must be called with d_lock held */
679 static inline void __dget_dlock(struct dentry *dentry)
681 dentry->d_lockref.count++;
684 static inline void __dget(struct dentry *dentry)
686 lockref_get(&dentry->d_lockref);
689 struct dentry *dget_parent(struct dentry *dentry)
691 int gotref;
692 struct dentry *ret;
695 * Do optimistic parent lookup without any
696 * locking.
698 rcu_read_lock();
699 ret = ACCESS_ONCE(dentry->d_parent);
700 gotref = lockref_get_not_zero(&ret->d_lockref);
701 rcu_read_unlock();
702 if (likely(gotref)) {
703 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
704 return ret;
705 dput(ret);
708 repeat:
710 * Don't need rcu_dereference because we re-check it was correct under
711 * the lock.
713 rcu_read_lock();
714 ret = dentry->d_parent;
715 spin_lock(&ret->d_lock);
716 if (unlikely(ret != dentry->d_parent)) {
717 spin_unlock(&ret->d_lock);
718 rcu_read_unlock();
719 goto repeat;
721 rcu_read_unlock();
722 BUG_ON(!ret->d_lockref.count);
723 ret->d_lockref.count++;
724 spin_unlock(&ret->d_lock);
725 return ret;
727 EXPORT_SYMBOL(dget_parent);
730 * d_find_alias - grab a hashed alias of inode
731 * @inode: inode in question
732 * @want_discon: flag, used by d_splice_alias, to request
733 * that only a DISCONNECTED alias be returned.
735 * If inode has a hashed alias, or is a directory and has any alias,
736 * acquire the reference to alias and return it. Otherwise return NULL.
737 * Notice that if inode is a directory there can be only one alias and
738 * it can be unhashed only if it has no children, or if it is the root
739 * of a filesystem.
741 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
742 * any other hashed alias over that one unless @want_discon is set,
743 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
745 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
747 struct dentry *alias, *discon_alias;
749 again:
750 discon_alias = NULL;
751 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
752 spin_lock(&alias->d_lock);
753 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
754 if (IS_ROOT(alias) &&
755 (alias->d_flags & DCACHE_DISCONNECTED)) {
756 discon_alias = alias;
757 } else if (!want_discon) {
758 __dget_dlock(alias);
759 spin_unlock(&alias->d_lock);
760 return alias;
763 spin_unlock(&alias->d_lock);
765 if (discon_alias) {
766 alias = discon_alias;
767 spin_lock(&alias->d_lock);
768 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
769 if (IS_ROOT(alias) &&
770 (alias->d_flags & DCACHE_DISCONNECTED)) {
771 __dget_dlock(alias);
772 spin_unlock(&alias->d_lock);
773 return alias;
776 spin_unlock(&alias->d_lock);
777 goto again;
779 return NULL;
782 struct dentry *d_find_alias(struct inode *inode)
784 struct dentry *de = NULL;
786 if (!hlist_empty(&inode->i_dentry)) {
787 spin_lock(&inode->i_lock);
788 de = __d_find_alias(inode, 0);
789 spin_unlock(&inode->i_lock);
791 return de;
793 EXPORT_SYMBOL(d_find_alias);
796 * Try to kill dentries associated with this inode.
797 * WARNING: you must own a reference to inode.
799 void d_prune_aliases(struct inode *inode)
801 struct dentry *dentry;
802 restart:
803 spin_lock(&inode->i_lock);
804 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
805 spin_lock(&dentry->d_lock);
806 if (!dentry->d_lockref.count) {
808 * inform the fs via d_prune that this dentry
809 * is about to be unhashed and destroyed.
811 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
812 !d_unhashed(dentry))
813 dentry->d_op->d_prune(dentry);
815 __dget_dlock(dentry);
816 __d_drop(dentry);
817 spin_unlock(&dentry->d_lock);
818 spin_unlock(&inode->i_lock);
819 dput(dentry);
820 goto restart;
822 spin_unlock(&dentry->d_lock);
824 spin_unlock(&inode->i_lock);
826 EXPORT_SYMBOL(d_prune_aliases);
828 static void shrink_dentry_list(struct list_head *list)
830 struct dentry *dentry, *parent;
832 while (!list_empty(list)) {
833 struct inode *inode;
834 dentry = list_entry(list->prev, struct dentry, d_lru);
835 spin_lock(&dentry->d_lock);
836 parent = lock_parent(dentry);
839 * The dispose list is isolated and dentries are not accounted
840 * to the LRU here, so we can simply remove it from the list
841 * here regardless of whether it is referenced or not.
843 d_shrink_del(dentry);
846 * We found an inuse dentry which was not removed from
847 * the LRU because of laziness during lookup. Do not free it.
849 if ((int)dentry->d_lockref.count > 0) {
850 spin_unlock(&dentry->d_lock);
851 if (parent)
852 spin_unlock(&parent->d_lock);
853 continue;
857 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
858 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
859 spin_unlock(&dentry->d_lock);
860 if (parent)
861 spin_unlock(&parent->d_lock);
862 if (can_free)
863 dentry_free(dentry);
864 continue;
867 inode = dentry->d_inode;
868 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
869 d_shrink_add(dentry, list);
870 spin_unlock(&dentry->d_lock);
871 if (parent)
872 spin_unlock(&parent->d_lock);
873 continue;
876 __dentry_kill(dentry);
879 * We need to prune ancestors too. This is necessary to prevent
880 * quadratic behavior of shrink_dcache_parent(), but is also
881 * expected to be beneficial in reducing dentry cache
882 * fragmentation.
884 dentry = parent;
885 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
886 parent = lock_parent(dentry);
887 if (dentry->d_lockref.count != 1) {
888 dentry->d_lockref.count--;
889 spin_unlock(&dentry->d_lock);
890 if (parent)
891 spin_unlock(&parent->d_lock);
892 break;
894 inode = dentry->d_inode; /* can't be NULL */
895 if (unlikely(!spin_trylock(&inode->i_lock))) {
896 spin_unlock(&dentry->d_lock);
897 if (parent)
898 spin_unlock(&parent->d_lock);
899 cpu_relax();
900 continue;
902 __dentry_kill(dentry);
903 dentry = parent;
908 static enum lru_status
909 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
911 struct list_head *freeable = arg;
912 struct dentry *dentry = container_of(item, struct dentry, d_lru);
916 * we are inverting the lru lock/dentry->d_lock here,
917 * so use a trylock. If we fail to get the lock, just skip
918 * it
920 if (!spin_trylock(&dentry->d_lock))
921 return LRU_SKIP;
924 * Referenced dentries are still in use. If they have active
925 * counts, just remove them from the LRU. Otherwise give them
926 * another pass through the LRU.
928 if (dentry->d_lockref.count) {
929 d_lru_isolate(dentry);
930 spin_unlock(&dentry->d_lock);
931 return LRU_REMOVED;
934 if (dentry->d_flags & DCACHE_REFERENCED) {
935 dentry->d_flags &= ~DCACHE_REFERENCED;
936 spin_unlock(&dentry->d_lock);
939 * The list move itself will be made by the common LRU code. At
940 * this point, we've dropped the dentry->d_lock but keep the
941 * lru lock. This is safe to do, since every list movement is
942 * protected by the lru lock even if both locks are held.
944 * This is guaranteed by the fact that all LRU management
945 * functions are intermediated by the LRU API calls like
946 * list_lru_add and list_lru_del. List movement in this file
947 * only ever occur through this functions or through callbacks
948 * like this one, that are called from the LRU API.
950 * The only exceptions to this are functions like
951 * shrink_dentry_list, and code that first checks for the
952 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
953 * operating only with stack provided lists after they are
954 * properly isolated from the main list. It is thus, always a
955 * local access.
957 return LRU_ROTATE;
960 d_lru_shrink_move(dentry, freeable);
961 spin_unlock(&dentry->d_lock);
963 return LRU_REMOVED;
967 * prune_dcache_sb - shrink the dcache
968 * @sb: superblock
969 * @nr_to_scan : number of entries to try to free
970 * @nid: which node to scan for freeable entities
972 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
973 * done when we need more memory an called from the superblock shrinker
974 * function.
976 * This function may fail to free any resources if all the dentries are in
977 * use.
979 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
980 int nid)
982 LIST_HEAD(dispose);
983 long freed;
985 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
986 &dispose, &nr_to_scan);
987 shrink_dentry_list(&dispose);
988 return freed;
991 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
992 spinlock_t *lru_lock, void *arg)
994 struct list_head *freeable = arg;
995 struct dentry *dentry = container_of(item, struct dentry, d_lru);
998 * we are inverting the lru lock/dentry->d_lock here,
999 * so use a trylock. If we fail to get the lock, just skip
1000 * it
1002 if (!spin_trylock(&dentry->d_lock))
1003 return LRU_SKIP;
1005 d_lru_shrink_move(dentry, freeable);
1006 spin_unlock(&dentry->d_lock);
1008 return LRU_REMOVED;
1013 * shrink_dcache_sb - shrink dcache for a superblock
1014 * @sb: superblock
1016 * Shrink the dcache for the specified super block. This is used to free
1017 * the dcache before unmounting a file system.
1019 void shrink_dcache_sb(struct super_block *sb)
1021 long freed;
1023 do {
1024 LIST_HEAD(dispose);
1026 freed = list_lru_walk(&sb->s_dentry_lru,
1027 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1029 this_cpu_sub(nr_dentry_unused, freed);
1030 shrink_dentry_list(&dispose);
1031 } while (freed > 0);
1033 EXPORT_SYMBOL(shrink_dcache_sb);
1036 * enum d_walk_ret - action to talke during tree walk
1037 * @D_WALK_CONTINUE: contrinue walk
1038 * @D_WALK_QUIT: quit walk
1039 * @D_WALK_NORETRY: quit when retry is needed
1040 * @D_WALK_SKIP: skip this dentry and its children
1042 enum d_walk_ret {
1043 D_WALK_CONTINUE,
1044 D_WALK_QUIT,
1045 D_WALK_NORETRY,
1046 D_WALK_SKIP,
1050 * d_walk - walk the dentry tree
1051 * @parent: start of walk
1052 * @data: data passed to @enter() and @finish()
1053 * @enter: callback when first entering the dentry
1054 * @finish: callback when successfully finished the walk
1056 * The @enter() and @finish() callbacks are called with d_lock held.
1058 static void d_walk(struct dentry *parent, void *data,
1059 enum d_walk_ret (*enter)(void *, struct dentry *),
1060 void (*finish)(void *))
1062 struct dentry *this_parent;
1063 struct list_head *next;
1064 unsigned seq = 0;
1065 enum d_walk_ret ret;
1066 bool retry = true;
1068 again:
1069 read_seqbegin_or_lock(&rename_lock, &seq);
1070 this_parent = parent;
1071 spin_lock(&this_parent->d_lock);
1073 ret = enter(data, this_parent);
1074 switch (ret) {
1075 case D_WALK_CONTINUE:
1076 break;
1077 case D_WALK_QUIT:
1078 case D_WALK_SKIP:
1079 goto out_unlock;
1080 case D_WALK_NORETRY:
1081 retry = false;
1082 break;
1084 repeat:
1085 next = this_parent->d_subdirs.next;
1086 resume:
1087 while (next != &this_parent->d_subdirs) {
1088 struct list_head *tmp = next;
1089 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1090 next = tmp->next;
1092 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1094 ret = enter(data, dentry);
1095 switch (ret) {
1096 case D_WALK_CONTINUE:
1097 break;
1098 case D_WALK_QUIT:
1099 spin_unlock(&dentry->d_lock);
1100 goto out_unlock;
1101 case D_WALK_NORETRY:
1102 retry = false;
1103 break;
1104 case D_WALK_SKIP:
1105 spin_unlock(&dentry->d_lock);
1106 continue;
1109 if (!list_empty(&dentry->d_subdirs)) {
1110 spin_unlock(&this_parent->d_lock);
1111 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1112 this_parent = dentry;
1113 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1114 goto repeat;
1116 spin_unlock(&dentry->d_lock);
1119 * All done at this level ... ascend and resume the search.
1121 if (this_parent != parent) {
1122 struct dentry *child = this_parent;
1123 this_parent = child->d_parent;
1125 rcu_read_lock();
1126 spin_unlock(&child->d_lock);
1127 spin_lock(&this_parent->d_lock);
1130 * might go back up the wrong parent if we have had a rename
1131 * or deletion
1133 if (this_parent != child->d_parent ||
1134 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1135 need_seqretry(&rename_lock, seq)) {
1136 spin_unlock(&this_parent->d_lock);
1137 rcu_read_unlock();
1138 goto rename_retry;
1140 rcu_read_unlock();
1141 next = child->d_u.d_child.next;
1142 goto resume;
1144 if (need_seqretry(&rename_lock, seq)) {
1145 spin_unlock(&this_parent->d_lock);
1146 goto rename_retry;
1148 if (finish)
1149 finish(data);
1151 out_unlock:
1152 spin_unlock(&this_parent->d_lock);
1153 done_seqretry(&rename_lock, seq);
1154 return;
1156 rename_retry:
1157 if (!retry)
1158 return;
1159 seq = 1;
1160 goto again;
1164 * Search for at least 1 mount point in the dentry's subdirs.
1165 * We descend to the next level whenever the d_subdirs
1166 * list is non-empty and continue searching.
1169 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1171 int *ret = data;
1172 if (d_mountpoint(dentry)) {
1173 *ret = 1;
1174 return D_WALK_QUIT;
1176 return D_WALK_CONTINUE;
1180 * have_submounts - check for mounts over a dentry
1181 * @parent: dentry to check.
1183 * Return true if the parent or its subdirectories contain
1184 * a mount point
1186 int have_submounts(struct dentry *parent)
1188 int ret = 0;
1190 d_walk(parent, &ret, check_mount, NULL);
1192 return ret;
1194 EXPORT_SYMBOL(have_submounts);
1197 * Called by mount code to set a mountpoint and check if the mountpoint is
1198 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1199 * subtree can become unreachable).
1201 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1202 * this reason take rename_lock and d_lock on dentry and ancestors.
1204 int d_set_mounted(struct dentry *dentry)
1206 struct dentry *p;
1207 int ret = -ENOENT;
1208 write_seqlock(&rename_lock);
1209 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1210 /* Need exclusion wrt. check_submounts_and_drop() */
1211 spin_lock(&p->d_lock);
1212 if (unlikely(d_unhashed(p))) {
1213 spin_unlock(&p->d_lock);
1214 goto out;
1216 spin_unlock(&p->d_lock);
1218 spin_lock(&dentry->d_lock);
1219 if (!d_unlinked(dentry)) {
1220 dentry->d_flags |= DCACHE_MOUNTED;
1221 ret = 0;
1223 spin_unlock(&dentry->d_lock);
1224 out:
1225 write_sequnlock(&rename_lock);
1226 return ret;
1230 * Search the dentry child list of the specified parent,
1231 * and move any unused dentries to the end of the unused
1232 * list for prune_dcache(). We descend to the next level
1233 * whenever the d_subdirs list is non-empty and continue
1234 * searching.
1236 * It returns zero iff there are no unused children,
1237 * otherwise it returns the number of children moved to
1238 * the end of the unused list. This may not be the total
1239 * number of unused children, because select_parent can
1240 * drop the lock and return early due to latency
1241 * constraints.
1244 struct select_data {
1245 struct dentry *start;
1246 struct list_head dispose;
1247 int found;
1250 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1252 struct select_data *data = _data;
1253 enum d_walk_ret ret = D_WALK_CONTINUE;
1255 if (data->start == dentry)
1256 goto out;
1258 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1259 data->found++;
1260 } else {
1261 if (dentry->d_flags & DCACHE_LRU_LIST)
1262 d_lru_del(dentry);
1263 if (!dentry->d_lockref.count) {
1264 d_shrink_add(dentry, &data->dispose);
1265 data->found++;
1269 * We can return to the caller if we have found some (this
1270 * ensures forward progress). We'll be coming back to find
1271 * the rest.
1273 if (!list_empty(&data->dispose))
1274 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1275 out:
1276 return ret;
1280 * shrink_dcache_parent - prune dcache
1281 * @parent: parent of entries to prune
1283 * Prune the dcache to remove unused children of the parent dentry.
1285 void shrink_dcache_parent(struct dentry *parent)
1287 for (;;) {
1288 struct select_data data;
1290 INIT_LIST_HEAD(&data.dispose);
1291 data.start = parent;
1292 data.found = 0;
1294 d_walk(parent, &data, select_collect, NULL);
1295 if (!data.found)
1296 break;
1298 shrink_dentry_list(&data.dispose);
1299 cond_resched();
1302 EXPORT_SYMBOL(shrink_dcache_parent);
1304 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1306 /* it has busy descendents; complain about those instead */
1307 if (!list_empty(&dentry->d_subdirs))
1308 return D_WALK_CONTINUE;
1310 /* root with refcount 1 is fine */
1311 if (dentry == _data && dentry->d_lockref.count == 1)
1312 return D_WALK_CONTINUE;
1314 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1315 " still in use (%d) [unmount of %s %s]\n",
1316 dentry,
1317 dentry->d_inode ?
1318 dentry->d_inode->i_ino : 0UL,
1319 dentry,
1320 dentry->d_lockref.count,
1321 dentry->d_sb->s_type->name,
1322 dentry->d_sb->s_id);
1323 WARN_ON(1);
1324 return D_WALK_CONTINUE;
1327 static void do_one_tree(struct dentry *dentry)
1329 shrink_dcache_parent(dentry);
1330 d_walk(dentry, dentry, umount_check, NULL);
1331 d_drop(dentry);
1332 dput(dentry);
1336 * destroy the dentries attached to a superblock on unmounting
1338 void shrink_dcache_for_umount(struct super_block *sb)
1340 struct dentry *dentry;
1342 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1344 dentry = sb->s_root;
1345 sb->s_root = NULL;
1346 do_one_tree(dentry);
1348 while (!hlist_bl_empty(&sb->s_anon)) {
1349 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1350 do_one_tree(dentry);
1354 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1356 struct select_data *data = _data;
1358 if (d_mountpoint(dentry)) {
1359 data->found = -EBUSY;
1360 return D_WALK_QUIT;
1363 return select_collect(_data, dentry);
1366 static void check_and_drop(void *_data)
1368 struct select_data *data = _data;
1370 if (d_mountpoint(data->start))
1371 data->found = -EBUSY;
1372 if (!data->found)
1373 __d_drop(data->start);
1377 * check_submounts_and_drop - prune dcache, check for submounts and drop
1379 * All done as a single atomic operation relative to has_unlinked_ancestor().
1380 * Returns 0 if successfully unhashed @parent. If there were submounts then
1381 * return -EBUSY.
1383 * @dentry: dentry to prune and drop
1385 int check_submounts_and_drop(struct dentry *dentry)
1387 int ret = 0;
1389 /* Negative dentries can be dropped without further checks */
1390 if (!dentry->d_inode) {
1391 d_drop(dentry);
1392 goto out;
1395 for (;;) {
1396 struct select_data data;
1398 INIT_LIST_HEAD(&data.dispose);
1399 data.start = dentry;
1400 data.found = 0;
1402 d_walk(dentry, &data, check_and_collect, check_and_drop);
1403 ret = data.found;
1405 if (!list_empty(&data.dispose))
1406 shrink_dentry_list(&data.dispose);
1408 if (ret <= 0)
1409 break;
1411 cond_resched();
1414 out:
1415 return ret;
1417 EXPORT_SYMBOL(check_submounts_and_drop);
1420 * __d_alloc - allocate a dcache entry
1421 * @sb: filesystem it will belong to
1422 * @name: qstr of the name
1424 * Allocates a dentry. It returns %NULL if there is insufficient memory
1425 * available. On a success the dentry is returned. The name passed in is
1426 * copied and the copy passed in may be reused after this call.
1429 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1431 struct dentry *dentry;
1432 char *dname;
1434 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1435 if (!dentry)
1436 return NULL;
1439 * We guarantee that the inline name is always NUL-terminated.
1440 * This way the memcpy() done by the name switching in rename
1441 * will still always have a NUL at the end, even if we might
1442 * be overwriting an internal NUL character
1444 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1445 if (name->len > DNAME_INLINE_LEN-1) {
1446 dname = kmalloc(name->len + 1, GFP_KERNEL);
1447 if (!dname) {
1448 kmem_cache_free(dentry_cache, dentry);
1449 return NULL;
1451 } else {
1452 dname = dentry->d_iname;
1455 dentry->d_name.len = name->len;
1456 dentry->d_name.hash = name->hash;
1457 memcpy(dname, name->name, name->len);
1458 dname[name->len] = 0;
1460 /* Make sure we always see the terminating NUL character */
1461 smp_wmb();
1462 dentry->d_name.name = dname;
1464 dentry->d_lockref.count = 1;
1465 dentry->d_flags = 0;
1466 spin_lock_init(&dentry->d_lock);
1467 seqcount_init(&dentry->d_seq);
1468 dentry->d_inode = NULL;
1469 dentry->d_parent = dentry;
1470 dentry->d_sb = sb;
1471 dentry->d_op = NULL;
1472 dentry->d_fsdata = NULL;
1473 INIT_HLIST_BL_NODE(&dentry->d_hash);
1474 INIT_LIST_HEAD(&dentry->d_lru);
1475 INIT_LIST_HEAD(&dentry->d_subdirs);
1476 INIT_HLIST_NODE(&dentry->d_alias);
1477 INIT_LIST_HEAD(&dentry->d_u.d_child);
1478 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1480 this_cpu_inc(nr_dentry);
1482 return dentry;
1486 * d_alloc - allocate a dcache entry
1487 * @parent: parent of entry to allocate
1488 * @name: qstr of the name
1490 * Allocates a dentry. It returns %NULL if there is insufficient memory
1491 * available. On a success the dentry is returned. The name passed in is
1492 * copied and the copy passed in may be reused after this call.
1494 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1496 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1497 if (!dentry)
1498 return NULL;
1500 spin_lock(&parent->d_lock);
1502 * don't need child lock because it is not subject
1503 * to concurrency here
1505 __dget_dlock(parent);
1506 dentry->d_parent = parent;
1507 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1508 spin_unlock(&parent->d_lock);
1510 return dentry;
1512 EXPORT_SYMBOL(d_alloc);
1515 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1516 * @sb: the superblock
1517 * @name: qstr of the name
1519 * For a filesystem that just pins its dentries in memory and never
1520 * performs lookups at all, return an unhashed IS_ROOT dentry.
1522 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1524 return __d_alloc(sb, name);
1526 EXPORT_SYMBOL(d_alloc_pseudo);
1528 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1530 struct qstr q;
1532 q.name = name;
1533 q.len = strlen(name);
1534 q.hash = full_name_hash(q.name, q.len);
1535 return d_alloc(parent, &q);
1537 EXPORT_SYMBOL(d_alloc_name);
1539 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1541 WARN_ON_ONCE(dentry->d_op);
1542 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1543 DCACHE_OP_COMPARE |
1544 DCACHE_OP_REVALIDATE |
1545 DCACHE_OP_WEAK_REVALIDATE |
1546 DCACHE_OP_DELETE ));
1547 dentry->d_op = op;
1548 if (!op)
1549 return;
1550 if (op->d_hash)
1551 dentry->d_flags |= DCACHE_OP_HASH;
1552 if (op->d_compare)
1553 dentry->d_flags |= DCACHE_OP_COMPARE;
1554 if (op->d_revalidate)
1555 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1556 if (op->d_weak_revalidate)
1557 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1558 if (op->d_delete)
1559 dentry->d_flags |= DCACHE_OP_DELETE;
1560 if (op->d_prune)
1561 dentry->d_flags |= DCACHE_OP_PRUNE;
1564 EXPORT_SYMBOL(d_set_d_op);
1566 static unsigned d_flags_for_inode(struct inode *inode)
1568 unsigned add_flags = DCACHE_FILE_TYPE;
1570 if (!inode)
1571 return DCACHE_MISS_TYPE;
1573 if (S_ISDIR(inode->i_mode)) {
1574 add_flags = DCACHE_DIRECTORY_TYPE;
1575 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1576 if (unlikely(!inode->i_op->lookup))
1577 add_flags = DCACHE_AUTODIR_TYPE;
1578 else
1579 inode->i_opflags |= IOP_LOOKUP;
1581 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1582 if (unlikely(inode->i_op->follow_link))
1583 add_flags = DCACHE_SYMLINK_TYPE;
1584 else
1585 inode->i_opflags |= IOP_NOFOLLOW;
1588 if (unlikely(IS_AUTOMOUNT(inode)))
1589 add_flags |= DCACHE_NEED_AUTOMOUNT;
1590 return add_flags;
1593 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1595 unsigned add_flags = d_flags_for_inode(inode);
1597 spin_lock(&dentry->d_lock);
1598 __d_set_type(dentry, add_flags);
1599 if (inode)
1600 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1601 dentry->d_inode = inode;
1602 dentry_rcuwalk_barrier(dentry);
1603 spin_unlock(&dentry->d_lock);
1604 fsnotify_d_instantiate(dentry, inode);
1608 * d_instantiate - fill in inode information for a dentry
1609 * @entry: dentry to complete
1610 * @inode: inode to attach to this dentry
1612 * Fill in inode information in the entry.
1614 * This turns negative dentries into productive full members
1615 * of society.
1617 * NOTE! This assumes that the inode count has been incremented
1618 * (or otherwise set) by the caller to indicate that it is now
1619 * in use by the dcache.
1622 void d_instantiate(struct dentry *entry, struct inode * inode)
1624 BUG_ON(!hlist_unhashed(&entry->d_alias));
1625 if (inode)
1626 spin_lock(&inode->i_lock);
1627 __d_instantiate(entry, inode);
1628 if (inode)
1629 spin_unlock(&inode->i_lock);
1630 security_d_instantiate(entry, inode);
1632 EXPORT_SYMBOL(d_instantiate);
1635 * d_instantiate_unique - instantiate a non-aliased dentry
1636 * @entry: dentry to instantiate
1637 * @inode: inode to attach to this dentry
1639 * Fill in inode information in the entry. On success, it returns NULL.
1640 * If an unhashed alias of "entry" already exists, then we return the
1641 * aliased dentry instead and drop one reference to inode.
1643 * Note that in order to avoid conflicts with rename() etc, the caller
1644 * had better be holding the parent directory semaphore.
1646 * This also assumes that the inode count has been incremented
1647 * (or otherwise set) by the caller to indicate that it is now
1648 * in use by the dcache.
1650 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1651 struct inode *inode)
1653 struct dentry *alias;
1654 int len = entry->d_name.len;
1655 const char *name = entry->d_name.name;
1656 unsigned int hash = entry->d_name.hash;
1658 if (!inode) {
1659 __d_instantiate(entry, NULL);
1660 return NULL;
1663 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1665 * Don't need alias->d_lock here, because aliases with
1666 * d_parent == entry->d_parent are not subject to name or
1667 * parent changes, because the parent inode i_mutex is held.
1669 if (alias->d_name.hash != hash)
1670 continue;
1671 if (alias->d_parent != entry->d_parent)
1672 continue;
1673 if (alias->d_name.len != len)
1674 continue;
1675 if (dentry_cmp(alias, name, len))
1676 continue;
1677 __dget(alias);
1678 return alias;
1681 __d_instantiate(entry, inode);
1682 return NULL;
1685 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1687 struct dentry *result;
1689 BUG_ON(!hlist_unhashed(&entry->d_alias));
1691 if (inode)
1692 spin_lock(&inode->i_lock);
1693 result = __d_instantiate_unique(entry, inode);
1694 if (inode)
1695 spin_unlock(&inode->i_lock);
1697 if (!result) {
1698 security_d_instantiate(entry, inode);
1699 return NULL;
1702 BUG_ON(!d_unhashed(result));
1703 iput(inode);
1704 return result;
1707 EXPORT_SYMBOL(d_instantiate_unique);
1710 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1711 * @entry: dentry to complete
1712 * @inode: inode to attach to this dentry
1714 * Fill in inode information in the entry. If a directory alias is found, then
1715 * return an error (and drop inode). Together with d_materialise_unique() this
1716 * guarantees that a directory inode may never have more than one alias.
1718 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1720 BUG_ON(!hlist_unhashed(&entry->d_alias));
1722 spin_lock(&inode->i_lock);
1723 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1724 spin_unlock(&inode->i_lock);
1725 iput(inode);
1726 return -EBUSY;
1728 __d_instantiate(entry, inode);
1729 spin_unlock(&inode->i_lock);
1730 security_d_instantiate(entry, inode);
1732 return 0;
1734 EXPORT_SYMBOL(d_instantiate_no_diralias);
1736 struct dentry *d_make_root(struct inode *root_inode)
1738 struct dentry *res = NULL;
1740 if (root_inode) {
1741 static const struct qstr name = QSTR_INIT("/", 1);
1743 res = __d_alloc(root_inode->i_sb, &name);
1744 if (res)
1745 d_instantiate(res, root_inode);
1746 else
1747 iput(root_inode);
1749 return res;
1751 EXPORT_SYMBOL(d_make_root);
1753 static struct dentry * __d_find_any_alias(struct inode *inode)
1755 struct dentry *alias;
1757 if (hlist_empty(&inode->i_dentry))
1758 return NULL;
1759 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1760 __dget(alias);
1761 return alias;
1765 * d_find_any_alias - find any alias for a given inode
1766 * @inode: inode to find an alias for
1768 * If any aliases exist for the given inode, take and return a
1769 * reference for one of them. If no aliases exist, return %NULL.
1771 struct dentry *d_find_any_alias(struct inode *inode)
1773 struct dentry *de;
1775 spin_lock(&inode->i_lock);
1776 de = __d_find_any_alias(inode);
1777 spin_unlock(&inode->i_lock);
1778 return de;
1780 EXPORT_SYMBOL(d_find_any_alias);
1783 * d_obtain_alias - find or allocate a dentry for a given inode
1784 * @inode: inode to allocate the dentry for
1786 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1787 * similar open by handle operations. The returned dentry may be anonymous,
1788 * or may have a full name (if the inode was already in the cache).
1790 * When called on a directory inode, we must ensure that the inode only ever
1791 * has one dentry. If a dentry is found, that is returned instead of
1792 * allocating a new one.
1794 * On successful return, the reference to the inode has been transferred
1795 * to the dentry. In case of an error the reference on the inode is released.
1796 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1797 * be passed in and will be the error will be propagate to the return value,
1798 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1800 struct dentry *d_obtain_alias(struct inode *inode)
1802 static const struct qstr anonstring = QSTR_INIT("/", 1);
1803 struct dentry *tmp;
1804 struct dentry *res;
1805 unsigned add_flags;
1807 if (!inode)
1808 return ERR_PTR(-ESTALE);
1809 if (IS_ERR(inode))
1810 return ERR_CAST(inode);
1812 res = d_find_any_alias(inode);
1813 if (res)
1814 goto out_iput;
1816 tmp = __d_alloc(inode->i_sb, &anonstring);
1817 if (!tmp) {
1818 res = ERR_PTR(-ENOMEM);
1819 goto out_iput;
1822 spin_lock(&inode->i_lock);
1823 res = __d_find_any_alias(inode);
1824 if (res) {
1825 spin_unlock(&inode->i_lock);
1826 dput(tmp);
1827 goto out_iput;
1830 /* attach a disconnected dentry */
1831 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1833 spin_lock(&tmp->d_lock);
1834 tmp->d_inode = inode;
1835 tmp->d_flags |= add_flags;
1836 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1837 hlist_bl_lock(&tmp->d_sb->s_anon);
1838 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1839 hlist_bl_unlock(&tmp->d_sb->s_anon);
1840 spin_unlock(&tmp->d_lock);
1841 spin_unlock(&inode->i_lock);
1842 security_d_instantiate(tmp, inode);
1844 return tmp;
1846 out_iput:
1847 if (res && !IS_ERR(res))
1848 security_d_instantiate(res, inode);
1849 iput(inode);
1850 return res;
1852 EXPORT_SYMBOL(d_obtain_alias);
1855 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1856 * @inode: the inode which may have a disconnected dentry
1857 * @dentry: a negative dentry which we want to point to the inode.
1859 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1860 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1861 * and return it, else simply d_add the inode to the dentry and return NULL.
1863 * This is needed in the lookup routine of any filesystem that is exportable
1864 * (via knfsd) so that we can build dcache paths to directories effectively.
1866 * If a dentry was found and moved, then it is returned. Otherwise NULL
1867 * is returned. This matches the expected return value of ->lookup.
1869 * Cluster filesystems may call this function with a negative, hashed dentry.
1870 * In that case, we know that the inode will be a regular file, and also this
1871 * will only occur during atomic_open. So we need to check for the dentry
1872 * being already hashed only in the final case.
1874 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1876 struct dentry *new = NULL;
1878 if (IS_ERR(inode))
1879 return ERR_CAST(inode);
1881 if (inode && S_ISDIR(inode->i_mode)) {
1882 spin_lock(&inode->i_lock);
1883 new = __d_find_alias(inode, 1);
1884 if (new) {
1885 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1886 spin_unlock(&inode->i_lock);
1887 security_d_instantiate(new, inode);
1888 d_move(new, dentry);
1889 iput(inode);
1890 } else {
1891 /* already taking inode->i_lock, so d_add() by hand */
1892 __d_instantiate(dentry, inode);
1893 spin_unlock(&inode->i_lock);
1894 security_d_instantiate(dentry, inode);
1895 d_rehash(dentry);
1897 } else {
1898 d_instantiate(dentry, inode);
1899 if (d_unhashed(dentry))
1900 d_rehash(dentry);
1902 return new;
1904 EXPORT_SYMBOL(d_splice_alias);
1907 * d_add_ci - lookup or allocate new dentry with case-exact name
1908 * @inode: the inode case-insensitive lookup has found
1909 * @dentry: the negative dentry that was passed to the parent's lookup func
1910 * @name: the case-exact name to be associated with the returned dentry
1912 * This is to avoid filling the dcache with case-insensitive names to the
1913 * same inode, only the actual correct case is stored in the dcache for
1914 * case-insensitive filesystems.
1916 * For a case-insensitive lookup match and if the the case-exact dentry
1917 * already exists in in the dcache, use it and return it.
1919 * If no entry exists with the exact case name, allocate new dentry with
1920 * the exact case, and return the spliced entry.
1922 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1923 struct qstr *name)
1925 struct dentry *found;
1926 struct dentry *new;
1929 * First check if a dentry matching the name already exists,
1930 * if not go ahead and create it now.
1932 found = d_hash_and_lookup(dentry->d_parent, name);
1933 if (unlikely(IS_ERR(found)))
1934 goto err_out;
1935 if (!found) {
1936 new = d_alloc(dentry->d_parent, name);
1937 if (!new) {
1938 found = ERR_PTR(-ENOMEM);
1939 goto err_out;
1942 found = d_splice_alias(inode, new);
1943 if (found) {
1944 dput(new);
1945 return found;
1947 return new;
1951 * If a matching dentry exists, and it's not negative use it.
1953 * Decrement the reference count to balance the iget() done
1954 * earlier on.
1956 if (found->d_inode) {
1957 if (unlikely(found->d_inode != inode)) {
1958 /* This can't happen because bad inodes are unhashed. */
1959 BUG_ON(!is_bad_inode(inode));
1960 BUG_ON(!is_bad_inode(found->d_inode));
1962 iput(inode);
1963 return found;
1967 * Negative dentry: instantiate it unless the inode is a directory and
1968 * already has a dentry.
1970 new = d_splice_alias(inode, found);
1971 if (new) {
1972 dput(found);
1973 found = new;
1975 return found;
1977 err_out:
1978 iput(inode);
1979 return found;
1981 EXPORT_SYMBOL(d_add_ci);
1984 * Do the slow-case of the dentry name compare.
1986 * Unlike the dentry_cmp() function, we need to atomically
1987 * load the name and length information, so that the
1988 * filesystem can rely on them, and can use the 'name' and
1989 * 'len' information without worrying about walking off the
1990 * end of memory etc.
1992 * Thus the read_seqcount_retry() and the "duplicate" info
1993 * in arguments (the low-level filesystem should not look
1994 * at the dentry inode or name contents directly, since
1995 * rename can change them while we're in RCU mode).
1997 enum slow_d_compare {
1998 D_COMP_OK,
1999 D_COMP_NOMATCH,
2000 D_COMP_SEQRETRY,
2003 static noinline enum slow_d_compare slow_dentry_cmp(
2004 const struct dentry *parent,
2005 struct dentry *dentry,
2006 unsigned int seq,
2007 const struct qstr *name)
2009 int tlen = dentry->d_name.len;
2010 const char *tname = dentry->d_name.name;
2012 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2013 cpu_relax();
2014 return D_COMP_SEQRETRY;
2016 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2017 return D_COMP_NOMATCH;
2018 return D_COMP_OK;
2022 * __d_lookup_rcu - search for a dentry (racy, store-free)
2023 * @parent: parent dentry
2024 * @name: qstr of name we wish to find
2025 * @seqp: returns d_seq value at the point where the dentry was found
2026 * Returns: dentry, or NULL
2028 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2029 * resolution (store-free path walking) design described in
2030 * Documentation/filesystems/path-lookup.txt.
2032 * This is not to be used outside core vfs.
2034 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2035 * held, and rcu_read_lock held. The returned dentry must not be stored into
2036 * without taking d_lock and checking d_seq sequence count against @seq
2037 * returned here.
2039 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2040 * function.
2042 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2043 * the returned dentry, so long as its parent's seqlock is checked after the
2044 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2045 * is formed, giving integrity down the path walk.
2047 * NOTE! The caller *has* to check the resulting dentry against the sequence
2048 * number we've returned before using any of the resulting dentry state!
2050 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2051 const struct qstr *name,
2052 unsigned *seqp)
2054 u64 hashlen = name->hash_len;
2055 const unsigned char *str = name->name;
2056 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2057 struct hlist_bl_node *node;
2058 struct dentry *dentry;
2061 * Note: There is significant duplication with __d_lookup_rcu which is
2062 * required to prevent single threaded performance regressions
2063 * especially on architectures where smp_rmb (in seqcounts) are costly.
2064 * Keep the two functions in sync.
2068 * The hash list is protected using RCU.
2070 * Carefully use d_seq when comparing a candidate dentry, to avoid
2071 * races with d_move().
2073 * It is possible that concurrent renames can mess up our list
2074 * walk here and result in missing our dentry, resulting in the
2075 * false-negative result. d_lookup() protects against concurrent
2076 * renames using rename_lock seqlock.
2078 * See Documentation/filesystems/path-lookup.txt for more details.
2080 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2081 unsigned seq;
2083 seqretry:
2085 * The dentry sequence count protects us from concurrent
2086 * renames, and thus protects parent and name fields.
2088 * The caller must perform a seqcount check in order
2089 * to do anything useful with the returned dentry.
2091 * NOTE! We do a "raw" seqcount_begin here. That means that
2092 * we don't wait for the sequence count to stabilize if it
2093 * is in the middle of a sequence change. If we do the slow
2094 * dentry compare, we will do seqretries until it is stable,
2095 * and if we end up with a successful lookup, we actually
2096 * want to exit RCU lookup anyway.
2098 seq = raw_seqcount_begin(&dentry->d_seq);
2099 if (dentry->d_parent != parent)
2100 continue;
2101 if (d_unhashed(dentry))
2102 continue;
2104 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2105 if (dentry->d_name.hash != hashlen_hash(hashlen))
2106 continue;
2107 *seqp = seq;
2108 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2109 case D_COMP_OK:
2110 return dentry;
2111 case D_COMP_NOMATCH:
2112 continue;
2113 default:
2114 goto seqretry;
2118 if (dentry->d_name.hash_len != hashlen)
2119 continue;
2120 *seqp = seq;
2121 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2122 return dentry;
2124 return NULL;
2128 * d_lookup - search for a dentry
2129 * @parent: parent dentry
2130 * @name: qstr of name we wish to find
2131 * Returns: dentry, or NULL
2133 * d_lookup searches the children of the parent dentry for the name in
2134 * question. If the dentry is found its reference count is incremented and the
2135 * dentry is returned. The caller must use dput to free the entry when it has
2136 * finished using it. %NULL is returned if the dentry does not exist.
2138 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2140 struct dentry *dentry;
2141 unsigned seq;
2143 do {
2144 seq = read_seqbegin(&rename_lock);
2145 dentry = __d_lookup(parent, name);
2146 if (dentry)
2147 break;
2148 } while (read_seqretry(&rename_lock, seq));
2149 return dentry;
2151 EXPORT_SYMBOL(d_lookup);
2154 * __d_lookup - search for a dentry (racy)
2155 * @parent: parent dentry
2156 * @name: qstr of name we wish to find
2157 * Returns: dentry, or NULL
2159 * __d_lookup is like d_lookup, however it may (rarely) return a
2160 * false-negative result due to unrelated rename activity.
2162 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2163 * however it must be used carefully, eg. with a following d_lookup in
2164 * the case of failure.
2166 * __d_lookup callers must be commented.
2168 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2170 unsigned int len = name->len;
2171 unsigned int hash = name->hash;
2172 const unsigned char *str = name->name;
2173 struct hlist_bl_head *b = d_hash(parent, hash);
2174 struct hlist_bl_node *node;
2175 struct dentry *found = NULL;
2176 struct dentry *dentry;
2179 * Note: There is significant duplication with __d_lookup_rcu which is
2180 * required to prevent single threaded performance regressions
2181 * especially on architectures where smp_rmb (in seqcounts) are costly.
2182 * Keep the two functions in sync.
2186 * The hash list is protected using RCU.
2188 * Take d_lock when comparing a candidate dentry, to avoid races
2189 * with d_move().
2191 * It is possible that concurrent renames can mess up our list
2192 * walk here and result in missing our dentry, resulting in the
2193 * false-negative result. d_lookup() protects against concurrent
2194 * renames using rename_lock seqlock.
2196 * See Documentation/filesystems/path-lookup.txt for more details.
2198 rcu_read_lock();
2200 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2202 if (dentry->d_name.hash != hash)
2203 continue;
2205 spin_lock(&dentry->d_lock);
2206 if (dentry->d_parent != parent)
2207 goto next;
2208 if (d_unhashed(dentry))
2209 goto next;
2212 * It is safe to compare names since d_move() cannot
2213 * change the qstr (protected by d_lock).
2215 if (parent->d_flags & DCACHE_OP_COMPARE) {
2216 int tlen = dentry->d_name.len;
2217 const char *tname = dentry->d_name.name;
2218 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2219 goto next;
2220 } else {
2221 if (dentry->d_name.len != len)
2222 goto next;
2223 if (dentry_cmp(dentry, str, len))
2224 goto next;
2227 dentry->d_lockref.count++;
2228 found = dentry;
2229 spin_unlock(&dentry->d_lock);
2230 break;
2231 next:
2232 spin_unlock(&dentry->d_lock);
2234 rcu_read_unlock();
2236 return found;
2240 * d_hash_and_lookup - hash the qstr then search for a dentry
2241 * @dir: Directory to search in
2242 * @name: qstr of name we wish to find
2244 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2246 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2249 * Check for a fs-specific hash function. Note that we must
2250 * calculate the standard hash first, as the d_op->d_hash()
2251 * routine may choose to leave the hash value unchanged.
2253 name->hash = full_name_hash(name->name, name->len);
2254 if (dir->d_flags & DCACHE_OP_HASH) {
2255 int err = dir->d_op->d_hash(dir, name);
2256 if (unlikely(err < 0))
2257 return ERR_PTR(err);
2259 return d_lookup(dir, name);
2261 EXPORT_SYMBOL(d_hash_and_lookup);
2264 * d_validate - verify dentry provided from insecure source (deprecated)
2265 * @dentry: The dentry alleged to be valid child of @dparent
2266 * @dparent: The parent dentry (known to be valid)
2268 * An insecure source has sent us a dentry, here we verify it and dget() it.
2269 * This is used by ncpfs in its readdir implementation.
2270 * Zero is returned in the dentry is invalid.
2272 * This function is slow for big directories, and deprecated, do not use it.
2274 int d_validate(struct dentry *dentry, struct dentry *dparent)
2276 struct dentry *child;
2278 spin_lock(&dparent->d_lock);
2279 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2280 if (dentry == child) {
2281 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2282 __dget_dlock(dentry);
2283 spin_unlock(&dentry->d_lock);
2284 spin_unlock(&dparent->d_lock);
2285 return 1;
2288 spin_unlock(&dparent->d_lock);
2290 return 0;
2292 EXPORT_SYMBOL(d_validate);
2295 * When a file is deleted, we have two options:
2296 * - turn this dentry into a negative dentry
2297 * - unhash this dentry and free it.
2299 * Usually, we want to just turn this into
2300 * a negative dentry, but if anybody else is
2301 * currently using the dentry or the inode
2302 * we can't do that and we fall back on removing
2303 * it from the hash queues and waiting for
2304 * it to be deleted later when it has no users
2308 * d_delete - delete a dentry
2309 * @dentry: The dentry to delete
2311 * Turn the dentry into a negative dentry if possible, otherwise
2312 * remove it from the hash queues so it can be deleted later
2315 void d_delete(struct dentry * dentry)
2317 struct inode *inode;
2318 int isdir = 0;
2320 * Are we the only user?
2322 again:
2323 spin_lock(&dentry->d_lock);
2324 inode = dentry->d_inode;
2325 isdir = S_ISDIR(inode->i_mode);
2326 if (dentry->d_lockref.count == 1) {
2327 if (!spin_trylock(&inode->i_lock)) {
2328 spin_unlock(&dentry->d_lock);
2329 cpu_relax();
2330 goto again;
2332 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2333 dentry_unlink_inode(dentry);
2334 fsnotify_nameremove(dentry, isdir);
2335 return;
2338 if (!d_unhashed(dentry))
2339 __d_drop(dentry);
2341 spin_unlock(&dentry->d_lock);
2343 fsnotify_nameremove(dentry, isdir);
2345 EXPORT_SYMBOL(d_delete);
2347 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2349 BUG_ON(!d_unhashed(entry));
2350 hlist_bl_lock(b);
2351 entry->d_flags |= DCACHE_RCUACCESS;
2352 hlist_bl_add_head_rcu(&entry->d_hash, b);
2353 hlist_bl_unlock(b);
2356 static void _d_rehash(struct dentry * entry)
2358 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2362 * d_rehash - add an entry back to the hash
2363 * @entry: dentry to add to the hash
2365 * Adds a dentry to the hash according to its name.
2368 void d_rehash(struct dentry * entry)
2370 spin_lock(&entry->d_lock);
2371 _d_rehash(entry);
2372 spin_unlock(&entry->d_lock);
2374 EXPORT_SYMBOL(d_rehash);
2377 * dentry_update_name_case - update case insensitive dentry with a new name
2378 * @dentry: dentry to be updated
2379 * @name: new name
2381 * Update a case insensitive dentry with new case of name.
2383 * dentry must have been returned by d_lookup with name @name. Old and new
2384 * name lengths must match (ie. no d_compare which allows mismatched name
2385 * lengths).
2387 * Parent inode i_mutex must be held over d_lookup and into this call (to
2388 * keep renames and concurrent inserts, and readdir(2) away).
2390 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2392 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2393 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2395 spin_lock(&dentry->d_lock);
2396 write_seqcount_begin(&dentry->d_seq);
2397 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2398 write_seqcount_end(&dentry->d_seq);
2399 spin_unlock(&dentry->d_lock);
2401 EXPORT_SYMBOL(dentry_update_name_case);
2403 static void switch_names(struct dentry *dentry, struct dentry *target)
2405 if (dname_external(target)) {
2406 if (dname_external(dentry)) {
2408 * Both external: swap the pointers
2410 swap(target->d_name.name, dentry->d_name.name);
2411 } else {
2413 * dentry:internal, target:external. Steal target's
2414 * storage and make target internal.
2416 memcpy(target->d_iname, dentry->d_name.name,
2417 dentry->d_name.len + 1);
2418 dentry->d_name.name = target->d_name.name;
2419 target->d_name.name = target->d_iname;
2421 } else {
2422 if (dname_external(dentry)) {
2424 * dentry:external, target:internal. Give dentry's
2425 * storage to target and make dentry internal
2427 memcpy(dentry->d_iname, target->d_name.name,
2428 target->d_name.len + 1);
2429 target->d_name.name = dentry->d_name.name;
2430 dentry->d_name.name = dentry->d_iname;
2431 } else {
2433 * Both are internal.
2435 unsigned int i;
2436 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2437 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2438 swap(((long *) &dentry->d_iname)[i],
2439 ((long *) &target->d_iname)[i]);
2443 swap(dentry->d_name.len, target->d_name.len);
2446 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2449 * XXXX: do we really need to take target->d_lock?
2451 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2452 spin_lock(&target->d_parent->d_lock);
2453 else {
2454 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2455 spin_lock(&dentry->d_parent->d_lock);
2456 spin_lock_nested(&target->d_parent->d_lock,
2457 DENTRY_D_LOCK_NESTED);
2458 } else {
2459 spin_lock(&target->d_parent->d_lock);
2460 spin_lock_nested(&dentry->d_parent->d_lock,
2461 DENTRY_D_LOCK_NESTED);
2464 if (target < dentry) {
2465 spin_lock_nested(&target->d_lock, 2);
2466 spin_lock_nested(&dentry->d_lock, 3);
2467 } else {
2468 spin_lock_nested(&dentry->d_lock, 2);
2469 spin_lock_nested(&target->d_lock, 3);
2473 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2474 struct dentry *target)
2476 if (target->d_parent != dentry->d_parent)
2477 spin_unlock(&dentry->d_parent->d_lock);
2478 if (target->d_parent != target)
2479 spin_unlock(&target->d_parent->d_lock);
2483 * When switching names, the actual string doesn't strictly have to
2484 * be preserved in the target - because we're dropping the target
2485 * anyway. As such, we can just do a simple memcpy() to copy over
2486 * the new name before we switch.
2488 * Note that we have to be a lot more careful about getting the hash
2489 * switched - we have to switch the hash value properly even if it
2490 * then no longer matches the actual (corrupted) string of the target.
2491 * The hash value has to match the hash queue that the dentry is on..
2494 * __d_move - move a dentry
2495 * @dentry: entry to move
2496 * @target: new dentry
2497 * @exchange: exchange the two dentries
2499 * Update the dcache to reflect the move of a file name. Negative
2500 * dcache entries should not be moved in this way. Caller must hold
2501 * rename_lock, the i_mutex of the source and target directories,
2502 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2504 static void __d_move(struct dentry *dentry, struct dentry *target,
2505 bool exchange)
2507 if (!dentry->d_inode)
2508 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2510 BUG_ON(d_ancestor(dentry, target));
2511 BUG_ON(d_ancestor(target, dentry));
2513 dentry_lock_for_move(dentry, target);
2515 write_seqcount_begin(&dentry->d_seq);
2516 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2518 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2521 * Move the dentry to the target hash queue. Don't bother checking
2522 * for the same hash queue because of how unlikely it is.
2524 __d_drop(dentry);
2525 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2528 * Unhash the target (d_delete() is not usable here). If exchanging
2529 * the two dentries, then rehash onto the other's hash queue.
2531 __d_drop(target);
2532 if (exchange) {
2533 __d_rehash(target,
2534 d_hash(dentry->d_parent, dentry->d_name.hash));
2537 list_del(&dentry->d_u.d_child);
2538 list_del(&target->d_u.d_child);
2540 /* Switch the names.. */
2541 switch_names(dentry, target);
2542 swap(dentry->d_name.hash, target->d_name.hash);
2544 /* ... and switch the parents */
2545 if (IS_ROOT(dentry)) {
2546 dentry->d_parent = target->d_parent;
2547 target->d_parent = target;
2548 INIT_LIST_HEAD(&target->d_u.d_child);
2549 } else {
2550 swap(dentry->d_parent, target->d_parent);
2552 /* And add them back to the (new) parent lists */
2553 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2556 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2558 write_seqcount_end(&target->d_seq);
2559 write_seqcount_end(&dentry->d_seq);
2561 dentry_unlock_parents_for_move(dentry, target);
2562 if (exchange)
2563 fsnotify_d_move(target);
2564 spin_unlock(&target->d_lock);
2565 fsnotify_d_move(dentry);
2566 spin_unlock(&dentry->d_lock);
2570 * d_move - move a dentry
2571 * @dentry: entry to move
2572 * @target: new dentry
2574 * Update the dcache to reflect the move of a file name. Negative
2575 * dcache entries should not be moved in this way. See the locking
2576 * requirements for __d_move.
2578 void d_move(struct dentry *dentry, struct dentry *target)
2580 write_seqlock(&rename_lock);
2581 __d_move(dentry, target, false);
2582 write_sequnlock(&rename_lock);
2584 EXPORT_SYMBOL(d_move);
2587 * d_exchange - exchange two dentries
2588 * @dentry1: first dentry
2589 * @dentry2: second dentry
2591 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2593 write_seqlock(&rename_lock);
2595 WARN_ON(!dentry1->d_inode);
2596 WARN_ON(!dentry2->d_inode);
2597 WARN_ON(IS_ROOT(dentry1));
2598 WARN_ON(IS_ROOT(dentry2));
2600 __d_move(dentry1, dentry2, true);
2602 write_sequnlock(&rename_lock);
2606 * d_ancestor - search for an ancestor
2607 * @p1: ancestor dentry
2608 * @p2: child dentry
2610 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2611 * an ancestor of p2, else NULL.
2613 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2615 struct dentry *p;
2617 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2618 if (p->d_parent == p1)
2619 return p;
2621 return NULL;
2625 * This helper attempts to cope with remotely renamed directories
2627 * It assumes that the caller is already holding
2628 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2630 * Note: If ever the locking in lock_rename() changes, then please
2631 * remember to update this too...
2633 static struct dentry *__d_unalias(struct inode *inode,
2634 struct dentry *dentry, struct dentry *alias)
2636 struct mutex *m1 = NULL, *m2 = NULL;
2637 struct dentry *ret = ERR_PTR(-EBUSY);
2639 /* If alias and dentry share a parent, then no extra locks required */
2640 if (alias->d_parent == dentry->d_parent)
2641 goto out_unalias;
2643 /* See lock_rename() */
2644 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2645 goto out_err;
2646 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2647 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2648 goto out_err;
2649 m2 = &alias->d_parent->d_inode->i_mutex;
2650 out_unalias:
2651 if (likely(!d_mountpoint(alias))) {
2652 __d_move(alias, dentry, false);
2653 ret = alias;
2655 out_err:
2656 spin_unlock(&inode->i_lock);
2657 if (m2)
2658 mutex_unlock(m2);
2659 if (m1)
2660 mutex_unlock(m1);
2661 return ret;
2665 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2666 * named dentry in place of the dentry to be replaced.
2667 * returns with anon->d_lock held!
2669 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2671 struct dentry *dparent;
2673 dentry_lock_for_move(anon, dentry);
2675 write_seqcount_begin(&dentry->d_seq);
2676 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
2678 dparent = dentry->d_parent;
2680 switch_names(dentry, anon);
2681 swap(dentry->d_name.hash, anon->d_name.hash);
2683 dentry->d_parent = dentry;
2684 list_del_init(&dentry->d_u.d_child);
2685 anon->d_parent = dparent;
2686 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2688 write_seqcount_end(&dentry->d_seq);
2689 write_seqcount_end(&anon->d_seq);
2691 dentry_unlock_parents_for_move(anon, dentry);
2692 spin_unlock(&dentry->d_lock);
2694 /* anon->d_lock still locked, returns locked */
2698 * d_materialise_unique - introduce an inode into the tree
2699 * @dentry: candidate dentry
2700 * @inode: inode to bind to the dentry, to which aliases may be attached
2702 * Introduces an dentry into the tree, substituting an extant disconnected
2703 * root directory alias in its place if there is one. Caller must hold the
2704 * i_mutex of the parent directory.
2706 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2708 struct dentry *actual;
2710 BUG_ON(!d_unhashed(dentry));
2712 if (!inode) {
2713 actual = dentry;
2714 __d_instantiate(dentry, NULL);
2715 d_rehash(actual);
2716 goto out_nolock;
2719 spin_lock(&inode->i_lock);
2721 if (S_ISDIR(inode->i_mode)) {
2722 struct dentry *alias;
2724 /* Does an aliased dentry already exist? */
2725 alias = __d_find_alias(inode, 0);
2726 if (alias) {
2727 actual = alias;
2728 write_seqlock(&rename_lock);
2730 if (d_ancestor(alias, dentry)) {
2731 /* Check for loops */
2732 actual = ERR_PTR(-ELOOP);
2733 spin_unlock(&inode->i_lock);
2734 } else if (IS_ROOT(alias)) {
2735 /* Is this an anonymous mountpoint that we
2736 * could splice into our tree? */
2737 __d_materialise_dentry(dentry, alias);
2738 write_sequnlock(&rename_lock);
2739 __d_drop(alias);
2740 goto found;
2741 } else {
2742 /* Nope, but we must(!) avoid directory
2743 * aliasing. This drops inode->i_lock */
2744 actual = __d_unalias(inode, dentry, alias);
2746 write_sequnlock(&rename_lock);
2747 if (IS_ERR(actual)) {
2748 if (PTR_ERR(actual) == -ELOOP)
2749 pr_warn_ratelimited(
2750 "VFS: Lookup of '%s' in %s %s"
2751 " would have caused loop\n",
2752 dentry->d_name.name,
2753 inode->i_sb->s_type->name,
2754 inode->i_sb->s_id);
2755 dput(alias);
2757 goto out_nolock;
2761 /* Add a unique reference */
2762 actual = __d_instantiate_unique(dentry, inode);
2763 if (!actual)
2764 actual = dentry;
2765 else
2766 BUG_ON(!d_unhashed(actual));
2768 spin_lock(&actual->d_lock);
2769 found:
2770 _d_rehash(actual);
2771 spin_unlock(&actual->d_lock);
2772 spin_unlock(&inode->i_lock);
2773 out_nolock:
2774 if (actual == dentry) {
2775 security_d_instantiate(dentry, inode);
2776 return NULL;
2779 iput(inode);
2780 return actual;
2782 EXPORT_SYMBOL_GPL(d_materialise_unique);
2784 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2786 *buflen -= namelen;
2787 if (*buflen < 0)
2788 return -ENAMETOOLONG;
2789 *buffer -= namelen;
2790 memcpy(*buffer, str, namelen);
2791 return 0;
2795 * prepend_name - prepend a pathname in front of current buffer pointer
2796 * @buffer: buffer pointer
2797 * @buflen: allocated length of the buffer
2798 * @name: name string and length qstr structure
2800 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2801 * make sure that either the old or the new name pointer and length are
2802 * fetched. However, there may be mismatch between length and pointer.
2803 * The length cannot be trusted, we need to copy it byte-by-byte until
2804 * the length is reached or a null byte is found. It also prepends "/" at
2805 * the beginning of the name. The sequence number check at the caller will
2806 * retry it again when a d_move() does happen. So any garbage in the buffer
2807 * due to mismatched pointer and length will be discarded.
2809 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2811 const char *dname = ACCESS_ONCE(name->name);
2812 u32 dlen = ACCESS_ONCE(name->len);
2813 char *p;
2815 *buflen -= dlen + 1;
2816 if (*buflen < 0)
2817 return -ENAMETOOLONG;
2818 p = *buffer -= dlen + 1;
2819 *p++ = '/';
2820 while (dlen--) {
2821 char c = *dname++;
2822 if (!c)
2823 break;
2824 *p++ = c;
2826 return 0;
2830 * prepend_path - Prepend path string to a buffer
2831 * @path: the dentry/vfsmount to report
2832 * @root: root vfsmnt/dentry
2833 * @buffer: pointer to the end of the buffer
2834 * @buflen: pointer to buffer length
2836 * The function will first try to write out the pathname without taking any
2837 * lock other than the RCU read lock to make sure that dentries won't go away.
2838 * It only checks the sequence number of the global rename_lock as any change
2839 * in the dentry's d_seq will be preceded by changes in the rename_lock
2840 * sequence number. If the sequence number had been changed, it will restart
2841 * the whole pathname back-tracing sequence again by taking the rename_lock.
2842 * In this case, there is no need to take the RCU read lock as the recursive
2843 * parent pointer references will keep the dentry chain alive as long as no
2844 * rename operation is performed.
2846 static int prepend_path(const struct path *path,
2847 const struct path *root,
2848 char **buffer, int *buflen)
2850 struct dentry *dentry;
2851 struct vfsmount *vfsmnt;
2852 struct mount *mnt;
2853 int error = 0;
2854 unsigned seq, m_seq = 0;
2855 char *bptr;
2856 int blen;
2858 rcu_read_lock();
2859 restart_mnt:
2860 read_seqbegin_or_lock(&mount_lock, &m_seq);
2861 seq = 0;
2862 rcu_read_lock();
2863 restart:
2864 bptr = *buffer;
2865 blen = *buflen;
2866 error = 0;
2867 dentry = path->dentry;
2868 vfsmnt = path->mnt;
2869 mnt = real_mount(vfsmnt);
2870 read_seqbegin_or_lock(&rename_lock, &seq);
2871 while (dentry != root->dentry || vfsmnt != root->mnt) {
2872 struct dentry * parent;
2874 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2875 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2876 /* Global root? */
2877 if (mnt != parent) {
2878 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2879 mnt = parent;
2880 vfsmnt = &mnt->mnt;
2881 continue;
2884 * Filesystems needing to implement special "root names"
2885 * should do so with ->d_dname()
2887 if (IS_ROOT(dentry) &&
2888 (dentry->d_name.len != 1 ||
2889 dentry->d_name.name[0] != '/')) {
2890 WARN(1, "Root dentry has weird name <%.*s>\n",
2891 (int) dentry->d_name.len,
2892 dentry->d_name.name);
2894 if (!error)
2895 error = is_mounted(vfsmnt) ? 1 : 2;
2896 break;
2898 parent = dentry->d_parent;
2899 prefetch(parent);
2900 error = prepend_name(&bptr, &blen, &dentry->d_name);
2901 if (error)
2902 break;
2904 dentry = parent;
2906 if (!(seq & 1))
2907 rcu_read_unlock();
2908 if (need_seqretry(&rename_lock, seq)) {
2909 seq = 1;
2910 goto restart;
2912 done_seqretry(&rename_lock, seq);
2914 if (!(m_seq & 1))
2915 rcu_read_unlock();
2916 if (need_seqretry(&mount_lock, m_seq)) {
2917 m_seq = 1;
2918 goto restart_mnt;
2920 done_seqretry(&mount_lock, m_seq);
2922 if (error >= 0 && bptr == *buffer) {
2923 if (--blen < 0)
2924 error = -ENAMETOOLONG;
2925 else
2926 *--bptr = '/';
2928 *buffer = bptr;
2929 *buflen = blen;
2930 return error;
2934 * __d_path - return the path of a dentry
2935 * @path: the dentry/vfsmount to report
2936 * @root: root vfsmnt/dentry
2937 * @buf: buffer to return value in
2938 * @buflen: buffer length
2940 * Convert a dentry into an ASCII path name.
2942 * Returns a pointer into the buffer or an error code if the
2943 * path was too long.
2945 * "buflen" should be positive.
2947 * If the path is not reachable from the supplied root, return %NULL.
2949 char *__d_path(const struct path *path,
2950 const struct path *root,
2951 char *buf, int buflen)
2953 char *res = buf + buflen;
2954 int error;
2956 prepend(&res, &buflen, "\0", 1);
2957 error = prepend_path(path, root, &res, &buflen);
2959 if (error < 0)
2960 return ERR_PTR(error);
2961 if (error > 0)
2962 return NULL;
2963 return res;
2966 char *d_absolute_path(const struct path *path,
2967 char *buf, int buflen)
2969 struct path root = {};
2970 char *res = buf + buflen;
2971 int error;
2973 prepend(&res, &buflen, "\0", 1);
2974 error = prepend_path(path, &root, &res, &buflen);
2976 if (error > 1)
2977 error = -EINVAL;
2978 if (error < 0)
2979 return ERR_PTR(error);
2980 return res;
2984 * same as __d_path but appends "(deleted)" for unlinked files.
2986 static int path_with_deleted(const struct path *path,
2987 const struct path *root,
2988 char **buf, int *buflen)
2990 prepend(buf, buflen, "\0", 1);
2991 if (d_unlinked(path->dentry)) {
2992 int error = prepend(buf, buflen, " (deleted)", 10);
2993 if (error)
2994 return error;
2997 return prepend_path(path, root, buf, buflen);
3000 static int prepend_unreachable(char **buffer, int *buflen)
3002 return prepend(buffer, buflen, "(unreachable)", 13);
3005 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3007 unsigned seq;
3009 do {
3010 seq = read_seqcount_begin(&fs->seq);
3011 *root = fs->root;
3012 } while (read_seqcount_retry(&fs->seq, seq));
3016 * d_path - return the path of a dentry
3017 * @path: path to report
3018 * @buf: buffer to return value in
3019 * @buflen: buffer length
3021 * Convert a dentry into an ASCII path name. If the entry has been deleted
3022 * the string " (deleted)" is appended. Note that this is ambiguous.
3024 * Returns a pointer into the buffer or an error code if the path was
3025 * too long. Note: Callers should use the returned pointer, not the passed
3026 * in buffer, to use the name! The implementation often starts at an offset
3027 * into the buffer, and may leave 0 bytes at the start.
3029 * "buflen" should be positive.
3031 char *d_path(const struct path *path, char *buf, int buflen)
3033 char *res = buf + buflen;
3034 struct path root;
3035 int error;
3038 * We have various synthetic filesystems that never get mounted. On
3039 * these filesystems dentries are never used for lookup purposes, and
3040 * thus don't need to be hashed. They also don't need a name until a
3041 * user wants to identify the object in /proc/pid/fd/. The little hack
3042 * below allows us to generate a name for these objects on demand:
3044 * Some pseudo inodes are mountable. When they are mounted
3045 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3046 * and instead have d_path return the mounted path.
3048 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3049 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3050 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3052 rcu_read_lock();
3053 get_fs_root_rcu(current->fs, &root);
3054 error = path_with_deleted(path, &root, &res, &buflen);
3055 rcu_read_unlock();
3057 if (error < 0)
3058 res = ERR_PTR(error);
3059 return res;
3061 EXPORT_SYMBOL(d_path);
3064 * Helper function for dentry_operations.d_dname() members
3066 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3067 const char *fmt, ...)
3069 va_list args;
3070 char temp[64];
3071 int sz;
3073 va_start(args, fmt);
3074 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3075 va_end(args);
3077 if (sz > sizeof(temp) || sz > buflen)
3078 return ERR_PTR(-ENAMETOOLONG);
3080 buffer += buflen - sz;
3081 return memcpy(buffer, temp, sz);
3084 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3086 char *end = buffer + buflen;
3087 /* these dentries are never renamed, so d_lock is not needed */
3088 if (prepend(&end, &buflen, " (deleted)", 11) ||
3089 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3090 prepend(&end, &buflen, "/", 1))
3091 end = ERR_PTR(-ENAMETOOLONG);
3092 return end;
3094 EXPORT_SYMBOL(simple_dname);
3097 * Write full pathname from the root of the filesystem into the buffer.
3099 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3101 struct dentry *dentry;
3102 char *end, *retval;
3103 int len, seq = 0;
3104 int error = 0;
3106 if (buflen < 2)
3107 goto Elong;
3109 rcu_read_lock();
3110 restart:
3111 dentry = d;
3112 end = buf + buflen;
3113 len = buflen;
3114 prepend(&end, &len, "\0", 1);
3115 /* Get '/' right */
3116 retval = end-1;
3117 *retval = '/';
3118 read_seqbegin_or_lock(&rename_lock, &seq);
3119 while (!IS_ROOT(dentry)) {
3120 struct dentry *parent = dentry->d_parent;
3122 prefetch(parent);
3123 error = prepend_name(&end, &len, &dentry->d_name);
3124 if (error)
3125 break;
3127 retval = end;
3128 dentry = parent;
3130 if (!(seq & 1))
3131 rcu_read_unlock();
3132 if (need_seqretry(&rename_lock, seq)) {
3133 seq = 1;
3134 goto restart;
3136 done_seqretry(&rename_lock, seq);
3137 if (error)
3138 goto Elong;
3139 return retval;
3140 Elong:
3141 return ERR_PTR(-ENAMETOOLONG);
3144 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3146 return __dentry_path(dentry, buf, buflen);
3148 EXPORT_SYMBOL(dentry_path_raw);
3150 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3152 char *p = NULL;
3153 char *retval;
3155 if (d_unlinked(dentry)) {
3156 p = buf + buflen;
3157 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3158 goto Elong;
3159 buflen++;
3161 retval = __dentry_path(dentry, buf, buflen);
3162 if (!IS_ERR(retval) && p)
3163 *p = '/'; /* restore '/' overriden with '\0' */
3164 return retval;
3165 Elong:
3166 return ERR_PTR(-ENAMETOOLONG);
3169 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3170 struct path *pwd)
3172 unsigned seq;
3174 do {
3175 seq = read_seqcount_begin(&fs->seq);
3176 *root = fs->root;
3177 *pwd = fs->pwd;
3178 } while (read_seqcount_retry(&fs->seq, seq));
3182 * NOTE! The user-level library version returns a
3183 * character pointer. The kernel system call just
3184 * returns the length of the buffer filled (which
3185 * includes the ending '\0' character), or a negative
3186 * error value. So libc would do something like
3188 * char *getcwd(char * buf, size_t size)
3190 * int retval;
3192 * retval = sys_getcwd(buf, size);
3193 * if (retval >= 0)
3194 * return buf;
3195 * errno = -retval;
3196 * return NULL;
3199 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3201 int error;
3202 struct path pwd, root;
3203 char *page = __getname();
3205 if (!page)
3206 return -ENOMEM;
3208 rcu_read_lock();
3209 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3211 error = -ENOENT;
3212 if (!d_unlinked(pwd.dentry)) {
3213 unsigned long len;
3214 char *cwd = page + PATH_MAX;
3215 int buflen = PATH_MAX;
3217 prepend(&cwd, &buflen, "\0", 1);
3218 error = prepend_path(&pwd, &root, &cwd, &buflen);
3219 rcu_read_unlock();
3221 if (error < 0)
3222 goto out;
3224 /* Unreachable from current root */
3225 if (error > 0) {
3226 error = prepend_unreachable(&cwd, &buflen);
3227 if (error)
3228 goto out;
3231 error = -ERANGE;
3232 len = PATH_MAX + page - cwd;
3233 if (len <= size) {
3234 error = len;
3235 if (copy_to_user(buf, cwd, len))
3236 error = -EFAULT;
3238 } else {
3239 rcu_read_unlock();
3242 out:
3243 __putname(page);
3244 return error;
3248 * Test whether new_dentry is a subdirectory of old_dentry.
3250 * Trivially implemented using the dcache structure
3254 * is_subdir - is new dentry a subdirectory of old_dentry
3255 * @new_dentry: new dentry
3256 * @old_dentry: old dentry
3258 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3259 * Returns 0 otherwise.
3260 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3263 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3265 int result;
3266 unsigned seq;
3268 if (new_dentry == old_dentry)
3269 return 1;
3271 do {
3272 /* for restarting inner loop in case of seq retry */
3273 seq = read_seqbegin(&rename_lock);
3275 * Need rcu_readlock to protect against the d_parent trashing
3276 * due to d_move
3278 rcu_read_lock();
3279 if (d_ancestor(old_dentry, new_dentry))
3280 result = 1;
3281 else
3282 result = 0;
3283 rcu_read_unlock();
3284 } while (read_seqretry(&rename_lock, seq));
3286 return result;
3289 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3291 struct dentry *root = data;
3292 if (dentry != root) {
3293 if (d_unhashed(dentry) || !dentry->d_inode)
3294 return D_WALK_SKIP;
3296 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3297 dentry->d_flags |= DCACHE_GENOCIDE;
3298 dentry->d_lockref.count--;
3301 return D_WALK_CONTINUE;
3304 void d_genocide(struct dentry *parent)
3306 d_walk(parent, parent, d_genocide_kill, NULL);
3309 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3311 inode_dec_link_count(inode);
3312 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3313 !hlist_unhashed(&dentry->d_alias) ||
3314 !d_unlinked(dentry));
3315 spin_lock(&dentry->d_parent->d_lock);
3316 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3317 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3318 (unsigned long long)inode->i_ino);
3319 spin_unlock(&dentry->d_lock);
3320 spin_unlock(&dentry->d_parent->d_lock);
3321 d_instantiate(dentry, inode);
3323 EXPORT_SYMBOL(d_tmpfile);
3325 static __initdata unsigned long dhash_entries;
3326 static int __init set_dhash_entries(char *str)
3328 if (!str)
3329 return 0;
3330 dhash_entries = simple_strtoul(str, &str, 0);
3331 return 1;
3333 __setup("dhash_entries=", set_dhash_entries);
3335 static void __init dcache_init_early(void)
3337 unsigned int loop;
3339 /* If hashes are distributed across NUMA nodes, defer
3340 * hash allocation until vmalloc space is available.
3342 if (hashdist)
3343 return;
3345 dentry_hashtable =
3346 alloc_large_system_hash("Dentry cache",
3347 sizeof(struct hlist_bl_head),
3348 dhash_entries,
3350 HASH_EARLY,
3351 &d_hash_shift,
3352 &d_hash_mask,
3356 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3357 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3360 static void __init dcache_init(void)
3362 unsigned int loop;
3365 * A constructor could be added for stable state like the lists,
3366 * but it is probably not worth it because of the cache nature
3367 * of the dcache.
3369 dentry_cache = KMEM_CACHE(dentry,
3370 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3372 /* Hash may have been set up in dcache_init_early */
3373 if (!hashdist)
3374 return;
3376 dentry_hashtable =
3377 alloc_large_system_hash("Dentry cache",
3378 sizeof(struct hlist_bl_head),
3379 dhash_entries,
3382 &d_hash_shift,
3383 &d_hash_mask,
3387 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3388 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3391 /* SLAB cache for __getname() consumers */
3392 struct kmem_cache *names_cachep __read_mostly;
3393 EXPORT_SYMBOL(names_cachep);
3395 EXPORT_SYMBOL(d_genocide);
3397 void __init vfs_caches_init_early(void)
3399 dcache_init_early();
3400 inode_init_early();
3403 void __init vfs_caches_init(unsigned long mempages)
3405 unsigned long reserve;
3407 /* Base hash sizes on available memory, with a reserve equal to
3408 150% of current kernel size */
3410 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3411 mempages -= reserve;
3413 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3414 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3416 dcache_init();
3417 inode_init();
3418 files_init(mempages);
3419 mnt_init();
3420 bdev_cache_init();
3421 chrdev_init();